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waves are generated by changes of orientation and magnitude
of internal magnetic fields, which are produced by spinning
nuclei in external magnetic fields. The radio signals are de-
tected by an antenna to provide information on the Fourier
transform of a cross section, which is directly related to line
integrals of the nuclei density. In transmission electron mi-
croscopy, an electron beam penetrates a specimen over a lim-
ited angular range to collect projections. In ionospheric to-
mography, the total electron content is measured between an
orbiting satellite and several ground stations. In geophysics,
phase shifts of electromagnetic signals are detected for spatial
reconstruction of the electrical conductivity and dielectric per-
mittivity of the subsurface. In oceanography, acoustic trans-
mission from a single source suspended from a ship to sono-
buoys dropped from the air are recorded for mapping of ocean
sound speed. In astronomy, the sun can be observed using an
antenna with a parabolic section, and an integral signal is
recorded over a thin strip of the radio emission distribution.
By moving the antenna, the integrals are obtained over differ-
ent strips for reconstruction of the ratio emission distribution.
CT principles are also applied in optical tomography, diffrac-
tion tomography, and other areas.

The CT literature is large and growing. Historically, three
contributors are most important: Radon, Hounsfield, and Cor-
mack. Reconstruction of a function from its projections was
first formulated by Radon in 1917 (1). The first experimental
X-ray CT scanner was fabricated and tested by Hounsfield in
1972 (2). An important contribution to mathematics of X-ray
CT was made by Cormack (3,4). Hounsfield and Cormack
shared the 1979 Nobel Prize for medicine.

In this article, we introduce physical and mathematical
principles of CT, describe practical reconstruction algorithms
for various imaging geometries, and discuss image quality.
We focus on X-ray CT, the most prominent example of CT,
which has been greatly advanced over the past two decades,
has benefited millions of patients, and still represents an im-
portant research area. CT in medical and industrial applica-
tions is now a worldwide major industry.
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CT PRINCIPLESTomography refers to the synthesis of sectional images or
slices from external measurements of a spatially varying

The principles of CT are conceptually simple. Physically, Xfunction. Line integrals are the most common external mea-
rays can traverse a cross section of an object along straightsures, which are also known as projections. Availability of
lines, can be attenuated by the object, and can be detectedmultiple projections at different orientations allows accurate
outside it. During CT scanning, the cross section is probedrecovery of the originating function. Because practical imple-
with X rays from various directions, and attenuated signalsmentation of tomography typically requires large amounts of
are recorded and converted to projections of the linear attenu-data and calculations, modern computing technologies are im-
ation coefficient distribution of the cross section. These X-rayportant. Computerized tomography (CT) is interdisciplinary,
shadows are directly related to the Fourier transform of theinvolving electrical and electronics engineering, mathematics,
cross section, and they can be processed to reconstruct thecomputer science, physics, mechanics, and biomedical sciences.
cross section.CT applications are numerous and diverse. Due to its pen-

etrating power and contrast mechanism, X-ray CT has found
Projection Measurementwide use in medical imaging, industrial nondestructive evalu-

ation, airport screening, and microtomography. In nuclear Let us consider the simplest case, a single block of homoge-
medicine, a radiating source distribution inside a patient is neous tissue and a monochromatic beam of X rays. The linear
observed as the intensity of singly (single photon emission attenuation coefficient � is defined by
computerized tomography, SPECT) or pairwise (positron
emission tomography, PET) emitted photons detected outside Sa = Si exp [−µ�l] (1)
the patient. If the attenuation of the body is neglected, mea-
sures are line integrals of the source distribution. In magnetic where �l is the length of the block, and Si and Sa are incident

and attenuated intensities of the X ray, respectively. Letresonance imaging (MRI), radio-frequency electromagnetic
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�(x, y) denote the sectional attenuation variation. For an in- gas atoms produces electron–ion pairs. These electron–ion
pairs form a current between the anode and the cathode whenfinitely thin beam of monochromatic X rays, the detected in-

tensity of the X ray along a straight line L is expressed as a high voltage is applied. The intensity of this current is pro-
portional to the intensity of the incoming radiation. In terms
of the conversion efficiency, the scintillation detector is better.Sa = Si exp

[
−

∫
L

µ(x, y) dl
]

(2)

Fourier Slice Theorem
as shown in Fig. 1. The line integral of �(x,y) along L can be

In tomography, various geometries are used to collect projec-found as follows:
tion data, as detailed below. For simplicity, we introduce im-
age reconstruction with the 2-D parallel-beam geometry. The
2-D Fourier transform of an image function i(x,y) is defineddp(θ, t) = ln

(
Si

Sa

)
, 0 ≤ θ < π, −∞ < t < ∞ (3)

as

where p denotes parallel-beam geometry and � and t repre-
sent the projection angle and the detector position, respec-
tively. Actually, � and t are polar coordinates of the perpen-

I(u, v) =
∫ ∞

−∞

∫ ∞

−∞
i(x, y)e− j2π (ux+vy) dx dy (4)

dicular vector from the center of object to the X ray. For a
Restricting I(u, v) to the line defined by v � 0, we havefixed �, dp(�, t) is also referred to as a projection. Because in-

cremental attenuations are summed along X rays in the pro-
jection process, and variations of �(x,y) are superimposed
along X rays, it is impossible to reconstruct �(x,y) from a sin-

I(u, 0) =
∫ ∞

−∞

∫ ∞

−∞
i(x, y)e− j2πux dx dy (5)

gle projection. However, as we will see in the following sec-
Because the phase is no longer dependent on y, the integraltion, �(x,y) can be exactly reconstructed if all projections, dp

can be split into two parts:(�, t), are available. Note that if the X-ray intensity is low,
statistical fluctuation must be taken into account.

Technologies of X-ray sources, detectors, and collimators
are critical to data acquisition. Currently, a diagnostic type

I(u, 0) =
∫ ∞

−∞

[∫ ∞

−∞
i(x, y) dy

]
e− j2πux dx (6)

X-ray tube is used as the radiation source of the medical CT
scanners. The tube is operated with high-frequency power, a The term in brackets is recognized as the projection along
rotating anode disk, and a small focal spot down to 0.6 mm. lines of constant x,
The disk is usually made of a rhenium, tungsten, and molyb-
denum (RTM) alloy and can be rotated at a speed of up to
10,000 rotations per minute. Radiation from these X-ray

dp(0,x) =
∫ ∞

−∞
i(x,y) dy (7)

tubes is polychromatic, and it is narrowed by appropriate fil-
tration to have a more concentrated spectrum. Pre- and post- that is,
patient collimators restrict the filtered X-ray beam to the
anatomy of interest. CT detectors convert attenuated X-ray
signals into electrical signals. There are two types of detec- I(u,0) =

