
OBJECT RECOGNITION

Object recognition is a subproblem of the more general
problem of perception, and can be defined as follows. Given
a scene consisting of one or more objects, can we identify
and localize those objects that are sufficiently visible to
the sensory system? It is generally assumed that a de-
scription of each object to be recognized is available to the
computer and can be used to facilitate the task of iden-
tification and localization. These descriptions can either
be model-based or appearance-based, or a combination of
both. Model-based object representation is based on geo-
metric features, whereas appearance-based representation
uses a large set of images for training but does not require
any insight into the geometric structure of the objects. Ob-
ject recognition is a key component of many intelligent vi-
sion systems, such as those used in hand-eye coordination
for bin picking, inspection, and mobile robotics.

Various types of object recognition problems can be
stated based on the dimensionality of their spatial descrip-
tion: (1) recognition of a 2-D object from a single 2-D im-
age; (2) recognition of a 3-D object from a single 2-D image;
(3) recognition of a 3-D object from a 3-D image (a range
map); (4) recognition of a 2-D or 3-D object from multi-
ple 2-D images taken from different viewpoints; and so on.
About 40 years ago, research in computer vision began with
attempts at solving the problem of how to recognize a gen-
eral 3-D object using a single 2-D image. Since humans
can perform this task effortlessly, it was believed then that
designing a computer-based system for accomplishing the
same would be easy. However, forty years later this problem
remains largely unsolved. In contrast, much progress has
been made in recognizing 2-D objects in single 2-D images
and in recognizing 3-D objects in range maps. Although not
as impressive, considerable progress has also been made in
the recognition of 2-D or 3-D objects using multiple 2-D im-
ages, as in binocular or multiple-camera stereo.

The earliest successful system for the recognition of 2-
D objects, such as gaskets used in industrial products, us-
ing single camera images was the VS-100 Vision Module
fielded by SRI [1]. We believe that it was this system that
launched industrial interest in computer vision. Another
early industrial vision system that also became well known
and that is of historical importance is the CONSIGHT sys-
tem [2]. The HYPER system [3] was used for identifying
overlapping flat electromechanical components, and used
heuristic tree pruning to speed up the search for a scene-to-
model match. Two early systems for the recognition of 3-D
objects from single 2-D images are the ACRONYM system
[4] and the SCERPO system [5], which used perceptual or-
ganization ideas to cope with the lack of depth information
from a single image. Some studies on the errors associated
with the recognition of 3-D objects from 2-D images include
Refs. [6–8]. An exemplar on the more recent avenue of au-
tomatic learning of relevant features for object recognition
is in Ref. [9].

One of the first successful systems that recognized 3-
D objects in range maps was the 3DPO system for ob-
ject orientation computation using graph matching [10].
Later contributions include the 3D-POLY system for object

recognition in occluded environments [11], the INGEN sys-
tem for generic object recognition [12], the MULTI-HASH
system for fast 3D object recognition [13], and the BON-
SAI system for object recognition using constrained search
[14]. Other relevant work on 3-D object recognition from
range data includes Refs. [15–19]. Recent work on 3D ob-
ject recognition from range images that also uses voting
mechanisms on hash tables is in Ref. [20]; and one on the
use of graph representations for model-based recognition
is in Ref. [21].

Systems that have been demonstrated to recognize 3-D
objects using principles of binocular stereo and other mul-
ticamera systems with various degrees of effectiveness in-
clude Refs. [22–24]. A variation on the idea of using mul-
tiple 2-D images for recognizing a 3-D object consists of
projecting the image of an object into a space of lower di-
mensionality in order to facilitate the search for a match
in a database of known object models. Examples of such
systems include Refs. [25] and [26] for the recognition of
human faces, and a real-time appearance-based recogni-
tion system that identifies 3-D objects [27]. These systems
are sensitive to unrestricted illumination conditions and
can only analyze scenes with one object at a time. A re-
cent alternative to the use of PCAs for appearance-based
recognition is with a novel sparse multiscale representa-
tion based on Gaussian differential basis functions, that
simplify the image matching problem into a problem of
polynomial evaluation [28].

Traditionally, a model-based recognition system in-
cludes the following sequence of tasks: sensory data acqui-
sition, low-level processing of the sensory input, feature
extraction, perceptual organization (e.g., grouping of fea-
tures), scene-to-model hypothesis generation, and model
matching. However, it is believed now that the interpreta-
tion of a complex scene cannot proceed in a purely bottom-
up manner; instead, some of these tasks must cooperate
with each other. For example, successful grouping of fea-
tures could be guided by general constraints associated
with the object classes. The recognition of a large database
of objects cannot be efficiently achieved without the ability
to represent an object in terms of its components, but there
is no universally accepted formal definition of what consti-
tutes a part and no general approach for decomposing an
object into parts.

SENSORY DATA ACQUISITION

Light Intensity Images

For 2-D object recognition one snapshot of the scene to be
analyzed is usually sufficient. In this case, the goal is to
identify and locate one or more nearly flat objects in an
image, often from a viewpoint that is perpendicular to the
objects. An example is shown on Fig. 1(a). Here, the goal
is to identify and accurately estimate the position and ori-
entation of the keys. Gray-level or color digital images can
be used for this purpose, and they can be captured with
a digital camera or obtained by digitizing the signal of an
analog camera using specialized hardware. When the ob-
jects in the scene have highly reflecting surfaces, the im-
ages obtained with a color or gray-scale camera may not be

J. Webster (ed.), Wiley Encyclopedia of Electrical and Electronics Engineering. Copyright © 2007 John Wiley & Sons, Inc.

2 Object Recognition

Figure 1. In 2-D object recognition the scene is usually observed from a viewpoint that is perpendicular to the objects. a) Scene image, b)
output of Sobel operator for edge detection, c) one-pixel-wide edges obtained using morphological operators.

Figure 2. When the objects in a scene have highly reflecting surfaces, the images obtained with a color or gray-scale camera may not be
acceptable. For these cases the use of a backlit table is more effective.

acceptable. For these cases the use of a backlit table will
produce superior results. See Fig. 2. If high resolution is
necessary, a high-density solid-state linear camera can be
used. The objects are placed on a conveyor belt and scanned
as the belt traverses linearly under the camera.

Various approaches are possible for acquiring data for
3-D vision. For example, with binocular stereo, two slightly
shifted images of the same scene are taken and, when feasi-
ble, object points are located in 3-D space by triangu-lation.
For stereo vision to work robustly, one must solve the cor-
respondence problem: the matching of pixel pairs in the
left and right images that correspond to the same point in
3-D space. See Fig. 3. Several geometric constraints can be
used to alleviate the correspondence problem. One of these

constraints is termed the feature constraint, and refers to
the fact that what is probably an edge in the left image will
most likely correspond to an edge in the right image also.
Generally speaking, the characteristics of the neighboring
pixels for the matching of the left and right image points
should be consistent. For Lambertian (completely matte)
surfaces, the reflected light is the same in all directions,
and as a result, the intensities at two corresponding points
in the left and right images should be the same. In practice,
few surfaces tend to be purely Lambertian. By the same to-
ken, few surfaces tend to be completely glossy. In reality,
for most surfaces the reflected light will vary slowly with
the direction of viewing. Another restriction is the epipolar
constraint which states that for any point in the left im-

Object Recognition 3

Figure 3. Correspondence problem in stereo vision: the points m1 and m2 in the left and right images correspond to the same point in
3-D space.

age its possible matches in the right image all lie on the
epipolar line, therefore reducing the dimensionality of the
search space from two dimensions to one. An epipolar line
is the projection on (say) the right image of the line that
passes through the center of projection and the pixel point
on the left image. Other constraints include uniqueness,
continuity, and ordering of points [22].

The use of multicamera stereo makes fuller use of the
epipolar and other geometric constraints, thus simplifying
the correspondence problem. Relative motion can also be
used to determine 3-D location of points. If the objects in
the scene are rigid and the configuration of the scene does
not change while the camera is moving, the various im-
ages obtained can be treated as separated only in space
and fixed in time. This process is referred to as baseline
stereo. To benefit from the geometry of a baseline stereo
system, the motion of the camera is generally made linear
and perpendicular to its optical axis.

A robust approach to stereo vision in an industrial set-
ting may use object-level knowledge in the stereo fusion
process [29].That is, the stereo system will use object model
knowledge to extract from each of the images higher-level
pixel groupings that correspond to discernible features on
one or more surfaces of the object, and will try to solve
the correspondence problem using these features. Because
these features tend to be distinctive, the problem of con-
tention in establishing correspondence is minimized.

Structured Light Sensing

A more robust approach for collecting 3-D data is by the use
of structured light sensing in which a scene is illuminated
with a single laser light stripe that scans across the scene.
For each position of the light stripe, a camera registers the
scene points illuminated by that stripe. The pixel coordi-
nates of the illuminated points are subsequently converted
into the xyz coordinates of the corresponding object points.
For every row in the camera image, the column index of the

brightest point represents the variation in depth for that
particular scan line. The 3-D coordinates of every illumi-
nated point are computed using appropriate triangulation
formulas. Several configurations exist for structured-light
imaging, the most common being obtained by single-slit
projections and by bar code parallel projections. Further-
more, a single-slit projection system can be implemented
using fan scanning, linear scanning, or fixed-camera linear
scanning [30]. See Fig. 4.

In a single-slit fan-scanning projection system, a laser
light is projected on a computer-controlled mirror and re-
flected onto the scene at different orientations. The scene is
scanned step by step by the laser light stripe, and for each
stripe, the position of the pixel with maximum brightness
in each row on the camera image is obtained. The xyz co-
ordinates of an object point p are computed from the inter-
section of the plane defined by the center of the mirror and
the laser light stripe with the line defined by all the points
in the space that corresponds to the point with coordinates
u, v on the image plane. The equation of the plane illumi-
nated by the laser light stripe varies with respect to θ, the
mirror orientation angle.

In a linear scanning system, the mirror does not rotate.
Instead, the laser light stripe projector and the camera are
attached to a platform that moves at small intervals along
a straight line perpendicular to the plane defined by the
mirror and the laser light stripe. The coordinates of the il-
luminated points in the scene are computed in the same
way as in the fan scanning projection system. The sensor,
consisting of the projector and the camera, is usually lo-
cated above the scene to be scanned, but it can also be at-
tached to the gripper of a robotic arm. Linear scanning is
ideal for integrating the range mapping process with ma-
nipulation. In a fixed-camera linear scanning projection
system the camera is kept stationary while the slit pro-
jector is moved along an axis perpendicular to the plane
illuminated by the laser light stripe.

4 Object Recognition

Figure 4. Structured light imaging configurations: a) single-slit fan scanning, b) single-slit linear
scanning, c) single-slit fixed-camera linear scanning, and d) bar-code projection.

Figure 5. The set of images acquired in a structured-light system can be used to create a composite light stripe image (a). The computed
xyz coordinates for the illuminated points along each stripe light are combined to produce a range map (b). Planar, cylindrical, and other
second order surfaces (c) are extracted from the range map using low-level segmentation techniques.

Object Recognition 5

The computed xyz coordinates for the illuminated points
along each light stripe are combined to produce a range
map. See Fig. 5(b). Structured-light scene reconstruction
exhibits a few drawbacks. It is desirable for the laser light
stripe to be the only illumination source for the scene. For
this reason, structured-light projection systems cannot be
used outdoors. Another disadvantage is the time it takes to
scan a scene for acquiring its range map. Bar-code parallel
projection can be used to alleviate this problem.

In a bar-code projection system, instead of illuminat-
ing the scene with a single laser light stripe, the scene is
illuminated with a number of bar-code patterns like the
ones shown in Fig. 6. Each stripe in the highest resolu-
tion bar-code pattern is equivalent to a single laser light
stripe in a single-slit fixed-camera linear scanning projec-
tion system. The individual stripes corresponding to an
equivalent single-slit scan are obtained by a simple decod-
ing algorithm, which consists of examining for a point in
the scene the on-off sequence of illuminations obtained for
all the projected grid patterns, and then placing there a
stripe corresponding to the resulting binary code word.

For N stripes in a single-slit system, log2 N patterns
are sufficient for the bar-code projection system, thus re-
ducing the acquisition time by a logarithmic factor. The
main disadvantage of the bar-code projection system is that
when highly reflective surfaces are present in the scene, the
camera may register those reflections, leading to errors in
stripe decoding [30].

