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the camera jammed, and so the LOOK action was not
successfully carried out.

3. Value of Further Consideration. The value of further
computation or thought is hard to determine. Neither
humans nor computers can compute infinitely fast. Our
rationality, or capability to determine actions with the
highest utility, is therefore limited. The value of compu-
tation can be measured by comparing the expected util-
ity of the decision that would be made now with the
expected utility of a (it is hoped) better decision that
might be made with further computation. The cost of
computation can be measured by the time and resource
cost or by opportunity cost. Opportunity cost is the
value of a lost opportunity. Being able to precisely mea-

BELIEF MAINTENANCE sure the value of additional thought would provide a
firm grasp on when it makes sense to stop thinking and

Belief maintenance is the problem of determining how a sys- start acting. The reality, however, is that both the cost
tem of beliefs should be constructed from existing data and of additional computation and the expected gain (or
how it should be modified after seeing additional data. The loss) in decision quality are values that are inherently
techniques for carrying out this work are based in logic, sta- uncertain, context-dependent, and highly subjective.
tistics, and probability theory. For the most part, the theories For example, the opportunity cost of spending an addi-
focus on enabling computer-based methods for reasoning tional minute to better determine the precise odds of a
about potentially large amounts of complicated, interrelated car coming given current visual and audio input might
data. The primary goals have been to build tools that can as- be very high if the agent happens to be carrying a seri-
sist human decision making, to build intelligent agents that ously injured person to the hospital. Or, it could be very
can reason and perform tasks without human supervision, or low if there is no urgent need to cross the street and it
simply to develop a better understanding of the decision mak- is a pleasant evening.
ing process. The need for automated methods to support deci-
sion making exists and will grow as the quantity and variety
of data that must be assimilated in the scientific and business LOGIC
communities increase daily.

Making decisions is a difficult task for humans and com- One of the oldest and most successful formal systems for be-
puters alike. It can involve understanding influences from lief maintenance is symbolic logic. In the realm of logic, very
tens to thousands of interacting factors and being able to pre- simply put, there are objects, facts about objects, and rules
dict the potential outcomes of acting in that environment. for combining facts together (for an in-depth introduction to
One of the most telling impacts on the ability to make optimal symbolic logic and related topics, refer to the articles THEO-

or near-optimal decisions is the state of knowledge of the deci- REM PROVING, and LOGIC PROGRAMMING in this encyclopedia).
sion maker (or the agent). In realistic environments, an agent Facts are assertions about the environment, such as ‘‘trees
may be faced with uncertainty or a total lack of information have leaves.’’ Rules are techniques for combining facts in con-
at each step in the decision process. Uncertainty is a part of sistent ways, such as if ‘‘trees have leaves’’ and ‘‘an oak tree
nearly every type of information pertinent to a situation; that is a tree,’’ then ‘‘oak trees have leaves.’’ The result of applying
uncertainty needs to be reflected in the state of belief and rules is the derivation of new facts not explicitly contained in
then reasoned with. Some examples follow: the database. The new knowledge, however, is implied by the

original data.
1. Environment. The current state of one’s environment Logic is attractive for belief representation for many rea-

may be unknown. For example, it may be late at night, sons. The language has clear semantics, which provides a de-
and the agent needs to cross an intersection to get finable meaning for every sentence or phrase. It is a reason-
home. What is the chance that there is not a car coming, ably flexible system for representing knowledge. Finally,
and how much should be risked betting on it? Another logical inference, or reasoning, is very powerful, and many
example: during the salary negotiation process in an in- theorems have been proven regarding the correctness and
terview, the interviewee will typically not know the true completeness of these systems. For all its advantages, how-
salary range the potential employer is willing to pay. ever, there are some major disadvantages when compared

with other approaches to belief maintenance. One difficulty is2. Outcomes of Actions. The result of an action may be un-
certain or unknown. In the previous example, the agent that a purely deductive system can never construct new be-

liefs. Every derived fact follows from the original set of factsmay desire to reduce the uncertainty about the environ-
ment by doing a few observations. For example, the in the system. That makes it very difficult to have an adap-

tive system with the capability of modifying beliefs on theagent will both look right and left and listen for sounds
of traffic. Will those actions detect the presence of a car, basis of empirical evidence.