∫ ∞

−∞
dp(0,x)e− j2πux dx (8)

tors: scintillation detectors and xenon detectors. In the scintil-
lation detector, scintillation crystals will produce light if they In other words, the Fourier transform of the vertical projec-
are exposed to ionizing radiation. The light is then trans- tion of an image is the horizontal radial profile of the 2-D
formed into an electric signal by a photomultiplier or a silicon Fourier transform of the image.
photodiode (also called solid-state photodiode). In the xenon This relationship can be generalized for any projection ori-
detector, a xenon gas ionization chamber is used to measure entation. By the nature of the Fourier transform, if an image
incoming radiation, where interaction of X-ray photons and i(x,y) is rotated by an angle with respect to the x axis, the

Fourier transform I(u,v) will be correspondingly rotated by
the same angle with respect to the u axis. Therefore, the Fou-
rier transform of a projection along the lines that make an
angle � � 90� with respect to the x axis depicts the Fourier
transform of the image along the radial line that makes an
angle �. This relationship is illustrated in Fig. 2 and is re-
ferred to as the Fourier slice theorem; mathematically,

Dp(θ, w) = I(w cos θ, w sin θ ) (9)

where Dp(�, w) is the Fourier transform of dp(�, t) with respect
to t.

In n dimensions, we define the Radon transform Rn of a

X-ray detector

X-ray tube

Si

Sa

t

x

y

µ(x, y) θ

L

function i(x�) in the Schwartz space as the set of its integrals
over the (n�1)-dimensional hyperplanes. Let �

�

be a vectorFigure 1. Line integrals of �(x, y), the linear attenuation of an ob-
defined on the (n�1)-dimensional unit sphere, and let s be aject, can be determined from Si and Sa, incident and attenuated inten-

sities of the X ray along a path L. real number:
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mined by the thermal limitation of the X-ray tube. Twin-beam
spiral CT is based on helical scanning of two contiguous
transaxial sections (9).

Traditionally, volumetric image reconstruction is achieved
by scanning a series of cross sections and by stacking these
slices. In cone-beam geometry, instead of scanning an object
with a planar beam of X rays, the entire object is illuminated
with a point source, and the X-ray flux is measured on a de-
tector plane behind the object [Fig. 3(f)]. The primary advan-
tages of cone-beam geometry include reduced data acquisition
time, improved image resolution, and optimized photon utili-
zation.

Two unique CT scanners deserve special mentions: the dy-(b)

Fourier space

y

w

x

I(u,v)

θ

Dp( ,w) = 
I(wcos  , wsin  )

θ
θ θ

Image space

(a)

y

t

x

i(x,y)

θ

dp( ,t)θ

namic spatial reconstructor (DSR) (10) and the electron-beam
Figure 2. Fourier slice theorem. (a) Fourier transform of a projection CT scanner (11). Both can complete data acquisition in a frac-
at an angle � corresponds to (b) a radial profile at the same angle in tion of a second and can enable cardiac imaging. In the SDR,
the Fourier space.

28 X-ray tubes are arranged in a semicircle in a circular gan-
try. Projections are formed on the fluorescent screen arc,
scanned via multiple imaging chains, and reconstructed volu-Rn(�θ, s) =

∫
�x·�θ=s

i(�x) d�x (10)
metrically. In the electron-beam scanner, conventional me-
chanical rotation of an X-ray source is replaced by electromag-

Rn is an even function, that is, Rn(��
�

, �s) � Rn(�
�

, s). The
netic steering of an electron-beam around one of four

generalized Fourier slice theorem (5) states that the Fourier
semicircular tungsten targets of 210� and 90 cm in radius.

transform of Rn(�
�

, s) with respect to s equals I(�
�

, w).
Projections are measured by two stationary detector rings of

The Fourier slice theorem plays a fundamental role, be-
216� and 67.5 cm in radius.

cause it relates Radon data to a radial profile in the Fourier
Fig. 4 shows an Elscint twin-beam spiral CT scanner. Fig.

space. In the ‘‘complete’’ case where all Radon data are avail-
5 reveals an inside view of a Siemens spiral CT gantry. Fig.

able or derivable, the corresponding radial lines will cover the
6 is a transaxial slice of a human head reconstructed by a

entire Fourier space. Then, the image can be reconstructed
Picker spiral CT scanner. Fig. 7 contains a photo and a sche-

using the inverse Fourier transform. In practice, complete
matic drawing of the DSR.

projection data are discretely sampled; and quantization er-
ror, nonlinearities, noise, and other nonidealities are present.

IMAGE RECONSTRUCTIONThere are many algorithms for image reconstruction from
projections, and we will explain the most important ones

There are two major classes of CT image reconstruction algo-below.
rithms: filtered backprojection and iterative reconstruction.
Filtered backprojection is the most popular, since it is accu-Imaging Geometries
rate and amenable to fast implementation. Iterative recon-

The imaging geometry of CT is of fundamental importance in struction has significant potential for increased use in future,
designing a CT scanner system and a reconstruction algo- because it provides a solid framework for handling incomplete
rithm. Popular types of CT geometries are summarized in Fig. and noisy projection data.
3. The first generation scanner is characterized by an assem-
bly of an X-ray source and a single detector [Fig. 3(a)]. For Filtered Backprojection
a given projection angle, a parallel-beam projection profile is

The filtered backprojection algorithms are described for paral-collected while the assembly is translated along a straight
lel-beam, fan-beam, and cone-beam cases in this section.line segment. The projection angle can be controlled by rota-

tion of the assembly. The second generation scanner is also in
Parallel-Beam Reconstruction. With the inverse Fouriera translation–rotation mode, but multiple detectors are em-

transform, an image i(x, y) can be expressed asployed that extend a small fan-beam angle [Fig. 3(b)]. The
third-generation scanner utilizes many more detectors and
has a much wider fan-beam angle so that X rays from an X- i(x,y) =

∫ ∞

−∞

∫ ∞

−∞
I(u, v)e j2π (ux+vy) du dv (11)

ray source cover the entire cross section to be reconstructed
[Fig. 3(c)]. Therefore, there is no need for translation of the Let
source-detector assembly. In other words, the assembly works
in a rotation fashion. In the fourth-generation design, detec- u = w cos θ, v = w sin θ (12)
tors are distributed along a full circle, and only an X-ray
source is orbited [Fig. 3(d)]. we have

Fan-beam spiral/helical scanning is the standard medical
CT mode. Spiral CT is implemented by simultaneous patient
translation, gantry rotation, and data acquisition [Fig. 3(e)]

i(x, y) =
∫ 2π

0

∫ ∞

0
I(θ, w)e j2π (x cos θ+y sin θ )ww dw dθ (13)

(6–8). The slip-ring is a key component for spiral scanning, in
which a brush slides along a ring as the x-ray source rotates Because
so that electrical energy is continuously supplied. The maxi-
mum scanning time with the slip-ring technique is deter- I(θ + π, w) = I(θ, −w) (14)
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we have Note that f (t) does not exist in an ordinary sense, but
Dp(�,w) is essentially band-limited, and f (t) can be accurately
evaluated within the maximum bandwidth of Dp(�, w).

