
PHOTONIC CRYSTALS

PHOTONIC BAND GAP MATERIALS

Photonic crystals are a novel class of artificially fabricated
periodic structures that can control, manipulate and guide
the propagation of electromagnetic waves in ways not pos-
sible with conventional materials. Photonic crystals can
inhibit the propagation of light, allow it only in certain
frequency regions, or localize light in specific spatial re-
gions. Photonic crystals can be synthesized in one, two, and
three dimensions (1-D, 2-D, and 3-D) with dielectric or/and
metallic materials.

The concept of photonic band structure is analogous to
the well-established concept of electronic band structure.
Just as electron waves, traveling in the periodic potential
of a crystal, are arranged into energy bands separated by
band gaps, we expect the analogous phenomenon to occur
when electromagnetic (EM) waves propagate in a medium
where the dielectric constant varies periodically in space.
There is a special interest in structures that can produce
a forbidden frequency gap in which all propagating states
are prohibited: such materials are called photonic band gap
materials and are the topic of intensive studies by many
groups theoretically and experimentally (1–4).

Photonic band gaps may have a profound impact on
many areas in basic and applied physics. Because of the
absence of optical modes in the gap, spontaneous emission
is suppressed for photons with frequencies in the forbid-
den region. It has been suggested that, by tuning the pho-
tonic band gap to overlap with the electronic band edge,
electron–hole recombination can be controlled in a pho-
tonic band gap material, leading to enhanced efficiency
and reduced noise in the operation of optoelectronic de-
vices (5) and lasing structures. The suppression of spon-
taneous emission can be used to prolong the lifetimes
of selected chemical species in catalytic processes (6–8).
Photonic band gap materials can also find applications
in frequency-selective mirrors, bandpass filters, and res-
onators. Besides applications at various frequencies in the
electromagnetic spectrum, there is much interest in the
phenomenon of localization of EM waves by the intro-
duction of defects and disorder in a photonic band gap
material (<xref target="W4410-bib-0009 W4410-bib-0010
W4410-bib-0011 W4410-bib-0012" style="unformatted"/>).
This will be an ideal realization of the phenomenon of lo-
calization uncomplicated by many-body effects present in
the case of electron localization. Another interesting effect
is that zero-point fluctuations, which are present even in
vacuum, are absent for frequencies within a photonic gap.

Over the past decade, there has been rapid development
in this field in the fabrication of photonic band gap materi-
als. Unlike the case of electron waves, which usually have
wavelengths on the atomic scale, the wavelengths of elec-
tromagnetic waves of interest are several orders of magni-
tude larger, varying between hundreds of nanometers for
visible light to meters and centimeters for radio and mi-
crowaves. While the periodic lattice for electron waves is
constrained by the crystal structure, the periodic dielectric

structures for photonic band gap materials are artificial
structures that can be designed and fabricated to provide a
desired electromagnetic response. Therefore, there is much
interest in theoretical calculations for these systems, and
advances in the field have been characterized by a close
collaboration between theorists and experimentalists. The
absence of the photon-photon interaction makes photonic
crystals an ideal testing ground for theoretical simulation,
bypassing the complications with electron-electron inter-
actions inherent in the analogous electronic case.

One-dimensional photonic crystals have been well
known for several decades as the distributed Bragg reflec-
tor (DBR), and they are the basis of many devices, such as
dielectric mirrors, Fabry-Perot filters, and distributed feed-
back lasers (13–15). A 1-D photonic crystal (PC) is shown
in Fig. 1(a). A typical example of a 1-D PC with periodicity
a, is a superlattice of alumina layers (with dielectric con-
stant, ε = 9.61) and air layers (?=1). We consider alumina
thicknesses of 0.4375 mm and air layers with thickness of
1.3125 mm, designed for millimeter region of the electro-
magnetic spectrum. Simulations for waves incident on the
structure at three different incident angles (0◦, 30◦, and
60◦) are shown in Fig. 1(b) and 1(c). For normal incidence
(solid lines in Fig. 1), there is a drop of the transmission
from about 36 to 77 GHz. The transmission at the center
of the gap is almost five orders (almost −50 dB) of magni-
tude less than the incident wave. Calculations are based on
the real space transfer matrix method described later. The
gap results from the multiple interference of waves, from
the different layers of the structure, and there is destruc-
tive interference of transmitted waves within the band gap
region. As is well-known for geometrical optics the wave-
length of the gap appears when the wavelength λ is 2neff a
where neff is the effective refractive index of the multilayer.
We expect the gap to disappear for other incident angles.
Indeed, by increasing the incident angle, the gap increases
for the polarization with the electric field out of the plane
of incidence [see Fig. 1(b)], but the gap tends to disappear
for the wave polarized in the plane of incidence [see Fig.
1(c)].

A physical realization of a 2-D photonic crystal is ob-
tained using infinitely long cylinders arranged in the 2-D
triangular lattice (1–4) with the cross section of this struc-
ture shown in Fig. 2(a). The cylinders may be composed
of air residing in a dielectric background or of dielectric
material residing in an air background. The transmission
for EM waves with incident k vector in the x,z plane is
shown in Fig. 2. We use air cylinders with radius 0.805
mm surrounded by a dielectric with ε = 12.25 (the dielec-
tric constant of GaAs); the distance between the center of
the cylinders is 1.75 mm, and the total thickness of the
system along the z direction is 9.1 mm. For waves with E
field parallel to the cylinders [Fig. 2(b)], there is a small
gap at around 48 GHz and a much wider gap at around 80
GHz. As the incident angle increases and the k vector is
perpendicular to the axis of the cylinders, the second gap
moves to smaller frequencies. For the polarization with the
E field in the x,z plane [Fig. 2(c)], there is a gap at around
70 GHz for all the angles and for k vectors perpendicular
to the axis of the cylinders. For both polarizations and for
k vectors in the x,z plane, there is a gap from 70 to 80 GHz.
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Figure 1. The transmission for EM waves propagating in a one-
dimensional photonic crystal [see panel (a)] for incident angle of
0◦, 30◦, and 60◦ (solid, dotted, and dashed lines, respectively). The
incident k vector is always in the x,z plane. Panels (b) and (c) cor-
respond to E fields parallel to the y axis and in the x,z plane, re-
spectively.

This structure of the triangular lattice with air columns in
a dielectric background is the only known 2-D PC that has
a gap for both polarizations and has been used extensively
for applications. As in the 1-D case, we expect that the gap
will disappear as the k vector moves out of the x,z plane
because the system is homogeneous along the y axis.

An important property of Maxwell’s equations for dielec-
tric systems in the absence of absorption or non-linearities
is that the lattice spacing a can be scaled to any length
scale by any factor γ, (a′ = γa), and the frequencies will
scale as f ′ = f/γ [3]. Although we have described the be-
havior of photonic crystals at millimeter wave frequen-
cies, exactly the same electromagnetic response will occur
when the structure is created at optical length scales. This
scaling behavior allows photonic crystal structures to be
designed, synthesized and measured at much more con-
venient microwave/millimeter wave frequencies to under-
stand the behavior of the same photonic crystals at optical
length scales.

It is clear that we need a 3-D structure with periodic-
ity along three directions in order to have a complete pho-
tonic band gap where transmission of waves is forbidden
for all polarizations and all the incident directions in a cer-
tain frequency range (the band gap). Intense research in
the beginning of the 1990s described periodic structures a
photonic band gaps (PBG) (<xref target="W4410-bib-0001

Figure 2. The transmission for EM waves propagating in a two-
dimensional photonic crystal. The cross section of the structure is
shown in panel (a). The incident angle is 0◦, 30◦, and 60◦ (solid,
dotted, and dashed lines, respectively). The incident k vector is
always in the x,z plane. Panels (b) and (c) correspond to E fields
parallel to the y axis and in the x,z plane, respectively.

W4410-bib-0002 W4410-bib-0003 W4410-bib-0004 W4410-
bib-0016 W4410-bib-0017" style="unformatted"/>). In fact,
the first 3-D photonic crystal built by Yablonovitch and
Gmitter (18) did not have a complete PBG. This struc-
ture consisted of air spheres embedded in an Al2O3 ma-
terial forming a face-centered-cubic (fcc) lattice. We can
visualize this crystal by placing the spheres at the edges
and at the center of the faces of a cube. It was con-
structed by drilling hemispherical cavities on dielectric
plates that were stacked together. The whole structure
can be constructed by periodically displacing the cube into
the space. In contrast to the transmission measurements,
which showed a complete PBG for this structure because
of a degeneracy of modes at a particular direction (19–21).