More novel structured-light sensors include the use of
parabolic or elliptical mirrors. These sensors allow for dy-
namic reconfiguration of the triangulation geometry, and
permit the acquisition of depth maps of a scene with vary-
ing levels of occlusion and depth resolution [31]. Color in-
formation can also be incorporated in a structured-light
imaging system [13]. Color information is obtained by al-
ternately illuminating a scene with a laser stripe and a
white-light stripe, the latter being sampled at exactly those
points that were illuminated by the laser stripe. While
the laser stripe yields the xyz coordinates, the white-light
stripe provides the color content at those points. Of course,
one must use a color camera for such systems. Using such
a system, one can not only recognize objects on the basis of
their shapes, but also discriminate among similarly shaped
objects on the basis of their color properties.

It is also possible to use line-of-sight laser sensors with-
out cameras for acquiring 3-D information. A laser beam
is transmitted toward the scene, and part of the light is
reflected back the sensor a fraction of a second later. The
sensor calculates the distance to the object point in the
scene using the time of flight of the pulsed light. A rotating
mirror deflects the light beam in such a way that the entire
scene can be scanned in a raster fashion. The distance to an
object point can also be computed by comparing the phase
of a low-frequency power modulation of the outgoing and
returning laser beams. A major advantage of such sensors
is that they do not suffer from the occlusion problems that
can sometimes reduce the effectiveness of structured-light
sensors. For a structured-light sensor to work, an object
point must be visible to both the illuminating source and
the camera. On the other hand, for a line-of-sight sensor
to work, it is sufficient for the object point to be visible to

just the illuminating source, since no camera is involved.
See Fig. 7.

LOW LEVEL PROCESSING

Low-level Processing of 2-D Intensity Images

The processing of 2-D intensity images for recognition of,
say, flat objects usually begins with the detection or ex-
traction of simple features characterized by singularities,
such as edges or points. An edge can be defined as a dis-
continuity of intensity levels. Associated with every pixel
at coordinates u, v in the image, there is an associated in-
tensity value I. For gray-scale images, I is a scalar, whereas
for color images, I will consist of three-color components.
The detection of discontinuities in image intensity can be
achieved mathematically by computing derivatives of the
image intensity function I(u,v).

The gradient of an image at each point is represented by
the largest rate of intensity change at that point, and the
direction of the gradient is along the direction of steepest
change. Given an image I(u, v) the gradient is given by

�I(u, v) = û
∂I

∂u
+ v̂

∂I

∂v

and its magnitude can be computed by the norm

‖∇I(u, v)‖ =
√

(
∂I

∂u
)
2

+ (
∂I

∂v
)
2

For digital implementations, the magnitude calculated
by using the norm

‖∇I(u, v)‖ = max[
∂I

∂u
,
∂I

∂v
]

gives more uniform results with respect to the direction of
the edge. The former is called the L2 norm, whereas the
latter is called the L∞ form.

The direction of the gradient at the image point with
coordinates (u, v) is given by

tan−1(
∂I

∂v
/
∂I

∂u
)

and the direction of the edge at that point is perpendicu-
lar to that of the gradient. In order to find the derivatives
of the image in the u and v directions, several operators
can be used. See Fig. 8. The 2-D intensity function I has
to be convolved with these operators, each of them pos-
sessing different characteristics regarding the sensitivity
of edge detection to the direction of an edge. The most pop-
ular of these being the Sobel operator due to its smoothing
property for noise reduction. The cumulative output of the
convolution with the Sobel operators for the image in Fig.
1(a) is shown in Fig. 1(b). The Roberts operators on the
contrary, not only do not provide smoothing, but are also of
even size, with the consequence that their response cannot
be assigned to a central point. It is important to realize
that the sum of all entries in a filter kernel must add up to
zero, indicating that for regions of homogeneous intensity
values no features can be detected.

Image derivatives are sensitive to image noise, and it
is sometimes desirable to first smooth out the noise prior

6 Object Recognition

Figure 6. In a bar-code projection system the scene is illuminated with a number of bar-code patterns.

Figure 7. With a line-of-sight laser range finder, a laser beam is transmitted toward the scene, and part of the light is reflected to the
sensor. The sensor computes the distance to the object point in the scene using the time of flight of the pulsed light.

Figure 8. Several differentiation masks can be used to approximate the derivatives of an image.

to feature extraction. This can be done by smoothing or
blurring by convolution with a Gaussian filter

IG(u, v) = I(u, v) ∗ G(u, v)

=
∫ ∞

−∞

∫ ∞

−∞

1
2πσ2

e
− α2+β2

2σ2 I(u − α, v − β)dα dβ

where the σ parameter is the standard deviation or scale.
Given that differentiation commutes with convolution,

∂(I ∗ G) = ∂I ∗ G = I ∗ ∂G, noise reduction can be obtained
by differentiating not the image, but the Gaussian kernel

itself. In this way, Gaussian derivative operators are suit-
able both to feature extraction and noise reduction at the
same time. First order derivatives of Gaussian filters re-
semble local features such as edges or stripes, making them
a good alternative to the filters in Fig. 8 for detecting such
features in images from convolution. See Fig. 9. Other ad-
vantageous properties of Gaussian filters are steerability
[32] and separability [33].

Steerability means that the filter can be computed at
any orientation by a linear combination of basis filters [32].
The only constraints for a function to be steerable is that it

Object Recognition 7

Figure 9. First and second order Gaussian derivatives

must be polar-separable, i.e., to be conformed as the prod-
uct of a radial component and an angular component; and
to be expressed as a linear combination of basis filters.

From the steerability property of Gaussian filters it is
possible to detect features like edges or strips in images
at any orientation. The first order Gaussian derivative is
expressed in polar coordinates and then decomposed in po-
lar series in order to assign the basis functions and their
respective interpolation coefficients [33, 32]. The resulting
steerable Gaussian filter is

∂G

∂θ
= cos θ

∂G

∂u
+ sin θ

∂G

∂u
.

By the same procedure, the second order Gaussian
derivative is

∂2G

∂θ2
= cos2θ

∂2G

∂u2
+ 2 cos θ sin θ

∂2G

∂u∂v
+ sin2θ

∂2G

∂v2

Fig. 10 illustrates first and second order Gaussian filters

steered at an angle of
7π

4
, as well as the resulting extracted

features.

Edges

Some edge detectors use second-derivative operations; the
best known of these is the Laplacian of the Gaussian (LoG)
edge detector [34]. In this method, the image intensity
function I is smoothed with a Gaussian function and the
edges are detected from the zero crossings of the second
derivative

Iedge(u, v) = �IG(u, v)

where � = ∂2

∂u2
+ ∂2

∂v2
is the direction-independent

Laplacian operator. Recall that differentiation commutes
with convolution, thus differentiation can be performed
over the Laplacian operator and not over the image. The

LoG is given by

Iedge(u, v) = I(u, v) ∗ �G(u, v) =
∫ ∞

−∞

∫ ∞

−∞
I(α, β)�G(u − α, v − β)dα dβ

where

�G(u, v) = u2 + v2 − 2σ2

2πσ6
e
− u2+v2

2σ2

For edge detection, the zero crossing are taken instead
of the LoG magnitude because the latter leads to double
edges. As a consequence the LoG method gives one-pixel
wide closed contours, but it can also produce spurious zero
crossings caused by points of inflection in the first deriva-
tive, and produces biased contours in the vicinity of loca-
tions where actual edges form acute angles are present.
Fig. 11 shows the LoG operator applied to the image in
Fig. 10(a). Note that this filter is rotationally invariant.

Another widely used method for edge detection is the
Canny edge detector. It belongs to a family of optimally
designed operators based on the detection of extrema in
the output of the convolution of the image with an impulse
response (the operator). Other edge detectors in this family
include the Deriche detector and the Spaceck detector [22].

In this method, a model of the kind of edges to be de-
tected is defined first. Consider for the sake of simplicity
the 1-D case,

e(x) = AU(x)η(x)

where U(x) is the unit step function and η(x) is white Gaus-
sian noise. Then, several criteria that must be satisfied by
the operator are derived, such as robustness to noise, good
localization, and uniqueness of response.

The output of our operator on an ideal edge would be

Iedge(x) = e(x) ∗ h(x)

Iedge(x) = A

∫ x

−∞
h(x)dα +

∫ ∞

−∞
η(x − α)h(x)dα

8 Object Recognition

Figure 10. Feature extraction with a steered Gaussian filter.

Figure 11. Edge detection using the LoG and Canny operators.

and the idea is to maximize Iedge at x = 0, satisfying the
following criteria: the robustness-to-noise criterion

	(h) = −∞ ∫
h(x)dx√

−∞ ∫
h2(x)dx

the good-localization criterion

	(h) =
∫ 0

−∞ h(x)dx√∫ 0
−∞ h2(x)dx

and the uniqueness-of-response criterion

xmax = 2π

√√√√
∫ 0

−∞ h′2(x)dx∫ 0
−∞ h′′2(x)dx

(For a detailed derivation of these criteria expressions see
[22]). Using calculus of variations we can simultaneously
find the extrema of 	(h),
(h) and xmax by solving the con-
strained optimization problem

min
∫ 0

−∞
h2(x)dx

Object Recognition 9

subject to
∫ 0

−∞
h(x)dx = c1,

∫ 0

−∞
h′2(x)dx = c2,

∫ 0

−∞
h′′2(x)dx = c3.

In Canny’s derivation, these criteria are satisfied with
the extra constraint that xmax = kW, which states that
the average maximum distance between two local maxima
has to be some fraction of the spatial extent of the opera-
tor. By the method of Lagrange multipliers, we can make
δC(h)/δh = 0, where

C(h) =
∫ 0

−W

[h2(x) + λ1h(x) + λ2h
′2(x) + λ3h

′′2(x)]dx.

That leads to the Euler-Lagrange equation

2h(x) + λ1 − 2λ2h′′(x) + 2λ3h
(4)(x) = 0

The solution to this differential equation gives the optimal
one-dimensional operator

h(x) = e−αx(a1sin ωx + α2cos ωx) + eαx(α3sin ωx + α4cos ωx) − λ1

2

with conditions on α and ω : α2 − ω2 = λ1/λ2 and 4a2ω2 =
(4λ3 − λ2

2)/4λ2
3.

Closed expressions can be computed for α1, α2, α3, and α4

as functions of α, ω, c3, and λ1, resulting in h(x) parameter-
ized in terms of α, ω, c3, and λ1. The problem of finding the
optimal operator has been reduced from an optimization
problem in an infinite-dimensional space (the space of ad-
missible functions h) to a nonlinear optimization problem
with variables α, ω, c3, and λ1. These values are obtained
using constrained numerical optimization methods. The
optimal operator h(x) computed in this manner resembles
the first derivative of a Gaussian h(x) = −(x/σ2)e(−x2/2σ2)

Fig. 11(c) shows the result of using the Canny edge de-
tector.

Another popular edge detector that we will not discuss
in detail is the Heitger detector [35]. It uses oriented energy
maps, yielding good continuity of features near junctions
and precise estimation of gradient orientation.

The complexity of the discrete two dimensional convo-
lution central to the edge detection techniques described
so far can be reduced from quadratic time, to θ(nlogn) by
using a fast Fourier transform [36]. Lately however, an-
other type of filters that can be computed in constant time
has gained popularity for real-time applications. Such fil-
ters come from the Haar wavelets, which are a set of ba-
sis functions that encode differences in intensities between
adjacent image regions. The more simple Haar filters are
shown in Fig. 12, and could in a sense be seen as extended
Prewitt differential operators. These filters are commonly
used to represent objects via the Haar wavelet decomposi-
tion. Based on the fact that the response to image convolu-
tion with Haar filters vaguely approximates their first or-
der Gaussian derivatives counterpart, many object recog-
nition systems have made the swap from the former to the
latter, with the great benefit of computational cost reduc-
tion [37, 38]. By using Haar filters one can compute feature
or interest point detection in real time, as well as to com-
pute local orientation values. In [39] for example, they are

used in pedestrian and face detections tasks. Their fast
computation is achieved using an integral image [40].

An integral image is a representation of the image that
allows a fast computation of features because it does not
work directly with the original image intensities but over
an incrementally built image that adds feature values
along rows and columns. Once computed this image rep-
resentation, any one of the Haar features can be computed
in constant time independently of its location and scale.