Geometrically, this formula performs filtered backprojec-i(x, y) =
∫ π

0

∫ ∞

−∞
I(θ, w)|w|e j2π (x cos θ+y sin θ )w dw dθ (15)

tion for image reconstruction. Let us decompose the formula
into two parts:Using the Fourier slice theorem, we have

i(x, y) =
∫ π

0
q(θ,x cos θ + y sin θ ) dθ (18)

where

i(x, y) =
∫ π

0

∫ ∞

∞
Dp(θ, w)|w|e j2π (x cos θ+y sin θ )w dw dθ

=
∫ π

0

∫ ∞

−∞
dp(θ, t) f (x cos θ + y sin θ − t) dt dθ

(16)

where f (t) is the reconstruction filter:

f (t) =
∫ ∞

−∞
|w|e j2πwt dw (17)

q(θ, x cos θ + y sin θ ) =
∫ ∞

−∞
Dp(θ, w)|w|e j2π (x cos θ+y sin θ )w dw

=
∫ ∞

−∞
dp(θ, t) f (x cos θ + y sin θ − t) dt

(19)
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Figure 3. CT geometries. (a) First generation: one detector, translation and rotation of source
and detector; (b) second generation: multiple detectors, translation and rotation of source and
detectors; (c) third generation: one detector array, rotation of source and array; (d) fourth genera-
tion: one detector ring, source rotation; (e) spiral CT: simultaneous source rotation and patient
translation, in either the third or fourth generation geometry; (f) cone-beam geometry: 2-D detec-
tor array.
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Figure 4. Twin-beam spiral CT scanner CT-Twin. (Courtesy of El-
scint, Inc.)

Figure 6. CT slice of a human head. (Courtesy of Picker Interna-Clearly, q(�, t) is a filtered version of dp(�, t), which is the con-
tional, Inc.)volution of dp(�, t) and f (t). Equivalently, q(�, t) is the Hilbert

transform of d�p(�, t). i(x,y) is the sum of backprojected q(�, t)
along X rays. This backprojection process can be better ap-

object and enters a detector array. The source and the detec-preciated by considering a projection at a fixed �. In this case
tor array are rotated about the object to collect sufficient fan-the X ray through a point (x,y) in the field of view intersects
beam projections. Fan-beam data are often described in twothe projection axis at t(x,y) � x cos � � y sin �; and the filtered
formats, depending upon whether a projection is sampled atprojection value q(�, x cos � � y sin �) contributes to recon-
equiangular or equispatial intervals. Although the algorithmsstruction of i(x,y), after weighing with an appropriate angular
for these two types of fan-beam data differ, their derivationsincrement. Note that the filtered projection at the angle � will
are essentially the same. Here we focus on equispatial fan-make the same contribution to reconstruction at all those
beam reconstruction.points in the field of view that correspond to the same t, as

As shown in Fig. 9, equispatial fan-beam projections,shown in Fig. 8. In other words, each filtered projection is
df(�, p), are generated when detectors are evenly spaced on aadditively smeared back, or backprojected, over the field of
straight line facing the X-ray source and through the originview.
of the reconstruction system, where � and p are the source
rotation angle and the detector position, respectively. NoteFan-Beam Reconstruction. In fan-beam reconstruction, an
that a real projection can be readily scaled onto the corre-X-ray point source emanates a fan-beam that penetrates an
sponding line through the origin. Assume that an X-ray
source scanning locus 	(�) satisfies the following three condi-
tions:

1. 	(�) � 	(� � �).
2. 	�(�) exists almost everywhere.
3. 	2(�) 
 	�(�)pmin almost everywhere, pmin is the minimum

value such that df (�, p) � 0, �p� 
 pmin.

The third condition is easily satisfied in practice, because 	(�)
is generally larger than pmin and 	�(�) is not very large; in
particular, a circular scanning locus meets all these condi-
tions.

With the Jacobi transform, parallel-beam data dp(�, t) can
be converted to fan-beam data df(�, p) according to the follow-
ing relationship:

t = p cos γ and θ = β + γ

where � � tan�1[p/	(�)]. That is,

Figure 5. Inside view of a CT gantry. (Courtesy of Siemens Medi-
cal Systems.)

t = pρ(β)√
ρ2(β) + p2

and θ = β + tan−1
(

p
ρ(β)

)
(20)
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Figure 7. Dynamic spatial reconstructor (DSR). The
DSR is the first system that allows near real-time tomo-
graphic imaging, and it has been applied in cardiac stud-
ies. (Courtesy of Dr. Ritman with Mayo Clinic.)

It can be verified that Then, the parallel-beam reconstruction formula can be trans-
formed into the fan-beam reconstruction formula (12):

dt dθ

dp dβ
=

∣∣∣∣ ρ3 − pρρ ′

(ρ2 + p2)3/2

∣∣∣∣ (21)

If the third condition is satisfied, we obtain

i(x, y) = 1
2

∫ 2π

0

ρ2(β)

[ρ(β) − s]2

∫ ∞

−∞

ρ(β)√
ρ2(β) + p2

d f (β, p)

× f
(

ρ(β)t
ρ(β) − s

− p
)

dp dβ (23)

where t � x cos � � y sin � and s � �x sin � � y cos �.
Note that the term involving 	� is equal to zero. Similar to

dt dθ =
[

ρ3

(ρ2 + p2)3/2 − pρρ ′

(ρ2 + p2)3/2

]
dp dβ (22)

y

t

x
t  = xcos   + ysin θθ

(x,y)

θ

qp( ,t)θ

Figure 8. Backprojection of a filtered projection. After weighting
with an angular increment, each filtered projection is additively
smeared back to reconstruct an image.
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Figure 9. Geometry of equispatial fan-beam reconstruction.



14 COMPUTERIZED TOMOGRAPHY

opposite directions, and thus reduces the angular range from
720� to 360� plus two fan-angles. Fig. 11 is a flowchart of the
spiral CT process.