At this point, Ho, Chan, and Soukoulis (21,22) theoret-
ically proved that the diamond structure consisting of air
or dielectric spheres posesses a complete PBG. A diamond
structure is similar to the fcc structure, but instead of plac-
ing one sphere in each fcc lattice point, we place one more
sphere in each lattice point displaced parallel to the body
diagonal of the cube by one quarter of the length of the
diagonal. The first photonic crystal with a complete PBG
was built by Yablonovitch et al. (23). They devised an in-
genious way of constructing a diamond lattice. They noted
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Figure 3. Layer-by-layer structure constructed by orderly stack-
ing of dielectric rods. The periodicity is four layers in the stacking
direction. Layers in the second neighbor layer are shifted by a/2
in the plane.

that the diamond lattice is a very open structure charac-
terized by an open channel along the [110] directions. This
structure was named the three cylinder structure, was can
be constructed by drilling holes on the surface of a materi-
als’ slab. The holes form a triangular array. Three drilling
operations are conducted through each hole, 35.26◦ off nor-
mal incidence and spread out 120◦ on the azimuth. The
structure had a complete PBG centered at 14 GHz and the
width of the forbidden gap was 19% of its center frequency.

Subsequently, the Iowa State group designed and fab-
ricated the layer-by-layer structure shown in Fig. 3 (24).
The structure is assembled by stacking layers consisting of
parallel rods with a center-to-center separation of a. The
rods are rotated by 90◦ in each successive layer. Starting
at any reference layer, the rods of every second neighbor-
ing layer are parallel to the reference layer but shifted by
a distance 0.5a perpendicular to the rod axes. This results
in a stacking sequence that repeats every four layers. This
lattice has face-centered-tetragonal (fct) lattice symmetry
with a basis of two rods. This structure has a robust pho-
tonic band gap when both the filling ratio and the dielec-
tric contrast meet certain requirements. The photonic band
gap is not sensitive to the cross-sectional shape of the rods.
Several different structures have been constructed with
midgap frequencies at 13, 100, and 450 GHz using etching
techniques and Al2O3 or Si as materials (25–30). The struc-
ture has been fabricated with a measured PBG at around
2 THz using laser-induced direct-write deposition from the
gas phase (31).

Figures 4 and 5 show the transmission for a layer-by-
layer structure with rods with a circular cross section; the
radius of each rod is 20 µm, the in-plane separation of the
rods is 160 µm, and the dielectric constant of the rods is
9.61. The crystal contains 12 layers of rods (3 unit cells).
For propagation along the stacking direction (k parallel to
the z axis), there is gap between 0.9 and 1.25 THz, and the
transmitted intensity at the center of the gap is more than
six orders of magnitude smaller than the incident inten-
sity (−60 dB). By increasing the incident angle, the gap
becomes smaller, and the transmission at the center of the
gap increases, but there is a complete PBG for all the an-
gles and polarizations between 0.9 and 1.05 THz.

By creating small distortions (or defects) in these pho-
tonic crystals, we can also create defect states inside the
PBG, which give rise to sharp peaks of the transmission
inside the PBG. This is analogous to donors or acceptors in

Figure 4. The transmission for EM waves propagating in a three-
dimensional photonic crystal similar to the one shown in Fig. 3.
The incident angle is 0◦, 30◦, and 60◦ (solid, dotted, and dashed
lines, respectively). The incident k vector is always perpendicular
to the y axis. Panels (a) and (b) correspond to E fields parallel to
the y axis and in the x,z plane, respectively. The rods of the first
layer are parallel to the y axis.

Figure 5. The same as in Fig. 4 except that the k vector is always
perpendicular to the x axis.

semiconductors that introduce impurity states in the elec-
tronic energy gap. Such systems can be used as filters. Let
us first study a 1-D photonic crystal with a defect (Fig. 6).
The structure is the same as the one studied in Fig. 1, with
one defect. In the third unit cell, the air slab has a thickness
0.8 times its original thickness, and the dielectric slab has
a thickness 1.2 times its original thickness. As a result of
that difference, the transmission for normal incidence has
a peak inside the gap at 71 GHz (compare the solid lines in
Figs. 1 and 6). However, when the incident angle increases,
the transmission peak moves to higher frequencies and it
appears at different frequencies for each polarization (com-
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Figure 6. The transmission for EM waves propagating in a one-
dimensional photonic crystal (similar to the one in Fig. 1) with
a defect for incident angle of 0◦, 30◦, and 60◦ (solid, dotted, and
dashed lines, respectively). The incident k vector is always in the
x,z plane. Panels (a) and (b) correspond to E fields parallel to the
y axis and in the x,z plane, respectively.

pare the different lines in Fig. 6). Even for the 30◦ angle,
the transmission peak appears at 76 GHz (for E field per-
pendicular to the plane of incidence), 5 GHz higher than
its value at normal incidence.

The strong dependence of the defect mode on the inci-
dent angle is again related to the fact that the 1-D photonic
crystal is actually homogeneous along the x and y direc-
tions. It has been shown theoretically and experimentally
that 3-D photonic crystals can solve this problem (29–34).
For simplicity, we will illustrate this with a 2-D photonic
crystal similar to the one in Fig. 2. Recall that 2-D pho-
tonic crystals suffer from the same disadvantage as the 1-D
photonic crystals discussed in the previous paragraph. The
reason for that problem is the homogeneity of the structure
along the y axis [see Fig. 2(a)]. For that reason, we will show
results only for k vectors in the x,z plane [see Fig. 2(a)] and
for the E field parallel to the axis of the cylinders (y axis).
The defect is introduced by decreasing the radius of one
cylinder in the center of the structure. The distorted ra-
dius is 0.7 times its original value. For normal incidence
(solid line in Fig. 7), there are three transmission peaks
inside the gap, at 71, 76, and 78 GHz. For incident angle of
30◦, the peaks remain at almost the same frequencies. The
small changes in the frequency are actually an artifact of
the calculations. We will return to this point when we dis-
cuss the computational method (transfer matrix method).
We can tune the position of the transmission peak inside
the gap, by changing the radius of the distorted cylinder.
The flexibility in tuning defect modes makes photonic crys-
tals a very attractive medium for the design of novel types
of filters, couplers, laser microcavities, etc. (1–4).

Figure 7. The transmission for EM waves propagating in a two-
dimensional photonic crystal (similar to the one in Fig. 2) with a
defect. The incident angle is 0◦ and 30◦ (solid and dotted, respec-
tively). The incident k vector is always in the x,z plane. The E field
is parallel to the y axis.

THEORETICAL METHODS

Plane Wave Method

To study the behavior of electromagnetic waves in photonic
band gap crystals, we must solve Maxwell’s equations for a
media characterized by a spatially varying dielectric func-
tion ε(r):

These may be decoupled to generate an equation only in
the magnetic field,

and

At this point, we note that the vector nature of the wave
equation is of crucial importance. Early attempts (35) at
adopting the scalar wave approximation led to qualita-
tively wrong results. The simplest case happens when ε(r)
is a real and periodic function of r, and we assume that it
is frequency-independent in the range of interest. We also
assume the magnetic permeability µ is 1. In this case, the
solution of the problem scales with the period of ε(r). For
example, reducing the size of the structure by a factor of
two will not change the spectrum of electromagnetic modes
other than scaling all frequencies up by a factor of two.

Because of the periodicity of the problem, we can make
use of Bloch’s theorem to expand the electric and magnetic
fields in terms of Bloch waves:

where K = k + G. k is a vector in the Brillouin zone, and G
is a reciprocal lattice vector. The solution for the magnetic
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field has the form of an eigenvalue problem:

The corresponding equation for the E field does not have
the form of a simple eigenvalue problem because the dielec-
tric function enters into the frequency-dependent right-
hand side:

Hence, we obtain photonic band structure by solving Eq.
(9) for the magnetic fields.

Here εK,K′ = ε(G − G′) is the Fourier transform of the
dielectric function. Dielectric functions with sharp spatial
discontinuities require an infinite number of plane waves
in the Fourier expansion. To avoid this problem, we smear
out the interfaces of the dielectric objects in the unit cell.
For example, for modeling a cylinder of radius a and dielec-
tric ε, we employ the smeared dielectric function

where the width w of the interface is chosen as a small
fraction of the radius a (≈ 0.01–0.05 a). In practice, we in-
corporate the smearing and define the dielectric function
ε(r) over a grid in real space. The Fourier transform of the
dielectric function in our finite plane wave basis set is com-
puted to obtain ε(G − G′). The dielectric matrix in Fourier
space is then inverted to obtain ε−1(G − G′). This proce-
dure yields much better convergence than the alternative
method of determining ε−1(G − G′).

