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Formal Logic

The idea of formal logic is that the validity or correctness of
an argument does not depend on the particular symbols used,
but only on the form of the argument. Therefore, the test for
whether an argument is correct is purely syntactic, consisting
of checking whether the form of the argument is syntactically
correct. Formal logic thus gives a systematic method for
checking whether an argument is correct or not.

For example, consider the following argument:

All kachunks are groofy
Ork is a kachunk
Therefore Ork is groofy

We can know that the preceding inference is valid even
without knowing what kachunks, Ork, and groofy mean. Any
inference that has the form of the preceding one is correct,
and this form can be checked by simple, syntactic methods. It
is only necessary to verify that the inference follows a particu-
lar pattern. There are other correct forms of inference as well,
and each one can be checked syntactically. A proof is an argu-
ment, or demonstration, that consists of a number of correct
inferences put together.

The fact that formal logic has such simple syntactic tests
for correctness of logical arguments gives more confidence in
inferences that have been made and checked, since the proce-
dure for checking is simple and unambiguous. This also
means that it is possible to write a (simple) program to check
if a proof is correct, and this program needs to know nothing
about the meaning of the symbols or the intended area of ap-
plication. The same proof checker can be used over and over
again for different areas of application and different symbols.
In addition, such proof checkers are themselves very simple
in structure, increasing one’s confidence in their reliability.

Checking that arguments are correct is of potential use for
program and hardware verification, for example, because pro-
grams and computers are often used in situations where fail-
ure can be costly or even disastrous. Of course, a verification
that a proof is correct does not necessarily imply that the pro-
gram or hardware will work correctly, but it does help.

Finding Proofs

Mechanical theorem proving is concerned not only with check-
ing the correctness of previously supplied proofs, but also
with constructing proofs of valid statements in some formalTHEOREM PROVING logical system. Thus, given the task of proving that Ork is
groofy, and given the axioms All kachunks are groofy and Ork

HISTORY, STATUS, AND FUTURE PROSPECTS is a kachunk, a theorem prover might derive the proof given
previously. Of course, interesting theorems will have proofs

Automated theorem proving is the study of techniques for that are much more complicated than this, consisting of many
programming computers to search for proofs of formal asser- steps of argument concatenated together. Theorem provers
tions, either fully automatically or with varying degrees of typically construct proofs by searching through a large space
human guidance. This discipline is potentially of tremendous of possibilities. The term mechanical means that the methods
value, because reasoning and inference underlie so many hu- can be programmed on a computer.
man activities. Automated (or mechanical) theorem proving is Given a set A of axioms and a valid statement B, a theorem
based on a foundation of formal logic that has been developed proving program should, ideally, eventually construct a proof
over the past several centuries by mathematicians and philos- of B from A. Given an invalid statement B, the program may
ophers. This heritage of formal logic is often taken for run forever without coming to any definite conclusion. This is
granted, despite the tremendous amount of thought and effort the best one can hope for, in general, and indeed even this is
that went into its development. The possibility that theorem not possible always. In principle, theorem proving programs
proving programs can exist is closely tied to some properties can be written just by enumerating all possible proofs and

stopping when a proof of the desired statement is found, butof formal logic, which we now describe.
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this approach is very inefficient. Much more powerful meth- why they could not become as effective or more effective at
this task than humans.ods have been developed.

There are many formal logical systems in which one can
do theorem proving, all of which reduce the check for correct- A Logic with Quantifiers
ness of an inference to a simple syntactic check. To do theo-

One of the most common logical systems in use, especially for
rem proving, it is necessary to choose some such formal logi- mechanical theorem provers, is first-order logic, discovered by
cal system. One common system is Zermelo–Fraenkel set Frege, and we will emphasize it, too. First-order logic is in
theory, which is the foundation of most of modern mathemat- itself quite an accomplishment and, like formal mathematics
ics. Another common system is first-order logic, which we in general, the result of a long process of development. It has
shall discuss later. a particularly simple syntax and semantics, but extreme flex-

ibility and expressiveness. It would be ideal in many respects
History of Mathematics as a programming language if it could execute efficiently. This

is in part the purpose of theorem provers: to provide an effi-Mathematics was not always done as formally as it is today.
cient execution mechanism for first-order logic and otherIn fact, the desire to mechanize proofs was one of the motives
logics.for formalizing mathematics. Thus theorem provers are a log-

In first-order logic, the logical connectives are ∧, signifying
ical continuation of the process of formalizing mathematics

conjunction (and); ∨, signifying disjunction (or); ¬, signifying
and reasoning in general. Indeed, theorem provers are finding negation (not); and �, signifying logical implication. There
use in instruction in logic and mathematics, and this will are also variables x, y, z, . . ., constant symbols a, b, c, . . .,
probably increase to the point that many student assignments function symbols f , g, h, . . ., and predicate symbols P, Q, R,
will consist of constructing proofs on the computer, assisted . . .. A predicate is a property of objects that can be either
by theorem proving programs. true or false. These can be combined into logical formulas, so

The initial, informal approach to mathematics began to that, for example, the formula
change, partially as a result of the discovery of some logical
paradoxes in mathematics, and partially because of difficult- P(x) ⊃ Q( f (x)) ∨ R(g(x))
ies in knowing when a mathematical argument was correct.
Hilbert had as a goal the complete formalization of mathe- means ‘‘If P is true of x, then either Q is true of f applied to
matics, so that one could know whether any mathematical x, or R is true of g applied to x.’’ There are also quantifiers;
statement was true or not by purely mechanical means. �xA means, intuitively, ‘‘For all x, A is true’’ and �xA means,
Though Hilbert’s program of formalizing mathematics did not intuitively, ‘‘There exists an x such that A is true.’’ An exam-
totally succeed, it did result in a further development of ple of a formula involving quantifiers is
mathematical logic and in discoveries that would eventually
lead to mechanical theorem proving. ∀x(P(x) ⊃ ∃yQ(x, y))

One reason for the failure of Hilbert’s program was the
In first-order logic, there is a formal definition of what itincompleteness theorem of Gödel, which states that in any

means for such a formula to be valid. There are also collec-sufficiently powerful logical system, there are statements that
tions of inference rules that can be used to prove any validare true but not provable. This is a profound result and shows
formula. However, the question of whether a formula is validthat it will never be possible to prove all of the true state-
is undecidable. But it is partially decidable in that it is possi-ments of mathematics. However, it is remarkable that many
ble to find a proof of any valid formula, given enough time.of the interesting statements of mathematics are provable.
Thus it is possible to write a fairly simple computer programFurthermore, for some logics, such as first-order logic, there
that will eventually find a proof of any valid formula of first-is a completeness result: All true statements are provable.
order logic. Despite this, first-order logic is surprisingly ex-This is because first-order logic is not powerful enough to ex-
pressive.press arithmetic. In addition, a partial fulfilment of Hilbert’s

program is still conceivable, using powerful theorem provers
Mechanizing Proofto verify many of the valid assertions.

Gödel’s incompleteness theorem has an analogue in Turing Of course, humans were proving theorems long before the ad-
machines and undecidability. Undecidability results concern- vent of computers, and still are, often more successfully. Why,
ing Turing machines can be used to provide a simple proof then, the interest in theorem proving on computers?
that there can be no sound (correct) theorem prover capable One advantage of theorem proving on computers is the
of finding proofs of all true statements of the form ‘‘Turing speed and accuracy of computers. Humans make mistakes
machine X will not halt on input Y.’’ This is therefore an ana- and get tired. Also, there are applications like program veri-
logue of Gödel’s theorem, but in a concrete form. The unprov- fication where the theorems to be proven are not necessarily
able sentence that Gödel constructed is complicated, but a difficult, just boring and full of syntactic complexity. Such an
sentence about nonhalting of a Turing machine somehow has area would seem to be an ideal application for computers.
more intuitive appeal. Furthermore, the proof that such state- But mechanizing theorem proving has turned out to be
ments about Turing machines are unprovable is fairly simple much harder than expected. There is still a mystery in how
and direct. humans prove theorems so well that we have not yet begun

Despite such negative results, there is much that theorem to understand. This is probably because most current theorem
proving methods are too syntactic—that is, they do not useprovers can accomplish. There seems to be no a priori reason
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information about what the symbols mean, and they do not ing that all the problems of artificial intelligence could be
solved by giving them to a resolution theorem prover soon ledlearn from previous proof attempts. Nor do they have higher-

level control over proof plans and strategies to guide their to a reaction in which the limitations of formal methods were
stressed and an emphasis on procedural methods and special-search attempt. So we have the curious situation that the

very features that make logic attractive for mechanization ized problem solvers predominated. This reaction led, for ex-
ample, to the development of expert systems. Today, theremay also explain its failure to provide powerful theorem prov-

ers. Logic enables us to throw away semantics when checking seems to be a more balanced view, and formal methods and
theorem proving seem to be accepted as part of the standardfor correctness of proofs, but it could be that this semantic

information is just what we need in order to make the search artificial intelligence (AI) tool kit.
for a proof more efficient. Logic enables us to forget about the
higher-level structure of proofs and concentrate instead on Current Theorem Provers
low-level inferences, but it could be that a broader view is

Despite early difficulties, the power of theorem provers haswhat we need to make the proof search feasible on hard prob-
continued to increase. Notable in this respect is Otter (7),lems. There is some work in progress to build theorem prov-
which is widely distributed and coded in C with efficient dataers that incorporate these more ‘‘human’’ features of rea-
structures. The increasing speed of hardware has also sig-soning.
nificantly aided theorem provers. But the most powerful auto-
matic provers seem to be largely syntactic in method and not

History of Theorem Proving
to emphasize human-oriented strategies. A recent impetus
was given to theorem proving research by William McCune’sDespite the potential advantages of machine theorem prov-

ing, it was difficult initially to obtain any kind of respectable solution of the Robbins problem (8) by a resolution theorem
prover derived from Otter. The Robbins problem is a first-performance from machines on theorem proving problems.

We briefly survey some of the history of the development of order theorem involving equality that had been known to
mathematicians for decades but that no one was able to solve.automated theorem provers.

Some of the earliest theorem provers (1) as well as that of McCune’s prover was able to find a proof after about a week
of computation.Prawitz were based on Herbrand’s theorem, which gives an

enumeration process for testing if a theorem of first-order In addition to developing first-order provers, there has
been work on other logics. This work has generally foundlogic is true. However, this approach turned out to be too inef-

ficient. The resolution approach of Robinson (2,3) was devel- much more application in industry than first-order theorem
provers have.oped in about 1963 and led to a significant advance in first-

order theorem provers. This approach involved a unification The simplest logic typically considered is propositional
logic, in which there are only predicate symbols (that is, Bool-algorithm, which essentially guided the enumeration process

to find the formulas most likely to lead to a proof. Resolution ean variables) and logical connectives. Despite its simplicity,
propositional logic has surprisingly many applications, suchis a machine-oriented inference step that is often difficult for

humans to follow. The resolution inference rule in itself is all as in hardware verification and constraint satisfaction prob-
lems. Propositional provers have even found recent applica-that is needed to program a theorem prover that can, in prin-

ciple, prove all true theorems of first-order logic. In fact, all tions in planning. The general validity (respectively, satisfia-
bility) problem of propositional logic is nondeterministicof the elements of resolution had been known for decades, but

Robinson brought them to the fore at the right time. Wos et polynomial (NP) hard, which means that it does not, in all
likelihood, have an efficient general solution. Nevertheless,al. at Argonne National Laboratory took the lead in imple-

menting resolution theorem provers, with some initial success there are propositional provers that are surprisingly efficient
and becoming increasingly moreso. The satisfiability problemon group theory problems that had been intractable before.

They were even able to solve some previously open problems for propositional logic has been investigated (9), and it has
been found that there is a 0-1 boundary; on one side there areusing resolution theorem provers.