Exact Cone-Beam Reconstruction. When a point X-ray
source and a 2-D detector array are used, cone-beam image
reconstruction is required. Kirillov developed a formula for
reconstruction of a complex valued n-dimensional function
from complex valued cone-beam projection data (15). A suffi-
cient condition for exact reconstruction in the Schwarz space
is that an unbounded source point locus intersects almost ev-
ery hyperplane. Complex-valued cone-beam formulation can-(a)

z

x

y

X-ray
source

Helical
locus

(b)

z

x

y

X-ray
source

Helical
locus

not be directly used in practice. An inversion formula in the
Figure 10. Spiral CT raw data interpolation. (a) Full-scan interpola- real space was developed under the condition that almost ev-
tion: An in-plane projection value is linearly interpolated from near- ery hyperplane through a compact function support meets a
est raw data collected at the same orientation. (b) Half-scan interpo- source locus transversely (16). Important theoretical analyses
lation: An in-plane projection value is linearly interpolated from on cone-beam reconstruction of a real-valued function were
nearest raw data collected at the opposite orientations.

done by Smith (17) and Grangeat (18). Due to their funda-
mental work, we have the following sufficient condition for
exact cone-beam reconstruction: If there exists at least a cone-
beam source point on any plane intersecting an object, exactthe parallel-beam reconstruction formula, the fan-beam re-

construction formula can be interpreted as weighted filtered cone-beam reconstruction can be achieved. Recall that if there
exists at least a fan-beam source point on any straight linebackprojection. If 	 is a constant, the fan-beam formula

agrees with the circular fan-beam formula (13). intersecting an object, exact fan-beam reconstruction can be
achieved. Grangeat’s derivation of this sufficient conditionIn spiral CT, planar projection sets are synthesized from

raw projection data via interpolation. Among various interpo- has a clearer geometrical interpretation. Various exact cone-
beam reconstruction algorithms have been implemented ac-lation methods, linear interpolation is usually preferred due

to its efficiency and performance (8,14). Typical linear inter- cording to Smith’s theory (19–21), Grangeat’s framework
(22–25), and Tuy’s method (26), respectively.polation techniques include full-scan interpolation (FI) and

half-scan interpolation (HI), as shown in Fig. 10. In the FI The Grangeat algorithm consists of two parts. In the first
part, the radial derivative of planar integrals are computed,method, a set of planar projection data in a 360� angular

range is obtained via linearly interpolating neighboring raw according to the relationship between the radial derivative of
Radon data and the line integral of cone-beam data. The re-projection data at the same orientation; hence the involved

raw data span a 720� angular range. The HI method utilizes sults are distributed on various spheres in the Radon space
determined by a scanning locus. If the scanning locus is com-redundancy of raw data, interpolates neighboring raw data at

Figure 11. Flowchart of the spiral CT
process.
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Figure 12. Exact cone-beam reconstruction. 3-D Radon data are derived from cone-beam data,
interpolated on vertical planes, reconstructed into 2-D Radon data on horizontal planes, and
reconstructed into an image volume. (Courtesy of Drs. Axelsson and Danielsson. Reprinted from
Phys. Med. Biol., 39: 478, 1994, with permission.)

plete, the Radon space can be completely filled. In the second incomplete scanning loci and partial detection coverage. Fur-
thermore, approximate reconstruction is usually associatedpart, these Radon data are inverted. Although the direct fil-

tered backprojection formula may be applied with the 3-D Ra- with higher computational efficiency and may produce less
image noise and ringing. We focus on Feldkamp-type cone-don data, the computational complexity is O(N5), where N is

the size of a 3-D reconstruction grid and is proportional to the beam reconstruction, the main stream of approximate cone-
beam reconstruction.number of cone-beam projections. With the Marr method (27),

the 3-D Radon inversion is decomposed into two steps, as Let i(x, y, z) be an image with a cylindrical support. A scan-
ning locus is described in a cylindrical coordinate systemshown in Fig. 12. First, 3-D Radon data are interpolated on

vertical planes, and 2-D reconstruction is done for each verti- (	(�), h(�), �), where � is the source rotation angle around the
z axis, without loss of generality � � [0, 2�), 	(�) describescal plane. As a result, 3-D Radon data are transformed into

2-D Radon data associated with the vertical planes. Data in the distance between the source and the z axis, and h(�) is
the distance from the source to the x–y plane. If the 3-D scan-the vertical planes are then grouped into data in horizontal

planes, and 2-D reconstruction is performed for each hori- ning locus is vertically projected onto the x–y plane, a 2-D
scanning locus will be obtained. We assume that this 2-Dzontal plane. This method has a computational complexity of

O(N4). scanning locus meets all the three fan-beam scanning condi-
tions described earlier. An equispatial cone-beam projectionAxelsson and Danielsson developed a direct Fourier

method (24), which is a refined version of the Grangeat algo- is denoted as dc(�, p, �), where the � axis of the detection
plate p-� is superimposed on the z axis, and the central nor-rithm. Among existing algorithms, the Axelsson and Dan-

ielsson algorithm is computationally most efficient for a suf- mal of the detection plate is toward the x-ray source.
In Fig. 13, we consider reconstruction of a point objectficiently large amount of data and has a complexity of

O(N3 log N) (24). The reduction was made by adapting the �(x � x0, y � y0, z � z0) from its cone-beam data, which can
be expressed aslinogram method (28). The linogram method requires that the

projection profile sampling step and the projection angular in-
crement vary appropriately, so that equidistant samples
along concentric squares can be formed in the Fourier do-
main, and reconstruction accelerated. Exact filtered backpro-

dc,δ (β, p, ζ ) =
[

ρ2(β)

σ 2(β)

][√
ρ2(β) + p2 + ζ 2

ρ(β)

]
δ(p − p0)δ(ζ − ζ0)

(24)
jection algorithms for cone-beam reconstruction were inde-
pendently derived by Defrise and Clack (22) and by Kudo and where �(�) is the difference between 	(�) and the signed dis-

tance from the point object to the detection plate, and (p0, �0)Saito (23), which require that a scanning locus be complete,
data redundancy weighting and nonstationary 2-D filtering are coordinates of the point object projected on the detection

plate. Geometrically, the first factor scales the point objectbe applied.
because of the divergence of the cone beam, and the second
factor is due to the angle between the X ray through (x0, y0,Approximate Cone-Beam Reconstruction. Despite progress

in exact cone-beam reconstruction, approximate cone-beam z0) and the normal of the p-� plate. We note that in the plane
z � z0, the equispatial fan-beam projection of the point objectreconstruction remains important, especially in the cases of
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and then perform fan-beam reconstruction. By doing so, we
immediately obtain the generalized Feldkamp cone-beam re-
construction formula (29):

i(x, y, z) = 1
2

∫ 2π

0

ρ2(β)

(ρ(β) − s)2

∫ ∞

−∞

ρ(β)√
ρ2(β) + p2 + ζ 2

× dc(β, p, ζ ) f
(

ρ(β)t
ρ(β) − s

− p
)

dp dβ (27)

where t � x cos � � y sin �, s � �x sin � � y cos �, and � �
	(�)(z � h(�))/[	(�) � s]. Fig. 14 shows a real cone-beam pro-
jection of a snail as well as a surface-rendered image recon-
structed using the generalized Feldkamp algorithm with the
X-ray cone-beam micro-CT system at the AMIL, SUNY/Buf-