In its most simple form, the value of the integral im-
age ii at coordinates u,v contains the sum of pixels values
above and to the left of u,v, inclusive. Then, it is possible
to compute for example, the sum of intensity values in a
rectangular region simply by adding and subtracting the
cumulative intensities at its four corners in the integral
image. Furthermore, the integral image can be computed
iteratively using the previous pixels values,

ii(u, v) = i(u, v) + ii(u − 1, v) + ii(u, v − 1) − ii(u − 1, v − 1)

Most edge detection operators produce edges that are
not connected. Before any higher-level scene interpreta-
tion modules can be brought to bear on an image, it is
often necessary to repair broken edges if such breakages
were caused by noise and other artifacts. Edge repair can
sometimes be carried out by expanding and shrinking the
detected edges in such a way that any connection made
during expansion is not lost during the shrinking opera-
tion. In a binary image, two pixels are connected if there is
a path of neighboring pixels linking them [41, 42]. They are
4-connected if the path can be followed by traversing along
the u and v directions only. An 8-connected path is obtained
by traversing along the u and v directions as well as in di-
agonal directions. All pixels connected to a given pixel p in
a set S of 1’s form a connected component of S. If S has only
one component then S is simply connected, otherwise it is
multiply connected. The border S’ of a set S is made up of
those pixels of S for which at least one neighbor is in its
complement s. The i-th iteration of an expansion is given
by S(i) = S′(i−1) ∪ S′(i−1), and the i-th shrinking iteration is

given by S(i) = S(i−1) ∼ S′(i−1) = S
(i−1)

∪ S′(i−1) = S(i−1)S
′(i−1)

.
Other operations that may be performed on binary im-

ages include border following, thinning, and labeling [42].
Border following can be implemented using crack or chain
coding schemes. This is, following the border of the ele-
ments in S using 4-connectivity or 8-connectivity. Thinning
is similar to shrinking with the exception that the end-
points of the elements in S should not be deleted from the
image. In Fig. 1(c) for example, the edges detected using
Sobel operators are thinned to form one-pixel wide edges.
Labeling consists on assigning an entry in a database to
every separately connected component of S.

A powerful and frequently used approach for grouping
together the edge elements that form straight lines in an
image is based on the concept of Hough transformation [43]
that, in its more common implementation, maps a straight
line in an image into a single point in (d, θ) space, d and
θ being the two invariant parameters in the polar coordi-
nate representation of a line. The (d, θ) space is also known
as the Hough space. A generalization of this approach can
also be used for grouping together the detected fragments

10 Object Recognition

Figure 12. Haar filters

Figure 13. The Hough transform maps straight lines in the image space into single points in the (d, θ) space. It can be used to group
together unconnected straight line segments produced by an edge operator.

of smooth curves [44]. For Hough transform based extrac-
tion of straight lines, the distance of each edge pixel from
the origin is computed by using r = √

u2 + v2, and the ori-
entation by φ = tan−1(v/u). See Fig. 13. The edge orien-
tation angle θ is obtained from the output of a Sobel or
LoG operator, and the perpendicular distance from the im-
age origin to the edge with point (u,v) and orientation θ

is d = r sin (θ − φ). Once d and θ are computed, the corre-
sponding cell in the Hough space is incremented. After pro-
cessing the entire image, the lines corresponding to the
cells with the highest number of hits are redrawn on top
of the original image. Then, a raster scan is performed on
the entire image to find the points near this line. This idea
can be extended to extract curves from the output of an
edge detector. Instead of using the parametric equation of
a line d = r sin (θ − φ), the generalized parametric equation
for the desired curve must be used to define the Hough
space, i.e., for circles (u − u0)2 + (v − v0)2 = c2 defines a 3-
D voting array with perpendicular directions u0, v0, and c.
If the output of the edge detector is not a binary image,
the update values for the cells on the Hough space may be
weighted with the intensity of the pixel being analyzed.

Another approach to boundary localization includes the
use of active contours, namely snakes [45]. The classical
snakes approach is based on deforming an initial contour
curve toward the boundary of the object to be detected.
The deformation is obtained by minimizing an energy func-
tion designed such that a local minimum is obtained at the
boundary of the object. This energy function usually in-
volves two terms, one controlling the smoothness and con-
tinuity of the contour curve and the other attracting it to
the object boundary. The idea of active contours can also be
extended to 3-D object recognition by using 3-D deformable
surfaces [46]. In this case, instead of tracking the boundary
of an object in a 2-D image, the surface representation of
the object is computed using 3-D information, such as that
obtained from a structured-light sensor.

The idea behind edge detection, or any other low-level
process, is to prepare the image so that specific image com-
ponents can be clustered. The clustering of image compo-
nents into higher level organizations such as contours, each
from a single object, is known as grouping or perceptual
organization [47, 48]. A grouping process can improve the
search for an object in a recognition system by collecting

Object Recognition 11

together features that are more likely to come from the
object rather than from a random collection of features.
Most model-based recognition systems exploit such simple
grouping techniques.

Interest Points

Another possibility is to represent objects with interest
points rather than edges, with the advantage that occlu-
sions and cluttered scenes can be dealt with. Moreover, if
such interest points are affine invariant, then disparate
views of the same object can be handled more easily. Inter-
est points are usually located at distinctive locations in
images where image intensities vary two-dimensionally,
such as at blobs, T-junctions, Y-junctions, and corners in
general. The most popular of these is the Harris corner
detector [49], an improvement over the Moravec corner de-
tector [50], that analyses the eigenvalues of the local image
autocorrelation matrix

M = [I2
u IuIv

IuIv I2
v

]

where Iu and Iv are the partial derivatives of I computed
by convolution of the image with the Gaussian derivatives
∂G/∂u and ∂G/∂v, respectively, and centered at pixel coordi-
nates u, v. If the two eigenvalues of M are large an interest
point is detected, and with only one large eigenvalue an
edge is detected. There is no need however to explicitly
compute such eigenvalues. Instead, the value of the Harris
corner detector at (u,v) is given by

IHarris(u, v) = det M − ktrace2
M

The parameter k is adjusted empirically, frequently in the
range 0.04–0.15.

Another interest point detector, the Beaudet detector
[51] is computed from the determinant of the Hessian ma-
trix

H = [Iuu Iuv

Iuv Ivv

]

IBeaudet = det

and, as previously discussed for edges, it is possible to use
Haar filter-based approximations of the second order par-
tial Gaussian derivatives [37] in order to reduce its com-
putational cost. The result is the Speed Up Robust Feature
(SURF) detector [38].

Another well known corner detector is given at the max-
ima of the same LoG filter discussed for edges in the pre-
vious section. Interestingly enough, the LoG is equivalent
to the trace of the Hessian

ILoG(u, v) = trace H

Fig. 14 shows the response of the Harris, Beaudet, and
LoG cornerness measures when applied to the object image
from Fig. 10(a).

Unfortunately, the tracking from one frame to the next
of the geometrical features that respond to these operators
might still be hard to attain. Affine deformations caused
by the change in viewpoint, or by the variation of the re-
flectance conditions contribute to such difficulty. With that
in mind,Shi andTomasi formulated an image feature selec-
tion algorithm optimal by construction from the equations

of affine motion [52].
Starting from the assumption that a feature in an ob-

ject will have similar intensity values on two consecutive
images I and J, the affine motion (D, d) of a window of pix-
els around such featurem = (u, v)	 from the first image to
the second can be represented with

I(Dm+ d) ≈ j(m)

and with the simplification that for small displacements
the affine transformation can be modeled by the identity
matrix, a Taylor series approximation of the image inten-
sity change is given by the expression I(m) + ∇ 	 I(m)d.
We can then formulate a measure of dissimilarity for a
tracked feature in the two image frames simply as the sum
of squared differences

ε = (I(m) + ∇ 	 I(m)d − J(m))2

Differentiating with respect to the displacement d, and set-
ting the result equal to zero yields the system

(I(m) − J(m))∇I(m) = [I2
u IuIv

IuIv I2
v

](m)d

indicating that a feature centered at m can be tracked re-
liably when the above system is well conditioned. We end
up choosing as features the points in the image for which
the square of the gradient

[I2
u IuIv

IuIv I2
v

]

has both eigenvalues larger than a given threshold. The
chosen points will be located near corners, in highly tex-
tured regions, or in any other pattern that can be tracked
reliably.

As such, the feature detectors just described, from the
Harris detector to the Shi detector, are not scale invari-
ant. To accommodate for changes in scale, interest points
must be localized both in spatial image coordinates (u,v), as
well as in scale σ, and the characteristic or relevant scale
for each interest point must be taken into account when
building a multi-scale object descriptor.

To search an image for the most relevant features along
different scales, a 3-dimensional image must first be con-
structed by iteratively convolving the original image with
Gaussian filters of increasing scale. Take for example the
extrema of the LoG [53]. In that case, the LoG must be first
scale-normalized so that the response of the filter at dif-
ferent scales can be compared. The scale-normalized LoG
filter is given by

�G = σ2(
∂2G

∂u2
+ ∂2G

∂v2
)

As with the LoG, the determinant of the Hessian and the
squared of the gradient interest point detectors can also
be scale-normalized [53]. Another operator that takes into
account variations of scale is the Difference of Gaussians
(DoG) operator [54]. The DoG operator is an approximation
to the LoG filter, with the advantage of reducing the com-
putational cost. It is computed by the weighted difference
of two consecutive smoothed images.

DoG(u, v, σ) = (G(u, v, kσ) − G(u, v, σ)) ∗ I(u, v)

12 Object Recognition

Figure 14. Interest point detectors: (a) Harris, (b) Beaudet, and (c) LoG maxima

In a comparison of the aforementioned scale-normalized
filters [55] the LoG outperformed the other operators in
terms of amount of interest points detected and correct
scale correspondence, with the advantage that it guaran-
tees a single maximum in the scale trace. The DoG filter
achieved similar results as the LoG given that it is an ap-
proximation of the former, but at a reduced computational
cost [56].

The image of an object observed from different view-
points is said to suffer a perspective transformation. Per-
spective transformations are difficult to deal with due to
their intrinsic nonlinearities, but can be approximated as
affine transformations when the camera motion is small,
or if the object is located sufficiently away from the camera;
and can even be exactly computed for the case of planar ob-
jects. In this sense, some researchers have developed lately
interest point detectors invariant to affine transformations
[57–60].

The affine invariant interest point detector reported in
[57] builds up from the Harris detector and iterates over
scale, position, and shape on the neighborhood of a point
until it converges to an affine invariant interest point. In
their approach, a second order moment matrix (image au-
tocorrelation) is used to normalize the image point neigh-
borhood.

Once a set of interest points have been localized both in
spatial image coordinates (u,v) and scale (σ), a descriptor
must be computed for each of them from their neighbor-
hood appearance. There exist a mirage of descriptors in the
literature for object recognition;and vary from moments in-
variants [61], to differential descriptors such as the steer-
able filters [32], differential invariants [62], and even dis-
tribution descriptors such as the popular SIFT [56]. This
last one has demonstrated to outperform other descriptors

in terms of correct detection rate over sets of images under
widely varying viewing conditions [63].

The SIFT descriptor uses 3D local histograms made up
of location and gradient orientations. For each point neigh-
borhood the gradient image is sampled over a 4×4 grid of
locations, and its discrete gradient orientation at 8 differ-
ent orientations is computed. The resulting descriptor is of
dimension 128. In order to deal with illumination changes,
the description vector is normalized with and Euclidean
norm. The SIFT uses the DoG to compute the appropri-
ate scale for each interest point. Fig. 15 shows the type of
features that can be extracted when this interest feature
operator is used.