The initial successes of resolution led to a rush of enthusi- formulas that are easy to deal with because they are likely to
be satisfiable, and on the other side are formulas that areasm, as resolution theorem provers were applied to question-

answering problems, situation calculus problems, and many easy because they likely have short proofs of unsatisfiability.
The hardest formulas are those in the middle.others. It was soon discovered that the method had serious

inefficiencies, and a long series of refinements were developed Binary decision diagrams (BDDs) (10) are a particular
form of propositional formulas for which efficient provers ex-to attempt to overcome them. This included the unit prefer-

ence rule, the set of support strategy, hyper-resolution, para- ist. BDDs are used in hardware verification and have initi-
ated a tremendous surge of interest by industry in formal ver-modulation for equality, and a nearly innumerable list of

other refinements. Data structures were developed permitting ification techniques.
Another restricted logic for which efficient provers exist isthe resolution operation to be implemented much more effi-

ciently. There were also other strategies, such as model elimi- that of temporal logic, the logic of time. This has applications
to concurrency. The model checking approach of Clarke (11)nation (4), which led eventually to logic programming and

Prolog. Some other attempts dealt with higher-order logic, and others has proven to be particularly efficient in this area
and has stimulated considerable interest by industry.such as the matings prover of Andrews (5) and the Boyer-

Moore prover (6) for proofs by mathematical induction. Other logical systems for which provers have been devel-
oped are the theory of equational systems, for which term-However, the initial enthusiasm for resolution, and for au-

tomated deduction in general, soon wore off. The initial feel- rewriting techniques lead to remarkably efficient theorem
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provers; mathematical induction; geometry theorem proving; the basis of another industrial revolution, with computation
based on inference instead of bit pushing. This would haveconstraints; higher-order logic; and set theory.

In addition to proving theorems, finding counterexamples the advantage that computers would be more comprehensible,
more flexible, and probably more reliable. Even a lesseris of increasing importance. This permits one to detect when

a theorem is not provable, and thus one need not waste time amount of progress could make a significant impact on system
reliability, research in mathematics and other formal areas,attempting to find a proof. This is, of course, an activity that

human mathematicians often engage in. These counterexam- instruction, and artificial intelligence.
We begin the next section by presenting the syntax andples are typically finite structures. For the so-called finitely

controllable theories, running a theorem prover and a coun- semantics of propositional logic and some propositional theo-
rem proving procedures. Next we consider the syntax and se-terexample finder together yields a decision procedure, which

theoretically can have practical applications to such theories. mantics of first-order logic and briefly survey some of the
many first-order theorem proving methods, with particularAmong the current applications of theorem provers we can

list hardware verification, program verification, and program attention to resolution. We also consider techniques for first-
order logic with equality. Finally, we briefly discuss somegeneration. For a more detailed survey, see the excellent re-

port by Loveland (12). Among potential applications of theo- other logics, and corresponding theorem proving techniques.
Unfortunately, due to space restrictions, much additional ma-rem provers are planning problems, the situation calculus,

and problems involving knowledge and belief. terial had to be omitted. However, enough detail is given for
the reader to program a reasonable theorem prover. In theThere are a number of provers in prominence today, in-

cluding Otter (7), the Boyer–Moore prover (6), Andrew’s mat- following discussion, we indicate the set difference of A and B
by A � B; that is, �x : x � A, x � B�.ings prover (5), the HOL prover (13), Isabelle (14), Mizer (15),

NuPRL (16), and PVS (17). Many of these require substantial
human guidance to find proofs. Provers can be evaluated on

PROPOSITIONAL LOGIC
a number of grounds. One is completeness; can they, in princi-
ple, provide a proof of every true theorem? Another evaluation Propositional logic has no variables (except Boolean vari-
criterion is their performance on specific examples; in this re- ables), no function symbols, and no quantifiers, but it is useful
gard, the TPTP problem set (18) is of particular value. Fi- for a surprising number of tasks. In addition, even though the
nally, one can attempt to provide an analytic estimate of the satisfiability problem for propositional logic is NP complete,
efficiency of a theorem prover on classes of problems (19). there are decision procedures for it that often work very fast
This gives a measure that is, to a large extent, independent in practice. In fact, there are decision procedures that run in
of particular problems or machines. expected polynomial time on reasonable probability distribu-

tions of propositional formulas.
Future Research

SyntaxFuture research areas in theorem proving include the incor-
poration of more humanlike methods. Current provers are A proposition is a statement that can be either true or false.
mostly machine based, and their methods are not like those An example is the statement ‘‘It is raining.’’ We denote propo-
a person would use. Set theory is a good example of the prob- sitions by the letters P, Q, and R. A Boolean connective may
lem; human-oriented methods that simply replace a predicate be used to combine propositions into propositional formulas.
by its definition often greatly outperform resolution-based The Boolean connectives include the binary infix connectives
provers on set theory problems. We need to incorporate this ∧, signifying conjunction (and); ∨, signifying disjunction (or);
kind of reasoning into our theorem provers, too. In addition, �, signifying logical implication; and �, signifying equiva-
humans often use semantics when proving theorems. When lence. Also, ¬, signifying negation (not), is a unary Boolean
proving a theorem about groups, a human will be imagining connective. Examples of propositional formulas are
various groups. When proving a theorem about geometry, a
human will be imagining various geometric figures. But a typ-
ical theorem prover only deals in symbols, regardless of the
area of application. In addition, we should attempt to develop

P ∧ (Q ∨ P)

(P ∨ Q) ≡ (Q ∨ P)

(¬P) ∨ Pstrategies that are goal sensitive (that is, in which all infer-
ences are in some sense closely related to the particular theo-

For example, if P is the proposition ‘‘It is raining’’ and Q isrem we are trying to prove). This enables us to prune the
the proposition ‘‘I get wet,’’ then P � Q means ‘‘If it is rainingirrelevant inferences and increase efficiency. We need provers
then I get wet.’’ If the propositions �P1, P2, . . ., Pn� includethat are propositionally efficient. Resolution, for example, is
all the propositions that appear in a formula A, then we saytremendously inefficient on propositional problems, which is
that A is a formula over the propositions �P1, P2, . . ., Pn�.curious because there are very efficient techniques in this do-
Parentheses are used to indicate bindings of connectives butmain. Other topics of interest include learning, analogy, and
may be omitted using the usual rules of precedence. The con-abstraction, which have tremendous potential for leading to
stants true and false are called truth values.more powerful provers.

Whether any of these techniques will lead to a truly power-
Semantics

ful theorem prover in the foreseeable future is anyone’s guess.
Still, the potential payoff is so large, even revolutionary, that An interpretation (valuation) over the propositions �P1, P2,

. . ., Pn�. is a function from the propositions �P1, P2, . . ., Pn�any effort in this direction is well justified. It could even be
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to truth values. Thus there are 2n interpretations over �P1, ¬P are said to be complementary to each other. A clause is a
disjunction of literals. A formula is in clause form if it is aP2, . . ., Pn�. If I is an interpretation and P is a proposition,

we write I X P (I satisfies P) if I(P) � true and I X� P if conjunction of clauses. Thus the formula
I(P) � false. Thus one of the interpretations I over �P, Q� is
defined by I(P) � true and I(Q) � false. In addition, there (P ∨ ¬R) ∧ (¬P ∨ Q ∨ R) ∧ (¬Q ∨ ¬R)

are three more interpretations over �P, Q�. For a Boolean for-
mula A, we define its truth in I by the meanings of the Bool- is in clause form. This is also known as conjunctive normal
ean connectives, as follows: form. We represent clauses by sets of literals and clause form

formulas by sets of clauses, so that the preceding formula
would be represented by the following set of sets:

{{P,¬R}, {¬P,Q, R}, {¬Q,¬R}}

A unit clause is a clause that contains only one literal. The
empty clause � � is understood to represent false.

I � ¬A iff I � A

I � A ∧ B iff I � A and I � B

I � A ∨ B iff I � A or I � B

I � A ⊃ B iff I � ¬A or I � B

I � A ≡ B iff I � A ⊃ B and I � B ⊃ A
It is straightforward to show that for every formula A

We say that a formula A over �P1, P2, . . ., Pn� is satisfiable there is an equivalent formula B in clause form. Furthermore,
if there is an interpretation I over �P1, P2, . . ., Pn� such that there are well-known algorithms for converting any formula
I X A. If a formula A is not satisfiable, it is called unsatisfi- A into such an equivalent formula B. These involve con-
able or contradictory. We say that a formula A over �P1, P2, verting all connectives to ∧, ∨, and ¬, pushing ¬ to the bot-
. . ., Pn� is valid if for all interpretations I over �P1, P2, . . ., tom, and bringing ∧ to the top. Unfortunately, this process of
Pn�, I X A. We say that a formula A over �P1, P2, . . ., Pn� is conversion can take exponential time and can increase the
invalid otherwise. A formula B is a logical consequence of A if length of the formula by an exponential amount.
the formula A � B is valid. Two formulas A and B are equiva- A number of people have noticed that the exponential in-
lent iff the formula A � B is valid. crease in size in converting to clause form can be avoided by

For example, the formula P ∨ ¬P is valid, and P ∧ ¬P is adding extra propositions representing subformulas of the
unsatisfiable. The formula P ∨ Q is satisfiable but not valid. given formula. For example, suppose we are given the for-
The formulas P ∧ Q and Q ∧ P are equivalent. mula

There are a number of simple relationships between these
concepts. For example, a formula A is valid iff ¬A is unsatis- (P1 ∧ Q1) ∨ (P2 ∧ Q2) ∨ (P3 ∧ Q3) ∨ · · · ∨ (Pn ∧ Qn)
fiable, and if A is valid and B is a logical consequence of A,
then B is valid. If A is valid and A and B are equivalent, then A straightforward conversion to clause form creates 2n clauses
B is valid, too. of length n, and a formula of length at least n2n. However, we

can add the new propositions Ri, which are defined as Pi ∧
Qi; then we obtain the new formulaPROPOSITIONAL PROOF PROCEDURES

(R1 ∨ R2 ∨ · · · ∨ Rn) ∧ ((P1 ∧ Q1) ≡ R1) ∧ · · · ∧ ((Pn ∧ Qn) ≡ Rn )The main problem for theorem proving purposes is, given a
formula A, to determine whether it is valid. Since A is valid

When this formula is converted to clause form, we obtain aiff ¬A is unsatisfiable, we can determine validity if we can
much smaller set of clauses and avoid the exponential sizedetermine satisfiability. Many theorem provers test satisfia-
increase. The same technique works for any Boolean formula.bility instead of validity.
This transformation, however, is only satisfiability preserv-The problem of determining whether a Boolean formula A
ing, but this is enough for theorem proving purposes.is satisfiable is one of the NP-complete problems. This means

that the fastest algorithms known require an amount of time
Semantic Treesthat is asymptotically exponential in the size of A. Also, it is

not likely that faster algorithms will be found, although no To obtain a decision procedure for propositional logic that is
one can prove that they do not exist. more efficient than truth tables, we introduce semantic trees.