The transverse components of the magnetic field are
hK,1, that is,

where the unit vectors e1 and e2 form an orthogonal triad
(e1, e2, K). The solution in Eq. (9) for the magnetic field
reduces to the eigenvalue problem:

The matrix M is defined by

In practice, the photonic band structure given by the fre-
quencies ω(K, λ) is computed over several high symmetry
points in the Brillouin zone or on a grid in the Brillouin
zone if the density of states is needed. Plane wave conver-
gence is closely checked.

The first structure (19–21) considered by researchers
was the fcc structure composed of low dielectric spheres
in a high dielectric (ε) background. This simple structure
with close packed spheres has the band structure shown
in Fig. 8. There is no fundamental gap between the sec-
ond and third bands—the bands are degenerate at the W
point of the zone. There is a region of low densities of states
between bands 2 and 3—the pseudogap, which may have
interesting consequences. Another very interesting feature
is a sizable complete gap between the 8 and 9 bands (8–9

Figure 8. Photonic band structure for the fcc structure composed
of air spheres in a high dielectric background (dielectric constant
e = 9.61). The geometry is for close packed spheres (i.e., 74% filling
ratio). The bands are shown along the 110 axis of the Brillouin
zone.

Figure 9. Size of the three-dimensional photonic band gap mea-
sured by the gap/midgap ratio for a diamond structure with
spheres on the diamond sites and its conjugate structure. Band
gaps are plotted as a function of the filling ratio. The dielectric
contrast of 12.96 is used.

gap), which exists over the entire zone (i.e., for all direc-
tions of propagation of the EM wave). The size of this gap
is about 8% for a refractive index contrast of 3.1. The di-
rect fcc structure (high dielectric spheres in a low contrast
background), however, does not possess the dip in the pho-
tonic DOS.

The diamond structure has been the subject of much
investigation (<xref target="W4410-bib-0001 W4410-bib-
0002 W4410-bib-0003 W4410-bib-0004 W4410-bib-0021
W4410-bib-0022" style="unformatted"/>) because it has a
full three-dimensional photonic band gap between the fun-
damental bands (2–3 gap between the second and third
bands). This gap exists for (1) high dielectric spheres on
the sites of the diamond lattice (Fig. 9), (2) the diamond
structure with low dielectric spheres on the diamond sites
[Fig. 9; conjugate of (i)], and (3) the diamond structure con-
nected by dielectric rods (Fig. 10).

The best performing gap (29%) is reached for the dia-
mond structure with 89% air spheres (i.e., a multiply con-
nected sparse structure). A similar large gap (30%) is also
found for the diamond structure connected with dielectric
rods with about 30% dielectric filling fraction. These gap
magnitudes are for a refractive index contrast of 3.6, ap-
propriate for GaAs.

A novel layer-by-layer structure was designed and fab-
ricated at Iowa State University (24–30) (Fig. 3) with a full
three-dimensional fundamental PBG (Fig. 11). The agree-
ment between the calculated bands and the experimental
measurements are excellent (Fig. 11) for both EM-wave
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Figure 10. Size of the three-dimensional photonic band gap when
the diamond structure is connected by dielectric rods (e = 12.96).
Rectangular rods connect the sites in 111 planes, whereas cylin-
drical rods connect the rods along the 111 axis.

Figure 11. Calculated (lines) and measured photonic band struc-
ture for the layer-by-layer structure composed of stacked alumina
cylinders (e = 9.61) with a full bandgap between 12 and 14 GHz.
The circles represent measurements for the E-field polarization
parallel to the rod axes, whereas the squares represent measure-
ments performed with an E field perpendicular to the rod axes.

Figure 12. Size of the gap in the layer-by-layer structure as a
function of filling ratio for different c/a ratios. c is the repeat dis-
tance, and a is the rod separation. A dielectric contrast of 12.96
has been used to facilitate comparison.

polarizations. This particularly robust structure has been
fabricated at length scales providing gaps ranging from 13
to 500 GHz (24–30). As is typical for the diamond struc-
ture, the magnitude of the gap is maximized at about 25%
(Fig. 12) for the contrast of n = 3.6. the densities of photon
states for the experimentally fabricated structure with sili-
con micromachining (Fig. 13) provides a picture of both the
fundamental gap and other frequency regions that display
depleted or enhanced DOS.

The photonic band gap depends on (1) the local connec-
tivity of the dielectric structure, (2) the contrast between
the two media, and (3) the filling ratio. A minimum dielec-
tric contrast (ε > 4) is usually needed to observe the band
gaps. The photonic band structure method is a systematic
way to search for the existence of band gaps in dielectric
structures (3, 36).

Figure 13. Photonic densities of states for the layer-by-layer
structure using the experimentally fabricated geometry with a fill-
ing ratio of 0.26 and silicon (e = 11.67) as the dielectric material.

Transfer Matrix Method

Although the method described in the last section focuses
on a particular wavevector, there are complementary meth-
ods that focus on a single frequency. In the transfer matrix
method (TMM), first introduced by Pendry and MacKin-
non (37), Eqs. (3) and (<xref target="W4410-mdis-0004"
style="unformatted">4</xref>) are discretized, and the z
components of the fields can be eliminated, so we derive
the following equations:
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ε(i, j, k) and µ(i, j, k) are the dielectric constant and the
magnetic permeability at the subcell (i, j, k). a, b, and c
are the dimensions of each subcell along the x, y, and z
directions. Equations (15)–(18) are connecting the fields at
the k + 1 plane with the fields at the k plane. Using TMM,
the band structure of an infinite periodic system can be
calculated, but the main advantage of this method is for the
calculation of transmission and reflection properties of EM
waves of various frequencies incident on a finite thickness
slab of PBG material.

Such calculations are extremely useful in the interpre-
tation of experimental measurements of transmission and
reflection data. The TMM method can also be applied to cal-
culate PBG structures containing absorptive and metallic
materials. The TMM has previously been applied to defects
in 2-D PBG structures (38), photonic crystals with complex
and frequency dependent dielectric constants (39), metallic
PBG materials (40,41), and angular filters (42). In all these
examples, the agreement between theoretical calculations
and experimental measurements was very good.

At this point, we return to the discussion of Fig. 7. There,
we used a rectangular conventional unit cell consisting of
15 × 26 subcells. In order to create the triangular lattice,
we placed cylinders at the corners and at the center of the
rectangular unit cell. The system is finite along the z di-
rection [see Fig. 2(a) having a thickness.of three unit cells.
Along the x direction, we use a supercell consisting of three
conventional unit cells, and we assume periodic boundary
conditions at the edges of the supercell. So, there are in-
finitely many defects along the x direction with separation
of 3a. This is the reason for the small change in the fre-
quency as we change the angle. Calculations with larger
supercells (consisting of five conventional unit cells) show
negligible angular dependence.

Finite Difference Time Domain Method

Even though the preceding transfer matrix method is em-
ployed for steady state solutions, the finite difference time
domain (FDTD) method is used for general time-dependent
solutions including transient behavior. In this method, the
Maxwell curl equations are numerically solved:

The derivatives in the Maxwell’s equations are approxi-
mated with finite differences and the electromagnetic fields
components are located on a Yee cell (43). In the Yee cell,
the E-field components at time n�t are located on the sides
of a cube. The magnetic field H components at times (n +
1/2)�t are located at the face-centered points of the Yee
cell. This results in both spatial and temporal offsets of the
two fields when the Maxwell curl equations are solved on
each face of the cube. The system is described by a spatial
grid. The time step is chosen such that an EM wave will
propagate less than a grid spacing during the time step.
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En
x (i, j, k) is the x component of the electric field at the n

time step in the (i, j, k) subcell.
Finite size systems can be easily modeled. This widely

used technique (44,45) can be used to find either the steady
state or transient response of arbitrary systems containing
dielectric or metallic components, as well as materials with
nonlinear dielectric properties. In the perfect metallic code,
the E field vanishes inside the metal. The FDTD can be
used with a Gaussian pulse source. The fields are numer-
ically integrated to obtain the fields at long times (>1000
time steps). The Fourier transform of the scattered and in-
cident fields generates the frequency-dependent response
of the system. Alternatively, the system may be subject to
a source field with a single frequency ω, and one can de-
termine the steady state response of the system at that
frequency. Such steady state calculations may then be re-
peated at desired frequencies.

At the edges of the FDTD cell, outer radiation bound-
ary conditions are frequently employed. Here the incident
wave at the boundary is absorbed. Methods to transform
the near fields to radiating far fields are then employed.
This is particularly necessary for antenna problems where
far-field radiation patterns are desired. The FDTD method
is a very powerful design tool in simulating the electro-
magnetic response of systems, covering a broad range of
frequencies.