Scanning locus

Real 
source

y

β

ζ

x

p

z
βdf(  ,p)

(x0, y0, z0)

β ζdc(  ,p, 0)

βρ(  )

βh(  )

βσ (  )

α
Imaginary 

source

falo. Because this formula is based on fan-beam reconstruc-
Figure 13. Approximate cone-beam reconstruction. Cone-beam data tion, it is also in a weighted filtered backprojection format.
are corrected to fan-beam data by multiplying cone-beam data with

With a circular scanning locus, the generalized Feldkampthe cosine of the corresponding X-ray tilting angle. For a point object,
cone-beam formula is equivalent to the well-known Feldkampthe corrected fan-beam data are exact.
formula (30). The generalized Feldkamp formula allows a
wide class of scanning loci, reconstructs spherical, rod-shaped
and planar specimens, and preserves all the exactness proper-is
ties Feldkamp et al. established (30), including that the longi-
tudinal integral of a reconstructed volumetric image is equal
to that of the actual image.

Interestingly, the generalized Feldkamp reconstruction
df,δ (β, p) =

[
ρ2(β)

σ 2(β)

][√
ρ2(β) + p2

ρ(β)

]
δ(p − p0)δ(0) (25)

can be similarly formulated in a rotated reconstruction sys-
tem x�–y�–z� after cone-beam data are corrected onto the newComparing Eq. (24) with Eq. (25), we observe that the fan-
imaginary detector plane through the z� axis. Suppose thatbeam projection df,�(�, p) of this point object can be exactly
the vertical projection of a 3-D scanning locus allows exactobtained by multiplying the corresponding horizontal profile
fan-beam reconstruction, it can be proven in the same waydc,�(�, p, �0) of the cone-beam projection with the cosine of the
that the integral of a reconstructed volumetric image alongX-ray tilting angle; mathematically,
the z� axis is exact. Note that if the projected scanning locus
does not satisfy the three fan-beam scanning conditions, Feld-
kamp-type reconstruction can still be performed using an ap-
propriate fan-beam reconstruction formula (data rebinning

df,δ (β, p) =
√

ρ2(β) + p2√
ρ2(β) + p2 + ζ 2

0

dc,δ (β, p, ζ0) (26)

may be involved).
The exact longitudinal integral of a reconstructed volumet-Clearly, applying the fan-beam reconstruction formula de-

rived in the preceding subsection with corrected cone-beam ric image equals the 2-D parallel-beam projection along the
direction of integration. Therefore, exact stereoimaging fromdata, exact reconstruction can be achieved in the plane z �

z0. incomplete cone-beam data is feasible. If a sufficient amount
of exact 2-D parallel projection data is available, exact 3-DGenerally speaking, i(x, y, z) is not a point object, but it

can be viewed as a combination of many point objects. To re- image reconstruction can be performed. Therefore, a sufficient
condition for exact cone-beam reconstruction can be stated be-construct a point object at (x, y, z), we can correct cone-beam

data in the same way to obtain approximate fan-beam data, low: If for any projection direction a projected scanning locus

Figure 14. Cone-beam X-ray microtomography. (a) Cone-
beam projection. (b) Surface rendered view of a snail shell
reconstructed using the generalized Feldkamp algorithm.
(Courtesy of Dr. P. C. Cheng, S. J. Pan, A. Shih, and W. S.
Liu with AMIL, SUNY/Buffalo.)
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is complete for exact fan-beam reconstruction on a projected 1. a(y�) 
 0 for all y�,
object support, the object can be exactly reconstructed. This 2. a(y�) is summable,
stereoimaging based sufficient condition is equivalent to the 3. H0(x

�) � �y��Y h(y��x�) 
 0,
traditional sufficient condition. If the stereoimaging-based

4. H0(y
�) � �x��X h(y��x�) 
 0,sufficient condition is satisfied, for any projection direction

5. h(y��x�) 
 0 for all x�, y�,the projected scanning locus is complete, and we have the
6. h(y��x�) is summable with respect to x� and y�.family of all the planes parallel to the projection direction and

containing at least one source position. That is, the tradi-
tional sufficient condition is also satisfied. If the stereoim- Several comments on the extended assumptions are in order.

First, a(y�) 
 0 may appear more restrictive than the originalaging-based sufficient condition is not satisfied, there is a pro-
jection direction along which the projected scanning locus is a(y�) 
 0, but it is not. Actually, a deblurring problem with

a(y�) 
 0 can be transformed to the one with a(y�) 
 0 by theincomplete, a line can be found that intersects the projected
object support but meets no projected source point, and this following preconditioning procedure: if a(y�0) � 0, c(x�) is set to

zero for all x� � X(y�0), where X(y�0), � �x� � X, h(y�0�x
�) � 0�, thenline represents a plane that intersects the object but contains

no source point. That is, the traditional sufficient condition y�0 and X(y�0) can be removed from Y and X, respectively. This
is consistent with what was done by Snyder et al.: if a(y�) � 0,is violated.
then c(x�) � 0 (32). Also, H(x�) 
 0 means that c(x�) is somehow
measured at any specific x�. If H(x�0) � 0, c(x�0) is totally unob-Iterative Reconstruction
servable. Hence, x�0 can be removed from X. On the other

Available noniterative cone-beam algorithms require that hand, H(y�) 
 0 means that every a(y�) carries a certain
projections should not be truncated along at least one direc- amount of information about c(x�). Actually, if H(y�0) � 0,
tion. Therefore, satisfactory cone-beam reconstruction with h(y�0�x

�) � 0 for all x�, and no information about c(x�) can be de-
these algorithms is impossible in cases where objects contain rived from a(y�0) � 0. Therefore, y�0 can be removed from Y.
X-ray opaque components and/or are larger than the cone- These preconditioning operations exclude uninformative situ-
beam aperture defined by effective detection area and X-ray ations. We showed that all the properties Snyder et al. estab-
source position. Various iterative methods are known for lished remain essentially valid under the extended assump-
years. Recently, Snyder et al. interpreted the expectation tions [mainly, h(y��x�) 
 0, instead of h(y��x�) 
 0].
maximization (EM) formula for emission CT (31) in a deter- Although it is computationally expensive, the major advan-
ministic sense, and established its properties on convergence tages of the iterative approach include insensitivity to data
and optimality (32). noise and capability of reconstructing an optimal image in the

Using the notation of Snyder et al. (32), the linear, dis- case of incomplete data, where traditional Fourier-transform-
crete, and nonnegative deblurring problem is formulated as based methods are subject to serious artifacts. With rapid
inversion of evolution of computing technologies, iterative reconstruction

will be more practical.
Theoretically, a projection datum is the value of a linear

∑
�x∈XXX

h(�y|�x)c(�x) = a(�y) (28)
integral along an X-ray path contained in an object. After dis-
cretization of detection and reconstruction systems, continu-

where a(y�) is an observed function, h(y��x�), a known blurring ous projection can be approximated as values at a detection
kernel, c(x�) a function to be recovered, x� � X, y� � Y, and all grid, each of which equals a sum of weighted values of those
the functions are nonnegative. The following iterative deblur- voxels that are in a neighborhood of the correponding X ray.
ring formula can be used: Then, the generic iterative deblurring formula can be special-

ized for image reconstruction in parallel-beam, fan-beam, or
cone-bean geometry.