A second problem is called the qualification problem. Byif one is approaching? What if the car is running with-
out lights, the agent has poor vision, and is wearing a making factual statements, it is nearly impossible to fully

characterize an event or part of an environment. One can al-Walkman? If the agent is a robot, another type of diffi-
culty is mechanical failure, for example the shutter on ways further qualify the set of base facts with additional low-
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likelihood events. If someone says ‘‘I’ll pick you up at the air- separated from the inference system. The primary advan-
port,’’ many additional statements are required before the set tages of graphical probabilistic models is that they are per-
of actual possibilities is fully represented, such as ‘‘unless my haps some of the most natural and computationally feasible
car is stolen’’ and ‘‘unless you are snowed in for a few days.’’ ways devised yet for managing uncertainty. The representa-
For human–human interaction, we typically do not bother to tion is visually appealing, the inference mechanisms have a
make these additional qualifications in order to communicate solid statistical and probabilistic foundation, and the ap-
efficiently. For symbolic logic, however, two factors combine to proach is a very flexible method for representing beliefs about
make this impossible to ignore. One is that logical statements what factors influence others, and to what extent.
require that a fact is either true or false. The second is called In the past, belief maintenance systems based on probabil-
the closed world assumption. Inference engines for symbolic ity modeling were viewed as being too impractical to use. The
logic typically make the assumption that if a fact is not stated storage space needed to represent a probability distribution
as true, then it is false. When low-likelihood events are not over multiple variables grows exponentially with the number
specified, they are therefore assumed to be not possible. This of variables. Concurrently, that implies that the inference in
makes the logic-based system unable to recover gracefully this space would be terribly slow. In the late 1980s, however,
from an unspecified event like the flat tire. Similar difficulties the case for graphical probability models as a basis for repre-
arise in other approaches to belief maintenance as well. How- senting and reasoning about uncertainty was well made by
ever, they are mitigated by the ability to summarize qualifi- Pearl (3). Part of the argument was that one could take ad-
cations without enumerating them explicitly. vantage of conditional independence to greatly reduce both

Perhaps the most significant shortcoming is the inability the space needed to represent the distribution, and the ex-
to deal effectively with uncertainty, change, and lack of pected time needed to reason within it.
knowledge. As mentioned, these factors are ubiquitous char- Another issue that has been bothering students of this ap-
acteristics of realistic, complex environments. Belief mainte- proach for centuries is deciding on the exact semantics of a
nance systems that hope to cope with change and uncertainty probability. Is a probability aleatory, or epistemic? In other
need the ability to ‘‘defeat’’ factual statements. A child learn- words, does it represent the physical probability of a real
ing about birds may drop or modify the fact that ‘‘all birds event ‘‘the chance of heads on the next flip is .5,’’ or does it
fly’’ after learning about ostriches. Belief systems also need to represent someone’s belief of the chance of a real event? Epi-
permit one to attach a degree of uncertainty to statements, stemic probabilities are formed by starting with some type of
such as ‘‘this treatment has a 90% chance of succeeding,’’ or prior probability, and modifying it based on empirical evi-
‘‘I’m fairly sure he said 3 p.m.’’ dence. Of course, the hope would be that if the agent sees

First-order predicate calculus, the foundation of symbolic enough occurrences of an event, the epistemic probability
logic, has been extended in many ways in order to try to take would converge to the aleatory probability. The distinction is
advantage of the existing mathematical machinery while important in guiding the types of assumptions that can be
overcoming some of the stated limitations. Examples include made in the algorithms used to construct a system of beliefs
situational calculus, probabilistic logic, multivalued logics (to on the basis of empirical evidence. For a clear explanation of
allow for yes, no, and unknown), fuzzy logic, circumscription, the taxonomy of semantic interpretations of probability, refer
nonmonotonic reasoning, and various modal logics that ex- to Walley (4). In this article, probabilities are epistemic un-
pand the syntax and semantics of predicate calculus. For an

less otherwise specified.
excellent starting place to review some of these extensions,

The rest of this article will focus on one particular type ofconsult Genesereth and Nilsson (1).
graphical probability model: a belief network. The technicalCurrently no one extension or combination of extensions
challenges, issues, and limitations of this approach which arehas taken hold as a broadly accepted basis for belief mainte-
discussed are largely shared with other graphical probabilitynance. In part, this is because the theory behind the exten-
models. In fact, in an article by Buntine (2) it is shown thatsions is often unwieldy and difficult to grasp, and there are
to a significant extent, all graphical probabilistic models usestill some difficult problems to resolve before being able to
techniques that boil down to the same manipulations on prob-fully deal with probabilistic knowledge. In part, it is also be-
ability distributions. There are several other methodologiescause graphical probability models have seen a dramatic re-
that are relevant to the problem of belief maintenance. Pleasesurgence of interest since the late 1980s.
see the article on DEDUCTIVE DATABASES. Also of note is the
topic of decision theory (5), which focuses more on utility the-
ory and the process of making good decisions once a systemGRAPHICAL PROBABILISTIC MODELS
of beliefs has been established. Systems of historical interest
include the Dempster–Shafer theory of belief functions (6,7),Graphical probability models include belief networks, Bayes
Mycin (8), and to a lesser extent Prospector (9) for the rolenetworks, Markov networks, influence diagrams, similarity
they played in influencing rules of combining evidence in ex-diagrams, and others. An excellent overview of many of these
pert systems throughout the 1970s and 1980s.different approaches can be found in Buntine (2). Beliefs are

typically represented as a set of potentially stochastic vari-
ables that interact with one another. Variables represent fac-