We have used this method to calculate the radiation pat-
terns of dipole antennas placed on PBG crystals (Fig. 14).
The dipole antenna is driven by either a voltage pulse or
a steady-state sinusoidal excitation, and the radiated far
fields are determined. The symmetry of our PBG crystal
has been used to develop a computational cell that is one
fourth the size of the actual system (46). The calculations
are in very good agreement with measurements (46). It is
also possible to calculate the currents flowing in the an-
tenna and to calculate the gain of the system. We have
driven a finite length dipole oscillator on the surface of the
PBG crystal at a frequency of 13 GHz near the center of
the band gap. The dipole is at the intersection of the first
and second layers, and the radiation patterns are calcu-
lated and measured at different heights z above the sur-
face (Fig. 14). The agreement in both the E and H planes
with measurements is very good.

Scattering matrix method- Fourier space transfer matrix
method

While early calculations were performed with this real
space transfer matrix method, it has been found to be more
convenient and accurate to use the transfer matrix method
in a plane wave basis where Maxwell’s equations are solved
in Fourier space [48]. The structure is divided into slices
(along the z axis). In each slice the dielectric function ε(r)
is a periodic function of the planar coordinates (x,y). Hence
the dielectric function and its inverse are expressed as a
Fourier expansion with coefficients ε(G) or ε−1(G), where
G are the reciprocal lattice vectors of the 2-dimensional
lattice. The electric and magnetic fields also have Fourier

Figure 14. Measured (a) and FDTD calculations (b) of the an-
tenna radiation in the E and H planes for a dipole antenna driven
at 13 GHz at the center of the PBG. The three curves are for differ-
ent heights z of the antenna above the surface, expressed as a ratio
of z/d where d is the diameter of the dielectric rod. The antenna is
at the intersection of the first and second layers, perpendicular to
the first layer.

coefficients E(G) and H(G) defined through

Ek(r) =
∑

G

EG(z)ei(k+G)x||

where k is a Bloch wave-vector.
From the six Maxwell equations for each Cartesian com-

ponent of the E and H fields, the z-component of the E and
H field is eliminated leading to four equations for the z-
derivatives of the x,y components of the E and H fields.
We adopt a recently developed formulation [47,48] where
the transfer matrix is computed in Fourier space. In each
layer a transfer matrix M1 relates the z derivative of the
electric field to the fourier components of the H field and
a similar equation for the z-derivative of the H field with
a transfer matrix M2. This results (28) in a single eigen-
value equation for the E field in each layer involving the
transfer matrix M. The transfer matrix M is diagonalized
to obtain the eigenmodes within each layer. Both polariza-
tions are included. The transfer matrix M in each layer is
calculated that relates the z-dependence of the E, H fields
in each layer.

∂

∂z
E = M1H ;

∂

∂z
H = M2H

∂2

∂z2
E = M1M2E = ME

We have employed a compact notation where E and H
in (28) represents the matrix of Fourier coefficients E(G),
H(G) and M, M1 and M2 are corresponding square matri-
ces. The propagation wave vectors (kz) from this eigenmode
problem determine whether the mode is propagating or de-
caying. The boundary conditions are that the parallel com-
ponents of E and H are continuous at each interface and
this leads to the individual scattering matrices si of each
layer.

A standard recursion algorithm [48,50] combines the
scattering matrices of each layer into the scattering ma-
trix S for the entire structure. Using the total S-matrix, we
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Figure 15. Simulated transmission spectrum for a 8-layer layer-
by-layer photonic crystal slab along the 001 direction. The po-
larization of the incident wave is such that the electric field is
parallel to the rods in the first layer. The dielectric constant is
| ∗ epsilion ∗ | = 12, the filling ratio is f=0.3, and the lattice spac-
ing is 1| ∗ mu ∗ |.

simulate the reflection and transmission of the structure
when fields are incident from the left. The advantage of this
Fourier space approach is that any number of layers of dif-
fering width can be easily simulated since a real-space grid
is not necessary. Since the solutions of Maxwell’s equations
are independent for each frequency, the computational al-
gorithm has been parallelized on massively parallel sys-
tems, where the transmission/reflection for each frequency
is solved on a separate processor.

This method relies on the convergence of the plane wave
expansion of the fields, which depends on the type of struc-
ture being simulated. For structures where each layer has
2-dimensional periodicity both polarizations are solved for
leading to a matrix size of N = 2NG where NG is the num-
ber of plane waves. For dielectric systems the number of
plane waves (NG) can be less than ∼150 for reasonable con-
vergence. For metallic systems, considerable larger num-
ber of plane waves (>500) are necessary [49].

For the layer-by-layer structure, each layer has 1-
dimensional periodicity. This leads to the transfer matrix
solution decomposing into separate solutions for the TE
and TM modes, and a matrix of size NG is to be solved. We
illustrate this method by the calculated transmission for
a layer-by-layer photonic crystal (Fig. 15) with a fourier
expansion of 13 × 13 plane waves. By enforcing periodic
boundary conditions along the crystal axes the photonic
band structure can also be computed with this method [47].

EXPERIMENTAL TECHNIQUES FOR FABRICATION OF
PHOTONIC BAND GAPS

There have been intensive efforts to build and test photonic
band gap structures, dating back to the original efforts of
Yablonovitch shortly after his first proposal for PBG crys-
tals (51). Fabrication can be either easy or extremely diffi-
cult, depending on the desired wavelength of the band gap
and the level of dimensionality. Because the wavelength
of the band gap scales directly with the lattice constant
of the photonic crystal (3, 52), lower-frequency structures
that require larger dimensions will be easier to fabricate.
At microwave frequencies, where the wavelength is on the
order of 1 cm, the photonic crystals are decidedly macro-

scopic, and simple machining techniques or rapid prototyp-
ing methods can be employed in building the crystals. At
the other extreme, optical wavelength PBGs require crys-
tal lattice constants less than 1 µm. Building PBGs in the
optical regime requires methods that push current state-
of-the-art micro- or nanofabrication techniques. In a sim-
ilar manner, the dimensionality of the PBG has a big im-
pact on the ease or difficulty of fabrication. Because one-
dimensional PBGs require periodic variation of the dielec-
tric constant in only one direction, they are relatively easy
to build at all length scales. One-dimensional PBG mirrors
(more commonly known as distributed Bragg reflectors
(DBR)) have been used in optical and near-infrared pho-
tonic devices for many years. Two common examples of de-
vices using 1-D PBGs are distributed feedback lasers and
vertical-cavity surface-emitting lasers. Two-dimensional
PBGs require somewhat more fabrication, but relatively
mainstream fabrication techniques can be employed to
achieve such structures. There are several examples of 2-D
PBGs operating at mid- and near-IR wavelengths. Clearly,
the most challenging PBG structures are fully 3-D struc-
tures with band gaps in the IR or optical regions of the
spectrum. The fabrication of 3-D PBGs is complicated by
a need for large dielectric contrast between the materials
that make up the PBG crystal and the relatively low filling
fractions that are required. The large dielectric contrast
means that the materials must be dissimilar, and often the
low-dielectric material is air with the other material being
a semiconductor or a high-dielectric ceramic. The low fill-
ing fraction means that the PBG crystal with air as one
dielectric will be relatively empty and the high dielectric
material must be formed into a thin network or skeleton.
When these difficulties are combined with a need for mi-
cron or submicron dimensions to reach into the optical re-
gion, the fabrication becomes very difficult, indeed. This
area of PBG research has been one of the most active, and
perhaps most frustrating, in recent years.

The various methods to synthesize photonic crystals can
be divided into two main groups: (1) methods that use (or
extend) conventional semiconductor microfabrication tech-
niques and (2) non-semiconductor techniques. The follow-
ing list of processing methods is meant only to give some
flavor for current avenues toward achieving PBGs. We fo-
cus on 3-D photonic crystals and 1-D and 2-D PBGs are not
be included.