Low Level Processing for Structured Light Projection
Systems

The 3-D point coordinates obtained from a structured-light
system are generally stored in a matrix whose columns cor-
respond to the light stripes used to illuminate the scene
and whose rows correspond to horizontal scan lines of the
camera used to capture stripe images. For the light stripe
indexed i and the camera scan line indexed j, one ends up
with three numbers, xi,j , yi,j , and zi,j , that represent the
world coordinates of the illuminated point and, if desired,
three additional numbers, Ri,j , Gi,j , Bi,j , that represent the
RGB color coordinates of the white light reflected by the ob-
ject point. One is not limited, of course, to using the RGB
color space, since it is trivial to transform the color coordi-
nates into any other desired representation. Computed for
all i and j, the numbers xi,j , yi,j and zi,j constitute a range
map of the scene. An example of a range map obtained us-
ing structured-light imaging is shown in Fig. 5(b). In what

Object Recognition 13

Figure 15. SIFT features

follows, we will use the vector pi,j to denote

pi, j = [xi, j, yi, j, zi, j]
	

After a range map is recorded, the next step is the ex-
traction of analytically continuous surfaces from the scene.
In other words, we want to be able to group together object
points into planar, cylindrical, conical, and other surfaces
that can be described by relatively simple analytical forms.
A necessary first step to such grouping is the computation
of the local surface normals from a range map. Theoreti-
cally at least, the local surface normal at a point pi,j in a
range map can be computed from

n̂ =
∂p
∂i

× ∂p
∂ j

| ∂p
∂i

× ∂p
∂ j

|

but unfortunately this approach does not work in prac-
tice because of the noise-enhancing properties of the
derivatives. What works very effectively is an approach
that is based on assuming that an object surface is locally
planar in the vicinity of each measurement. This local sur-
face can be given the following algebraic description:

pi, j · n̂ = d

at point (i,j) in the range map. Consider now a small
squared window Wi,j , usually 5×5 or 7×7, around a point
(i,j). The error between a fitted planar patch and the mea-
sured range map values within this window is given by

ε = k, lεWi, j

∑
(p	

k,ln̂− d)2

This error can be re expressed in the following form

ε=n̂	 Q (︸︷︷︸ k, lεWi, j

∑
pk, lp	

k,l)n̂−2dq 	 (︸︷︷︸ k, lεWi, j

∑
p	

k,l)n̂+ N2d2

We evidently must choose the value for the normal that
minimizes the error. This optimum value for n̂ is computed
by setting equal to zero the partial derivatives of the fol-
lowing Lagrangian

l(n̂, d, λ) = ε + λ(1 − n̂	 n̂)

We get

∂l

∂n̂
= 2Qn̂− 2dq − 2λn̂ = 0

∂l

∂d
= −2q 	 n̂− 2N2d = 0

∂l

∂λ
= 1 − n̂	 n̂ = 0

Substituting the second of these equations in the first,
we end up with the following

Qn̂− qq
	 n̂

N2
− λn̂ = 0

or, equivalently,

Rn̂ = λn̂

where R is given by

R = Q− qq
	

N2

The solution to Rn̂ = λn̂ is obviously an eigenvector of
the 3 × 3 matrix R, and we choose that solution which cor-
responds to the smallest eigenvalue, for the simple reason
that it can be shown trivially by substitution that the error
ε becomes equal to the eigenvalue when we use the corre-
sponding eigenvector of R for the surface normal. Shown in
Fig. 16(a) is the needle diagram of a range map showing the
surface normals computed for an object. The orientation of
each needle is a projection of the local surface normal on a
display plane.

Used without any further modification, the above ap-
proach will still fail to give acceptable results if the win-
dow Wi,j straddles the boundary between two smooth sur-
faces or includes a jump edge. Such distortions can be
virtually eliminated by adaptive placement of the win-
dows in the vicinity of edges. For every point pi,j the win-
dow Wi,j , is composed of the neighboring points pk,l , with
i − N/2 ≤ k ≤ i − N/2, and j − N/2 ≤ l ≤ j − N/2. As men-
tioned earlier, at each of these points we should have a

14 Object Recognition

normal n̂k,l, and a fitting error εk,l. The idea behind adap-
tive windowing is a reassignment of the computed normals
to each point pi, j, the reassigned normal being chosen from
among the neighboring normals on the basis of the small-
est product wi, j,k,lεk,l. The weight wi, j,k,l can be selected as
the inverse of the city block distance between the points
pi,j and pk,l .

wi, j,k,l = 1
c + |i − k| + | j − l|

The constant c is chosen such that the distance weight-
ing will be the dominant factor in wi, j,k,lεk,l. Fig. 16(b) shows
the needle diagram of the same range map with adaptive
placement of the Wi,j windows.

After the local surface normals are computed in the
manner presented above, one must segment the range map
in such a way that each segment represents a smooth sur-
face. Such surfaces are bounded by crease edges where sur-
face normal discontinuities occur, or by jump edges where
neighboring points in the range image correspond to dis-
tant points in the scene. Smooth surface segments are re-
cursively generated by starting at any point in a range map
and growing outwards while meeting the following two cri-
teria for the neighboring points pi,j and pk,l .

‖pi, j − pk,l‖ > jump edge threshold

cos −1(n̂	
i, jn̂k,l)

‖pi, j − pk,l‖ > curvature threshold

The two thresholds are determined empirically for a given
class of objects.

The next step in low-level processing consists in classify-
ing each smooth segment of a range map on the basis of its
analytic properties. For most industrial objects, this clas-
sification is into planar, conical, or cylindrical; a category
called “other” can also be included if desired. This classifi-
cation is easily done by computing the extended Gaussian
image (EGI) of a surface [64]. The EGI of an object surface
is obtained by mapping the surface normal at every point
onto a sphere of unit radius on the basis of identity of sur-
face normals. In other words, a point pi,j is mapped to that
point of the unit sphere where the outward normal is the
same as the one computed at pi,j . The unit sphere is also
known as the Gaussian sphere. As shown in Fig. 17, the
EGI image of a planar surface is a small patch whose ori-
entation on the Gaussian sphere corresponds to the normal
to the plane. For a conical surface, the EGI is a minor circle
with its axis parallel to the axis of the conical surface; and
for a cylindrical surface, the EGI is a great circle whose
axis is again parallel to the axis of the cylinder. The dis-
tance from the center of the sphere to the plane containing
the circle in each case is d = sin θ, whereas the radius of the
circle is r = cos θ, θ being the cone angle. Therefore, in order

Object Recognition 15

to declare a surface type as planar, conical, or cylindrical, a
plane must be fitted to the EGI points. The equation for the
best-fitting plane is n̂	 â = d. This problem is identical to
that of fitting a planar patch to the neighboring points on a
range image point, and reduces to computing the eigenvec-
tor corresponding to the smallest eigenvalue of the matrix

R =
N∑

i=1

n̂in̂
	
i −

∑N

i=1 n̂i

∑N

i=1 n̂
	
i

N2

in the equation Râ = λâ, where N is the number of points
on the segmented surface, n̂i are the previously computed
normals at each point, and the computed eigenvector â is
the axis orientation of the detected surface. The distance
d = â	 ∑N

i=1 n̂i/N is used to characterize the surface type.
For a plane d ≈ 1, for a cone 0 < d < 1, and for a cylinder
d ≈ 0. Fig. 5(c) shows a segmented range map. In this exam-
ple, segments 10, 11, 26, 27, and 43 were characterized as
conical surfaces, whereas the rest of the segments detected
were classified as planar surfaces.

OBJECT REPRESENTATION

Object Representation for Appearance-Based Recognition

The data structures used to represent object models and
the data acquired from an image or a range sensor de-
pend on the method used for recognition. In appearance-
based recognition, an instance of an object and its pose
is computed without first determining the correspondence
between individual features of the model and the data
[27,65–67]. A vector of global parameters is computed from
the sensory data, and it is compared with similar vectors
previously obtained during a training session, looking for
the best-matching model. If the primary goal is object iden-
tification, the vectors computed during the training session
correspond to different objects. On the other hand, if the
main concern is object pose computation, then each vec-
tor computed during the training session corresponds to
different views of the same object, provided the object has
already been identified.

There exist several ways to construct these global pa-
rameter vectors. They can be based on simple geometric
attributes such as area, perimeter, elongation, or moments
of inertia, or on spatial frequency descriptions such as the
discrete cosine transform, Fourier descriptors,wavelets, or
eigenimages. When object identification is of primary con-
cern, the attributes selected must be invariant to changes
in the object’s pose.When the task requires object pose com-
putation, the parameters used should diverge for different
views of the same object.

The selection of image attributes for image parametriza-
tion in object recognition is also termed parametric ap-
pearance matching [65]. For 3-D object recognition, the
appearance of an object depends on its shape, reflectance
properties, pose in the scene, and illumination conditions.
When the illumination conditions are the same for differ-
ent scenes, the shape and reflectance for a rigid object can
be considered as intrinsic properties. An appearance-based
object recognition system must learn the objects for iden-

tification. To learn an object, the system is presented with
multiple views of the same object at different orientations.
The result is a large set of images for the same object
with high correlation among them. To ease the search for
the corresponding object class for a given image, the large
set of training images is usually compressed into a low-
dimensional representation of object appearance.

One method for image compression, known as princi-
pal components analysis, is based on the Karhunen-Loéve
transform. In this method, all images are projected to an
orthogonal space, and then they are reconstructed by using
only their principal components. Consider every image to
be a random vector x with dimensionality N = uv, where u
and v are the image width and height in pixels respectively.
All the images for the same object are expected to be highly
correlated, and to lie in a cluster in this N-dimensional
space. In order to reduce the dimensionality of the space
all the training images are projected onto a smaller space
minimizing the mean squared error between the images
and their projections. The center of the cluster of n images
for the same object with varying pose is the point

x̂ = 1
n

n∑
i=1

xi

and the unbiased sample covariance matrix is given by

	 = 1
n − 1

i = 1
∑

(xi − x̂)(xi − x̂)	

The projection of each image onto a space of dimension-
ality M < N can be computed by

yi = [

φ	
1

φ	
2

...
φ	

M

](xi − x̂)

where the vectors φ1, φ2, . . . , φM from an M-dimensional ba-
sis for the new space with origin at x̂. The basis vectors φi

are orthonormal. This is, they are linearly independent,
have unit length, and completely span IRM. The optimum
choice for the φi are those that satisfy 	φi = λiφi, that is, the
eigenvectors that correspond to the M largest eigenvalues
of 	. Fig. 18 shows a 2-D example of the Karhunen-Loéve
transform. The eigenvector φ1 is the principal component
of the data set, and the projections yi on φ1 minimize the
error between the data points xi and their projections.

Though a large number of eigenvectors may be required
for an accurate reconstruction of an image, a few are gener-
ally sufficient to capture the significant appearance char-
acteristics of an object. The space spanned by φ1, φ2, . . . , φM

is also commonly referred as the eigenspace. If two images
are projected into the eigenspace, the distance between the
corresponding points in the eigenspace is a good measure
of the correlation between the images.

When the goal is to discern among different objects,
images of all objects are used together to construct the
eigenspace during the training phase. Several images of
each object with varying pose and illumination conditions
are projected to the eigenspace to obtain a set of points. The
set of points for each object is expected to be clustered to-
gether representing that object class. Then, an image of the

16 Object Recognition

Figure 17. The extended Gaussian image is used to identify the shape of a segment extracted from a range map. The orientations of the
normals at different points in a segment obey different analytic properties for different surface types.

Figure 18. A 2-D example of the Karhunen-Loéve transform. The projections yi into the reduced space spanned by φ1 minimize the error
between the data points, xi and their projections.

object to be recognized is also projected to the eigenspace,
and is classified as belonging to the closest cluster class it
maps to. To estimate the orientation of an object once it
has been identified, the same scene image is mapped to an
eigenspace made of only the training samples for that ob-
ject. A manifold is constructed by interpolating these train-
ing points using a curve that is parametrized by pose, scale,
or illumination. The closest point in the manifold obtained
provides an estimate of the pose and illumination condi-
tions of the object [65].

In a noncorrespondence based recognition system, ob-
ject representation is appearance-based. That is, instead of
identifying local object features in the sensed data, global
parameters are computed from the whole image. For this
reason, most appearance-based recognition systems devel-
oped to date require that the variations in scene illumi-
nation be small and that the objects not be occluded. Al-
though the nonocclusion and illumination constraints can
be met for a wide range of vision applications, the more
general case is still a difficult problem. An example ap-
plication for the recognition of faces where occlusions are
accounted for with the use of hidden Markov models is pre-
sented in Ref. [68]. The advantage of the appearance-based
method is that it is not necessary to define a representa-
tion or a model for a particular class of objects, since the
class is implicitly defined by the selection of the training

set. On the other hand, model-based recognition systems
can be designed to deal with situations where cluttered
scenes and changes in illumination are present. The latest
approaches to the solution of the object recognition prob-
lem consider the integration of both model-based methods
and appearance-based analysis.

Object Representation for Model-Based Recognition

Three central issues arise when trying to achieve object
recognition using a model-based approach: (i) the features
used to describe an object should be such that they can
be extracted from an image; (ii) it should be possible to
aggregate the features into object models appropriate for
recognizing all objects in a given class; and (iii) the corre-
spondence or matching between image features and model
features should permit recognition of objects in a complex
scene [2]. Consider for example the case of 3-D object recog-
nition from 3-D data when objects are in bins of the sort
shown in Fig. 5. Each of these objects can be given a ge-
ometrical representation whose fundamental constituents
are surfaces, edges, and vertices. Such a representation can
drive a model-based computer vision system, because, as
described earlier, it is possible to extract such geometric
features from range maps. Of course, the geometrical fea-
tures themselves need a representation, the common one
being via what are known as attribute-value pairs.