BELIEF NETWORKStors that can influence other factors in the network, or the
outcome of a decision or an event. This influence is captured

The general theory behind belief networks is based on Bayesin the model as a probability distribution over the set of vari-
rule, and manipulations of it. Bayes rule builds on the defini-ables (making uncertainty a core part of the model). As with

logic, the knowledge is represented declaratively, and so is tion of conditional probability: Pr(A�B) � Pr(A, B)/Pr(B). The
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full formulation of Bayes rule is:

Pr(Hj

∣∣E) = Pr(E
∣∣Hj )Pr(Hj )∑n

i=1 Pr(E
∣∣Hi)Pr(Hi)

and a simplified version is:

Pr(H|E) = Pr(E|H)Pr(H)

Pr(E)

The equations show how to reformulate the probability of a
hypothesis H given the evidence E in terms of the probability
of the evidence given the hypothesis. This is extremely useful,
because the right hand side of the equation is in general much
easier to compute and determine estimates for the left hand
side.

Knowledge in a belief network is represented in the form
of conditional probabilities. For example, to represent the be-
lief that three quarters of the adult population whose parents
smoke are smokers themselves, we would write a conditional
probability similar to: Pr(smoker�2_ parents_smoke) � .75. In-
ference in the belief network involves manipulating the condi-
tional probabilities in ways consistent with Bayes rule and
the axioms of probability. Belief networks can be thought of
as representing sequences of causal events. This orientation
is helpful for constructing the networks, although it is not
mathematically necessary. From the smoking example, one

Table 1. Conditional Probability Tables for the
Smoker Network

Pr(P)

0 .62

P 1 .23

2 .15

Pr(S�P)

P

0 1 2

S 0 .61 .57 .53

1 .39 .43 .47

Pr(D�S)

S

0 1

b .75 .51

D h .20 .41

n .05 .18
could imagine that (1) parents that smoke cause their chil-
dren to smoke, and (2) that causality must be represented
in the form used previously. Bayes rule demonstrates, how-

sponding CPTs are shown in Table 1. Table 2 shows the jointever, that the conditionality can be turned around as
probability table for the problem, where the joint table explic-Pr(2_ parents_smoke�smoker).
itly describes the probability of every possible combination ofFormally, a belief network is a directed acyclic graph con-
variable values. The joint is typically large enough even insisting of a set of nodes Xi for i in 1, . . ., n, a conditional

probability table Ti for each node, and a set of directed arcs smaller networks, so that it is not directly representable on
between the nodes. Each node represents a random variable, modern computers and storage systems.
and has an associated, possibly infinite domain xik � D Xi

. Note In fact, one of the primary benefits of belief networks is
that in general uppercase letters will be used for variables space compaction. In Table 2, 17 independent cells are re-
and lowercase letters for values. An arc from Xi to Xj repre- quired to represent the joint probability table, whereas only
sents a dependency between the two, and establishes Xi as nine independent cells are required to store the corresponding
the parent of its child Xj. The conditional probability table belief network. The factorization gets much more dramatic as
(CPT) of every node in the network represents the set of condi- the number of parents grow, or the domain sizes grow. For
tional probabilities Pr(Xi�
i) (shorthand for all probabilities example, if each node had 10 possible values, then the joint
matching Pr(Xi � xij�
i � �ik)), where 
i represents the set of par- would require about 1000 cells, while the belief net would re-
ents of Xi. Finally, Xi is conditionally independent of every other quire a little over 200. The space compaction is achieved by
variable in the network, given that its parents are instantiated; taking advantage of the known independence conditions be-
or Pr(Xi�
i, Xj) � Pr(Xi�
i) for any Xj � Xi and Xj � 
i. tween the variables in such a way that the belief network

Figure 1 shows a simple belief net, with the domain of each still accurately represents the probabilities stored in the joint
variable printed beneath the name of the variable. The corre- space. For any belief network, the joint probability space can

be reconstructed by multiplying through all the conditional
Parents
Smoke
[0,1,2]

Disease
[bronchitis,
halitoses,

no disease]

P

D

SSmoker
[0,1]

Figure 1. A belief net showing a simplistic relation among smoking,
bronchitis, and having parents who smoke. The name of each node is
in boldface, and the possible values appear under the name.