Semiconductor-Based Methods

Advanced semiconductor processing. A novel method to
fabricate 3-D photonic crystals using state-of-the-art semi-
conductor processing techniques was pioneered by the San-
dia group of S. Lin, J. Fleming and co-workers (53), and
has been most successful in fabricating the layer-by-layer
structure, first at a pitch of 4.2 µ (53) -corresponding to
a gap wavelength of 10 µ, and then (54) at a pitch of 0.6
µ (with a gap wavelength of 1.5 µ). The 1.5 µ wavelength
is critical for fiber-optic telecommunications applications.
In this technique, the vertical topology of the 3D lattice
structure is built by the repetitive deposition and etching
of multiple dielectric films and a systematic multi-layer
stacking process was developed. Within each layer, SiO2
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Figure 16. Transmission electron micrograph of the 3-D layer-
by-layer photonic crystal with a bar spacing of a = 4.2| ∗ mu ∗ |,
fabricated by advanced silicon processing methods (Ref 53).

was first deposited, patterned in the required 1-d pattern,
and etched to the desired depth. The resulting trenches
were then filled with polycrystalline silicon. Following this,
the surface of the wafer was planarized using chemical
mechanical polishing, and the entire process was then re-
peated. The planarization step is critical for producing a
flat surface for the deposition of the next layer and a repeti-
tion of the processing scheme. After the multi-layer process
was completed, the wafer was immersed in a HF/water so-
lution for the removal of the SiO2. Samples with 5-layers
of the layer-by-layer structure with a complete band gap
were fabricated. Figure 16 shows a scanning electron mi-
crograph (SEM) top view of a completed four-layer struc-
ture. The strongest attenuation occurs at 10-11 µ, with an
attenuation strength of 12 dB per unit cell. The depen-
dences of the band edges with angle of incidence confirm
that the structure has a complete photonic gap.

A variation of this planarization method (54) using filet
processing was able to double the periodicity possible with
a deposited SiO2 pattern, and was used to create a photonic
crystal with a minimum feature size of 0.18 µ, and a band
gap around 1.5 µ.

Closely following these developments the group of Noda
et al (55) fabricated a III-V photonic band gap crystal with
a midgap wavelength of 1.4 µ. In this method, III-V semi-
conductor stripes (of GaAs or InP) were fabricated and then
stacked with the wafer-fusion method. Precise alignment
was achieved by laser-beam assisted aligning and a pitch of
0.7 µ was achieved. An attenutation of 40 dB was achieved
with a 4-layer structure. Wafer fusion was best achieved
at temperatures around 500 C. Because the crystal is con-
structed with III-V semiconductors, these are very suit-
able for optoelectronic devices. A sharp waveguide bend
was also fabricated (55) by removing two rod segments.

These pioneering achievements opened the field for fur-
ther advanced semiconductor processing of the layer-by-
layer structure at optical and near infrared length scales.
Subramania and Lin (56), fabricated a 5-layer by layer

structure with electron beam lithography and spin on glass
planarization (56). A rod spacing of 0.66 µ was achieved
with a rod width of 0.22 µ for a five-layer structure. Rod
spacings of 0.5 µ and 0.55 µ were also achieved. A re-
flectance peak spanning the near-IR range from 1.2-1.5 µ

was observed for this family of structures, indicative of the
band gap.

Similar methods have also been employed (57) to fab-
ricate metallic photonic crystals by deposition of tungsten
into the patterned SiO2 layer and repeating the procedure.
The SiO2 was also etched off to produce a 5-layer metallic
layer-by-layer photonic crystal with a pitch of 4.2 µ. The
optical properties of tungsten photonic crystals fabricated
with this technique have been further measured by Seager
et al. (58).

Vertical Reactive-Ion Etching. Vertical reactive-ion etch-
ing to form 2-D PBGs (59–62) is perhaps most straight-
forward technique because it derives directly from cur-
rent microfabrication methods. The 2-D PBG is formed in
a GaAs/(Al, Ga)As dielectric waveguide grown on a GaAs
substrate using epitaxial growth techniques. The 2-D PBG
consists of a square or triangular array of holes that are
etched through the dielectric waveguide. Either electron
beam lithography (59–61) or holographic patterning was
used to define the 2-D pattern on the surface of the wafer.
Then dry etching techniques are used to etch the holes
down 1 µm or more. Lattice constants for the works cited
here were in the range of 190–480 nm. The measured op-
tical properties of the waveguide-PBG system in 59–61
showed clear transmission stop bands or strong reflection
bands in the IR spectrum. O’Brien et al. (60) used the PBG
as one mirror of a QW laser.

Superlattice Disordering and Selective Oxidation. Use of
superlattice disordering and selective oxidation to form 2-
D PBGs (63) achieves structures that are similar to those
described in the previous section. The starting material
is an epitaxially grown GaAs/AlAs multilayer structure.
Silicon nitride is deposited on the top surface, and holes
are etched into the silicon to expose the top surface of the
wafer. In the reported work, the holes were arrayed in a
triangular lattice pattern, with a hole diameter of 2 µm
and a lattice constant of 8 µm. After the holes were etched,
zinc was diffused into the semiconductor crystal through
the openings. The diffusing zinc disorders the multilayer
structure, converting it to a homogeneous (Al, Ga)As alloy.
After the diffusion, the structure is exposed to an oxidizing
ambient, and the disordered regions are selectively con-
verted to aluminum oxide. Thus, the resulting structure
is a GaAs/AlAs multilayer with a regular array of oxide
posts inserted. The authors used this structure to build a
photo-pumped semiconductor laser.

Deep Anodic Etching of Silicon Wafers. Deep anodic etch-
ing of silicon wafers to form 2-D PBGs (64) is similar in
concept to vertical reactive-ion etching, differing in start-
ing materials and scale. The material is silicon. A 2-D ar-
ray of small starter etch pits is formed on the surface us-
ing standard patterning and etching techniques. Typical
dimensions and lattice constants are on the order of 2–10
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µm. Then, a photo-induced anodic etching procedure is em-
ployed.

Macropores can be formed in the 110 direction in a n-
doped Si wafer if it is anodized in an HF solution and illumi-
nated from the backside. The illumination creates electron-
hole pairs and the electrons migrate to the growing etch
pits. With careful control of the anodic etching, the pattern
of holes can be extended through the entire thickness of
the wafer—more than 400 µm—leading to a much thicker
2-D structure than can be achieved using the GaAs tech-
niques described previously. The transmission spectrum of
the fabricated structures showed distinct stop bands in the
mid-IR region. This technique has been repeated for submi-
cron lattice constants (65). It should be noted that without
the use of a patterned silicon wafer, a random array of etch
pits is produced in a porous silicon structure (66) which
also has very interesting 1-D photonic crystal properties.

True three-dimensional structures have not yet been
demonstrated using semiconductor techniques, although
there are several proposed routes toward optical PBGs.

Three-Cylinder PBG Using Directional Ion Beam Etching.
The basic approach (67) uses a scaled-down version of
Yablonovitch’s three-cylinder PBG proposed and demon-
strated at microwave frequencies (23). The starting ma-
terial is again GaAs. A masking layer of SiN and AlO is
formed on the surface of a GaAs wafer, and then a triangu-
lar array of holes is etched through the masking layer to
expose the underlying GaAs. Then a series of three angled
ion beam etching steps is performed. Each etch step forms
a deep array of etch pits angled at 35◦ off normal. After
the first etch step, the GaAs substrate is rotated by 120◦,
a second is etched, the substrate is rotated again, and the
third set of holes is drilled. The result is a set of intersect-
ing air cylinders that form a diamond-like lattice structure
in the GaAs crystal. Using electron-beam lithography, sub-
micron dimensions are possible. Structurally, the photonic
crystal clearly exhibits two or three unit cells. However,
optical measurement has not shown the expected photonic
band gap. The most likely cause of the lack of band gap
is non-uniformity in the etching profile. Further research
continues on this avenue of PBG fabrication.

Nonsemiconductor Methods

Laser Rapid Prototyping. (31) Laser chemical vapor depo-
sition has been used to fabricate a layer-by-layer structure
similar to the one described in Fig. 3. The photonic crys-
tal consisted of aluminum oxide rods, and the measured
photonic band gap was centered at 2 THz. The index con-
trast may be lower than expected due to the porosity of the
material. Further experiments on this promising direction
are needed.

Deep X-Ray Lithography. (68) PMMA resist layers with
thickness of 500 µm were irradiated in order to form a
three-cylinder structure. Because the dielectric constant
of the PMMA is not enough for the formation of a photonic
band gap, a molding step must be applied. The holes in
the resist structure were filled with solution of polyvinyl-
silazane in tetrahydrofuran. After the evaporation of the

solvent, the samples were pyrolyzed at 1100 ◦C under N2

atmosphere. The resist decomposes into CO2, CH4, CO,
and H2O, whereas polyvinylsilazane is transformed into
SiCN ceramic. A lattice of ceramic rods corresponding to
the holes in the resist structure remained. Calculation us-
ing the transfer matrix method showed that the dielectric
constant of the ceramic should be around 3.5 in order to
fit the measured band gap centered at 2.5 THz. This is
an indication that the ceramic was quite porous. Further
work is needed for the fabrication of photonic crystals with
more compact ceramic material, which hopefully will give
higher dielectric constants. More recently, two- and three-
dimensional nanostructures of TiO2 were fabricated (69)
using x-ray lithography and liquid-phase deposition. Us-
ing deep X-ray lithography a PMMA template was formed
with an array of nano-order holes having a high aspect
ratio. This template was filled with dense TiO2 by liquid-
phase deposition. A novel 3-D photonic crystal structure of
slated pores that could be achieved with X-ray lithography,
was theoretically predicted (70) to have a band gap of 28%.