A flowchart of the iterative cone-beam reconstruction algo-
ck+1(�x) = ck(�x)

1
H0(�x)

∑
�y∈YYY

[
h(�y|�x)∑

�x′∈XXX h(�y|�x′)ck(�x′)

]
a(�y) (29)

rithm is given in Fig. 15. First, cone-beam projection data are
measured given a cone-beam geometry and a scanning locus.where H0(x

�) � �y��Y h(y��x�), ck(x
�) and ck�1(x

�) are current and
Based on measured cone-beam data, a characteristic projec-updated guesses of c(x�). It was shown that �x��X h(y��x�)c�(x�) fits
tion mask is formed to indicate whether or not a reading isa(y�) nonnegatively, monotonically, and optimally in the sense
significant for a combination of source and detector positions.of the I-divergence I(a�b) (32)
For example, if there are X-ray opaque structures in an ob-
ject, some detectors may receive little photons, and corre-
sponding data are lost. To take beam divergence and data
incompleteness into account, a relaxation function (the dis-

I(a‖b) =
∑
�y∈YYY

a(�y) log
a(�y)

b(�y)
−

∑
�y∈YYY

[a(�y) − b(�y)] (30)

crete version of H0(x
�

p)) is generated from the projection mask,
the cone-beam geometry, and the scanning locus. Also, a posi-Use of the I-divergence to define the optimality is justifiable

(33,34). Briefly, among many discrepancy measures, the I-di- tive intermediate image volume is initialized. In each itera-
tion, cone-beam projection data are estimated via ray-tracingvergence and the Euclidean distance were shown to be appro-

priate choices in nonnegative and real spaces, respectively. based on the intermediate image volume. Discrepancies be-
tween measured and estimated projection data are computedIn their work (32), Snyder et al. require a strictly positive

kernel, h(y��x�) 
 0. Recently, this constraint was relaxed to as ratios for every significant combination of detector and
source positions. Then, these ratios are backprojected over theallow a nonnegative kernel, h(y��x�) 
 0, under the following

extended assumptions (35): 3-D image grid, multiplied with the intermediate image, and
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in a unified way due to introduction of the projection mask.
Consequently, the iterative X-ray CT algorithm is a powerful
framework for metal artifact reduction and local region recon-
struction from truncated data.

IMAGE QUALITY

Image quality can be described in two categories: resolution
and artifacts. Image resolution has three aspects: high-con-
trast resolution (spatial resolution) for distinguishing adja-
cent objects of high-contrast, low-contrast resolution (contrast
resolution) for differentiating an object from its background
which is similar to the object in gray-scale, and temporal reso-
lution for resolving time-varying structures. Image noise im-
poses a grainy appearance due to random fluctuations of the
X-ray photon flux, and it is a major factor in defining low-
contrast resolution. Image artifacts are structured or pat-
terned interference over the field of view. Although the X-ray
dosage delivered to the patient is an extremely important is-
sue in medical CT and closely related to image quality, it is
beyond the scope of this article. Interested readers are re-
ferred to Rothenberg and Pentlow (36) and McGhee and Hum-
phreys (37). In discussion of image quality, we emphasize
unique features of spinal CT, the standard mode of medical
X-ray CT.

Form
projection mask

Initialize
intermediate image

Estimate
projection data

Divide measured with
estimated data

Generate
relaxation factor

Update
intermediate image

Continue?

Start

Measure
projection data

End

Y

N

ResolutionFigure 15. Flowchart of the EM-type iterative X-ray cone-beam CT
algorithm with data incomplete due to either X-ray opaque structures Spiral CT was introduced for faster volumetric scanning than
or an insufficient cone-beam aperture. conventional incremental CT. However, spiral CT produces

inconsistent projection data for any transaxial plane, and it
divided by the relaxation factor to obtain an updated image. broadens the slice sensitivity profile (SSP) as compared with
A priori knowledge, such as a known image support, can be conventional CT. It appeared that temporal resolution of spi-
enforced upon the updated image. Image quality and fitting ral CT was improved at the cost of degraded high- and low-
errors may be estimated after each iteration. A numerically contrast resolution. However, as will be seen below, this is
simulated example is presented in Fig. 16. not necessarily the case.

Iterative deblurring has been used for PET and SPECT
image reconstruction, where it is interpreted in a statistical High-Contrast Resolution. Generally, high-contrast resolu-

tion in a scanning plane can be easily visualized using thesense for maximization of the likelihood. The iterative X-ray
CT algorithm has two important features. First, this algo- multibar phantom, as shown in Fig. 17, which is an array of

high-contrast bars being uniform in both the bar width andrithm is interpreted in a deterministic sense, which mini-
mizes the I-divergence of measured and fitted data instead of their separation. When the width and separation of the bars

become smaller, the image contrast of the bars will decrease.maximizing the likelihood of the solution. Actually, the likeli-
hood in X-ray CT can be maximized using a more complicated The in-plane resolution is described by the modulation trans-

fer function (MTF), which is the ratio between the image con-iterative formula (31). Second, it handles data incompleteness

Figure 16. Numerical simulation of EM-
type iterative X-ray cone-beam tomogra-
phy with a cylindrical phantom from in-
complete data due to an embedded X-ray
opaque sphere. (a) Diagram of the phan-
tom containing 7 disks (thickness not
shown) and the opaque sphere, (b) middle
sagittal slice, (c) reconstructed counter-
part after 40 iterations.

X-ray opaque object

1cmPhantom

(b) (c)(a)

1
cm
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tures scanned in the field of view. As shown in Fig. 18, low-
contrast resolution can be measured with a multihole phan-
tom. A good descriptor of low-contrast resolution is the CT
value difference of those holes that are barely recognizable in
the image.