Object Recognition 17

Consider for example the object shown in Fig. 19(a)
whose wire-frame representation is shown in Fig. 19(b, c).
The surface F of this object can be represented by the fol-
lowing set of attribute-value pairs:

Shape: planar
Area: 4516.1 mm2

Color: white
Normal axis orientation: (0,0,1)
Adjacent surfaces: {E, G, J, K}
Angles with adjacent surfaces: {−90◦, 90◦, 90◦, 90◦}

Similarly, the edge l feature in Fig. 19(b) can be repre-
sented by

Shape: line
Length: (l) 88.9 mm
Type: convex
Delimiting vertices: {3,10}
Delimiting surfaces: {B, E}
Orientation: (0.643, −0.766,0)

and the vertex feature 10 by

Location: (165.1 mm, 101.6 mm, 57.15 mm)
Adjacent vertices: {3,9,11}
Outgoing edges {l, r, s}
Surrounding surfaces: {B, E, K}

In general, for geometry-based model descriptions,a fea-
ture can be any simple geometric entity such as a vertex, an
edge, or a surface. In these model representations, surfaces
whose algebraic descriptions are up to the second order are
easy to represent. For example, in Fig. 19(b), the surface C
is a truncated conical surface that would be represented by
the following data structure:

Shape: conical
Area: 6964.0 mm2

Color: white
Normal axis orientation: (−0.494,−0.588,0.640)
Top radius: 19.05 mm
Base radius: 31.75 mm
Height: 50.8 mm
Adjacent surfaces: {B, D}

Once we have settled on what features to use to describe
an object, we need to address the second issue raised at the
beginning of this section, viz., how to aggregate the fea-
tures into object models. We evidently need to embed the
features in some structure that will also capture the spa-
tial relations between the features. The most fundamental
data structure that computer science makes available to
us for representing relational information is an attribute
graph. The nodes of such a graph can represent each of
the features we have discussed, and the edges represent
adjacency or any other relationship between the features.

For example, Fig. 20 shows a simple attribute graph for
the three-dimensional object from Fig. 19. In this object
model representation the nodes in the graph correspond to
the object surfaces, and the edges indicate the adjacency at-
tribute. The number associated with an edge in the graph
is related to the length of the edge connecting the two sur-
faces in the object model.

To construct an object model, we need to learn the
attribute-value pairs for each feature in the object. In an
industrial setting, these values would often be available
in the CAD files coming from the design department; but
if such information is not at one’s disposal, a user-guided
learning system that extracts these values from training
samples can be used. In the MULTI-HASH system [13], for
example, an interactive learning process is used to com-
pute the attribute values from training samples. The user
presents to the system each object that the system is ex-
pected to recognize in many different poses (this can be
done easily by placing objects in a sandbox) and, with the
help of a pointing device, establishes correspondences be-
tween the features on a model object and the features ex-
tracted from sensed data. In this manner, the system auto-
matically determines what attribute values to use for de-
scribing the different features on a model object. An advan-
tage of such learning systems is that they take into account
the measurement noise that is always present in the data.
The learning session used to construct a model base of the
objects to be recognized usually takes place off line.

Measurement of Attribute Values from Scene Data

As was mentioned before, the first step in actual model-
based object recognition is the segmentation of sensory
data and then the extraction of attribute values for each
of the segments. Subsequently, one can try to establish a
correspondence between the segmented features thus ob-
tained and the features in an object model.

Attributes that are measured using sensory data
should, under ideal circumstances, be invariant to rotation,
translation, scale, ambient illumination, background clut-
ter, and so on. If a range sensor is used, the very nature of
the data generated guarantees many of these invariances,
provided a sufficient number of data points are collected
for a given feature. With such a sensor, the area of a planar
surface will be the same, as long as the surface is entirely
visible and discounting the effect of highly oblique angles
between the surface normal and the line of sight to the sen-
sor. By the same token, the radius of curvature estimated
for a cylindrical surface will be the same regardless of the
viewpoint angle from the sensor to the surface. But, at the
same time, one has to bear in mind that even with 3-D
sensors, occlusion may cause large variations in attribute
values as the viewpoint angle between the sensor and the
surface is changed. In Ref. [13], the susceptibility of some
attribute values to occlusion is taken care of in the design
of matching criteria between model attribute values and
scene attribute values. For example, for an attribute value
such as the area of a surface, we can only demand that the
area extracted from a surface in the scene be less than the
area of the corresponding surface in the object model.

18 Object Recognition

Figure 19. The geometrical representation of a typical 3-D object consists of features such as surfaces, edges and vertices, and for each
feature of a set of attribute-value pairs.

Figure 20. The nodes represent the object features, in this case the object surfaces; and the arcs indicate the adjacency between surfaces.
The number on each arc is related in the following manner to the length of the physical edge joining the two surfaces in the object model:
(1) 12.7 mm, (2) 38.1 mm, (3) 50.8 mm, (4) 88.9 mm, (5) 99.2 mm, (6) 114.3 mm, (7) 119.7 mm, and (8) 199.5 mm.

Lack of invariance in attribute values poses a bigger
problem for recognizing 3-D objects in 2-D images. Basi-
cally all geometrical attributes, such as perimeter and area,
vary with the scale, translation, rotation, and ambient illu-
mination in 2-D images, not to mention that it is extremely
difficult to carry out an automatic segmentation of the im-
ages to establish a relationship between the features in an
object model and the segments extracted from the image.

These problems are fortunately not as daunting for rec-
ognizing 2-D planar objects in 2-D images. Some of the
attributes that can be measured after segmentation in 2-D
images include the perimeter and the moments of area of

a segment. The perimeter of a segment can be computed
by following the crack code or the chain code of the seg-
ment boundary representation, and the moments of area
of a segment can be defined as summations over all the
pixels in a segment along the u and v directions. The pq
moment for a segment � in an image is given by

mpq = uε�
∑

vε�
∑

upvqI(u, v)

where I(u, v) is the normalized gray-level intensity in the
image and can be set to 1 for binary images. The zeroth mo-
ment m00 gives the area of a segment. The center of the seg-

Object Recognition 19

ment can be computed by [u, v]	 = [m10/m00, m01/m00]	 .
Moreover, the central moment given by

µpq = uε�
∑

vε�
∑

(u − u)p(v − v)qI(u, v)

is invariant to translations, and ηpq = µpq/µ
γ

00, where γ =
(p + q)/2 + 1, is scale invariant.

Other attributes that can be computed on features ex-
tracted from 2-D images are the segment bounding rect-
angle, the rectangularity FR , the circularity FC , and the
radius R:

FR = A�

ABR

FC = P2
�

4πA�

R = maxu, vε�
√

(u − u)2 + (v − v)2

minu, vε�
√

(u − u)2 + (v − v)2

where A� is the area of the segment, ABR is the area of
the bounding rectangle, and P� the perimeter of the seg-
ment. An entry with the minimum and maximum u and v
coordinates of the bounding rectangle can be included in
the list of attributes for any given segment. The center of
the bounding rectangle is a useful descriptor of segment
position.

Inclusion relationships can also provide significant in-
formation for identifying a particular feature within an ob-
ject model. When the features are planar segments in 2-D
images, each segment descriptor will have a “parent” field
that points to the surrounding segment. Additional links
can be assigned for “child” and “sibling” segments. Ulti-
mately, the background segment will be at the root node
for all segments in an inclusion description tree. As long as
the number of segments in a scene is not too large, these in-
clusion relationships can be obtained by searching through
this tree. The number of “holes” present in a segment is
termed the genus, and is equivalent to the number of “chil-
dren” for a given segment in the inclusion description tree.

Automatic Learning

In many cases it is quite difficult, often impossible, to come
up with a user-engineered set of relevant features to de-
scribe and object robustly. It is possible nonetheless, to
train a learning system with multiple views of the object to
be recognized to automatically choose the most distinctive
features by itself. In such case, the problem is considered as
that of finding a robust classifier from training instances
of object and non-object classes. To this end, one can resort
to conventional pattern recognition methodologies such as
Support Vector Machines [69, 70] or Neural Networks [71].
One technique that has proved effective both in terms of
rate of classification and computational cost, for difficult
tasks such as face identification from images, is the use of
weighted linear classifiers (boosting) [40,9].

The idea behind boosting is that the chaining of weak
classifiers, each with guaranteed at least 50% classification
success rate, can lead to a very strong classifier. In general
a weak classifier can represent the presence in the object

class of any given object feature such as an edge or even a
homogeneous region. These features must be easy to com-
pute, as they must be tested over all possible scales and
locations, and over all input images, and its rate of classifi-
cation succes be computed. Once training is completed, the
algorithm evaluates the trained classifier over a sample
image, usually at real-time. The AdaBoost algorithm [72]
for example, builds a strong classifier H from the weighted
linear combination of weak classifiers h

H = 	αihi

The algorithm iterates, extracting on each round the
weak classifier hi which better separates the training sam-
ples with respect to the misclassification error. At each iter-
ation, the algorithm re-weights more heavily those samples
that have not been properly classified, with the hope that
the next chosen classifier will be able to do so. The classi-
fication error ei is computed at each round as the sum of
the weights for the misclassified samples, and the classi-
fication power αi is assigned according to the error value
over the training set

αi = 1
2

ln(
1 − ei

ei

)

A nice extension to the AdaBoost methodology for the
detection of moving objects on temporal sequences is to
embed not only spatial features, but temporal ones as well
[73].

MODEL HYPOTHESIS GENERATION AND MODEL
MATCHING

Appearance-Based Matching

As mentioned before, for appearance-based object recog-
nition [66,67,27,65], the object models will correspond
to topological structures in a multidimensional attribute
space. Several training images of the same object with
small viewpoint variations will usually map to differ-
ent points in the attribute space, forming a manifold
parametrized by pose. Different objects will correspond to
different manifolds. The image obtained from the scene to
be analyzed must be projected into the attribute space. The
closer the projection of this image is to any of the mani-
folds, the greater the probability that the scene object is the
model object corresponding to the manifold. Bear in mind
from our discussion of appearance based object model rep-
resentation that the attribute space used for model match-
ing is obtained by reducing the dimensionality of the im-
age space using one of many possible techniques, such as
principal components analysis, discriminant analysis, or
multidimensional scaling.

When estimating the distance between a scene data en-
try and the manifolds in the attribute space, the closest
entry in the attribute space is called the nearest neighbor,
and several measures can be used to compute the distance
between nearest neighbors. The simplest of these distance
measures is the Euclidean distance

d =
√

(x− y)	 (x− y)

20 Object Recognition

where x is the data point corresponding to the image of
the unknown object as projected into the attribute space,
and y is one of the training samples also projected into the
attribute space. When the cluster of samples for the object
class to be tested is assumed to have a normal distribution
with covariance matrix 	, a more appropriate measure of
image similarity is the Mahalanobis distance

d =
√

(x− y)	
	−1(x− y)

The problem of model matching using appearance-based
methods consists in finding the training image that min-
imizes the distance to the image containing the unknown
object. If this distance is within a certain threshold, we
can say that the unknown object belongs to the same
class as the training data point. The advantage of using
appearance-based methods over geometry-based ones is
that it is not necessary to define a geometric representation
for a particular class of objects, since the class is implicitly
defined by the selection of the training samples. On the
other hand, we may need a large number of training sam-
ples.

Model-Based Matching

In matching scene features to model features using model-
based techniques, the following steps are usually taken: im-
age processing, feature extraction, hypothesis generation,
hypothesis verification, and pose refinement. In the previ-
ous sections we have discussed various image-processing
and feature extraction techniques. Now we will focus our
attention on how to generate scene-to-model match hy-
potheses, and on how to verify these hypotheses by com-
paring scene features with model features.

While local features yield more robust matching in the
presence of occlusion and varying illumination conditions
than the parameter vectors used for appearance-based
recognition, they are also less distinctive for discriminat-
ing between similar objects. There may be many scene fea-
tures that could match an individual model feature, or one
scene feature that is present in multiple object models. In
order to find the correct correspondence one needs more
information, and this is typically obtained by considering
relational properties of features to create local feature sets.
A local feature set will now correspond to a unique set of
features from an object model. By grouping features into
local feature sets we reduce the uncertainty in assigning a
set of features to a particular object model, thus facilitat-
ing the matching process. Each feature by itself will often
be too simple and incapable of providing sufficiently dis-
criminating information for identification. But when sev-
eral features are combined into a local feature set, they will
provide sufficient information to generate hypotheses for
scene-to-model matching.