Holographic Methods. Holography is a complementary
approach to layer-by-layer methods in that the entire 3-D
photonic crystal can be fabricated at the same time and has
been an extremely active area of ongoing research (71–76).
In holography a multiple beam of lasers is incident on a
thick photoresist layer, providing a three-dimensional in-
terference pattern. The photoresist is then developed. Neg-
ative photoresists exhibit a certain exposure dose thresh-
old, above which the resist is not soluble in the developing
process. Thus the spatial intensity of the dose gets trans-
ferred into the distribution of matter, resulting in a porous
polymeric structure, the shape of which is tailored by the
laser interference pattern. For positive photoresists, the
underexposed regions remain after development.

The photoresists have low refractive index contrast
making them unsuitable for full photonic band gaps. Thus
infiltration of higher index material (such as silicon) is nec-
essary to improve the refractive index contrast, followed by
removal of the resist altogether.

The mathematical process of the interference pat-
tern has been investigated in detail (73, 75). Generally
four laser beams are necessary for formation of three-
dimensional photonic crystals with complete band gaps.
Structures close to the three-hole structure having rhom-
bohedral symmetry have been predicted from 4-beam
holography. Such structures can have complete band gaps
of 5% or larger for suitable filling ratios (38%) and struc-
tural parameters (75). Five holographic beams propagat-
ing from the same half-space has been predicted (75) to
yield band gaps of 25% when the exposed photoresist is
replicated with silicon. Genetic algorithms have also been
utilized (76) to predict holographic structures with band
gaps of 28%, similar to a rod-connected diamond structure.

Self- Assembled Photonic Crystals. Theoretical studies
(77, 78) have identified the “inverse” face-centered cubic
(fcc) structure as one of the best suited for photonic band
gaps. This consists of a periodic array of close-packed low
dielectric spheres with refractive index n1 in a high di-
electric background with refractive index n2, generating
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Figure 17. Densities of photon states for the fcc structure of air
spheres in a dielectric medium of refractive index 3.6. The filling
ratio of air is 74%.

the refractive index contrast n=n2/n1. The spheres may be
air (n1=1) enclosed by the interconnected higher dielec-
tric background. Calculations have found the inverse fcc
structure to have both a low-frequency pseudogap between
bands 2 and 3 where the density of photon states reaches
zero, and a high frequency three-dimensional band gap be-
tween higher bands 8 and 9 (Fig. 17; Fig. 8) . The gap is ∼5%
in magnitude for a refractive index contrast of 3.5. Gener-
ally a higher refractive index contrast (>2.4) is necessary to
observe the full band gap. The inverse structure has much
more desirable photonic gaps than the direct structure of
close-packed dielectric spheres. Other stacking sequences
such as hexagonal close-packed and double-hcp also yield
high band gaps (79). .

We have also achieved this inverse opal structure by a
somewhat different ceramic technique where the ordering
and filling process was performed simultaneously (88, 89).
The starting point was a slurry of nanocrystalline titania
which was mixed with a suspension of polystyrene spheres
(88, 89). On drying of this slurry on a slide, ordering of
the spheres was observed in a region of the slide evidenced
by a band of color. The spheres were ordered and the in-
terstitial regions were filled by the titania nanoparticles.
The spheres were then removed by calcination above 200
C, leaving a macroporous solid where close-packed spheri-
cal air cavities are enclosed by a high dielectric matrix. It
was necessary to sinter the titania near 550 C to densify it
and improve the refractive index contrast (88, 89).

The inverse opal structure was preceded by ordered
structures of monodisperse spheres which did not have ap-
preciable photonic band gaps but did exhibit stop bands
(90–93) from the band gaps along the stacking direction.

Robotic Micromanipulation. Robotic micro-
manipulation is a very specialized technique for fab-
ricating precise three-dimensional photonic crystals of
small sizes.

Micromanipulation of two different size spheres has
been employed to buld up a diamond lattice (94). This was

then back-filled with silicon to generate an inverse opal
diamond-like lattice in silicon (94). Micromanipulation of
bars of InP were performed to build up the layer-by-layer
photonic crystal with a pitch of 1.4 µ (95). A band gap at
wavelengths between 3-4 µ was observed in a 4-layer sam-
ple that measured 15 µ × 15 µ in size.

Soft Lithographic Methods. Soft lithography using micro-
transfer transfer molds has evolved into a very popular
technique for generating economical large area photonic
crystals, down to infrared and optical length scales. The
basic principle is based on transferring a whole layer of
polymer pattern using an elastomer mold onto a substrate
or multilayer polymer template (96–98).

The starting point is to create a master stamp which is
typically a silicon wafer on which a patterned photo resist
is created by standard photolithographic methods. Typi-
cally photo resist is spun on to a silicon wafer and exposed
to a patterned mask and then developed and baked. For
the layer-by-layer structure this pattern consists of a one-
dimensional layer of rods. The next step is to create an
elastomeric mold from the master stamp. After the PDMS
is cured, it is removed gently from the master stamp result-
ing in a relief structure on the elastomeric mold. The third
step is to fill the troughs of the PDMS with epoxy. Care is
taken to not overfill the epoxy; otherwise excess epoxy can
spill over into the underlying layers. One way to fill with
epoxy is to put a tiny drop of epoxy on the PDMS mold and
drag the drop with a wire across the surface. The epoxy
can be oven cured. In the final step the epoxy filled PDMS
is placed in contact with a glass or silicon substrate. After
the epoxy has hardened the PDMS is peeled off leaving a
set of parallel epoxy rods on the substrate and one layer of
the polymer template is thus created.

The second and subsequent layers are fabricated in the
same manner, except the epoxy filled elastomeric mold is
applied to a one-layer or multi-layer structure on the sub-
strate. By repeating this synthesis a multi-layer structure
can be fabricated. Alignment of third and subsequent lay-
ers is a major concern in this method. It has proved to be
very fruitful to align using the technique of Moire fringes
and identify well-aligned regions in the sample. Layer-by-
layer photonic crystals with pitch of 2.5 and 1 µ have been
fabricated with this method, which can be extended into
the optical length scale. Dielectric and metallic structures
have been fabricated with this technique.

3-D PHOTONIC CRYSTALS WITH DIELECTRICS

In this section,we study some of the recent achievements in
the field, and we point out some of the difficulties that may
rise in the future especially for photonic crystals operating
at the optical frequencies. We start with the defect cases.

We study 3-D layer-by-layer photonic crystals (24–30).
The structure is made of layers of cylindrical alumina rods
with a stacking sequence that repeats itself every four lay-
ers with repeat distance, c = 1.272 cm. Within each layer,
the rods are arranged with their axes parallel and sepa-
rated by a distance a = 1.123 cm. The orientations of the
axes are rotated by 90◦ between adjacent layers. To obtain
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Figure 18. The transmission of EM waves propagating through
a 3-D layer-by-layer PBG consisting of 16 layers of rods. The dot-
ted lines correspond to the periodic case, whereas the solid lines
correspond to the defect case in which every other rod from the
eighth layer has been removed. Panels (a) and (b) correspond to
the polarization with the electric field parallel and perpendicular
to the first layer of rods.

the periodicity of four layers in the direction of stacking,
the rods of the second neighbor layers are shifted by a dis-
tance of a/2 in the direction perpendicular to the rods axes
(24–30). In order to simulate this structure with the real
space TMM, we divide the unit cell into 7 × 7 × 8 subcells
assuming that the z axis is along the stacking direction.

Figure 18 shows the transmission of EM waves inci-
dent on a layer-by-layer photonic crystal with four unit cell
thickness (16 layers of rods). The k vector of the incident
wave is along the stacking direction (z axis). For the peri-
odic case (dotted lines in Fig. 18), there is a gap between 11
and 15.7 GHz for both polarizations. We introduce a defect
in this structure by removing every other rod in the eighth
layer. A defect peak appears at 12.58 GHz. The width of
the peak (0.016 GHz) is almost the same for both polar-
izations, and the transmission at the top of the peak (−3.4
and −29.7 dB for each polarization) is higher for the polar-
ization where the incident electric field is parallel to the
axis of the removed rods. In general, the transmission for
the parallel polarized waves is more affected by the defect
than the perpendicular polarized waves. The Q factor and
the defect frequency are in very good agreement with mea-
surements in the same configuration (30). However, the
measured transmission at the top of the peak is about 10
dB smaller than that calculated, most probably because of
some small absorption of the alumina rods (30). By increas-
ing the thickness to eight unit cells (32 layers of rods), the
width of the peak becomes 10−6 GHz, which corresponds
to Q greater than 106, whereas the defect frequency and
the transmission at the top of the peak remain almost the
same (12.61 GHz and −3.8 dB, respectively).