Despite this negative result, there is a wide variety of A semantic tree over the propositions �P1, P2, . . ., Pn� is a
methods in use for testing if a formula is satisfiable. One of binary tree in which the edges (arcs) are labeled with Pi or
the simplest is truth tables. For a formula A over �P1, P2, . . ., ¬Pi, and in which the two arcs leaving any vertex are labeled
Pn�, this involves testing for each of the 2n valuations I over with complementary predicate symbols. Also, we require that�P1, P2, . . ., Pn� whether I X A. In general, this will require no path from the root to a leaf encounter the same predicate
time at least proportional to 2n to show that A is valid, but it symbol more than once. An example of a semantic tree over
may detect satisfiability sooner. �P1, Q1, R� is given in Fig. 1. Each vertex in this semantic tree

corresponds to a partial interpretation (that is, a mapping
Clause Form

from a subset of the predicate symbols to truth values). For
example, the vertex labeled V in Fig. 1 corresponds to theMany of the other satisfiability checking algorithms depend

on conversion of a formula A to clause form. This is defined partial interpretation mapping P to true and Q to false, since
P and ¬Q appear on the path from the root to V. The truthas follows: An atom is a proposition. A literal is an atom or

an atom preceded by a negation sign. The two literals P and value of R is not determined by this partial interpretation.
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false. We illustrate the working of this procedure on the for-
mula

(P ∧ (P ⊃ Q)) ⊃ Q

Showing that this formula is valid is equivalent to showing
that its negation is unsatisfiable. So we consider instead the
formula A, which is

¬[(P ∧ (P ⊃ Q)) ⊃ Q]
R

not R   R not R  Q

not Q not R

not P

not Q   Q not Q 

P

Q

V

R

Figure 1. A semantic tree. Suppose we choose the predicate symbol P first. Let I be the
partial interpretation assigning true to P and let J be the
partial interpretation assigning false to P. Then AI is ¬[(true
∧ (true � Q)) � Q]. Simplifying, we obtain ¬[(true � Q) �
Q] and then ¬(Q � Q). This is because (true � Q) is equiva-

A Decision Procedure lent to (¬true) ∨ Q, which simplifies to Q. Thus AI � is ¬(Q
� Q). Similarly, AJ is ¬[(false ∧ (false � Q)) � Q] and, sim-We can use partial interpretations to make the satisfiability
plifying, we obtain AJ � as false. For AI �, we consider thetesting procedure more efficient. Instead of enumerating all
two formulas with Q replaced by true and false, respectively.the total interpretations, as in truth tables, it often suffices
Both of these simplify to false. Thus the formula A is unsatis-to enumerate only partial interpretations and to avoid giving
fiable. This implies that the original formula (P ∧ (P � Q)) �more information than is necessary to determine the truth
Q is valid.value of a formula A. Using this idea, we obtain a more effi-

The idea of exploring the semantic tree and backtrackingcient decision procedure. First we define AI, where A is a Bool-
is also essentially the idea of the Davis and Putnam proce-ean formula and I is a partial interpretation, to be A with all
dure (20,21), which, however, is specialized to clause form andoccurrences of P replaced by true, for all propositions P such
has a couple of additional rules. For example, if A is in clausethat I assigns true to P, and all occurrences of P replaced by
form and one of the clauses in A is a unit clause (that is,false, for all propositions P such that I assigns false to P.
contains only one literal), then P will be chosen to be a propo-

Thus if I maps P to true and Q to false, and A is P ∨ Q ∨ R, sition that appears in a unit clause, and the order of consider-
then AI is true ∨ false ∨ R. We also use the following simpli- ing I and J will be optimized for this case. There is also a
fication rules to eliminate occurrences of true and false from purity rule for literals L in A such that the complement of L
Boolean formulas, where X is an arbitrary Boolean formula: does not appear in A: If A is a set of clauses and C is a clause

in A having a pure literal, then A is satisfiable iff A � �C� is
satisfiable. The Davis and Putnam procedure and its refine-
ments, a number of which have rules for choosing P carefully,
are often very efficient on propositional formulas. The reason
is as follows: If there are many interpretations I such that

X ∧ true → X X ∧ false → false
true ∧ X → X false ∧ X → false
X ∨ true → true X ∨ false → X
true ∨ X → true false ∨ X → X
¬true → false ¬false → true I X A, then Sat will probably find one quickly and thus will

quickly detect that A is satisfiable. If, for fairly small partial
along with similar formulas for the other connectives � and interpretations I, we have that AI � is false, then Sat will
�. We define AI � to be AI with all of these simplifications not have to explore far and will quickly determine that A is
applied. So if AI is true ∨ false ∨ R, then AI � is true. Fi- unsatisfiable. The hardest formulas are those at the 0-1
nally, we have the following decision procedure for testing if boundary, where neither of these conditions is true. This as-

pect of satisfiability testing has been explored in (9).a (not necessarily clause form) Boolean formula A over set P

of propositions is satisfiable:

Ground Resolutionprocedure Sat(A,P )
[[test if Boolean formula A over P is satisfiable]] Many first-order theorem provers are based on resolution,

and there is a propositional analogue of resolution called
ground resolution, which we now present. Although resolutionif A is true or false then return A;
is reasonably efficient for first-order logic, it turns out thatchoose P � P such that P appears in A;
ground resolution is generally much less efficient than Davislet I be the partial interpretation assigning true to P;
and Putnam-like procedures for propositional logic. However,let J be the partial interpretation assigning false to P;
we present ground resolution here as an introduction to first-

if Sat(AI �, P � �P�) is true then return true; order resolution.
if Sat(AJ �, P � �P�) is true then return true; Ground resolution is a decision procedure for propositional
return false formulas in clause form. If C1 and C2 are two clauses and

end Sat; L1 � C1 and L2 � C2 are complementary literals, then

This procedure essentially works by exploring the semantic
(C1 − {L1}) ∪ (C2 − {L2})tree and backtracking whenever the formula evaluates to
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is called a resolvent of C1 and C2. There may be more than ways true that the same strategies that are most efficient for
propositional logic are also most efficient for first-order logic.one resolvent of two clauses, or maybe none. It is straightfor-

ward to show that a resolvent D of two clauses C1 and C2 is a
logical consequence of C1 ∧ C2. Syntax

For example, if C1 is �¬P, Q� and C2 is �¬Q, R�, then we
In first-order logic, there are variables (individual variables),can choose L1 to be Q and L2 to be ¬Q. Then the resolvent is
denoted by the letters x, y, z, u, v, w; function symbols (func-�¬P, R�. We also note that R is a resolvent of �Q� and �¬Q,
tion constants), denoted by the letters f , g, h; predicate sym-R�, and � � (the empty clause) is a resolvent of �Q� and �¬Q�.
bols (predicate constants), denoted by the letters P, Q, R; andA resolution proof of a clause C from a set S of clauses is
Boolean connectives, as for propositional logic. Each functiona sequence C1, C2, . . ., Cn of clauses in which each Ci is either
and predicate symbol has an arity, which is an integer speci-a member of S or a resolvent of Cj and Ck, for j, k less than i,
fying how many arguments it takes. Function symbols of arityand Cn is C. Such a proof is called a (resolution) refutation if
zero are often referred to as constant symbols, or individualCn is � �. We have the following completeness result for reso-
constants, and denoted by the letters a, b, c, d. In addition,lution:
there are the quantifiers � and �.

An example of a first-order formula is �y�xP(x, y). If weTheorem 3.1. Suppose S is a set of propositional clauses.
interpret P(x, y) as ‘‘x loves y,’’ then this means ‘‘For all y,Then S is unsatisfiable iff there exists a resolution refutation
there exists an x such that x loves y.’’ If we interpret g(x) asfrom S.
‘‘the mother of x’’ and Q(y) as ‘‘y is female,’’ then �xQ(g(x))
means ‘‘For all x, the mother of x is female.’’ It should be clearAs an example, let S be the set of clauses
that first-order logic is a highly expressive language. We now
give a formal definition.{{P}, {¬P,Q}, {¬Q}}

A term is defined inductively as a variable or a constant
symbol or an expression of the form f (t1, . . ., tn), where theWe then have the following resolution refutation from S, list-
ti are terms and f is a function symbol of arity n. An atom ising with each resolvent the two clauses that are resolved to-
an expression of the form P(t1, . . ., tn), where ti are termsgether:
and P is a predicate symbol of arity n. The formulas of first-
order logic are defined inductively as follows:1. P given

2. ¬P, Q given
• If A is an atom, then A is a formula.3. ¬Q given
• If A is a formula, then ¬A is a formula.4. Q 1, 2, resolution
• If A and B are formulas, then (A ∧ B), (A ∨ B), (A � B),5. � � 3, 4, resolution

and (A � B) are also formulas.
• If A is a formula and x is a variable, then (�x)A and(Here we omit set braces, except for the empty clause.) This

(�x)A are formulas.is a resolution refutation from S, so S is unsatisfiable.
Define R (S) to be the set of clauses C such that there are

Examples of formulas are P( f(x), c), P(x) ∨ Q(y, f (x)), andclauses C1 and C2 in S such that C is a resolvent of C1 and
(�x)(P(x) � (�y)Q (x, y)). We note that parentheses are oftenC2. Define R 1(S) to be R (S) and R i�1(S) to be R (S �
omitted when not necessary for understanding. A literal is aR i(S)), for i � 1. Typical resolution theorem provers essen-
formula of the form A or ¬A, where A is an atom. A formulatially generate all of the resolution proofs from S (with some
without quantifiers is said to be quantifier free. In a formulaimprovements that we will discuss later), looking for a proof
of the form (�x)A, A is called the scope of the quantifier (�x);of the empty clause. Formally, such provers generate R 1(S),
similarly, in a formula of the form (�x)A, A is called the scopeR 2(S), R 3(S) and so on, until for some i, R i(S), � R i�1(S), or
of the quantifier (�x). A variable x in a formula A is bound ifthe empty clause is generated. In the former case, S is satis-
it is in the scope of some quantifier �x or �x. If a variable isfiable. If the empty clause is generated, S is unsatisfiable.
not bound, it is free. Thus in the formula �x(P(x) ∨ Q(y)), theIt is known that propositional (ground) resolution is much
occurrence of x in P(x) is bound, but the occurrence of y inless efficient than Davis and Putnam’s method as a decision
Q(y) is free. A formula without free variables is called a sen-procedure for satisfiability of formulas in the propositional
tence. We sometimes write (Q x) to refer to either (�x) orcalculus. Also, Haken (22) showed that there are unsatisfiable
(�x). A quantifier free formula is in conjunctive normal formsets S of propositional clauses for which the length of the
if it is a conjunction of disjunctions of literals (as in the propo-shortest resolution refutation is exponential in the size (num-
sitional calculus); it is in prenex conjunctive normal form if itber of clauses) in S. Despite these inefficiencies, we intro-
is of the form (Q1x1) (Q2x2) . . . (Qnxn)A, where A is a quantifierduced propositional resolution as a way to lead up to first-
free formula in conjunctive normal form. We sometimes callorder resolution, which has significant advantages.
A the matrix of this formula.