Conventional CT being the standard, spiral CT with the
HI method increases image noise, while spiral CT with the FI
method decreases image noise (8,14,40). On the other hand,
the HI method degrades the SSP significantly less than the
FI method (8,14). As a result, spiral CT could suffer from ei-
ther poorer high-contrast resolution using the FI method or
poorer low-contrast resolution using the HI method. Because
both the HI and FI methods have their advantages and disad-
vantages, they can be combined for a balance. Specifically,
from a spiral CT raw data set and at a given longitudinal
position, two transaxial images can be reconstructed using
the FI and HI methods, respectively. Then, the two images
are averaged to produce a new image. Apparently, the averag-
ing operation can be moved into the interpolation process for
better efficiency, resulting a balanced interpolation method.
The image noise, the one-tenth-cutoff, and the mean-square-

Figure 17. High-contrast resolution is measured with the multibar root measures of the longitudinal MTFs were derived for in-
phantom. The modulation transfer function is described by the ratio cremental CT and spiral CT using this balanced interpolation
between the image contrast and the bar contrast as a function of the

method and were experimentally verified (41). It was foundspatial frequency of the bars. (Courtesy of Picker International, Inc.)
that given an X-ray dose and a longitudinal bandwidth, spiral
CT on average allows less image noise and better low-contrast
resolution than incremental CT.

trast and the object contrast as a function of the spatial fre-
quency of the bars. Ideally, the MTF is defined in terms of Temporal Resolution. To capture rapidly varying struc-
sinusoidal functions, which are, however, difficult to fabri- tures, the speed of data acquisition is critical. The develop-
cate. On the other hand, high-contrast resolution through the ment of CT scanners was motivated, to a major degree, by the
scanning plane is described in terms of the SSP, which can be need for better temporal resolution. The primary indicator of
computed as the derivative of an edge response in a plane temporal resolution is the period of data acquisition, although
orthogonal to the scanning plane. the temporal resolution also depends on the reconstruction

Several studies have shown that in-plane high-contrast algorithm. State-of-the-art spiral CT scanners collect projec-
resolution of spiral CT is quite similar to that of incremental tion data of 360� in a second. Recently, CT fluoroscopy (CTF)
CT (8,14). As far as through-plane high-contrast resolution has attracted increasing interest. In CTF, a patient is contin-
is concerned, although spiral CT degrades the SSP, it allows
retrospective reconstruction: Raw data are collected first, and
any transaxial slice can be reconstructed afterward; in other
words, the longitudinal sampling rate in spiral CT can be
much higher. To compare through-plane high-contrast resolu-
tion, the SSPs and corresponding MTFs were derived for in-
cremental CT and spiral CT with the HI method (38). The
one-tenth-cutoff and mean-square-root measures were used to
quantify the bandwidths of the MTFs. It was proven that for
a given X-ray dose, spiral CT with overlapping reconstruction
has a wider bandwidth and thus better longitudinal high-con-
trast resolution than incremental CT. It is recommended that
3–5 slices be reconstructed per slice thickness. Experiments
also demonstrated merits of overlapping reconstruction in spi-
ral CT (39). With state-of-the-art spiral CT scanners, volu-
metric images of sub-mm isotropic 3-D resolution can be ob-
tained.

Low-Contrast Resolution. Low-contrast resolution charac-
terizes recognizability of a low-contrast object and is influ-
enced by several factors, including the object size, contrast
between object and background, image noise, and the system
MTF. Image noise is primarily determined by the dose setting
of the X-ray tube, the slice thickness, the reconstruction algo- Figure 18. Low-contrast resolution is measured with a multi-hole

phantom. (Courtesy of Picker International, Inc.)rithm, the characteristics of the CT scanner, and the struc-
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Figure 19. Beam-hardening artifacts and correction. (a) Uncorrected ‘‘cupping’’ profile of a ho-
mogeneous phantom due to beam hardening, which causes a right shift in the effective energy
of the X-ray beam over longer paths. (b) Image reconstructed at the petrous bones without beam-
hardening correction, in which an erroneous shadow is indicated by the arrow. (c) With beam-
hardening correction. (Courtesy of Dr. Jiang Hsieh at GE Medical Systems.)

uously scanned while an intervention is done such as a needle phantom and an image at the petrous bones, respectively.
Scattered radiation-induced artifacts should also be men-being inserted. Recently, Hsieh (42) quantified temporal reso-

lution of CTF in terms of the time lag and the time delay. The tioned, which lead to cupping, streaks, and CT number errors.
It was shown that this type of artifact can be more significanttime lag is the minimum time needed to reveal the actual

movement of the biopsy needle, while the time delay is the than beam-hardening artifacts for large body parts, such as
in the pelvis, and may be corrected to a substantial degree,minimum time for the needle to reach its real location in the

CT image. The DSR and the electron-beam CT scanner reduce assuming a constant scatter background (46).
the scanning time by an order of magnitude to about one-
tenth second. Generally, the power of an X-ray source can be Blurring Artifacts. Blurring artifacts refer to a blurred ap-
a limiting factor. The faster the scanning is, the less the dose pearance of discrete structures in a CT image, due mainly to
delivered, and the more the image noise. A trade-off between sizes of an X-ray source and detectors. Another name for this
temporal resolution and low-contrast resolution depends upon type of artifact is partial volume averaging, since a recon-
the intended application of CT images. structed voxel value is approximately an average of attenua-

tion distribution in a neighborhood of the center of that voxel.
Artifacts A common phenomenon is that sharp edges look blurred in

an image, indicating a degraded system high-frequency re-Substantial research has been done on causes, characteris-
sponse. The blurring artifacts are certainly undesirable whentics, and correction of image artifacts (43). We only discuss
details are examined. For example, blurring in spiral CT im-the most common artifacts: beam hardening artifacts, blur-
ages limits the in vivo study on the middle and inner ear forring artifacts, motion artifacts, metal artifacts, and stair-
cochlear implantation.step artifacts.

Digital deblurring is an established approach to undo im-
age blurring retrospectively. There are various image deblur-Beam-Hardening Artifacts. Conventional X-ray sources for
ring algorithms available. It was demonstrated that the itera-medical CT are rotating anode tubes, which have polychro-
tive maximum likelihood deblurring method produced amatic spectra. That is, X-ray photons emitted from a X-ray
satisfactory deblurring effect in spiral CT (35,47). The spiraltube do not all have the same energy. The X-ray attenuation
CT imaging process can be approximated as a 3-D linear spa-of an object depends on the photon energy. As an X-ray beam
tially invariant system, and the 3-D system point spread func-traverses an object, the higher energy portion of the X-ray
tion (PSF) modeled as a separable Gaussian function (35).spectrum increases, since lower energy photons are attenu-
Roughly speaking, in iterative deblurring of a reconstructedated more. If this nonlinear beam-hardening effect is not com-
image, a previous guess is convolved with the system PSF,pensated, a ‘‘cupping’’ in image gray-scale will be seen. The
the reconstructed image is point by point divided by the con-beam-hardening artifacts are more serious when high X-ray
volved guess, the ratio image is convolved again with theabsorption structures are in the field of view. Means for sup-
PSF, and the convolved ratio image is point by pointpressing beam-hardening artifacts include prefiltering X-rays,
multiplied by the previous guess to update it. The recon-avoiding high X-ray absorbing regions if possible, and
structed image can be used as an initial guess. This iterativeapplying appropriate algorithms (44,45). Figure 19 illustrates

beam-hardening artifacts and correction with a homogeneous deblurring method is a special case of the linear, discrete, and
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Figure 20. Blurring artifacts and correction. (a) Spiral CT
slice of the temporal bone. (b) Counterpart deblurred using
the iterative maximum likelihood algorithm. (Original data
courtesy of Dr. Gregory Esselman with Washington Uni-
versity.)