Figure 19. The transmission of EM waves propagating in a sys-
tem similar to the one described in Fig. 18. The dielectric constant
of the rods is | ∗ epsilion ∗ | = 9.61 + ix. E field is parallel to the
axis of the removed cylinders. Curves are for different values of
the absorption x.

In the optical wavelength region, the dielectric constant
of most materials has an appreciable imaginary part. In or-
der to study the effect of the absorption on the peak trans-
mission resulting from defects, we calculated the transmis-
sion of a layer-by-layer structure with a defect (Fig. 19).
The structure is similar to the one described in Fig. 18, in
which we removed every second rod from the eighth layer
(the system contains 16 layers of rods). We assume that the
dielectric constant is given by

= 9.61 + ix. Increasing the imaginary part of the dielec-
tric constant, the Q, as well as the transmission at the peak,
decreases. In particular, Q = 800, 262, 163, and 90 for x = 0,
0.05, 0.1, and 0.2, respectively, whereas the transmission
at the peak is −3.4, −14.0, −18.7, and −24.0 dB (Fig. 16).
The introduction of the absorption makes the peak wider
and the transmission on the peak smaller.

Even in periodic structures, the effect of the absorp-
tion could significantly change the transmission. Figure 20
show the transmission of a periodic layer-by-layer struc-
ture similar to the one described in Fig. 18 with three unit
cells thickness. The real part of the dielectric constant is
9.61. By increasing the imaginary part, the transmission
decreases at all the frequencies. Especially at the upper
edge of the gap, the transmission has dropped by almost
10 dB compared to the case with zero imaginary part. In
the non-absorbing cases, it is commonly accepted that the
photonic crystal must be as thick as possible because the
transmission inside the gap decreases as the thickness of
the crystal increases. However, in photonic crystals con-
structed of materials with significant absorption, the trans-
mission is thickness-dependent at all frequencies. So, it is
possible that we will not be able to measure the transmis-
sion at the upper edge of the gap, which is more affected
by the absorption, if it is less than the noise level of our
measurements.
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Figure 20. The transmission of EM waves propagating in a layer-
by-layer system similar to the one in Fig. 4 with three unit cells
thicknesses. The dielectric constant of the rods is | ∗ epsilion ∗ | =
9.61 + ix, where x is 0 and 0.2 (dotted and solid lines, respectively).

Figure 21. Measured transmission of electromagnetic waves in-
cident a) along the x-axis (in the plane of the rods) and b) along
the stacking direction (z-axis) of the layer-by-layer structure made
with alumina rods. A rod spacing of 1.1 cm was used.

We show for comparison the measured transmission
(Fig. 21) of EM waves incident from the top (z-axis) and
from the side (x-axis) of the layer-by-layer photonic crystal
composed of dielectric rods, with a spacing of 1.1 cm (25).
The wider band gap along the stacking direction as pre-
dicted from the theoretical calculations is clearly evident.

Very sharp defect states with high Q can be created with
defects within the 3-D photonic crystal. Various point de-
fects in the InP layer-by-layer photonic crystal have been
synthesized by S. Noda et al (99) at infrared frequencies, by
either removing potions of rods or adding material. Cavity
modes were observed at these point defect sites. It should

be notedfor comparison that the highest Q defect with a Q
exceeding 105 has been achieved by S. Noda and collab-
orators (<xref target="W4410-bib-0099 W4410-bib-0100"
style="unformatted"/>) in a two-dimensional heteropho-
tonic crystal. This 2-D photonic crystal has a defect region
of slightly different lattice constant (100, 101), sandwiched
between the regular lattice constant material.

The field of 3-D photonic crystals has been very rich
with examples of alternative photonic crystal structures
with complete photonic band gaps. The simple-cubic lat-
tice has a fundamental photonic gap between the lowest
bands 2 and 3 with a magnitude of ∼6% for a refractive
index contrast of 3.6. When spheres are introduced on the
lattice sites and connect to each other with narrow dielec-
tric rods, a higher band gap between bands 5 and 6 opens
up and reaches a maximum value of 12% (102) for a re-
fractive index contrast of 3.6. The simple cubic lattice of
rods was also fabricated at infrared frequencies, showing
the expected band gap (103).

An alternative 3-D photonic crystal was designed by
Johnson and Joannopoulos (104). This 3-D periodic dielec-
tric structure with a large complete photonic band gap
(PBG) consists of a structure with a sequence of planar
layers, identical except for a horizontal offset, and repeat-
ing every three layers to form an fcc lattice. The layers can
be thought of as an alternating stack of the two basic two-
dimensional (2D) PBG slab geometries: rods in air and air
cylinders in dielectric. These high-symmetry planar cross-
sections may simplify the integration of optical devices and
components by allowing modification of only a single layer,
using simple defects of the same form as in the correspond-
ing 2D systems. Gaps of over 21% are obtained for Si/air
substrates. Reasonable gaps, over 8%, were achieved even
for the moderate index ratio of 2.45 (Si/SiO2). A different 3-
D photonic crystal layered photonic crystal structure was
also designed (105). This has a connectivity that is different
from diamond and possesses square symmetry within each
layer. This structure has a complete photonic band gap of
18% of the midgap frequency with a dielectric contrast of
12:1. A waveguide in this crystal was created by removing
a row of rods from a single layer.

A planar diamond structure with triangular lattice
meshes, supported by vertical rods was also developed by
us (106) with complete band gaps exceeding 29% for refrac-
tive index contrasts of 3.6 (106). This structure is amenable
to fabrication with layer-by-layer methods.

Selected Applications of Photonic Crystals. Photonic crys-
tals have been known to create cavities with defect modes
within the photonic band gap. A planar Fabry-Perot type
of cavity was created in the layer-by-layer crystal by sep-
arating the unit cells by a displacement d. The displace-
ment d was adjusted to produce the defect mode within
the band gap (107). A dipole antenna was placed within
the cavity and driven at frequencies within the band gap.
At the frequency of the defect mode an exceptionally direc-
tional pattern can emerge from the dipole antenna. Using
an asymmetric cavity with different unit cells on the two
sides we obtained (107) a source radiating in a forward di-
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rection with a full width of 14◦ in the E-plane and 12◦ in
the H-plane (Fig. 19).

It would be extremely difficult to obtain such an excep-
tionally directive source with conventional antenna array
and we estimate >300 antennas in a phased array would be
required to achieve such directionality. The simulated radi-
ation pattern from the FDTD method agreed very well with
the measurements performed on microwave-scale photonic
crystals (107, 108). Very directional antennas have also
been created by locating the antenna sources inside the
photonic crystal and measuring the radiation emerging
from the surface (109).

This work demonstrates that altering the densities of
photonic states by a photonic crystal can drastically alter
the emissive properties of sources, one of the original mo-
tivations for photonic crystals. Modifying the spontaneous
emission of atomic sources by altering the photonic densi-
ties of states in 2-D and 3-D photonic crystals is an area of
much activity.

Waveguides can easily be created in the layer-by-layer
photonic crystal by removing an entire rod (X-waveguide),
portions of a rod along the y-axis (Y-guide), or rod seg-
ments along the z-axis (Z-guide) (110). The X-waveguide
has a wide band in the photonic band gap where the modes
are transported. Waveguide bends are a novel application
where EM waves can be turned through sharp bends with-
out loss/scattering inherent in traditional waveguide ge-
ometries. Since the waveguide mode is confined within
the bandgap, there is no loss to radiation modes in the
bend region. We have carefully optimized the geometry
of the bend to achieve near 100% bending efficiency and
show (Fig. 23) the bending of a beam through 90◦ between
two X-waveguides, simulated with the FDTD method.
These simulations agree very well with measurements
on microwave-scale photonic crystals(111, 112). Although
such waveguide bends have been extensively investigated
in 2-D photonic crystals for optical circuits, there can be
significant loss in the z-direction at the bend region in the
2-D photonic crystals.

Another novel application is the add-drop filter using
3-D photonic crystals. In telecommunications applications
using wavelength division multiplexing to carry dense
streams of data, the input stream consists of various fre-
quency channels. It is critical to select or drop one fre-
quency from this stream to an output guide. Conversely
it is also necessary to add a particular frequency channel
to an in input stream. We have achieved such an add-drop
filter with our 3-D photonic layer-by-layer photonic crystal.
The configuration consists of an input and output waveg-
uides which are separated by L and uncoupled ( since L
is several unit cells). There is a defect cavity located in a
layer one unit cell above the waveguides that can support
localized defect modes. When the input frequency matches
the frequency of the defect that mode is excited in the de-
fect cavity and transported to the output waveguide (113).
Other waveguide modes are unaffected. Such 3-D add-drop
filters can be an alternative to the extensively studied add-
drop filters investigated with 2-D photonic crystals.