FIRST-ORDER LOGIC
Semantics

We now introduce the syntax and semantics of first-order An interpretation (structure) I consists of a domain D, which
is a nonempty collection (informally, a set) of objects, togetherlogic. This is a much more powerful language than proposi-

tional logic, and theorem proving techniques for first-order with assignments of meanings to variables, constants, func-
tions, and predicates. To a variable x, I assigns an elementlogic are somewhat more complex, as well. Also, it is not al-
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xI of D; to an individual constant a, I assigns an element aI Sometimes the intended meaning of a first-order formula is
not as obvious as one would like. For example, we can define aof D; to a function constant f , I assigns a function f I from Dn

set S of axioms for addition and multiplication, as follows:to D, where n is the arity of f ; and to a predicate constant P,
I assigns a function PI from Dn to �true, false�, where n is the
arity of P. Given an interpretation I and a formula A, I as-
signs a truth value to A by interpreting Boolean connectives
as in propositional logic and quantifiers consistent with their
readings ‘‘for all’’ and ‘‘there exists.’’ Formally, we define the

(∀x)(x + 0 = x)

(∀x)(∀y)(x + s(y) = s(x + y))

(∀x)(x ∗ 0 = 0)

(∀x)(∀y)(x ∗ s(y) = (x ∗ y) + x)
meaning AI of a term A in interpretation I as follows:

Here we are using infix notation for � and � and using equal-
ity, which has not yet been defined. What is unusual is that• If A is a variable or individual constant, then AI is as
every interpretation I satisfying S and such that � is inter-stated previously.
preted as the identity predicate on D will interpret � as addi-

• If t1, . . ., tn are terms and f is a function symbol of arity tion and � as multiplication on the integers, where the integer
n, then f (t1 . . . tn)I is f I(tI

1 . . . tI
n). Thus the meaning of i is expressed as the term si(0). However, despite this, we can-

f is a function that is applied to the meanings of the ti. not prove simple identities such as x � y � y � x; in fact,
So AI is an element of D, the domain of I. there are interpretations I satisfying S and not satisfying

�x�y(x � y � y � x). This curious fact is due to the existence
of ‘‘nonstandard’’ elements of D that cannot be expressed asAlso, we define the truth value of a formula A in an interpre-
si(0) for any integer i. To prove that addition is commutative,tation I. We write I X A, read ‘‘I satisfies A,’’ to indicate that
one needs to use mathematical induction. It can be very diffi-A is true in interpretation I. For interpretations I and J with
cult for beginners to know when a formula is valid in first-domain D, and for variable x, we say that I � J (mod x) iff
order logic and when it requires mathematical induction toAI and AJ are identical for all function symbols and predicate
prove.symbols A and for all variables A distinct from the variable

In fact, there is no general procedure for deciding first-or-
x. We define X recursively as follows:

der validity; it is known that validity in first-order logic is
partially decidable but not decidable. This means that there
is a procedure that, given any valid formula, will eventually• If P is a predicate symbol of arity n and the ti are terms,
halt and state that the formula is valid, but given an invalidthen I X P(t1 . . . tn) if PI(tI

1 . . . tI
n) is true.

formula, might not halt. However, it is known that there can
• I X (A1 ∨ A2) iff I X A1 or I X A2. be no recursive bound on the running time of such a proce-
• I X (A1 ∧ A2) iff I X A1 and I X A2. dure on valid formulas; thus the procedure may run a long

time even on short formulas.• I X ¬A iff not I X A.
Some general results about models of first-order formulas

• I X (A � B) iff I X ((¬A) ∨ B).
are known. For example, if S is an infinite set of first-order

• I X (A � B) iff I X ((A � B) ∧ (B � A). formulas, none of which has free variables, and if no interpre-
tation satisfies all formulas of S, then there is a finite subset• I X (�x)A iff for all interpretations J such that J � I
�A1, A2, . . ., An� of S such that the formula A1 ∧ A2 ∧ � � � ∧(mod x), J X A.
An is unsatisfiable. This is called compactness.

• I X (�x)A iff there exists an interpretation J such that
Another interesting fact about first-order models is thatJ � I (mod x), J X A.

any first-order formula A that is satisfiable has a model I with
domain D such that D is countable. Thus it is never necessary
to consider uncountable domains in first-order logic, whichFor example, if the domain D of I is �0, 1, 2, . . .� and f I is
implies that first-order logic cannot really express the exis-the successor function and PI is the predicate testing if an
tence of infinities beyond �.integer is even, then I X (�x)(P(x) ∨ P( f(x))) but not I X

(�x)(P(x) � P( f(x))). We can see this because PI(n) is true if n
is even, and f I(n) is n � 1. Thus for all n, either PI(n) is true FIRST-ORDER PROOF SYSTEMS
or PI( f I(n)) is true. Thus for all J such that J � I (mod x), J
X P(x) or J X P( f(x)). Thus for all J such that J � I (mod We now discuss methods for partially deciding validity. These
x), J X (P(x) ∨ P( f(x))). Thus I X (�x)(P(x) ∨ P( f(x))). We write construct proofs of first-order formulas, and a formula is valid
I X� B to indicate that I X B does not hold; that is, I does not iff it can be proven in such a system. Thus there are complete
satisfy B. proof systems for first-order logic, and Gödel’s incompleteness

We say A is satisfiable if there is an interpretation I such theorem does not apply to first-order logic. Since the set of
that I X A; otherwise A is unsatisfiable, or a contradiction. If proofs is countable, we can partially decide validity of a for-
I satisfies A, we call I a model of A. We say A is valid if all mula A by enumerating the set of proofs and stopping when-
interpretations I satisfy A. This is also written X A. We say ever a proof of A is found. This already gives us a theorem
that B is a logical consequence (or a valid consequence) of A, prover, but provers constructed in this way are typically
written A X B, if all interpretations that satisfy A also sat- very inefficient.
isfy B. For example, P(a) X (�x)P(x). We write A1A2 . . . There are a number of classical proof systems for first-or-
An X B to indicate that all models that satisfy all the Ai also der logic: Hilbert-style systems, Gentzen-style systems, natu-

ral deduction systems, semantic tableau systems, and otherssatisfy B.
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(23). Since these generally have not found much application After negations have been pushed in, we assume for simplic-
ity that variables in the formula are renamed so that eachto automated deduction, except for semantic tableau systems,

we do not emphasize them here. Typically they specify infer- variable appears in only one quantifier. We then eliminate
existential quantifiers by replacing formulas of the formence rules of the form
(�x)A[x] by A[f (x1, . . ., xn)], where x1, . . ., xn are all the uni-
versally quantified variables whose scope includes the for-
mula A, and f is a new function symbol (that does not already

A1, A2, . . ., An

A
appear in the formula).

The following rules then move quantifiers to the front:which means that if we have already derived the formulas
A1, A2, . . ., An, then we can also infer A. Using such rules,
we build up a proof as a sequence of formulas, and if a for-
mula B appears in such a sequence, we have proved B.

We now discuss proof systems that have found application
to automated deduction.

((∀x)A) ∨ B → (∀x)(A ∨ B)

B ∨ (∀x)A) → (∀x)(B ∨ A)

((∀x)A) ∧ B → (∀x)(A ∧ B)

B ∧ ((∀x)A) → (∀x)(B ∧ A)

Next, we convert the matrix to conjunctive normal form byClause Form
the following rules:

Many first-order theorem provers convert a first-order for-
mula to clause form before attempting to prove it. The beauty
of clause form is that it makes the syntax of first-order logic,

(A ∨ (B ∧ C)) → (A ∨ B) ∧ (A ∨ C)

((B ∧ C) ∨ A) → (B ∨ A) ∧ (C ∨ A)
already quite simple, even simpler. Quantifiers are omitted,
and Boolean connectives as well. In the end we have just sets Finally, we remove universal quantifiers from the front of the
of sets of literals. It is amazing that the expressive power of formula and replace a conjunctive normal form formula of the
first-order logic can be reduced to such a simple form. This form
simplicity also makes clause form suitable for machine imple-
mentation of theorem provers. Not only that, but the validity
problem is also simplified in a theoretical sense; we only need

(A1 ∨ A2 ∨ · · · ∨ Ak) ∧ (B1 ∨ B2 ∨ · · · ∨ Bm )

∧ · · · ∧ (C1 ∨ C2 ∨ · · · ∨ Cn)
to consider the Herbrand interpretations, so the question of
validity becomes easier to analyze. by the set of sets of literals

Any first-order formula A can be transformed to a clause
form formula B such that A is satisfiable iff B is satisfiable. {{A1, A2, . . ., Ak}, {B1, B2, . . ., Bm}, . . ., {C1,C2, . . .,Cn}}
The translation is not validity preserving. So in order to show
that A is valid, we translate ¬A to clause form B and show This last formula is the clause form formula that is satisfiable
that B is unsatisfiable. For convenience, we assume that A is iff the original formula is.
a sentence (that is, it has no free variables). As an example, consider the formula

The translation of a first-order sentence A to clause form
has several steps: (∀x)(¬(P(x) ⊃ (∀y)Q(x,y)))

First, we push negations in, which involves replacing � by its
• Push negations in.

definition as follows:
• Replace existentially quantified variables by Skolem

functions. (∀x)¬((¬P(x)) ∨ (∀y)Q(x, y))

• Move universal quantifiers to the front.
Then we move ¬ in past ∨:

• Convert the matrix of the formula to conjunctive normal
form. (∀x)((¬¬P(x)) ∧ ¬(∀y)Q(x, y))

• Remove universal quantifiers and Boolean connectives.
Next we eliminate the double negation and move ¬ past the
quantifier:We present this transformation in terms of sets of rewrite

rules. A rewrite rule X � Y means that a subformula of the (∀x)(P(x) ∧ (∃y)¬Q(x, y))
form X is replaced by a subformula of the form Y.

The following rewrite rules push negations in. Now, negations have been pushed in. We note that no vari-
able appears in more than one quantifier, so it is not neces-
sary to rename variables. Next, we replace the existential
quantifier by a Skolem function:

(∀x)(P(x) ∧ ¬Q(x, f (x)))

There are no quantifiers to move to the front. Eliminating the
universal quantifier, we obtain

P(x) ∧ ¬Q(x, f (x))

(A ≡ B) → (A ⊃ B) ∧ (B ⊃ A)

(A ⊃ B) → ((¬A) ∨ B)

¬¬A → A

¬(A ∧ B) → (¬A) ∨ (¬B)

¬(A ∨ B) → (¬A) ∧ (¬B)

¬(∀x)A → (∃x)(¬A)

¬(∃x)A → (∀x)(¬A)
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The clause form is then tion of substitutions to terms, clauses, and sets of clauses sim-
ilarly. We indicate by �x1 � t1, x2 � t2, . . ., xn � tn� the substi-
tution mapping the variable xi to the term ti, for 1 	 i 	 n.{{P(x)}, {¬Q(x, f (x))}}
For example, P(x, f (x))�x � g(y)� � P(g(y), f (g(y))).

We recall that if B is the clause form of A, then B is satis- If L is a literal and � is a substitution, then L� is called
fiable iff A is. As in propositional calculus, the clause form an instance of L. Thus P(g(y), f (g(y))) is an instance of P(x,
translation can increase the size of a formula by an exponen- f (x)). Similar terminology applies to clauses and terms.
tial amount. This can be avoided, as in the propositional cal- If S is a set of clauses, then a Herbrand set for S is an
culus, by introducing new predicate symbols for subformulas. unsatisfiable set T of ground clauses such that for every
Suppose A is a formula with subformula B, so we write A[B]. clause D in T there is a clause C in S such that D is an in-
Let x1, x2, . . ., xn be the free variables in B. Let P be a new stance of C. If there is a Herbrand set for S, then S is unsatis-
predicate symbol (that does not appear in A). Then we can fiable. For example, let S be the following clause set:
transform A[B] to the formula A[P(x1, x2, . . ., xn)] ∧ (�x1�x2

. . . �xn)(P(x1, x2, . . ., xn) � B). Thus the occurrence of B in {{P(a)}, {¬P(x),P( f (x))}, {¬P( f ( f (a)))}}A is replaced by P(x1, x2, . . ., xn), and the equivalence of B
with P(x1, x2, . . ., xn) is added on to the formula as well. This

For this set of clauses, we have the following Herbrand set:transformation can be applied to the new formula in turn,
and again as many times as desired. The transformation is
satisfiability preserving, which means that the resulting for- {{P(a)}, {¬P(a),P( f (a)}, {¬P( f (a)),P( f ( f (a)))}, {¬P( f ( f (a)))}}
mula is satisfiable iff the original formula A was.

Free variables in a clause are assumed to be universally The ground instantiation problem is the following: Given a
quantified. Thus the clause �¬P(x), Q( f(x))� represents the for- set S of clauses, is there a Herbrand set for S?
mula �x(¬P(x) ∨ Q( f(x))). A term, literal, or clause not con- The following result is known as the Skolem-Herbrand-Gö-
taining any variables is said to be ground. del theorem, and it follows from Theorem 2:

A set of clauses represents the conjunction of the clauses
in the set. Thus the set ��¬P(x), Q( f(x))�, �¬Q(y), R(g(y))�,

Theorem 3. A set S of clauses is unsatisfiable iff there is a�P(a)�, �¬R(z)�� represents the formula (�x(¬P(x) ∨ Q( f(x)))) ∧
Herbrand set T for S.(�y(¬Q(y) ∨ R(g(y)))) ∧ P(a) ∧ (�z¬R(z)).