Table 2. Joint Probability Table for Smoker Network

Pr(D, P, S)

P, S

0,0 0,1 1,0 1,1 2,0 2,1

b .28 .13 .10 .05 .06 .04

D h .08 .10 .03 .04 .02 .03

n .02 .04 .01 .02 0 .01

This is not a conditional table, but rather a joint table representing all possible
events that could occur in the smoker domain.
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probabilities represented in the network: Pr(X1, . . ., Xn) � space, since synergistic effects might occur between any sub-
set of variables. Five assumptions are made, namely that
n

i�1 Pr(Xi�
i).

1. The process that generated the database is represent-Constructing Belief Networks
able by a belief network containing just the variables

There are two basic components to belief networks that need in Bs, which are discrete.
to be built. The graphical, or qualitative structure which rep- 2. Cases occur independently, given a belief network
resents the direct dependencies and independencies between model.
the variables in the data, and the probabilistic, or quantita- 3. Cases are complete: that is, there are no cases that have
tive structure which reflects the degree of the dependency us- variables with missing values.
ing CPTs. These components can be postulated by human ex-

4. The belief about the assignment of a value to a condi-perts, or induced directly from data.
tional probability is independent of the assignment of aAs humans, our ability to make qualitative judgements
separate conditional distribution. For example, Pr(X3 �about which variables affect the value or state of another is
0�X2 � 0) is independent of Pr(X2 � 0�X1 � 0).good, and this ability can be directly applied to establishing

5. The density function f (Bp�Bs) is uniform, where Bp is thethe graphical network structure. On the other hand, our abil-
quantitative structure, or the probabilities. This saysity to make quantitative statements is typically poor. For ex-
that there is no initial preference as to what probabili-ample, where we might be able to say that weather has an
ties to place on the structure Bs.effect on traffic, when asked to predict numerically how the

throughput on Interstate 80 will vary with snow, chances are
Assumptions 1 and 3 can be relaxed by dealing probabilis-that we would not be able to make an accurate estimate. This

tically with hidden variables and missing values [see Cooperimplies that while it might be advantageous to use human
(13) and York and Madigan (14)]. The last assumption can beexperts to construct the qualitative model, automated tools
relaxed to allow a Dirichlet prior. Finally, from Bayes rule, itare required for learning the probabilities. There are some
is clear that the probability of a structure given a database ofdomains such as medical, where data points are sparse and
examples D is found as Pr(Bs�D) � Pr(Bs, D)/Pr(D). Whencostly enough that it is still essential to be able to measure
choosing the most likely structure from a set of possibilities,and represent quantitative human expertise. This expertise is
the relative likelihoods can be used instead:often used as prior probabilities in the network (probabilities

before other data are seen), in hopes of providing the model
with a good starting point. The strength of the prior, or the
expert’s confidence, can be directly integrated into the statis-

Pr(Bsi

∣∣D)

Pr(Bs j

∣∣D)
= Pr(Bsi

, D)

Pr(Bs j
, D)

tical induction process that follows. For example, a knowledge
engineer could ask a domain expert to provide a prior proba- removing the need for a prior on the data. Cooper and Her-
bility for a cell in the CPT, then ask the expert how many skovits use these assumptions and Bayes rule and derive an
times a conflicting case would have to be seen in order to over- expression for Pr(Bs, D). The algorithm starts with a one-node
ride the estimate. This knowledge can be translated directly network, and repeats the following steps: (1) Add a node to
into parameters for several probability distributions. See the set of parents of the current node. (2) Calculate the proba-
Kleiter (10) for more details. bility of the new structure and compare it to the old. (3) If the

new structure is noticeably better, then keep the newly added
node and try another.Statistical Induction. Machine learning techniques for auto-

Given the size and the complex nature of the problem, thematically constructing belief nets from data have been moder-
results are surprisingly good. The algorithm can reproduceately successful to date. Again, there are two components that
models that are nearly equivalent to those selected by hu-need to be constructed: the graphical structure, and the prob-
mans on small- and medium-sized problems. The approachabilistic structure. There are many ways to go about doing
also makes for a good interactive modeling tool, with the abil-this. For a detailed look at the topic, see Musick (11).
ity to give the user feedback on the probability that adding
an arc will actually improve the network.