It is interesting to note that the concept of impedance
which is critical to matching waveguides and has played a
very important role in microwave engineering, can be de-

Figure 22. Radiation pattern in the (a) E-plane and the (b) H-
plane for a dipole radiator placed inside an asymmetric cavity
formed inside a photonic crystal. 2 unit cells are separated from 3
unit cells with this planar cavity.

Figure 23. Bending of an electromagnetic wave around a 90 de-
gree bend formed by two X-waveguides in the layer-by-layer pho-
tonic crystal, using FDTD simulation. The frequency is chosen to
lie within the band gap of the photonic crystal.
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Figure 24. Measured reflection and transmission of the metal-
lic layer-by-layer structure as a function of the number of layers,
compared with simulations with the scattering matrix method.

fined analogously for photonic crystals as a ratio of the en-
ergy density to the power flow at each frequency (114). This
impedance concept can account for reflection and transmis-
sion of waves from photonic crystals.

Metallic Photonic Crystals. Metallic photonic crystals
have been an active subfield. As mentioned earlier the
layer-by-layer photonic crystal has been fabricated with
tungsten (58, 59) at rod separations from a=2−5 µ using
advanced silicon processing methods (58, 59) or more re-
cently with soft lithographic methods (97). The basic char-
acteristic of the metallic layer-by-layer photonic crystal is
that the reflectance is high (near 100%) and the transmis-
sion negligible at long wavelengths λ>a where the details
of the structure are not resolved. At a wavelength λ∼a the
reflectance dips and the transmission increases (Fig. 24) for
shorter wavelengths. There is an absorption peak located
near the wavelength λ∼a. Since the emission is the absorp-
tion modulated by the black-body emissivity, the thermal
emissivity can be significantly altered and consists of an
emission peak located near λ∼a.

In contrast to connected metallic structures it is instruc-
tive to compare the case of isolated metallic scatterers.
In this case the system is highly transmitting with little
reflection for low frequencies upto a cutoff frequency de-
fined by the lattice spacing. Above the cut-off frequency
the transmission decreases with increase of reflection and
absorption in the structure. An example of this behavior
is the EM wave propagation in isolated metallic scatterers
embedded in air [cermet topology (115, 116).

Figure 25 shows the transmission and absorption of EM
waves propagating in simple cubic (s.c.) lattice consisting
of metallic spheres with filling ratio f = 0.03. The system
is infinite along the x and y directions, whereas its thick-
ness along the z axis is L = 4a, and the incident waves with
k along the z axis. The results for both polarizations are
the same because of the lattice symmetry. For the present
as well for all the following cases, each unit cell is divided
into 10 × 10 × 10 cells. Calculations with more subcells

show that the convergence is better than 5% for the peri-
odic cases, and better than 15% for the defect cases. There
are two drops in the transmission (Fig. 25); the first around
νa/c = 0.45 and the second (and sharpest) one around 0.85.
The wavevector k, parallel to the z axis corresponds to the
�− X direction in the k space. In this case, we expect the
first gap to appear at the edge of the zone (in the X point) for
νa/c about 0.5, which is slightly higher than the frequency
where the first drop in the transmission appears in this
direction (Fig. 25). Because of the small filling ratio, there
is no full band gap because the gaps in different directions
do not overlap. We find similar results for fcc, bcc, and di-
amond structures with isolated metallic spheres or cubes.
For the cases where the metal forms isolated scatterers,
the results are similar to those of the dielectric PBG ma-
terials. The present results for the isolated metallic scat-
terers are in agreement with the results of a recent work
(117) in which monolayers consisting of metallic spheres
with radius between 10 and 100 nm were studied. The
frequency-dependent Drude dielectric function (118) was
used in these simulations

Perspectives and Future Directions. We briefly describe
some applications of PBG materials on waveguides, light-
emitting diodes, nonlinear effects, and quantum electrody-
namics.

Recent studies of two-dimensional photonic band gap
waveguides have shown encouraging results for the use of
photonic crystals in order to improve waveguide efficiency
(119, 120). In one of the studies (119), a two-dimensional
square lattice consisting of dielectric cylinders was used. A
line of cylinders was removed in order to create the waveg-
uide geometry. Numerical simulations using the FDTD
method revealed complete transmission at certain frequen-
cies and very high transmission (>95%) over wide fre-
quency ranges. High transmission is observed even for 90◦

bends with zero radius of curvature, with maximum trans-
mission of 98% as opposed to 30% for analogous conven-
tional dielectric waveguides. More studies, especially on
3-D structures, are needed. Also, measurements on similar
systems are highly desirable.

In another interesting theoretical study (121), a thin
slab of two-dimensional photonic crystal was shown to alter
drastically the radiation pattern of spontaneous emission.
By eliminating all guided modes at the transition frequen-
cies, spontaneous emission can be coupled entirely to free
space modes, resulting in a greatly enhanced extraction ef-
ficiency. Such structures might provide a solution to the
long-standing problem of poor light extraction from high
refractive-index semiconductors in light-emitting diodes
(121). Extension of these studies into 3-D photonic crys-
tals will be very useful. Two-dimensional photonic crystals
have been combined with an array of holes in a metal sheet
(49) to enhance the emission of infrared wavelengths from
this structure.

There has been research on nonlinear photonic band gap
materials, focused on 1-D photonic crystals (122–125). Un-
der certain circumstances, there may be nonlinear wave
propagation within the photonic band gap. For a large-scale
photonic band gap material, the propagation of high inten-
sity, nonlinear solitary waves may provide a practical way
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Figure 25. Transmission and absorption vs. the
dimensionless frequency | ∗ nu ∗ |a/c for EM waves
propagating in a 3-D s.c. lattice consisting of metal-
lic spheres with f = 0.03, L = 4a, and | ∗ theta ∗ | = 0◦.
Solid and dotted lines correspond to a = 1.27 and 12.7
| ∗ nu ∗ |m, respectively.

of coupling large amounts of optical energy into, and out of,
the otherwise impenetrable photonic band gap. A station-
ary solitary wave may be regarded as a self-localized state.
In a perfectly periodic material, the high light-intensity it-
self creates a localized dielectric defect through the nonlin-
ear Kerr coefficient. Unlike the localized state induced by
static disorder, the localized dielectric defect is free to move
with the light intensity field. The result is a solitary wave
that can move through the bulk photonic band gap material
with any velocity ranging from zero up to the average speed
of light in the medium. Using a variational method, John
andAkozbek (126) found a variety of different solitary wave
solutions in two dimensions. Their work suggests that pho-
tonic band gap materials in higher dimensions may have
a variety of interesting bistable switching properties that
go beyond the simple characteristic of one-dimensional di-
electrics. Because an exact solution is no longer possible in
two and three dimensions, numerical methods are required
to solve this problem. The FDTD method described earlier
with implementation of the formalism described in 127 is
very promising for the solution of this problem.

There are also very interesting implications of photonic
crystals on quantum electrodynamics. For a single excited
atom with transition frequency ωo to the ground state,
which lies within the band gap, there is no true sponta-
neous emission of light. A photon that is emitted by the
atom finds itself within the classically forbidden energy
gap of the photonic crystal. The result is a coupled eigen-
state of the electronic degrees of freedom of the atom and
the electromagnetic modes of the photonic crystal. This
photon-atom bound state (128–130) is the optical analog
of an electron-impurity level bound state in the gap of a
semiconductor. When a collection of atoms is placed into
the photonic crystal, a narrow photonic impurity band is
formed within the larger photonic band gap. This may lead
to new effects in nonlinear optics and laser physics (128).

Photonic crystals have created such a major revolution
in manipulating electromagnetic waves that several new

fields of active research have emerged from them. One of
the most active subfields are meta-materials or left-handed
materials. Another subfield is the area of sub-wavelength
hole arrays. Left-handed materials can be realized by hav-
ing ? and ? negative in a certain frequency range. Higher
frequency bands on photonic crystals where the group ve-
locity is opposite to the propagation k-vector are an exam-
ple of left-handed behavior.

Sub-wavelength arrays of holes in metallic layers are
another sub-field where metallic components with strong
diffractive effects come into play. While many worldwide
research groups have engineered very impressive 2-D pho-
tonic crystals, a goal of much present research is to fabri-
cate three-dimensional photonic crystals at optical wave-
lengths and generate new applications to light-emitting
devices and lasers.
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