nonnegative deblurring formula described earlier, and can be tioned earlier, metal artifacts can be optimally suppressed via
iterative deblurring in the sense of the I-divergence (49).regularized for suppression of deblurring artifacts, which are

primarily image noise and edge ringing (35). Figure 20 shows
a spiral CT slice of temporal bone and the counterpart itera- Stairstep Artifacts. Stairstep artifacts are well known in
tively deblurred. conventional CT, and have special features in spiral CT (50).

They are associated with inclined surfaces in reformatted lon-
Motion Artifacts. Motion artifacts are produced in a CT im- gitudinal slices, as shown in Fig. 23. In spiral CT, the stair-

age if an object is not static but assumed so in the reconstruc- step artifacts were due to not only large reconstruction inter-
tion process. In medical CT, anatomical structures move peri- val but also asymmetric spiral CT interpolation. Even if the
odically due to respiration or cardiac pulsation. Severely reconstruction interval is sufficiently small, the stairstep arti-
injured patients or children frequently move during scanning. facts will appear as long as the object cross section varies lon-
Fig. 21 demonstrates that respiratory motion artifacts can be gitudinally. In this case, the height of the stairsteps depends
significant with incremental CT and can be eliminated by spi- on the pattern of asymmetry in the transverse image, which
ral CT single breath-hold scanning. Crawford et al. (48) devel- is mainly determined by the interpolation method and the
oped a pixel-specific filtered backprojection algorithm for mo- structures in the field of view. For minimal stairstep artifacts,
tion artifact reduction. In their algorithm, in-plane motion is both detector collimation and table increment should be mini-
corrected by pixel-specific reconstruction in the coordinate mized, which should be less than the longitudinal dimension
system associated with the in-plane motion. of features of interest if it is possible.

Metal Artifacts. Metal artifacts are typically pronounced
dark and bright streaks around a metal part in an image re- DISCUSSION AND FURTHER READINGS
constructed via filtered backprojection, as shown in Fig. 22.
Because of the higher atomic number, the metal attenuates Although X-ray CT has been intensively studied for years,

further developments are anticipated. Most important, spiralX-rays in the diagnostic energy range much more than soft
tissues and bone. As a result, almost no photons penetrate CT remains an active area. Spiral CT involves more parame-

ters and raw data processing than conventional CT. Optimi-the metal, and corresponding line integrals are lost. As men-

Figure 21. Respiratory motion artifacts. (a) Artifacts in
multiplanar reformation with incremental CT (85 s), as indi-
cated by arrows, and (b) eliminated with single breath-hold
spiral CT scanning (12 s). (Courtesy of Dr. James Brink,
Yale University.)
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tive CT algorithms include regularization and acceleration
(55–57).

Progress in hardware will broaden horizons of CT applica-
tions. During the past decade, X-ray tubes were greatly en-
hanced. The availability of highly brillant and collimated syn-
chrotron radiation (SR) pushed spatial resolution into the
micron domain. Using the energy tunability of SR, elemental
composition of materials can be studied in 3-D. Various area
detectors accelerated data acquisition. Techniques of X-ray
sources, detectors, and other relevant hardware will be fur-
ther developed. In particular, computing technologies are in
rapid development. All of these will be directly translated into
better CT peformance and suggest more CT applications.

With dramatic refinement in CT resolution, volumetric im-
age analyses and visualization are altering clinical practice.Figure 22. Metal artifacts caused by a prosthesis. (Courtesy of Dr.

Douglas Robertson, Washington University.) For example, Gastrointestinal (GI) tract examination with
X-ray CT is currently performed by slice-based visual inspec-
tion despite the volumetric nature of the anatomical compo-

zation of imaging protocols and image quality needs major nents, tumors, and lesions. Recently, spiral CT virtual colon-
additional efforts (51). Multislice spiral CT is emerging for oscopy is being actively pursued for colon cancer screening, in
faster scanning and wider coverage. Cone-beam spiral CT which a convoluted large intestine in a spiral CT image vol-
seems a promising mode in medical imaging, industrial in- ume is interactively explored in a ‘‘fly-through’’ fashion, and
spection, airport screening, and other applications. It is desir- may be explicitly mapped onto an elongated planar display.
able and possible that an exact cone-beam spiral CT algo- Spiral CT angiography is another example.
rithm could be designed that takes longitudinally truncated Among further readings, introductory descriptions of CT
cone-beam data and can be efficiently implemented. principles can be found in Russ (58) and Parker (59), various

The wavelet approach has a significant potential for radia- applications and practical algorithms with detailed deriva-
tion reduction and multiresolution reconstruction. Olson and tions can be found in Herman (60,61) and Kak and Slaney
DeStefano (52) observed that space-frequency localized wave- (13), and a rigorous mathematical treatment in Natterer (5).
let bases can be used in sampling the Radon transform and A history of radiological tomography can be found in Webb
performing local region reconstruction. Zhao et al. (53) estab- (62). Articles on CT are published in many journals, such as
lished an upper error bound in L2-norm between the Radon SIAM Journal on Applied Mathematics, SIAM Journal on Opti-
transform and its wavelet approximation, and obtained an es- mization, Proceedings of IEEE, IEEE Transactions on Image
timate of the accuracy of a local image reconstructed from Processing, IEEE Transactions on Signal Processing, IEEE
localized Radon data at multiple levels. The current results Transactions on Information Theory, IEEE Transactions on
can be extended to fan-beam and cone-beam geometry. Medical Imaging, IEEE Transactions on Nuclear Science, Med-

Iterative reconstruction methods will play a substantial ical Physics, Physics in Medicine and Biology, Journal of the
role for better image quality and less radiation dose. In addi- Optical Society of America, Optical Engineering, Applied Op-
tion to the iterative algorithm described above, a statistical- tics, Journal of Scanning Microscopy, Journal of Computer
model-based iterative algorithm was developed for X-ray CT Assisted Tomography, and Radiology.
(31). In this case, X-ray CT with low photon counts is viewed
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