When 3-D objects contain vertices formed by the inter-
section of planar faces, such vertices together with these
planar faces can be used for local feature sets. Other pos-
sibilities for local feature sets include three non collinear
vertices, a straight edge and a non collinear vertex, or three
non coplanar surfaces. Fig. 21 shows a local feature set for
the object displayed in Fig. 19, being in this case the vertex

12 and the set of surfaces [F, G, K] that surround it. The
only restriction on a local feature set is that it must contain
the minimal grouping of features necessary to uniquely ob-
tain the pose transform that relates an object in the scene
to an object model.

A local feature set in a model is considered to match
a scene feature set if each of the corresponding attribute
values for every feature match. Different criteria are used
for comparing attribute values, depending on whether they
are qualitative or quantitative. Attributes that are quali-
tative are considered to match if their labels are identical,
whereas quantitative attributes match if their values fall
within a range of each other.

Once a local feature set is extracted from the scene, we
need to compare it with our model base and try to establish
a correspondence, or match. When the number of features
that constitute a local feature set and the number of objects
in the database are both small, then a straightforward ap-
proach to model matching consists of sequentially examin-
ing each model in turn, and accepting as possible solutions
only those models for which there exists a correspondence
of scene and model features. The number of scene-to-model
comparisons needed to classify an object grows exponen-
tially with the number of features in the model description.
For this reason, sequential examination of the model base
for feature matching is not computationally efficient for
problems involving large libraries of objects or large num-
bers of features per object. Instead, cleverer model match-
ing algorithms must be devised. Most approaches to model-
based recognition and localization cast the scene-to-model
correspondence part of the problem as a search problem,
the search being for a consistent match between a set of
model features and the local feature set extracted from the
scene.

Recognition by Alignment

The comparison of scene with model feature sets will usu-
ally generate a set of hypotheses. Each of these hypotheses
will constitute a possible solution to the spatial correspon-
dence problem, providing as a result a transformation ma-
trix that relates the pose of the object in the scene to the
object model. Each hypothesis may relate a scene local fea-
ture set to different local feature sets in one or more object
models. To further disambiguate among the possible scene-
to-model correspondences, the rest of the features in the ob-
ject model must be mapped back to the scene with the cor-
responding transformation. If enough nearby features are
found to match between the scene and the model, then we
can declare that there exists a scene-to-model match. The
corresponding transformation matrix will provide informa-
tion regarding the position and orientation of the matched
object in the scene.

The method of breaking the recognition process into the
two stages of hypothesis generation and verification is also
known as recognition by alignment [74]. The alignment
method can help overcome some of the most important dif-
ficulties in the recognition of 3-D objects in 2-D images:
viewpoint invariance, error in attribute measurement, and
partial occlusions.

Object Recognition 21

Figure 21. (a) Local feature set consisting of vertex 12 and the set of surfaces [F, G, K] that surround it. (b) The number on each arc is
related to the length of the physical edge joining the corresponding pair of surfaces: (2) 38.1 mm, (3) 50.8 mm, and (4) 88.9 mm.

To handle the fact that any view of the object to be rec-
ognized can appear in the image or images taken from the
scene, hypotheses are generated for matches between all
possible scene local feature sets and model local feature
sets. Once a match has been hypothesized, the verifica-
tion stage allows for small errors in the measurement of
the attributes. It is only required that the attributes of the
verification features match their counterparts in the model
within certain thresholds, usually established empirically.
Occlusion, on the other hand, is handled by generating hy-
potheses using features from the model and the scene that
are robust to partial occlusions, such as corner points or
pieces of line segments. Even when the object is not en-
tirely visible, if an entire local feature set can be located,
along with the necessary verification features, a match hy-
pothesis can be evaluated as true.

However, two major problems are present when using
matching by alignment. First, the features used for build-
ing a scene local feature set can easily belong to different
objects, to shadows, or the background. Although these sets
of features most likely will not find a match in the model,
the complexity of the search for a scene-to-model corre-
spondence will be affected by the performance of the group-
ing technique used in the construction of a local feature set.
The second problem arises from the fact that the error in
locating the image features will propagate and magnify the
error in the computation of the pose transform for a local
feature set. As a result, the predicted pose of the object may
not even approximate that of the scene.

We have argued that the number of features needed for
object identification is bounded by the minimal grouping of
features necessary to uniquely obtain the pose transform
relating an object in the scene to an object model. Other
researchers have proposed other bounds on the number of
features needed for identification. In Ref. [8], for example,
this number is said to be determined as a function of the
probability that an erroneous match will occur. In this case,
the number of matching features will depend on the num-
ber of model features, the number of scene features, the
types of features used, and bounds on the positional and
orientational errors in the data. The probability that a ran-
dom arrangement of scene features will be considered as

an object decrease when the number of features required
to agree with the model increases, and a threshold f0 on
the fraction of model features required for recognition is
obtained with the expression

f 0 ≥ log 1
δ

m log(1 + 1
msc

)

where m is the total number of model features, s is the to-
tal number of scene features, δ is defined as the probability
that there will be m f 0 or more events occurring at ran-
dom and c depends on the particular type of feature being
matched and the bounds on the sensor error. For the case
of 2-D line segments in 2-D images c has the form

c = 2εaεpαL

πD2
+ εaε

2
p

πD2

where εa and εp are bounds on the angular and positional
error for a data feature (line segments in this case), L is the
average edge length in the model, α the average amount of
occlusion of an edge in the scene, and D the linear extent
of the image. The above formula can be simplified in the
case where the features are vertices instead of edges, and
has also been extended for edges in 3-D space.

Graph Matching and Discrete Relaxation

Once a local feature set has been extracted from the scene,
it must be compared against sets of features from the ob-
ject model. A sequential search for a set of features in the
object model that produces an acceptable match hypothesis
may be very time-consuming if the object model contains
a large number of features or the number of object classes
is large. To avoid sequential search during scene-to-model
correspondence we can resort to various graph theoretic
methods.

Using relational attributes, a set of features can be ex-
pressed as a graph G = (V, E). The set V of nodes in the
graph contains the features, and the edges in the set E
represent the relations among features. The set of edges,
E, is a subset of the Cartesian product V × V, and each
of these edges can be labeled according to the type of re-
lational attribute: adjacency, parallelism, perpendicularity,
and so on.

22 Object Recognition

Producing a scene-to-model match hypothesis is equiva-
lent to finding out that a subgraph of the graph represent-
ing the object model is isomorphic to the graph extracted
from the scene. That is, there exists a one-to-one corre-
spondence between the nodes in the two graphs preserving
the graph structure. Given a model graph GM = (VM, EM)
and a scene graph GS = (VS, ES), an isomorphism is a one-
to-one function f of VS onto VM such that, for every edge
eS

i j = {vs
i , v

S
j} in ES , the edge eM

i j = { f (vS
i), f (vS

j)} = {vM
i , vM

j }
is in EM . If the scene contains partial occlusions of the
object to be recognized, then the graph GS may contain
fewer nodes than GM , so that |VS | ≤ |VM |.The problem then
changes to that of subgraph isomorphism, that is, to find
the largest subgraph of GM isomorphic to GS . In practice,
it is only necessary to find the isomorphism in the object
model graph for the subgraph corresponding to a local fea-
ture set extracted from the scene.

Subgraph isomorphisms can be detected by finding the
maximal clique in a graph. A clique of size m of a graph is
a completely connected subgraph of m nodes in the graph.
Given the graphs of an object model GM and a local fea-
ture set extracted from the scene GS , we can construct an
association graph GA as follows. Each node vA in GA is
the pair (vM

i , vS
j) such that the features vM

i and vS
j have the

same attributes. An edge eA
12 exists in GA between the nodes

vA
1 = (vM

i1
, vS

j1
) and vA

2 = (vM
i2

, vS
j2

) if and only if the edges eM
i1i2

in GM are the same as the edges eS
j1 j2

in GS . This expresses
the fact that the matches (vM

i1
, vS

j1
) and (vM

i2
, vS

j2
) are compat-

ible.
Consider for example, the attribute graph presented in

Fig. 20, and the local feature set from Fig. 21. Assume that
the only attribute that we can extract from the scene for
each surface is the number of adjacent surfaces. And as-
sume, for this simple example, that we cannot differentiate
between two surfaces if their number of adjacent surfaces
is the same. The only attributes we can extract for an edge
are its length and its delimiting surfaces. Following these
restrictions, surfaces A, E, F, G, H, and I are all similar to
four surrounding surfaces each; surface D to one; surface
C to two; surface B to five; and surfaces J and K to seven
each. Edges a, c, q, and s have length 1; edges e and u have
length 2; edges d and t have length 3; edges h, i, l, m, n, o,
and p have length 4; edges b and r have length 5; edges f, g,
v, and w have length 6; edge k has length 7; and edge j has
length 8. The nodes of the association graph GA in Fig. 22
consist of all the possible combinations between the model
features and the surfaces in the local feature set extracted
from the scene. The edges in the association graph indi-
cate the possibility of the pair of model features (vM

i1
, vM

j2
)

matches with the pair of scene features (vS
i1
, vS

j2
). Observe

that for two matches to be compatible, the length of the de-
limiting edges in both cases must match too. For example,
in the association graph the vertices F − F and G − G are
connected because the delimiting edge for the model fea-
tures vM

F and vM
G has length 4, as well as the delimiting edge

for the scene features vS
F and vS

G. On the other hand, even
though there are edges eM

AJ and eM
FK in the attribute graph,

these delimiting edges have different lengths, inhibiting
the possibility of a match between the model features vM

A

and vM
J and the scene features vS

F and vS
K.

Feasible hypotheses for the model matching problem
are obtained by finding the largest completely connected
subgraph in GA , that is, the largest possible number of
correct matches of features between the object model and
the scene feature set. The most important drawback of the
clique-finding problem, and consequently of the subgraph
isomorphism problem, is that it is NP-complete, this is, its
complexity grows exponentially in the number of nodes of
the association graph. It has been shown however, that the
graph isomorphism problem is solvable in polynomial time
for graphs satisfying a fixed degree bound [75].

In our example the maximal clique is the one formed by
the set of nodes {(vM

F , vS
F), (vM

G , vS
G), (vM

K , vS
K)}. Another max-

imal clique is given by the set {(vM
F , vS

F), (vM
G , vS

G), (vM
j , vS

K)},
and further verification steps may need to be carried out to
discriminate between the two possibilities. This is referred
to as hypothesis verification, and can be done after an ini-
tial computation of the pose of the hypothesized object in
the scene is obtained, by searching for additional features
in the scene that match features outside the local feature
set in the hypothesized object rotated and translated in
accordance with the hypothesized pose.

Another method for graph matching that is solvable in
polynomial time is bipartite matching. Bipartite matching
is the problem of dividing a graph into two different group-
ings, and to assign each node from one of the groupings to
a node in the other grouping. If these two groupings corre-
spond to the scene features and the model features in one
graph GSM , and if we draw arcs between the nodes in the
two groups on the basis of their similarities, as in Fig. 23, a
scene-to-model match hypothesis can be represented by the
maximal bipartite graph that can be extracted from GSM .
Every scene feature vS

i may bear similarities with many
model features. However, for recognition to be correct, we
want every scene feature to match a distinct model feature,
that is, the matching between scene and model features
must be injective.

We need to prune the graph GSM by eliminating the
injective-mapping violating arcs until we find a bipartite
match. A sequential search for unacceptable arcs between
scene and model nodes can become combinatorially exten-
sive, but can be replaced by parallel techniques to make
the computation feasible. One way of doing this is by
discrete relaxation [18]. In general, relaxation in the com-
puter vision context refers to a manner of iterative process-
ing over a cellular structure in which decisions for each cell
are made purely locally but subject to contents in the neigh-
boring cells. Since the connection of a node to its neighbor-
ing nodes is fundamental to a graph, relaxation extends
very naturally to computations over graphs. We must first
create a graph by connecting each scene feature node to
all possible model feature nodes on the basis of some sim-
ilarity criterion (i.e., similarity of attribute values). These
connections are then pruned by enforcing relational con-
straints, as observed in the scene, between different pairs
of nodes in the graph. If the iterative application of this
constraint enforcement leads to a unique arc between each
node in the scene graph and the corresponding node in the
model graph, we have accomplished scene interpretation
via discrete relaxation. After relaxation, the assignment of
scene to model features in GSM is unique for a sufficiently

Object Recognition 23

Figure 22. Graph matching by maximal cliques. The model and scene graphs are combined on an association graph, which shows the
compatibility of individual feature matches. The maximal clique {(vM

F , vS
F), (vM

G
, vS

G
), (vM

K , vS
K)} indicates the best match between the scene

local feature set and the object model.