Herbrand Interpretations It follows from this result that a set S of clauses is unsatis-
fiable iff the ground instantiation problem for S is solvable.There is a special kind of interpretation that turns out to be
Thus we have reduced the problem of first-order validity tosignificant for mechanical theorem proving. This is called a
the ground instantiation problem. This is actually quite anHerbrand interpretation. Herbrand interpretations are de-
achievement, because the ground instantiation problem dealsfined relative to a set S of clauses. The domain D of a Her-
only with syntactic concepts, such as replacing variables bybrand interpretation I consists of the set of terms constructed
terms, and with propositional unsatisfiability, which is eas-from function and constant symbols of S, with an extra con-
ily understood.stant symbol added if S has no constant symbols. The con-

stant and function symbols are interpreted so that for any We also have the following theorem proving method as a
finite term t composed of these symbols, tI is the term t itself, result: Given a set S of clauses, let C1, C2, C3, . . . be an enu-
which is an element of D. Thus if S has a unary function meration of all of the ground instances of clauses in S. This
symbol f and a constant symbol c, then D � �c, f (c), f ( f(c)), set of ground instances is countable, so it can be enumerated.
f ( f( f(c))), . . .� and c is interpreted so that cI is the element c Consider the following procedure Prover:
of D and f is interpreted so that f I applied to the term c yields

procedure Prover(S)the term f (c), f I applied to the term f(c) of D yields f ( f(c)), and
for i � 1, 2, 3, . . . doso on. Thus these interpretations are quite syntactic in na-
if �C1, C2, . . . Ci� is unsatisfiable thenture. There is no restriction, however, on how a Herbrand in-
return ‘‘unsatisfiable’’ fiterpretation I may interpret the predicate symbols of S.

odThe interest in Herbrand interpretations for theorem prov-
end Provering comes from the following result:

By Herbrand’s theorem, it follows that Prover(S) will eventu-Theorem 2. If S is a set of clauses, then S is satisfiable iff
ally return ‘‘unsatisfiable’’ iff S is unsatisfiable. Thus we al-there is a Herbrand interpretation I such that I X S.
ready have a primitive theorem proving procedure. It is inter-
esting that some of the earliest attempts to mechanizeWhat this theorem means is that for purposes of testing
theorem proving (1) were based on this idea. The problemsatisfiability of clause sets, one only needs to consider Her-
with this approach is that it enumerates many ground in-brand interpretations. This implicitly leads to a mechanical
stances that could never appear in a proof. However, the effi-theorem proving procedure, as we shall see. But first we need
ciency of propositional decision procedures is an attractivesome terminology.
feature of this procedure, and it may be possible to modify itA substitution is a mapping from variables to terms that is
to obtain an efficient theorem proving procedure. In fact,the identity on all but finitely many variables. If L is a literal
many of the theorem provers in use today are based implicitlyand � is a substitution, then L� is the result of replacing all

variables in L by their image under �. We define the applica- on this procedure, and thereby on Herbrand’s theorem.
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Unification and Resolution return fail if L and M have different signs or predicate sym-
bols. Suppose L and M both have the same sign and predicateMost mechanical theorem provers today are based on unifica-
symbol P. Suppose L and M are P(r1, r2, . . ., rn) and P(s1, s2,tion, which guides the instantiation of clauses in an attempt
. . ., sn), respectively, or their negations. Then returnto make the procedure Prover more efficient. The idea of uni-
Unify_lists([r1 . . . rn], [s1 . . . sn]) as the most general uni-fication is to find those instances that are in some sense the
fier of L and M.most general ones that could appear in a proof. This avoids a

As examples of unification, a most general unifier of thelot of work that results from the generation of irrelevant in-
terms f (x, a) and f (b, y) is �x � b, y � a�. The terms f (x,stances by Prover.
g(x)) and f (y, y) are not unifiable. A most general unifier ofIn the following discussion we will use � to refer to syntac-
f (x, y, g(y)) and f (z, h(z), w) is �x � z, y � h(z), w � g(h(z))�.tic identity of terms, literals, and so on. A substitution � is

We can also define unifiers and most general unifiers ofcalled a unifier of literals L and M if L� � M�. If such a
sets of terms. We say that a substitution � is a unifier of asubstitution exists, we say that L and M are unifiable. A sub-
set �t1, t2, . . ., tn� of terms if t1� � t2� � t3� . . .. If such astitution � is a most general unifier of L and M if for any
unifier � exists, we say that this set of terms is unifiable. Itother unifier � of L and M there is a substitution � such that
turns out that if �t1, t2, . . ., tn� is a set of terms and has aL� � L�� and M� � M��.
unifier, then it has a most general unifier, and this can beIt turns out that if two literals L and M are unifiable, then
computed as Unify( f(t1, t2, . . ., tn), f (t2, t3, . . ., tn, t1)), wherethere is a most general unifier of L and M, and such most
f is a function symbol of arity n. In a similar way, we cangeneral unifiers can be computed efficiently by a number of
define most general unifiers of sets of literals.simple algorithms. The earliest in recent history was given by

Finally, suppose C1 and C2 are two clauses and A1 and A2Robinson (3).
are nonempty subsets of C1 and C2, respectively. Suppose forWe present a simple unification algorithm on terms; this
convenience that there are no common variables between C1algorithm is similar to that presented by Robinson and is ac-
and C2. Suppose the set �L : L � A1���¬L : L � A2� is unifiable,tually exponential time on large terms, but often efficient in
and let � be its most general unifier. We define the resolventpractice. Algorithms that are most efficient (and even linear
of C1 and C2 on the subsets A1 and A2 to be the clausetime) on large terms have been devised.

procedure Unify(r, s); (C1 − A1)α ∪ (C2 − A2)α
[[return the most general unifier of terms r
and s]]

We define a resolvent of C1 and C2 to be a resolvent of C1 and
if r is a variable then

C2 on two such sets A1 and A2 of literals. If C1 and C2 have
if r � s then return �� else

common variables, we assume that the variables of one of
(if r occurs in s then return fail else

these clauses are renamed before resolving to ensure that
return �r � s�) else

there are no common variables. There may be more than one
if s is a variable then

resolvent of two clauses, or there may not be any resolvents(if s occurs in r then return fail else
at all.return �s � r�) else

Most of the time, A1 and A2 consist of single literals. Thisif the top-level function symbols of r and s
considerably simplifies the definition, and most of our exam-differ or have different arities then return
ples will be of this special case. If A1 � �L� and A2 � �M�, thenfail
we call L and M literals of resolution. We can call this kind ofelse
resolution single literal resolution. Often, we define resolutionsuppose r is f(r1 . . . rn) and s is f(s1
in terms of factoring and single literal resolution. If C is a. . . sn);
clause and 
 is a most general unifier of two distinct literalsreturn(Unify_lists([r1 . . . rn], [s1 . . .
of C, then C
 is called a factor of C. Defining resolution insn]))
terms of factoring has some advantages, though it increasesend Unify;
the number of clauses one must store.

Here are some examples. Suppose C1 is �P(a)� and C2 is
procedure Unify_lists([r1 . . . rn], [s1 . . . �¬P(x), Q( f(x))�. Then a resolvent of these two clauses on the
sn]); literals P(a) and ¬P(x) is �Q( f(a))�. This is because the most
if [r1 . . . rn] is empty then return �� general unifier of these two literals is �x � a�, and applying
else this substitution to �Q( f(x))� yields the clause �Q( f(a))�.


 � Unify(r1, s1); Suppose C1 is �¬P(a, x)� and C2 is �P(y, b)�. Then �� (the
if 
 � fail then return fail fi; empty clause) is a resolvent of C1 and C2 on the literals
� � Unify_lists([r2 . . . rn]
, [s2 . . . ¬P(a, x) and P(y, b).
sn]
)�

Suppose C1 is �¬P(x), Q( f(x))� and C2 is �¬Q(x), R(g(x))�. In
if � � fail then return fail fi;

this case, we rename the variables of C2 first before resolving,
return �
 � ��

to eliminate common variables. We obtain �¬Q(y), R(g(y))�.
end Unify_lists;

Then a resolvent of C1 and C2 on the literals Q( f(x)) and
¬Q(y) is �¬P(x), R(g( f(x)))�.For this last procedure, we define 
 � � as the composition

Suppose C1 is �P(x), P(y)� and C2 is �¬P(z), Q( f(z))�. Then aof the substitutions 
 and �, defined by t(
 � �) � (t
)�. We
resolvent of C1 and C2 on the sets �P(x), P(y)� and �¬P(z)� isnote that the composition of two substitutions is a substitu-

tion. To extend the preceding algorithm to literals L and M, �Q( f(z))�.
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A resolution proof of a clause C from a set S of clauses is In the early days of resolution, a number of refinements were
a sequence C1, C2, . . ., Cn of clauses in which Cn is C and in added to resolution, mostly by the Argonne group, to make it
which for all i, either Ci is an element of S or there exist more efficient. These were the set of support strategy, unit
integers j, k � i such that Ci is a resolvent of Cj and Ck. Such preference, hyper-resolution, subsumption and tautology dele-
a proof is called a (resolution) refutation from S if Cn is �� (the tion, and demodulation. In addition, the Argonne group pre-
empty clause). ferred using small clauses when searching for resolution

A theorem proving method is called complete if it is able proofs. This has pretty much continued as their recipe until
to prove any valid formula. For unsatisfiability testing, a the- today, with the addition of some very efficient data structures
orem proving method is called complete if it can derive false, for storing and accessing clauses. We will describe most of
or the empty clause, from any unsatisfiable set of clauses. It these refinements now.
is known that resolution is complete: A clause C is called a tautology if for some literal L, L � C

and ¬L � C. It is known that if S is unsatisfiable, there is a
Theorem 4. A set S of first-order clauses is unsatisfiable iff refutation from S that does not contain any tautologies. This
there is a resolution refutation from S. means that tautologies can be deleted as soon as they are

generated and need never be included in resolution proofs.
Therefore, we can use resolution to test the unsatisfiability In general, given a set S of clauses, we search for a refuta-

of clause sets, and hence the validity of first-order formulas. tion from S by performing a sequence of resolutions. To en-
The advantage of resolution over the Prover procedure is sure completeness, this search should be fair; that is, if
that resolution uses unification to choose instances of the clauses C1 and C2 have been generated already and it is possi-
clauses that are more likely to appear in a proof. So in order ble to resolve these clauses, then this resolution must eventu-
to show that a first-order formula A is valid, we can do the fol- ally be done. However, there is still considerable flexibility in
lowing:

which resolutions are done first, and a good choice in this
respect can help the prover a lot. One good idea is to prefer

• Convert ¬A to clause form S.
resolutions of clauses that are small (that is, that have small

• Look for a proof of the empty clause from S. terms in them).
Another idea is based on subsumption, as follows: We sayHere is an example of the whole procedure: Suppose that

that clause C subsumes D if there is a substitution � suchwe want to show that the first-order formula (�x�y (P(x) �
that C� � D. For example, the clause �Q(x)� subsumes theQ(y))) ∧ (�y�z (Q(y) � R(z))) � (�x�z (P(x) � R(z))) is valid.
clause �¬P(a), Q(a)�. We say that C properly subsumes D if CHere � represents logical implication, as usual. In the refuta-
subsumes D and the number of literals in C is less than ortional approach, we negate this formula to obtain
equal to the number of literals in D. For example, the clause¬[(�x�y(P(x) � Q(y))) ∧ (�y�z(Q(y) � R(z))) � (�x�z(P(x) �
�Q(x), Q(y)� subsumes �Q(a)� but does not properly subsumeR(z)))] and show that this formula is unsatisfiable. This is
it. It is known that clauses properly subsumed by othertranslated into clause form by rearranging the Boolean con-
clauses can be deleted when searching for resolution refuta-nectives and replacing existential quantifiers by new function
tions from S. It is possible that these deleted clauses may stillsymbols, called Skolem functions. By this means, we obtain
appear in the final refutation, but once a clause C is gener-the formula (�x�y(P(x) � Q(y))) ∧ (�y�z(Q(y) � R(z))) ∧
ated that properly subsumes D, it is never necessary to use D(�x�z(P(x) ∧ ¬R(z))); that is, (�x�y(P(x) � Q(y))) ∧
in any further resolutions. Subsumption deletion can reduce(�y�z(Q(y) � R(z))) ∧ (�xP(x)) ∧ �z¬R(z). Inserting Skolem
the proof time tremendously, since long clauses tend to befunctions, we obtain (�x(P(x) � Q( f(x)))) ∧ (�y(Q(y) �
subsumed by short ones. Of course, if two clauses properlyR(g(y)))) ∧ P(a) ∧ �z¬R(z). This translation is satisfiability
subsume each other, one of them should be kept.preserving. Translating this formula into a set S of clauses,