Learning Structure. There are many possible algorithms to
induce the graphical structure of a belief net from data. Look- Learning Probabilities. The problem of learning the quanti-
ing at one of these methods in depth is useful to introduce tative structure, or the CPTs, is represented in Table 3: learn
some of the common issues that come up. Cooper and Her- each of the �s shown in these tables. Each � represents an
skovits (12) proposed a Bayesian method for doing a greedy unknown conditional probability, one per cell. The �s within
search through the space of possible network structures to try any particular column of a table are dependent: they must all
to find the most likely candidate given the data. The approach add to 1. Learning the �s is typically treated as a form of
does not scale up to large networks very well, but the ideas statistical induction.
are very appealing and the general mechanism is well- Let � represent the unknown probability of some event oc-
founded. curring. Statistical induction is the task of estimating � from

The goal is to find the most probable belief network struc- a sequence of observations of the event that it describes. CPT
ture Bs given a database D of instances, or to maximize induction is mapped to the statistical induction problem by
Pr(Bs�D). This task is very difficult, as the number of possible taking each cell in a CPT to be an unknown conditional prob-
structures is super-exponential in the number of variables, ability �i, j,k (the cell for node Xi, value xij, and parent instantia-

tion �ik), and to treat the database as a set of observations Sand there is no clear way of effectively pruning the search
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found as

ξ (θi, j,k

∣∣s) = fp(s
∣∣θi, j,k )ξ (θi, j,k)

f
 fp(s
∣∣θi, j,k )ξ (θi, j,k)dθi, j,k

for θi, j,k ∈ 


which is proportional to f p(s��i, j,k)�(�i, j,k).
When sampling with replacement from the database D, a

standard description of the sample distribution f (sl��i, j,k) is as
a Bernoulli distribution; in a relevant sample, there is a �i, j,k

chance that the sample will have Xi assigned to xik (given that
the parents 
i have the assignment 
i[ j]), and a 1 	 �i, j,k

chance that Xi will have a different value. This sample distri-
bution leads to beta distributions for representing �i, j,k. See
the Appendix for more information on the beta distribution.
A sample distribution can be equivalently described as a
multinomial over the joint space, which would lead to a Dir-
ichlet distribution for the set of unknowns.

With priors distributed as beta distributions, the posterior
distributions will be betas as well. More precisely, let the
prior be a beta with parameters a and b: �(a, b). Take p sam-
ples, y of which are successful (meaning Xi � xik, 
i � 
i[ j]);
then the posterior is �(� � a � y, � � b � p 	 y). An extended
proof of this can be found in DeGroot (15). There are other
valid approaches for choosing priors as well, although per-
haps none as computationally convenient as this.

Table 3. Conditional Probability Tables for the Smoker
Network Showing Unknowns That Must Be Learned

Pr(P)

0 �19

P 1 �20

2 �21

Pr(S�P)

P

0 1 2

S 0 �22 �23 �24

1 �25 �26 �27

Pr(D�S)

S

0 1

b �28 �29

D h �30 �31

n �32 �33

This implies that storing the distribution for each condi-
tional probability is done by storing the sufficient statistics �
and �. The choice of prior is somewhat arbitrary since the

of these probabilities. It follows then that each unknown �i, j,k update process depends only on the prior being a beta. A sim-
will be estimated by a beta distribution, or equivalently that ple uniform prior in each cell of the table for variable Xi would
the entire set of �s will be estimated by a Dirichlet (an n- be �(� � 1, � � �D Xi

� 	 1). With the priors established, the
dimensional beta). induction of the quantitative structure of the network is sim-

We are given a database of instances D, where D might be ply a matter of incrementing the � and � statistics of each
very large. Let S � D be a subsample of the database that is conditional probability for each relevant sample seen. A sam-
drawn by sampling with replacement, and let BD be the belief ple is relevant to the conditional probability Pr(Xi � xik�
i �
net that corresponds to the underlying model from which D 
i[ j]) if the sample is consistent with 
i � 
i[ j]. The � statis-
was drawn. There are n variables X1, . . ., Xn represented in tic is incremented if both Xi � xik and 
i � 
i[ j] hold in the
BD, where variable Xi takes values from the set xik � D Xi

. A sample; the � statistic is incremented if Xi � xik, but 
i �
complete instance s is an element of S that assigns a value 
i[ j].
from D Xi

to every variable Xi. Let 
i be the parents of vari- One of the particular results of this type of learning is that
able Xi, 
i be the set of unique instantiations of the parents each explicitly represented conditional probability �i, j,k is

i, and 
i[ j] be the jth unique instantiation. Finally, �i, j,k is learned as a distribution, rather than as a point probability.
the combination of the parent’s instantiation 
i[ j] with the There is often confusion as to what meaning this second order
variable instantiation xik. distribution (a distribution over a probability) could have.