Figure 23. Bipartite Matching. The left column represents a local feature set, and the right column a set of model features. If a line joins
a scene node with a model node, that means the two nodes have similar attributes. An acceptable hypothesis match between scene features
and model features must be injective.

large number of model features, allowing us to compute a
possible pose transform.

Scene-to-model correspondence using bipartite match-
ing and discrete relaxation is particularly useful when the
number of object classes in the model library is large, and
when the objects involved possess a large number of fea-
tures. Both these factors lead to large search spaces for
object identification and pose computation and may ren-
der the problem too hard to solve using other model-based
methods.

The Feature Sphere Approach

Another approach to solving scene-to-model correspon-
dence is through the use of feature spheres in combination
with the search tree of Fig. 24. The first h levels of the tree

describe the different ways for h model features to match
h scene features. The second part of the tree represents
the verification stage that is implemented with the help
of a feature sphere representation of objects. A path from
the root to a leaf is a recognition sequence. An example
of a 3-D object recognition system that uses this approach
is the 3D-POLY system [11]. Using this technique, we can
identify an object and compute its pose.

As depicted in Fig. 24, a hypothesis can be formed with h
features in the hypothesis generation feature set, and the
remaining n − h features in the scene can then be used for
verification. In principle, if a hypothesis is correct (i.e., the
scene object is indeed an instance of the candidate model
after transformation), then the remaining n − h features
in the scene should match their counterparts on the model
using the same transformation. The process of matching

24 Object Recognition

Figure 24. A data driven search tree is divided in two parts at level h. The first part represents the hypothesis generation stage while
the second part represents the verification stage.

scene to model features cannot be performed in the opposite
direction, since not all model features will be present on
any scene in the case of occlusions.

If any of the remaining n − h features in the scene
cannot be matched to a model feature, that implies that
the current hypothesis is invalid, because either the se-
lected model object is not the right one, or the computed
transformation is not accurate. Therefore, when a scene
feature does not match any model feature under the can-
didate transformation, the matching algorithm must gen-
erate another transformation hypothesis. For this hypoth-
esis generation scheme, the search is exhaustive over the
model features in the sense that at every node shown on
the hypothesis generation part in Fig. 24, a scene feature
must be compared with all the features of the candidate ob-
ject model. Therefore, at each node, the complexity is pro-
portional to the number of features in the object model.
The complexity for hypothesis generation is exponential in
the number of features per hypothesis generation feature
set. For rigid polyhedral objects, this number is typically
3, although its precise value depends upon how carefully
the hypothesis generation feature sets are constructed. On
the other hand, using the feature sphere data structure for
object representation [11], the complexity of verification is
made proportional to the total number of features on the
model. The overall complexity of the recognition process is
thus made a low-order polynomial in the number of fea-
tures on the model, this being a substantial improvement
over the exponential complexity of a brute force search.

A system that extends this idea for model matching
to the use of hash tables for fast hypothesis generation
is the MULTI-HASH system [13]. The advantage of this
system over other model-based approaches resides in the
learning stage, in which a multiple attribute hash table
for fast hypothesis generation is built. By automatically
constructing a hash table for object classification, the sys-
tem is able to synthesize, under supervised training, the
most discriminant features that separate one class of ob-
jects from another. During training in the MULTI-HASH
system, the human operator specifies the correspondences

between model feature sets and scene feature sets, as well
as the object class. The system uses this information to con-
struct models of uncertainty for the values of the attributes
of object features. Using these uncertainty models, a deci-
sion tree is generated, which is transformed into a hash
table for fast model matching.

Spatial Correspondence using Range Data

If range data are used for 3-D object recognition, then the
transformation matrix between the scene and model fea-
ture sets can be computed by solving a set of equations of
the form

[p
i
m

1
] = [R t

0 1
][p

i
s

1
]

when there is a one-to-one correspondence between the
model point pi

m and the scene point pi
s. The rotation subma-

trix R describes the orientation of the object in the scene,
and the vector t represents the translation of the object
from a reference coordinate frame in the model space to its
position in the scene. A good estimate of the transforma-
tion matrix can be computed if a sufficient number of scene
points can be related to their model counterparts.

In the approach used in Refs. [11] and [18] for pose com-
putation, a solution for the rotation matrix R is computed
by minimizing the sum of the squared errors between the
rotated scene directional vectors and the corresponding
model directional vectors. A directional vector vi

s is the vec-
tor that describes the orientation in the scene of feature i.
Similarly, vi

m describes the orientation of the correspond-
ing feature in the model space. The solution to this min-
imization problem gives an estimate of the orientation of
the scene object with respect to the model object. The min-
imization problem can be expressed as

∂

∂R
i = 1

∑
‖Rvi

s − vi
m‖2 = 0

To solve this minimization problem we resort to the use
of quaternions [16]. A quaternion is a 4-tuple that describes

Object Recognition 25

the rotation around a unit vector â through an angle θ:

Q = [cos(θ/2)
âsin(θ/2)

]

Now, an ordinary directional vector vi would be repre-
sented in the quaternion form as (0, vi)

	
, and its rota-

tion by Q would result in the quaternion (0, (Rvi))
	

. By
substituting quaternions for the various quantities in our
minimization problem, it can be shown to be identical to

∂

∂R
(QAQ) = 0

where A is given by

A = i = 1
∑
BiB

	
i

Bi = [

0 −ci
x −ci

y −ci
z

ci
x 0 bi

z −bi
y

ci
y −bi

z 0 bi
x

ci
z bi

y −bi
x 0

]

and

bi = vi
s + vi

m

ci = vi
s − vi

m

The quaternion Q that minimizes the argument of the
derivative operator in our new differential equation is the
smallest eigenvector of the matrix A. If we denote this
smallest eigenvector by the 4-tuple (α1, α2, α3, α4)	 , then
it follows that the rotational angle θ associated with the
rotational transform is given by

θ = 2cos−1(α1)

and the axis of rotation would be given by

â = (α2, α3, α4)	

sin(θ/2)

Then, it can be shown that the elements of the rotation
submatrix R are related to the orientation parameters â
and θ by

R = [
a2

x + (1 − a2
x)cθ axay(1 − cθ) + azsθ axaz(1 − cθ) + aysθ

axay(1 − cθ) + azsθ a2
y + (1 − a2

y)cθ ayaz(1 − cθ) − axsθ

axaz(1 − cθ) − aysθ ayaz(1 − cθ) − axsθ a2
z + (1 − a2

z)cθ

]

where sθ = sin(θ), and cθ = cos(θ).
Once the rotation submatrix R is computed, we can use

again the matched set of scene and model points for the
hypothesized match to compute the translation vector t

t = i = 1
∑
p̃i

m −Ri = 1
∑
p̃−i

s

Generalized Hough Transform

Another standard method for reducing the search for the
pose of a hypothesized scene object is to use a voting
scheme, such as the generalized Hough transform [44].
This method is an extension of the same voting scheme
that we discussed for grouping together edge elements to
extract lines or curves in an image. The Hough transform

method can be generalized for model matching if the vot-
ing space comprises the viewpoint parameters. In the two-
dimensional case, for example, the Hough space can be
three- or four-dimensional: one dimension for the angle of
rotation, two for the translation of the object along the u
and v axes, and (if desired) another dimension for repre-
senting the scale at which an object appears on the scene.
For 3-D object recognition the Hough space becomes six-
or seven-dimensional (three dimensions for rotation, three
for translation, and one for scaling).

The generalized Hough transform implementation for
the classification of 2-D rigid objects from 2-D images con-
sists of the following five steps:

1. Define an object template in terms of a discrete set
of points from the set of features in the object model.
Choose a reference point as the template center, and
compute the angle α and distance r of the reference
point relative to the points chosen on the template
definition. Finally group these values into bins with
the same gradient direction. This is, for each point in
the template, compute the orientation of the bound-
ary at that point, and store the r and α values in a
table indexed by gradient value.

2. Define the Hough space in terms of the position, ori-
entation, and scale of the expected objects in the im-
age relative to the template. If for example we know
the scale of the objects in the image is fixed, we need
not include the scale dimension in the Hough space.

3. Run an edge operator, such as Sobel or Prewitt, over
the image to extract the edge strength and direction
at each pixel.

4. For every edge point (ui, vi) with edge orientation θi

equal to the orienta tion of an edge in the template,
look in the previously computed table for the pos-
sible relative locations (r, α) of the reference point.
Compute the predicted template reference point

uc = ui + sr cos(α + φ), vc = ui + sr sin(α + φ)

where s and φ are the discrete values of the scale and
orientation being considered.

5. For each point from the scene features, we now have
the coordinates (uc, vc), φ, and possibly s of a cell in
the Hough space. Increment this cell by one count.
The cell with the largest number of votes will pro-
vide the correct position, orientation, and scale of the
object recognized from the scene.

The main advantage of the generalized Hough trans-
form method is that it is somewhat insensitive to noise
and occlusions. On the other hand, as in most model-based
methods, a good geometric description of the objects to be
recognized is necessary. Another drawback of this method
is that the number of matches to be considered grows ex-
ponentially with the number of points in the object tem-
plate. To overcome this problem, variants of the general-
ized Hough transform method have been purposed, such
as geometric hashing [76]. But the most important draw-
back of this approach is that in order to have reasonable ac-

26 Object Recognition

curacy for the computed pose one must sample the Hough
space quite finely, and that leads to the testing of enormous
numbers of possibilities. The method is then equivalent to
correlating the object model with the scene model over all
possible poses and finding the best correlation. One can ar-
gue that this is the same drawback as the one seen for the
appearance-based methods discussed earlier.

SUMMARY

Object recognition entails identifying instances of known
objects in sensory data by searching for a match between
features in a scene and features on a model. The key
elements that make object recognition feasible are the
use of diverse sensory input forms such as stereo im-
agery or range data, appropriate low level processing of
the sensory input, clever object representations, and good
algorithms for scene-to-model hypothesis generation and
model matching.

Whether data acquisition takes place using video im-
ages or range sensors, an object recognition system must
pre-process the sensory data for the extraction of relevant
features in the scene. Once a feature vector is obtained, the
problem now is that of correspondence. Provided a train-
ing session has taken place, a search for a match between
model features and scene features is performed. A consis-
tent match and the corresponding transformation give a
solution to the problem of object recognition.

BIBLIOGRAPHY

1. G. J. Agin. Vision systems. In S. Y. Nof, editor, Handbook of
Industrial Robotics, pages 231–261. John Wiley & Sons, New
York, 1985.

2. R. T. Chin and C. R. Dyer. Model-based recognition in robot
vision. ACM Computing Surveys, 18(1): 67–108, Mar. 1986.

3. N. Ayache and O. Faugeras. HYPER: A new approach for the
recognition and positioning of two-dimensional objects. Pat-
tern Recogn., 22(1): 21–28, 1986.

4. R. A. Brooks. Model-based three-dimensional interpretations
of two-dimensional images. IEEE Trans. Pattern Anal. Ma-
chine Intell., 5(2): 140–150, Mar. 1983.

5. D. G. Lowe. Three-dimensional object recognition from sin-
gle two-dimensional images. Artif. Intell., 31(3): 355–395, Mar.
1987.

6. T. D. Alter and W. E. L. Grimson. Fast
and robust 3D recognition by alignment.In
Proc. 4th IEEE Int. Conf. Comput. Vision, pages 113–120,
Berlin, 1993.

7. W. E. L. Grimson and D. P. Huttenlocher. On the sensitivity
of the Hough transform for object recognition. IEEE Trans.
Pattern Anal. Machine In-tell., 12(3): 255–274, Mar. 1990.

8. W. E. L. Grimson and D. P. Huttenlocher. On the verification
of hypothesized matches in model-based recognition. IEEE
Trans. Pattern Anal. Machine Intell., 13(12): 1201–1213, Dec.
1991.

9. A. Opelt, A. Pinz, M. Fussenegger, and P. Auer. Generic object
recognition with boosting. IEEE Trans. Pattern Anal. Machine
Intell., 28(3): 416–431, Mar. 2006.

10. R. C. Bolles and P. Horaud. 3DPO: A three-dimensional part
orientation system. Int. J. Robot. Res., 5(3): 3–26, 1986.

11. C. H. Chen and A. C. Kak. Robot vision system for recognizing
objects in low-order polynomial time. IEEE Trans. Syst., Man,
Cybern., 18(6): 1535–1536, Nov. 1989.