We can put all of this together to give a program forwe obtain ��¬P(x), Q( f(x))�, �¬Q(y), R(g(y))�, �P(a)�, �¬R(z)��.
searching for resolution proofs from S, as follows:The variables are implicitly regarded as universally quanti-

fied. We then have the following resolution refutation:
procedure Resolver(S)
R � S;1. P(a) (input)
while false � R do

2. ¬P(x), Q( f(x)) (input)
choose clauses C1, C2 � R fairly, preferring

3. Q( f(a)) (1, 2, resolution) small clauses;
4. ¬Q(y), R(g(y)) (input) if no new pairs C1, C2 exist then return
5. R(g( f(a))) (3, 4, resolution) ‘‘satisfiable’’ fi;

R� � �D:D is a resolvent of C1, C2 and D is6. ¬R(z) (input)
not a tautology�;7. false (5, 6, resolution)

for D � R� do
if no clause in R properly subsumes DThe designation ‘‘input’’ means that a clause is in S. Since
then R � �D� � �C � R:D does not properlyfalse (the empty clause) has been derived from S by resolu-
subsume C� fi;tion, we have proven that S is unsatisfiable, and so the origi-

odnal first-order formula is valid.
odEven though resolution is much more efficient than the

Prover procedure, it is still not as efficient as we would like. end Resolver
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To make precise what a ‘‘small clause’’ is, we define �C�, the ence with a theorem prover can help to give one a better idea
symbol size of clause C, as follows: of which refinements to try. In general, none of these refine-

ments helps very much most of the time.
A literal is called positive if it is an atom (that is, has no

negation sign). A literal with a negation sign is called nega-
tive. A clause C is called positive if all of the literals in C are
positive. C is called negative if all of the literals in C are nega-
tive. A resolution of C1 and C2 is called positive if one of C1

and C2 is a positive clause. It is called negative if one of C1

and C2 is a negative clause. It turns out that positive resolu-
tion is complete; that is, if S is unsatisfiable, then there is a

‖x‖ = 1 for variables x

‖c‖ = 1 for constant symbols c

‖ f (t1, . . ., tn)‖ = 1 + ‖t1‖ + · · · + ‖tn‖ for terms f (t1, . . ., tn)

‖P(t1, . . ., tn)‖ = 1 + ‖t1‖ + · · · + ‖tn‖ for atoms P(t1, . . ., tn)

‖¬A‖ = ‖A‖ for atoms A

‖{L1, L2, . . ., Ln}‖ = ‖L1‖ + · · · + ‖Ln‖ for clauses

{L1, L2, . . ., Ln}
refutation from S in which all of the resolutions are positive.
This refinement of resolution is known as P1 deduction in theSmall clauses, then, are those having a small symbol size.
literature. Similarly, negative resolution is complete. Hyper-We also give a program for testing if a clause C sub-
resolution is essentially a modification of positive resolutionsumes D:
in which a series of positive resolvents is done all at once. To

procedure Subsumes(C, D) be precise, suppose that C is a clause having at least one neg-
let x1, x2, . . ., xn be the variables in D; ative literal and D1, D2, . . ., Dn are positive clauses. Suppose
let c1, c2, . . ., cn be new constant symbols; C1 is a resolvent of C and D1, C2 is a resolvent of C1 and D2,
let 
 be �x1 � c1, . . ., xn � cn�; . . ., Cn is a resolvent of Cn�1 and Dn. Suppose that Cn is a
return Subsumes2(C, D
); positive clause, but none of the clauses Ci are positive, for

end Subsumes i � n. Then Cn is called a hyper-resolvent of C and D1, D2,
. . ., Dn. Thus the inference steps in hyper-resolution are se-

procedure Subsumes2(C, D) quences of positive resolutions. Hyper-resolution is sometimes
if C � �� then return true fi; useful because it reduces the number of intermediate results
let L be a literal in C; that must be stored in the prover.
for literals M � D do Typically, when proving a theorem, there is a general set

� � Unify(L, M); A of axioms and a particular formula F that we wish to prove.
if � � fail and Subsumes2((C � �L�)�, D) So we wish to show that the formula A � F is valid. In the
then return true fi; refutational approach, we do this by showing that ¬(A � F) is

od unsatisfiable. Now ¬(A � F) is transformed to A ∧ ¬F in the
return false; clause form translation. We then obtain a set SA of clauses

end Subsumes2 from A and a set SF of clauses from ¬F. The set SA � SF is
unsatisfiable iff A � F is valid. We typically try to show SA �The purpose of the substitution 
 is to replace all variables of
SF unsatisfiable by performing resolutions. Since we are at-D by new constant symbols before calling Subsumes2. We
tempting to prove F, we would expect that resolutions involv-note that Subsumes(�L�, �M�) is true iff the literal M is an

instance of L. ing the clauses SF are more likely to be useful, since resolu-
Another technique used by the Argonne group is the unit tions involving two clauses from SA are essentially combining

preference strategy, defined as follows: A unit clause is a clause general axioms. The set of support strategy is designed to
that contains exactly one literal. A unit resolutionis a resolu- force all resolutions to involve a clause in SF or a clause de-
tion of clauses C1 and C2, where at least one of C1 and C2 is a rived from it.
unit clause. The unit preference strategy prefers unit resolu- Sets A of axioms typically have standard models I. Thus
tions when searching for proofs. Other resolutions are also I X A. Since clause form is satisfiability preserving, I� X SA

performed, but not as early. The unit preference strategy as well, where I� is obtained from I by a suitable interpreta-
helps because unit resolutions reduce the number of literals tion of Skolem functions. The idea of the set of support strat-
in a clause. egy is to use some interpretation like I� to specify which

Demodulation is a way of replacing equals by equals, clauses are relevant to the particular theorem; the relevant
which permits simplification of expressions. We will discuss clauses are those that I� does not satisfy.
this later. Hyper-resolution is a refinement of resolution that So, in general, the set of support strategy takes a set S of
restricts the inferences that are performed. Many such re- clauses and an interpretation I. We let T be the set of clauses
finements have been developed, and we now discuss some of C of S such that I X� C. Then T becomes the set of support,
them. and it is required that all resolutions either involve a clause

in T or a clause derived from T by other resolutions. It is
Refinements of Resolution known that the set of support strategy is complete.

Other refinements of resolution include ordered resolution,In an attempt to make resolution more efficient, many re-
which orders the literals of a clause and requires that thefinements were developed in the early days of theorem prov-
subsets of resolution include a maximal literal in their respec-ing. We present a few of them and mention a number of oth-
tive clauses. Unit resolution requires all resolutions to be uniters. For a discussion of resolution and its refinements, and
resolutions and is not complete. Input resolution requires alltheorem proving in general, see (23–28). It is hard to know

which refinements will help on any given example, but experi- resolutions to involve a clause from S, and this is not com-
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plete, either. Unit resulting (UR) resolution is like unit reso- propositional efficiency we mean how the efficiency of the
method on propositional problems compares with Davis andlution but has larger inference steps. This is also not complete

but works well surprisingly often. Locking resolution attaches Putnam’s method; most strategies do poorly in this respect.
By goal sensitivity, we mean the degree to which the methodindices to literals and uses these to order the literals in a

clause and decide which literals have to belong to the subsets permits one to concentrate on inferences related to the partic-
ular clauses coming from the negation of the theorem (the setof resolution. Ancestry-filter form resolution imposes a kind

of linear format on resolution proofs. Semantic resolution is SF discussed previously). When there are many input clauses,
goal sensitivity is crucial. By use of semantics, we meanlike set of support resolution but requires that when two

clauses C1 and C2 resolve, at least one of them must not be whether the method can take advantage of natural semantics
that may be provided with the problem statement in itssatisfied by a specified interpretation I. These strategies are

all complete. Semantic resolution is compatible with some or- search for a proof. We note that model elimination and set of
support strategies are goal sensitive but apparently not prop-dering refinements (that is, the two strategies together are

still complete). ositionally efficient. Semantic resolution is goal sensitive and
can use natural semantics but is not propositionally efficient.It is interesting that resolution is complete for logical con-

sequences in the following sense: If S is a set of clauses and Instance-based strategies are goal sensitive and use natural
semantics and are propositionally efficient but sometimesC is a clause such that S X C—that is, C is a logical conse-

quence of S—then there is a clause D derivable by resolution have to resort to exhaustive enumeration instead of unifica-
tion in order to instantiate clauses. A further issue is to whatfrom S such that D subsumes C.

Another resolution refinement that is sometimes useful is extent various methods permit the incorporation of efficient
equality techniques, which varies a lot from method tosplitting. If C is a clause and C � C1 � C2, where C1 and C2

have no common variables, then S � �C� is unsatisfiable iff S method. So we see that there are some interesting problems
involved in combining as many of these desirable features as� �C1� is unsatisfiable and S � �C2� is unsatisfiable. The effect

of this is to reduce the problem of testing unsatisfiability of S possible. For strategies involving extensive human interac-
tion, the criteria for evaluation are considerably different.� �C� to two simpler problems. A typical example of such a

clause C is a ground clause with two or more literals.
There is a special class of clauses, called Horn clauses, for

EQUALITYwhich specialized theorem proving strategies are complete. A
Horn clause is a clause that has at most one positive literal.

When proving theorems involving equations, we obtain manySuch clauses have found tremendous application in logic pro-
irrelevant terms. For example, if we have the equations x �gramming languages. If S is a set of Horn clauses, then unit
0 � x and x � 1 � x, and addition and multiplication are com-resolution is complete, as is input resolution.
mutative and associative, then we obtain many terms identi-
cal to x, such as 1 � x � 1 � 1 � 0. For products of two or threeOther Strategies
variables or constants, the situation becomes much worse. It

There are a number of other strategies that apply to sets S of is imperative to find a way to get rid of all of these equivalent
clauses but do not use resolution. One of the most notable is terms. For this purpose, specialized methods have been devel-
model elimination (4), which constructs chains of literals and oped to handle equality.
has some similarities to the Davis and Putnam procedure. The most straightforward method of handling equality is
Model elimination also specifies the order in which literals to use a general first-order resolution theorem prover together
of a clause will ‘‘resolve away.’’ There are also a number of with the equality axioms, which are the following (assuming
connection methods (29), which operate by constructing links free variables are implicitly universally quantified):
between complementary literals in different clauses and cre-
ating structures containing more than one clause linked to-
gether. In addition, there are a number of instance-based
strategies, which create a set T of ground instances of S and
test T for unsatisfiability using a Davis and Putnam-like pro-
cedure. Such instance-based methods can be much more effi-
cient than resolution on certain kinds of clause sets (namely,
those that are highly non-Horn but do not involve deep term
structure).

x = x

x = y ⊃ y = x

x = y ∧ y = z ⊃ x = z

x1 = y1 ∧ x2 = y2 ∧ · · · ∧ xn = yn ⊃ f (x1 . . . xn) = f (y1 . . . yn )

for all function symbols f

x1 = y1 ∧ x2 = y2 ∧ · · · ∧ xn = yn ∧ P(x1 . . . xn) ⊃ P(y1 . . . yn )

for all predicate symbols P
Furthermore, there are a number of strategies that do not

use clause form at all. These include the semantic tableau
We let Eq refer to this set of equality axioms. The ap-

methods, which work backward from a formula and construct
proach of using Eq explicitly leads to many inefficiencies, as

a tree of possibilities; Andrews’ matings method, which is
noted previously, although in some cases it works reason-

suitable for second-order logic and has obtained some impres-
ably well.

sive proofs automatically; natural deduction methods; and se-
Another approach to equality is the modification method of

quent-style systems.
Brand (30). In this approach, a set S of clauses is transformed
into another set S� with the following property: S � Eq is

Evaluating Strategies
unsatisfiable iff S� � �x � x� is unsatisfiable. Thus this trans-
formation avoids the need for the equality axioms, except forIn general, qualities that need to be considered when evaluat-

ing a strategy are not only completeness but also proposi- �x � x�. This approach often works a little better than using
Eq explicitly.tional efficiency, goal sensitivity, and use of semantics. By
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Contexts large term. This termination ordering is computable; s � t iff
�s� � �t� and no variable occurs more times in t than s.