The formal update process, the mechanism by which the This combined with the difficulty in manipulating distribu-
conditional probability table is learned, is derived from the tions leads to the inference results in belief networks being
following arguments. In the belief net BD there are a set of computed and returned as the means of the existing distribu-
unknown conditional probabilities �i, j,k that are being esti- tions. The interpretation of the distribution for �i, j,k, however,
mated for each possible instantiation �i, j,k in the network. The is simple, meaningful, and natural. A distribution is a
estimation problem can be considered one of statistical infer- weighted range of possible values for some random variable.
ence in which observations have been taken from a probabil- The heavier the weight is, the more likely we believe that
ity density function (pdf) f (sl��i, j,k), where �i, j,k is unknown. value is correct. If that random variable happens to be a prob-
Take p independent random samples s1, . . ., sp from a distri- ability, then distribution is actually a second-order distribu-
bution f (sl��i, j,k). Let the joint pdf of the p samples be tion. The fact that each �i, j,k is being learned on the basis of a

set of observations of the real world implies that each cell in
the CPT is in essence a random variable, and therefore the
beta distributions for �i, j,k actually represent second-order dis-

fp(s
∣∣θi, j,k ) = fp(s1, . . ., sp

∣∣θi, j,k )

= f (s1

∣∣θi, j,k ) . . . f (sp
∣∣θi, j,k ) tributions.

In general, whenever a model is constructed from observa-
tions, it is more advantageous to represent the learned quan-Choose some prior distribution �(�i, j,k) for �i, j,k. The posterior

distribution �(�i, j,k�s), which is the estimate of �i, j,k, is then tities as distributions rather than point probabilities, or
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means. To begin with, the information in a distribution sub- retical work in belief networks. Unfortunately, direct applica-
tion is too slow to be an effective inference algorithm. Thesumes the mean in that the mean can be produced from the

distribution if desired. The other information represented is eventual hope is to be able to map these transformations into
a faster inference algorithm.useful as well, and can give a good indication of the stability

of the current estimate. This information has the potential to Henrion (18) shows several basic algorithms for speeding
up exact inference. The basis of the algorithms is that in spe-affect decision making in many ways. For example, a com-

pany working on particularly sensitive problems might be cial cases of belief networks called polytrees, there are O(n)
algorithms for inference. If a network can be modified to be awilling to accept and use an inference only if it can be made

with a specific degree of confidence or certainty. A distribu- polytree either by reformulation, or instantiating certain criti-
cal variables in the network (thereby removing that nodetion provides the information necessary to compute this de-

gree of belief. More meaningful comparisons can also be made from the network and leaving a polytree behind), then the
fast O(n) algorithms can be applied. Breese and Horvitz (19)in situations where there are multiple models of some situa-

tion with each model producing recommendations. For in- analytically describe the run-time tradeoff between the cost
of reformulating the network compared with the expected re-stance, instead of choosing the recommendation with the

highest probability of success (maximize potential gain), a ra- quired inference time if the current network is used, thus
clarifying how and when reformulation should be done.tional decision might be to choose a recommendation with a

smaller average gain, but much less variance in the quality The other main category of exact inference is based on
junction trees. The idea in this approach is to precomputeof the answer. This would make sense in order to minimize

the risk or potential loss associated with a decision. An analo- much of the information in the network, and organize it in
such a way as to minimize the need to do computation at in-gous situation is seen in personal finance, where investors

near retirement will choose portfolios with smaller rates of ference time. The process is described in Jensen et al. (20). A
central concept to the approach is the belief universe. A beliefreturn in favor of stable returns that have less fluctuation in

the portfolio’s overall value. universe is a clique of a subset of the nodes in the belief net-
work. The belief universe stores the joint probability mass of
the nodes in the universe, where the probability mass can beInference
converted into conditional probabilities by normalizing to 1.

Inference in a belief network involves constructing a condi- The process then is to modify the current network so that a
tional probability defined over two sets of mutually exclusive polytree of belief universes is created. When an inference is
variables in the network. The requirement is to be able to ask done, or evidence must be propagated, changes are made lo-
for any probability involving the belief network variables that cally within the belief universe, and then the result is passed
can be constructed. This includes being able to calculate a off to the next belief universe in the set. The main difficulty
probability not directly stored in the CPTs (and therefore not is that the size of the representation will be exponential in
directly learned), such as Pr(D�P) in Fig. 1. Formally, an infer- the number of variables in the largest clique, and the problem
ence problem can be defined as the task to provide a value for of finding the most parsimonious way to break the original
a query of the form: networks into a junction tree is NP-complete. Even so, this

approach is probably the most successful exact algorithm to
date for belief networks. A different approach to precomputa-
tion is taken by Darwiche and Provan (21), where networks
are converted into sets of precomputed rules, one set of rules