12. A. J. Vayda and A. C. Kak. A robot vision system for recogni-
tion of generic shaped objects. Comput. Vis. Image Und., 54(1):
1–46, Jul. 1991.

13. L. Grewe and A. C. Kak. Interactive learning of a multiple-
attribute hash table classifier for fast object recognition. Com-
put. Vis. Image Und., 61(3): 387–416, May 1995.

14. P. J. Flynn and A. K. Jain. BONSAI: 3D object recognition
using constrained search. IEEE Trans. Pattern Anal. Machine
Intell., 13(10): 1066–1075, Oct. 1991.

15. T. J. Fan, G. Medioni, and R. Nevatia. Recognizing 3D ob-
jects using surface descriptions. IEEE Trans. Pattern Anal.
Machine Intell., 11(11): 1140–1157, Nov. 1989.

16. O. D. Faugeras and M. Hebert. Representation, recognition,
and localization of 3D objects. Int. J. Robot. Res., 5(3): 27–52,
1986.

17. W. E. L. Grimson and T. Lozano-Perez. Model-based recogni-
tion and localization from sparse range or tactile data. Int. J.
Robot. Res., 3(3): 3–35, 1984.

18. W. Y. Kim and A. C. Kak. 3D object recognition using bipar-
tite matching embedded in discrete relaxation. IEEE Trans.
Pattern Anal. Machine Intell., 13(3): 224–251, Mar. 1991.

19. L. G. Shapiro and H. Lu. Accumulator-based inexact matching
using relational summaries. Mach.VisionAppl.,3(3): 143–158,
1990.

20. A. S. Mian, M. Bennamoun, and R. Owens. Three-dimensional
model-based object recognition and segmentation in cluttered
scenes. IEEE Trans. Pattern Anal. Machine Intell., 28(10):
1584–1601, Oct. 2006.

21. M. F. Demirci, A. Shokoufandeh, Y. Keselman, L. Bretzner,
and S. Dickinson. Object recognition as many-to-many feature
matching. Int. J. Comput. Vision, 69(2): 203–222, Aug. 2006.

22. O. Faugeras. Three-Dimensional Computer Vision. A Geomet-
ric Viewpoint. The MIT Press, Cambridge, 1993.

23. R. Horaud and T. Skordas. Stereo correspondence through
feature grouping and maximum cliques. IEEE Trans. Pattern
Anal. Machine Intell. 11(11): 1168–1180, Dec. 1989.

24. K. Ikeuchi and T. Kanade. Automatic generation of object
recognition programs. Proc. IEEE, 76(8): 1016–1035, Aug.
1988.

25. M. Kirby and L. Sirovich. Application of the Karhunen-Loéve
procedure for the characterization of human faces. IEEE
Trans. Pattern Anal. Machine Intell., 12(1): 103–108, Jan.
1990.

26. M. Turk and A. Pentland. Eigenfaces for recognition. J. Cog-
nitive Neu-rosci., 3(1): 71–86, 1991.

27. H. Murase and S. K. Nayar. Visual learning and recognition
of 3D objects from appearance. Int. J. Comput. Vision, 14(1):
5–24, Jan. 1995.

28. T. V. Pham and A. W. M. Smeulders. Sparse representation for
coarse and fine object recognition. IEEE Trans. Pattern Anal.
Machine Intell. 28(4): 555–567, Apr. 2006.

29. A. Kosaka and A. C. Kak. Stereo vision for industrial appli-
cations. In S. Y. Nof, editor, Handbook for Industrial Robotics,
pages 269–294. John Wiley & Sons, New York, 1999.

30. H. S. Yang and A. C. Kak. Edge extraction and labeling from
structured light 3D vision data. In S. Haykin, editor, Selected
Topics in Signal Processing, pages 148–193. Prentice Hall, En-
glewood Cliffs, 1989.

Object Recognition 27

31. J. Clark, A. M. Wallace, and G. L. Pronzato. Measuring range
using a triangulation sensor with variable geometry. IEEE
Trans. Robot. Automat., 14(1): 60–68, Feb. 1998.

32. W. T. Freeman and E. H. Adelson. The design and use of steer-
able filters. IEEE Trans. Pattern Anal. Machine Intell., 13(9):
891–906, 1991.

33. B. M. T. Haar Romeny. Front-End Vision and Multi-Scale Im-
age Analysis. Springer-Verlag, 2003.

34. D. Marr. Vision: A Computational Investigation into the Hu-
man Representation and Processing of Visual Information.
Freeman, San Francisco, 1982.

35. F. Heitger. Detection using suppression enhance-
ment.Technical Report TR 163, CTL, Swiss Fed. Inst.
Tech., 1995.

36. T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction
to Algorithms. MIT Electrical Engineering and Computer Sci-
ence Series. MIT Press, Cambridge, 1992.

37. M. Villamizar, A. Sanfeliu, and J. Andrade-Cetto. Com-
putation of rotation local invariant features using
the integral image for real time object detection. In
Proc. 18th IAPR Int. Conf. Pattern Recog., volume 4, pages
81–85, Hong Kong, Aug. 2006. IEEE Comp. Soc.

38. H. Bay, T. Tuytelaars, and L. Van Gool. SURF: Speeded up
robust features. In Proc. 9th European Conf. Comput. Vision,
volume 3951 ofLect. Notes Comput. Sci., pages 404–417, Graz,
2006. Springer-Verlag.

39. C. P. Papageorgiou, M. Oren, and T. Poggio.
A general framework for object detection. In
Proc. IEEE Int. Conf. Comput. Vision,page 555, Bombay,
Jan. 1998.

40. P. Viola and M. J. Jones. Robust real-time face detection. Int.
J. Comput. Vision, 57(2): 137–154, May 2004.

41. D. H. Ballard and C. M. Brown. Computer Vision. Prentice
Hall, Engle-wood Cliffs, 1982.

42. A. Rosenfeld and A. C. Kak. Digital Picture Processing,
volume1–2. Academic Press, New York, 1982.

43. P. V. C. Hough.Methods and means for recognizing complex
patterns. U.S. Patent No. 3,069,654, 1962.

44. D. H. Ballard. Generalizing the hough transform to detect ar-
bitrary shapes. Pattern Recogn., 13(2): 111–122, 1981.

45. M. Kass,A. Witkin, and D. Terzopoulos. Snakes:Active contour
models. Int. J. Comput. Vision, 1(4): 321–331, 1987.

46. V. Caselles, R. Kimmel, G. Sapiro, and C. Sbert. Minimal sur-
faces based object segmentation. IEEE Trans. Pattern Anal.
Machine Intell. 19(4): 394–398, Apr. 1997.

47. D. Jacobs. Robust and efficient detection of salient convex
groups. IEEE Trans. Pattern Anal. Machine Intell., 18(1):
23–37, Jan. 1996.

48. D. G. Lowe. Perceptual Organization and Visual Recognition.
Kluwer Academic Publishers, Norwell, MA, 1985.

49. C. G. Harris and M. Stephens. A combined corner edge detec-
tor. In Proc. Alvey Vision Conf., pages 189–192, Manchester,
Aug. 1988.

50. H.P. Moravec. Towards automatic visual obstacle avoid-
ance. In Proc. Int. Joint Conf. Artificial Intell.,page 584, Cam-
bridge, 1977.

51. P. R. Beaudet. Rotational invariant image operators.
In Proc. 4th IAPR Int. Conf. Pattern Recog., pages 579–583,
Tokyo, 1978.

52. J. Shi and C. Tomasi. Good features to track. In
Proc. 9th IEEE Conf. Comput. Vision Pattern Recog., pages
593–600, Seattle, Jun. 1994.

53. T. Lindeberg. Feature detection with automatic scale selection.
Int. J. Comput. Vision, 30(2): 79–116, 1998.

54. D. G. Lowe. Object recognition from local scale-invariant
features. In Proc. IEEE Int. Conf. Comput. Vision, pages
1150–1157, Corfu, Sep. 1999.

55. K. Mikolajczyk. itDetection of Local Features Invariant to
Affine Transformations. PhD thesis, Institut National de Poly-
techniques de Grenoble, 2002.

56. D. G. Lowe. Distinctive image features from scale-invariant
keypoints. Int. J. Comput. Vision, 60(2): 91–110, 2004.

57. K. Mikolajczyk and C. Schmid. An affine invariant interest
point detector. In Proc. 7th European Conf. Comput. Vision,
volume I, pages 128–142, Copenhagen, 2002. Springer-Verlag.

58. A. Baumberg. Reliable feature match-
ing across widely separated views. In
Proc. 14th IEEE Conf. Comput. Vision Pattern Recog., pages
1774–1781, Head Island, Jun. 2000.

59. T. Lindeberg and J. Garding. Shape-adapted smoothing in esti-
mation of 3-D shape cues from affine deformations of local 2-D
brightness structure. Image Vision Comput., 15(6): 415–434,
1997.

60. T. Tuytelaars and L. J. Van Gool. Wide baseline stereo match-
ing based on local, affinely invariant regions. InM. Mirmehdi
and B. T. Thomas, editors, Proc. British Machine Vision Conf.,
Bristol, 2000.

61. L. Van Gool, T. Moons, and Ungureanu D. Affine/photometric
invariants for planar intensity patterns. InB. Buxton andR.
Cipolla, editors, Proc. 4th European Conf. Comput. Vision,
volume 1065 of Lect. Notes Comput. Sci., pages 642–651,
Cambridge, Apr. 1996. Springer-Verlag.

62. L. M. J. Florack, B. M. Haar Romeny, J. J. Koenderink, and M.
A. Viergever. Scale and the differential structure of images.
Image Vision Comput., 10(6): 376–388, Jul. 1992.

63. K. Mikolajczyk and C. Schmid. A performance evaluation of
local descriptors. IEEE Trans. Pattern Anal. Machine Intell.,
27(10): 1615–1630, 2005.

64. B. K. P. Horn. Extended Gaussian images. Proc. IEEE, 72(12):
1671–1686, Dec. 1984.

65. S. K. Nayar, S. Nene, and H. Murase. Subspace methods for
robot vision. IEEE Trans. Robot. Automat., 12(5): 750–758,
Oct. 1996.

66. J. L. Edwards. An active appearance-based ap-
proach to the pose estimation of complex objects. In
Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., volume 3,
pages 1458–1465, Osaka, Nov. 1996.

67. J. L. Edwards and H. Murase. Coarse-to-fine adaptive masks
for appearance matching of occluded scenes. Mach. Vision
Appl., 10(5): 232–242, 1998.

68. A. Martinez. Face image retrieval using HMMs. In
Proc. IEEE CVPR Workshop Content-based Access Image Video Lib.,
pages 25–39, Fort Collins, Jun. 1999.

69. M. Pontil and A. Verri. Support vector machines for 3D object
recognition. IEEE Trans. Pattern Anal. Machine Intell., 20(6):
637–646, 1998.

70. A. Mohan, C. Papageorgiou, and T. Poggio. Example-based ob-
ject detection in images by components. IEEE Trans. Pattern
Anal. Machine Intell., 23(4): 349–361, 2001.

71. H. A. Rowley, S. Baluja, and T. Kanade. Neural network-based
face detection. IEEE Trans. Pattern Anal. Machine Intell.,
20(1): 23–38, 1998.

72. R. Lienhart, A. Kuranov, and V. Pisarevsky. Empirical analy-
sis of detection cascades of boosted classifiers for rapid object

28 Object Recognition

detection. In Proc. 25th German Pattern Recog. Sym., pages
297–304, Magdeburg, Sep. 2003.

73. P. A. Viola, M. J. Jones, and D. Snow. Detecting pedes-
trians using patterns of motion and appearance. In
Proc. IEEE Int. Conf. Comput. Vision, pages 734–741, Nice,
Oct. 2003.

74. D. P. Huttenlocher and S. Ullman. Recognizing solid objects
by alignment with an image. Int. J. Comput. Vision, 5(2):
195–212, 1990.

75. M. R. Garey and D. S. Johnson. Computers and Intractabil-
ity. A Guide to the Theory of NP-Completeness. Freeman, New
York, 1979.

76. P. Suetens, P. Fua, and A. J. Hanson. Computational strategies
for object recognition. ACM Computing Surveys, 24(1): 5–61,
Mar. 1992.

See: Artificial Intelligence, Automatic Guided Vehicles, Computer
Vision, Image Segmentation, Image Sensors, Object Detection,
Robot Vision, Stereo Image Processing.

JUAN ANDRADE-CETTO

MICHAEL VILLAMIZAR

Institut de Robótica i
Informática Industrial,
Barcelona, Spain