To discuss other inference rules for equality, we need some
We need more powerful techniques to get some more inter-

terminology. A context is a term with occurrences of � in it.
esting termination orderings. One of the most remarkable re-

For example, f (�, g(a, �)) is a context. A � by itself is also a
sults in this area is a theorem of Dershowitz (31) about sim-

context. We can also have literals and clauses with � in them,
plification orderings, which gives a general technique for

and they are also called contexts. If n is an integer, then an
showing that an ordering is a termination ordering. Before

n-context is a term with n occurrences of �. If t is an n-context
his theorem, each ordering had to be shown well founded sep-

and m 	 n, then t[t1, . . ., tm] represents t with the leftmost
arately, and this was often difficult. First we define a simpli-

m occurrences of � replaced by the terms t1, . . ., tm, respec-
fication ordering.

tively. Thus, for example, f (�, b, �) is a 2-context, and f (�,
b, �)[g(c)] is f (g(c), b, �). Also, f (�, b, �)[g(c)][a] is f (g(c), b,

Definition 1. A partial ordering � on terms is a simplifica-a). In general, if r is an n-context and m 	 n and the terms
tion ordering if it satisfies the replacement property—that is,si are 0-contexts, then r[s1, . . ., sn] � r[s1][s2] . . . [sn]. How-
for 1-contexts r, s, � t implies r[s] � r[t]—and has the sub-ever, f (�, b, �)[g(�)] is f (g(�), b, �), so f (�, b, �)[g(�)][a] is
term property—that is, s � t if t is a proper subterm of s.f (g(a), b, �). In general, if r is a k-context for k 
 1 and s is
Also, if there are function symbols f with variable arity, wean n-context for n 
 1, then r[s][t] � r[s[t]], by a simple argu-
require that f (. . . s . . .) � f (. . . . . .) for all such f .ment (both replace the leftmost � in r[s] by t).

Theorem 5. All simplification orderings are well founded.Termination Orderings on Terms

We also need to discuss partial orderings on terms in order to Proof. Based on Kruskal’s tree theorem (32), which says that
explain inference rules for equality. A partial ordering � is in any infinite sequence t1t2t3 . . . of terms, there is an i and
well founded if there are no infinite sequences xi of elements j with i � j such that ti is embedded in tj in a certain sense.
such that xi � xi�1 for all i 
 0. A termination ordering on It turns out that if ti is embedded in tj then tj 
 ti for any
terms is a partial ordering � that is well founded and satis- simplification ordering �.
fies the full invariance property—that is, if s � t and � is a
substitution, then s� � t�—and also satisfies the replace-
ment property—that is, s � t implies r[s] � r[t] for all 1-con-

We now present the recursive path ordering, which is atexts r.
simplification ordering. This ordering is defined in terms of aNote that if s � t and � is a termination ordering, then all
precedence ordering on function symbols, which is a partialvariables in t appear also in s. For example, if f (x) � g(x, y),
ordering on the function symbols. We will say f � g to indi-then by full invariance f (x) � g(x, f (x)), and by replacement
cate that f is less than g in the precedence relation on func-g(x, f (x)) � g(x, g(x, f (x))), and so on, giving an infinite de-
tion symbols. We will present the recursive path ordering byscending sequence of terms.
a complete set of inference rules that may be used to con-The concept of a multiset is often useful to show termina-
struct proofs of s � t. That is, if s � t, then there is a proof oftion. Informally, a multiset is a set in which an element can
this in the system. Also, by using the inference rules back-occur more than once. Formally, a multiset S is a function
ward in a goal-directed manner, it is possible to construct afrom some underlying domain D to the nonnegative integers.
reasonably efficient decision procedure for statements of theIt is said to be finite if �x : S(x) � 0� is finite. We say x � S if
form s � t. Recall that if � is an ordering, then � is theS(x) � 0. We call S(x) the multiplicity of x in S; this represents
extension of this ordering to multisets. The ordering we pres-the number of times x appears in S. If S and T are multisets,
ent is somewhat weaker than that usually given in the litera-then S � T is defined by (S � T)(x) � S(x) � T(x) for all x. A
ture.partial ordering � on D can be extended to a partial ordering

� on multisets in the following way: We say S � T if there is
some multiset V such that S � S� � V and T � T� � V and
for all t in T� there is an s in S� such that s � t. This relation
can be computed reasonably fast by deleting common ele-
ments from S and T as long as possible, and then testing if
the specified relation between S� and T� holds. The idea is
that a multiset becomes smaller if an element is replaced by
any number of smaller elements. Thus �3, 4, 4� � �2, 2, 2, 2,
1, 4, 4,� since 3 has been replaced by 2, 2, 2, 2, 1. This opera-

f = g {s1 . . . sm} � {t1 . . . tn}
f (s1 . . . sm) > g(t1 . . . tn)

si ≥ t
f (s1 . . . sm ) > t

true
s ≥ s

f > g f (s1 . . . sm) > ti all i
f (s1 . . . sm) > g(t1 . . . tn)

tion can be repeated any number of times, still yielding a
smaller multiset. We can show that if � is well founded, so

For example, suppose � � �. Then we can show that x � (y �
is �.

z) � x � y � x � z as follows:
We now give some examples of termination orderings. The

simplest kind of termination orderings are those that are
based on size. Recall that �s� is the symbol size (number of
symbol occurrences) of a term s. We can then define � so that
s � t if for all � making s� and t� ground terms, �s�� �
�t��. For example, f (x, y) � g(y) in this ordering, but we do
not have h(x, a, b) � f (x, x) because x could be replaced by a

true
y + z > y

{x, y + z} � {x, y}
x ∗ (y + z) > x ∗ y

true
y + z > z

{x, y + z} � {x, z}
x ∗ (y + z) > x ∗ z

∗ > +
x ∗ (y + z) > x ∗ y + x ∗ z
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For some purposes, it is necessary to modify this ordering say that the clause C is paramodulated into. We also allow
paramodulation in the other direction—that is, the equationso that subterms are considered lexicographically. In general,

if � is an ordering, then the lexicographic extension �lex of � r � s can be used in either direction.
For example, the clause P(g(a)) ∨ Q(b) is a paramodulantto tuples is defined as follows:

of P( f(x)) and ( f(a) � g(a)) ∨ Q(b). Brand (30) showed that if
Eq is the set of equality axioms given previously and S is a
set of clauses, then S � Eq is unsatisfiable iff there is a proof
of the empty clause from S � �x � x� using resolution and
paramodulation as inference rules. Thus, paramodulation
allows us to dispense with all the equality axioms except x �
x. Some more recent proofs of the completeness of paramodu-

s1 > t1

(s1 . . . sm ) >lex (t1 . . . tn)

s1 = t1 (s2 . . . sm) >lex (t2 . . . tn)

(s1 . . . sm ) >lex (t1 . . . tn)

true
(s1 . . . sm) >lex ()

lation (33) show the completeness of restricted versions of
paramodulation that considerably reduce the search space. In

We can show that if � is well founded, then so is its exten- particular, we can restrict this rule so that it is not performed
sion �lex to bounded length tuples. This lexicographic treat- if s
 � r
, where � is a termination ordering fixed in advance.
ment of subterms is the idea of the lexicographic path order- So if we have an equation r � s, and r � s, then this equation
ing of Kamin and Levy. This ordering is defined by the can only be used to replace instances of r by instances of s. If
following inference rules: s � r, then this equation can only be used in the reverse direc-

tion. The effect of this is to constrain paramodulation so that
‘‘big’’ terms are replaced by ‘‘smaller’’ ones, considerably im-
proving its efficiency. It would be disaster if we allowed para-
modulation to replace x by x � 1, for example, Another com-
plete refinement of ordered paramodulation is that
paramodulation only needs to be done into the ‘‘large’’ side of
an equation. If the subterm t of C[t] occurs in an equation
u � v or v � u of C, and u � v, where � is the termination
ordering being used, then the paramodulation need not be

f = g (s1 . . . sm ) >lex (t1 . . . tn) f (s1 . . . sm ) > t j , all j ≥ 2

f (s1 . . . sm) > g(t1 . . . tn)

si ≥ t
f (s1 . . . sm ) > t

true
s ≥ s

f > g f (s1 . . . sm) > ti all i
f (s1 . . . sm) > g(t1 . . . tn)

done if the specified occurrence of t is in v. Some early ver-
sions of paramodulation required the use of the functionallyIn the first inference rule, we do not need to test s � t1 reflexive axions of the form f (x1, . . ., xn) � f (x1, . . ., xn), butsince (s1 . . . sm) �lex (t1 . . . tn) implies s1 
 t1 and hence s �
this is now known not to be necessary. When D is empty,t1. We can show that this ordering is a simplification ordering
paramodulation is similar to ‘‘narrowing,’’ which has beenfor systems having fixed arity function symbols. This ordering
much studied in the context of logic programming and termhas the useful property that f ( f(x, y), z) �lex f (x, f (y, z)); infor-
rewriting.mally, the reason for this is that the terms have the same

size, but the first subterm f (x, y) of f ( f(x, y), z) is always larger Demodulation
than the first subterm x of f (x, f (y, z)).

Similar to paramodulation is the rewriting or demodulationThere are also many other orderings known that are simi-
rule, which is essentially a method of simplification.lar to the preceding ones.