Pr


 ∧

Xi∈


Xi = xik

∣∣∣∣ ∧
X j ∈�

Xj = xjp




per type of query.
There are many forms of approximate inference. Approxi-where � and � are mutually exclusive subsets of the nodes

in the network. mate techniques tend to generate approximate results using
user-controlled bounds on the amount of time used to do theSeveral mechanisms have been developed to perform this

inference, both exact and approximate. There are special inference. The most commonplace are techniques based on
Monte Carlo sampling, Gibbs sampling, or logic sampling.cases where certain forms of the inference problem have been

shown to be only polynomial in the size of the input (16). The The basis of these techniques is to use the belief network as
a generator of random samples, check how many times thegeneral inference problem in this framework is, however, NP-

complete. In fact, both the exact inference problem and the desired cases show up in the random sample, and from that
compute the probabilities of those cases. There are ways ofapproximation problem have been shown to be NP-complete.

Because of the computational complexity of this problem, the speeding this process up by selecting which sample to create
goal in developing inference techniques has been to produce and then discounting the value of the sample. For reference,
algorithms that work well in most cases, where working well see Stewart (22).
must be measured both by execution time and accuracy.
Many approaches have been proposed for doing inference in Analysis
belief networks; this article describes only a few that hit dif-

Belief network reformulation has the goal of being able toferent parts of the spectrum.
sensibly modify the current structure of the belief network toOne form of exact inference is to use the set of transforma-
explore new ideas, improve inference speed, or try to improvetions discussed by Shachter (17). There is a minimal set of
the modeling accuracy of the current structure. Reformula-four transformations that are powerful enough to compute
tion can involve adding nodes, adding or removing edges, orany inference in a belief network. These transformations can
modifying the granularity of a node. When building a beliefbe precisely and simply defined, they are good tools for net-

work reformulation, and they tend to be very useful for theo- network, one must decide how to make continuous variables



270 BELIEF MAINTENANCE

discrete in order to fit them into the standard belief network Limitations and Future Work
model. This discretization problem is also termed the granu- Computational complexity, accuracy, and descriptive power
larity problem. Once done, changing the granularity of a node are the key tradeoffs that are made in any system that pro-
without impacting the rest of the network is an involved task. poses to model realistic environments. Belief networks are
There must be a mapping from the original set of node values no exception.
for one node in a network to new set. The mapping is a re-
finement if the new node is larger (by adding more node val- Complexity. Complexity in inference has been an issue for
ues the distribution is represented in more detail), and is a belief networks since the start. The problem of both exact and
coarsening if the new node is smaller. Once the new granular- approximate inference is NP-complete. The avenues of attack
ity is determined, the next step is to find new probabilities for are primarily in finding algorithms that improve average case
the CPT of the node such that the constraints set upon the performance, in precomputing certain expensive operations,
values from the old network are not violated. The changes in more carefully characterizing the problem space to identify
the node are isolated from the rest of the network by working classes of problems that are easier to solve, or trading accu-
entirely within the Markov blanket of the node in question. racy for time.
The Markov blanket of node Xi consists of the parents and Learning accurate models of an environment is a very
children of Xi, and the parents of the children of Xi. See Chang challenging computational task as well. An exciting idea in
and Fung (23) for more details. belief network induction is the introduction of hidden nodes

Sensitivity analysis is another area of interest to belief to simplify the learning problem. Given a cluster of related
network analysis. The idea is to vary certain assumptions nodes in a network, one can add a new node in such a way as
about the domain, and measure how much the output of the to reduce the total number of conditional probabilities in that
system varies. One could vary the class of distribution that is cluster. The new network will have fewer parameters to
being used, assumptions about which variables influence oth- learn, thus potentially reducing the complexity of the learn-
ers, the type or strength of the prior distribution, or the input ing problem. Hidden nodes are also useful to model an influ-
values. A robust model would be such that for a wide variety ence in the system that may be present, but about which
of settings, the resulting inferences would not be much differ- there are no data. This can come about because there may be

no way to measure it, or measurement might be too ex-ent. For an excellent description, see the book by Berger (24).
pensive.

Consider the following example in Fig. 2. Assume thatApplications
each node has five values. Then the belief net on the left has

Belief networks have been used for many applications over a total of 1270 conditional probabilities, whereas the belief
net on the right has only 395. With larger networks the reduc-the last decade; some detailed examples can be found in Ref.
tions can be even more dramatic.25. Some prototypical applications include:

The basic problem with adding hidden nodes is that there
are no data that describe hidden node H. Inducing the CPTsMarketing. Predicting which customers will respond to a
for E and F is very difficult when there is no information onmailing or buy a particular product by automatically
H. Several schemes have been proposed, but as yet there is

constructing a belief network that models the customers no completely satisfactory method for dealing with hidden
that have responded in the past. nodes.