Paramodulation C [t], r = s, rθ ≡ t, rθ > sθ
C [sθ]

Earlier, we saw that the equality axioms Eq can be used to
prove theorems involving equality and that Brand’s modifica- Here C[t] is a clause (so C is a 1-context) containing a non-
tion method is another approach that avoids the need for the variable term t, r � s is a unit clause, and � is the termina-
equality axioms. A better approach in most cases is to use the tion ordering that is fixed in advance. We assume that vari-
paramodulation rule, defined as follows: ables are renamed so that C[t] and r � s have no common

variables before this rule is applied. We note that we can test
if t is an instance of r, and obtain 
 if so, by calling
Subsumes(�P(r)�, �P(t)�). We call C[s
] a demodulant of C[t]
and r � s. Similarly, C[s
] is a demodulant of C[t] and s � r,

C [t], r = s ∨ D, r and t are unifiable,
t is not a variable,Unify(r, t) = θ

C [sθ] ∨ Dθ

if r
 � s
. Thus an equation can be used in either direction if
the ordering condition is satisfied.Here C[t] is a clause (1-context) C containing an occurrence

of a nonvariable subterm t and C[s
] is C with this occurrence As an example, if we have the equation x � 1 � x and if
x � 1 � x and we have a clause C[f (a) � 1] having a subtermof t replaced by s
. Also, r � s ∨ D is another clause having a

literal r � s whose predicate is equality and remaining liter- of the form f (a) � 1, we can simplify this clause to C[f (a)],
replacing the occurrence of f (a) � 1 in C by f (a).als D, which can be empty. To understand this rule, consider

that r
 � s
 is an instance of r � s, and r
 and t
 are identi- To justify the demodulation rule, we can infer the instance
r
 � s
 of the equation r � s because free variables are implic-cal. If D
 is false, then r
 � s
 must be true, so we can re-

place r
 in C by s
 if D
 is false. Thus we infer C[s
] ∨ D
. itly universally quantified. This permits us to replace r
 in C
by s
, and vice versa. But r
 is t, so we can replace t by s
.We assume, as usual, that variables in C[t] or in r � s ∨ D

are renamed if necessary to ensure that these clauses have Not only is the demodulant C[s
] inferred, but the original
clause C[t] is typically deleted. Thus, in contrast to resolutionno common variables before performing paramodulation. We
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and paramodulation, demodulation replaces clauses by sim- for which more efficient methods exist. Examples include Pre-
sburger arithmetic, geometry theorems, inequalities involvingpler clauses. This can be a considerable aid in reducing the

number of generated clauses. real polynomials (for which Tarski gave a decision procedure),
ground equalities and inequalities (for which congruence clo-The reason for specifying that s
 is simpler than r
 is not

only the intuitive desire to simplify clauses, but also to ensure sure is an efficient decision procedure), modal logic, temporal
logic, and many more specialized logics. Specialized logics arethat demodulation terminates. For example, we cannot have

a termination ordering in which x � y � y � x, since then the often built into provers or logic programming systems using
constraints. Another specialized area is that of computingclause a � b � c could demodulate using the equation x � y �

y � z to b � a � c and then to a � b � c, and so on indefinitely. polynomial ideals, for which efficient methods have been de-
veloped.Such an ordering � could not be a termination ordering since

it violates the well-foundedness condition. However, for many
termination orderings � we will have that x � 1 � x, and thus Higher-Order Logic
the clauses P(x � 1) and x � 1 � x have P(x) as a demodulant

In addition to the logics mentioned previously, there are more
if some such ordering is being used.

general logics to consider, including higher-order logics. Such
Ordered paramodulation is still complete if it and demodu-

logics permit quantification over functions and predicates as
lation are done with respect to the same simplification order-

well as variables. The HOL prover uses higher-order logic and
ing during the proof process. Demodulation is essential in

permits users to give considerable guidance in the search for
practice, for without it we can generate expressions like x �

a proof. Andrews’s matings prover is more automatic and has
1 � 1 � 1 that clutter up the search space. Some complete

obtained some impressive proofs fully automatically, includ-
refinements of paramodulation also restrict which literals can

ing Cantor’s theorem that the powerset of a set has more ele-
be paramodulated into, which must be the ‘‘largest’’ literals

ments than the set. In general, higher-order logic often per-
in the clause in a sense. Such refinements are typically used

mits a more natural formulation of a theorem than first-order
with resolution refinements that also restrict subsets of reso-

logic and shorter proofs, in addition to being more expressive.
lution to contain ‘‘large’’ literals in a clause. Another recent

But the price is that the theorem prover is more complicated;
development is basic paramodulation, which restricts the po-

in particular, higher-order unification is considerably more
sitions in a term into which paramodulation can be done (34);

complex than first-order unification.
this refinement was used in McCune’s proof of the Robbins
problem (8).

Mathematical Induction
A different problem occurs with the associative-commuta-

tive axioms for a function f : Without going to a full higher-order logic, we can still obtain
a considerable increase in power by adding mathematical in-
duction to a first-order prover. The mathematical induction
schema is the following one:

f ( f (x, y), z) = f (x, f (y, z))

f (x, y) = f (y, x)

These axioms permit many different products of terms to be
(∀y)[[(∀x)((x < y) ⊃ P(x))] ⊃ P(y)]

(∀y)P(y)generated, and there is no simple way to eliminate any of
them using a termination ordering. Many provers use associa-

Here � is a well-founded ordering. Specializing this to thetive-commutative (AC) unification instead (35), which builds
usual ordering on the integers, we obtain the following Peanothese associative and commutative axioms into the unification
induction schema:algorithm. This can lead to powerful theorem provers, but it

also causes a problem because the time to perform AC unifi-
cation can be double exponential in the sizes of the terms be-

P(0), (∀x)(P(x) ⊃ P(x + 1))

(∀x)P(x)ing unified. Many other unification algorithms for other sets
of equations have also been developed (36).

With such inference rules, we can, for example, prove thatA beautiful theory of term rewriting systems has been de-
addition and multiplication are associative and commutative,veloped to handle proofs involving equational systems; these
given their straightforward definitions. Both of these induc-are theorems of the form E � e, where E is a collection of
tion schemas are second order, because the predicate P is im-equations and e is an equation. For such systems, term re-
plicitly universally quantified. The problem in using thesewriting techniques often lead to very efficient proofs. The Rob-
schemas in an automatic theorem prover is in instantiatingbins problem was of this form, for example. Term rewriting
P. Once this is done, the induction schema can often besystem-based provers essentially construct proofs by per-
proved by first-order techniques. In fact, this is one way toforming paramodulation and demodulation, applied to sets of
adapt a first-order prover to perform mathematical induc-equations. For a discussion of term rewriting techniques, see
tion—that is, to permit a human to instantiate P.Refs. 37–39. It is also worth noting that some methods of

By instantiating P, we mean replacing P(y) in the preced-proof by mathematical induction are based on the theory of
ing formula by A[y] for some first-order formula A containingterm rewriting systems.
the variable y. Equivalently, this means instantiating P to the
function �z.A[z]. When we do this, the first of the preceding
schemes becomesOTHER LOGICS

So far, we have considered theorem proving in general first-
order logic. However, there are many more specialized logics

(∀y)[[(∀x)((x < y) ⊃ A[x])] ⊃ A[y]]
(∀y)A[y]
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We note that the hypothesis and conclusion are now first-or- It is interesting to note in this respect that many set the-
ory proofs that are simple for a human are very hard for reso-der formulas. This instantiated induction schema can then be
lution and other clause-based theorem provers. This includesgiven to a first-order prover. One way to do this is to have the
theorems about the associativity of union and intersection. Inprover prove the formula (�y)[[(�x)((x � y) � A[x])] � A[y]]
this area, it seems worthwhile to incorporate more of the sim-and then conclude (�y)A[y]. Another approach is to add the
ple definitional replacement approaches used by humans intofirst order formula �(�y)[[(�x)((x � y) � A[x])] � A[y]]� �
clause-based theorem provers.�(�y)A[y]� to the set of axioms. Both approaches are facilitated

As an example of the problem, suppose that we desire toby using a structure-preserving translation of these formulas
prove that (�x)((x � x) � x) from the axioms of set theory. Ato clause form, in which the formula A[y] is defined to be
human would typically prove this by noting that (x � x) � xequivalent to Q(y) for a new predicate symbol Q.
is equivalent to ((x � x) � x) ∧ (x � (x � x)), then observingA number of semiautomatic techniques for finding such a
that A � B is equivalent to (�y)((y � A) � (y � B)), and finallyformula A and choosing the ordering � have been developed.
observing that y � (x � x) is equivalent to (y � x) ∧ (y � x).One of them is the following: To prove that for all finite
After applying all of these equivalences to the original theo-ground terms t, A[t], first prove A[c] for all constant symbols
rem, a human would observe that the result is a tautology,c, and then for each function symbol of of arity n prove that
thus proving the theorem.A[t1] ∧ A[t2] ∧ � � � ∧ A[tn] � A[f (t1, t2, . . ., tn)]. This is known

But for a resolution theorem prover, the situation is not soas structural induction and is often reasonably effective.
simple. The axioms needed for this proof areA common case when an induction proof may be necessary

is when the prover is not able to prove the formula (�x)A[x],
but the formulas A[t] are separately provable for all ground
terms t. Analogously, we may not be able to prove that
(�x)(natural_number(x) � A[x]), but we may be able to prove

(x = y) ≡ [(x ⊂ y) ∧ (y ⊃ x)]

(x ⊂ y) ≡ (∀z)((z ∈ x) ⊃ (z ∈ y))

(z ∈ (x ∩ y)) ≡ [(z ∈ x) ∧ (z ∈ y)]
A[0], A[1], A[2], . . . individually. In such a case, it is reason-
able to try to prove (�x)A[x] by induction, instantiating P(x) When these are all translated into clause form and Skolem-
in the preceding schema to A[x]. However, this still does not ized, the intuition of replacing a formula by its definition gets
specify which ordering � to use. For this, it can be useful to lost in a mass of Skolem functions, and a resolution prover
detect how long it takes to prove the A[t] individually. For has a much harder time. This example may be easy enough

for a resolution prover to obtain, but other examples that areexample, if the time to prove A[n] for natural number n is
easy for a human quickly become very difficult for a resolu-proportional to n, then we may want to try the usual (size)
tion theorem prover using the standard approach.ordering on natural numbers. If A[n] is easy to prove for all

The problem is more general than set theory and has to doeven n but for odd n the time is proportional to n, then we
with how definitions are treated by resolution theorem prov-may try to prove the even case directly without induction and
ers. One possible method to deal with this problem is to usethe odd case by induction, using the usual ordering on natu-
‘‘replacement rules,’’ as described in (41). This gives a consid-ral numbers.
erable improvement in efficiency on many problems of thisThe Boyer–Moore prover (6) has mathematical induction
kind.techniques built in, and many difficult proofs have been done

on it, generally with substantial human guidance. A number
of other provers also have automatic or semiautomatic induc- CURRENT RESEARCH AREAS
tion proof techniques.

We only have space to mention some of the major research
areas in automatic theorem proving; in general, research isSet Theory
being conducted in all the areas described so far. Probably

Since most of mathematics can be expressed in terms of set theorem provers are already more powerful than most people
theory, it is logical to develop theorem proving methods that realize, although they are far from the level of performance
apply directly to theorems expressed in set theory. Second- we would like.
order provers do this implicitly. First-order provers can be There is a continued development of new resolution strate-
used for set theory as well; Zermelo–Fraenkel set theory con- gies and other theorem proving techniques, such as instance-
sists of an infinite set of first-order axioms, and so we again based methods. New methods for incorporating semantics
have the problem of instantiating the axiom schemas so that into theorem provers are being developed. Proof planning is
a first-order prover can be used. There is another version of being studied as a way to enable humans better to guide the
set theory known as von Neumann–Bernays–Gödel set the- proof process. Structured editors and techniques for pres-
ory, which is already expressed in first-order logic. Quite a bit enting and editing proofs are under development. There is
of work has been done on this version of set theory as applied also interest in methods of making machine-generated proofs
to automated deduction problems. Unfortunately, this version easier for humans to understand. Development of more effi-
of set theory is somewhat cumbersome for a human or for a cient data structures and the utilization of concurrency prom-
machine. Still, some mathematicians have an interest in this ise a continued increase in power for theorem provers.
approach. There are also a number of systems in which hu- One technique that can improve the efficiency of a theorem
mans can construct proofs in set theory, such as Mizar (15) prover substantially is the use of sorts, and this is the subject
and others. In fact, there is an entire project (the QED proj- of investigation. When there are many axioms, we have the

problem of deciding which ones are relevant, and techniquesect) devoted to formalizing mathematics (40).
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for solving this problem (gazing) are being developed. Ab- Furthermore, the work of many individuals (such as
Woody Bledsoe) was not mentioned, and we apologize for this.straction and analogy are being studied as aids in finding
It was also not possible to mention all relevant researchproofs faster. The idea is that if two problems are similar,
areas. Despite this, we hope that this brief survey will at leastthen a proof for one of them may be useful in guiding the
give a flavor of the substantial activity in this fascinatingsearch for a proof for the other one.
area of human endeavor.Mathematical induction is another active area of research,

since so many theorems require some kind of induction. There
is also substantial interest in theorem proving in set theory
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