Banking. Forecasting levels of bad loans and fraudulent
credit card usage, credit card spending patterns of new Accuracy. Accuracy has many components and at times
customers, and which kinds of customers will respond can be difficult to measure. The ultimate test is to measure
to (and qualify for) new loan offers. how close the learned or inferred probabilities are to actual

values. One method of measuring model accuracy is to buildManufacturing and Production. Predicting when to expect
a nominally correct belief network, generate data randomlymachinery failures; finding key factors that control opti-
from that model, then use the data as input to the learningmization of manufacturing capacity; predicting exces-
system. In this case, the learned models can be compared tosive vibrations in a steel mill when rolling; determining
the correct model (the original one from which data were gen-values for circuit trim resistors.
erated). To score the learned models, take the absolute value

Astrophysics. Modeling known phenomena to allow auto-
of the difference between the predicted probability and the

matic discovery in new data; distinguishing between correct probability, and average that over all the cells in all
stars and galaxies in faint images; discovering comets of the CPTs that are being learned. This is the mean error;
in terabytes of image data originally collected for other
scientific purposes.

Insurance. Forecasting amount of claims and cost of medi-
cal coverage; classifying which factors have the largest
effect on medical coverage; predicting which customers
will buy new policies.

Medicine. Predicting a drug’s mechanism of action; classi-

A B C

FE

D A B C

F

H

E

D

fying anticancer agents tested in a drug screening pro-
gram; allocating testing resources for emergency rooms; Figure 2. The hidden node H is added to the network, resulting in

significant reduction of the space required to represent the CPTs.discovery of new cures.
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the lower the mean error, the better the model. The metric the sparse information found in data-poor columns, often to
great advantage. A starting point for work in this area is Mu-can be weighted as well, with the weight of an individual er-

ror being based on the utility of the particular probability in sick (30).
A third factor influencing accuracy stems from the factquestion, or simply by weighting the error in the columns by

the probability of that column occurring (meaning the col- that the majority of inference algorithms propagate and re-
turn point probabilities as answers. This may not increaseumns with more data count more). Typically, outside of a pure

testing mode, nominally correct models are not available for actual error in most cases, but it does not give any indication
on how accurate the answers may (or may not) be. For exam-comparison. In this case, a wide range of standard model se-

lection techniques have been used, including Cp, Sp, MSE, ple, the user might ask for the Pr(smoker�2_parents_smoke),
and the system might return .334. What does that implyAIC, log scoring, and so on. Lauritzen et al. (26) provide a

good discussion of these options. about how much confidence should be placed in that answer?
Induction is inherently an uncertain process, with each addi-There are several influences on the accuracy of belief net-

work learning. One is that the standard belief network frame- tional sample generally improving the quality of the learned
model. Clearly, if .334 was based on one sample, less confi-work requires variables to be discrete. Any naturally continu-

ous variable, such as weight or age, is made discrete in this dence should be placed on it that if based on ten-million sam-
ples. Belief maintenance systems need to be able to track andapproach. The more coarse the discretization, the larger the

source of error. The finer the discretization, the greater the manipulate some measure of this uncertainty. The basis for
this capability exists in belief networks. The conditional prob-complexity of the learning problem. Two ways to address this

problem are to learn networks that can include continuous abilities learned at the nodes are naturally represented as
beta, or Dirichlet distributions. Musick (31) showed that thosevariables in the form of conditional Gaussians [Lauritzen

(27)], and to improve the way discretization is done [Kozlov distributions can be correctly manipulated during inference,
and returned in place of a point probability. The shape andand Koller (28)]. Currently belief networks with mixed

Gaussians are still problematic in that there are only certain parameters of the distribution give a good measure of the con-
fidence one should put in the stability of the results.limited constructions that are acceptable. For example, if one

node in the belief network is a conditional Gaussian, all its
Descriptive Power. Belief networks are meant as a systemchildren must be as well.

for describing and reasoning about beliefs of probabilities ofA second influence on accuracy is the fact that learning
events, and so do not provide a mechanism for representingsystems will always be faced with sparse information. A one-
information on the utility of certain events. This informationthousand petabyte database (1018 bytes) is not nearly large
is incorporated in influence diagrams (32), which share muchenough to fully characterize even a small fraction of the total
of the theoretical framework with belief networks.probability distribution over a moderate-sized domain. For ex-

Temporal dependencies are difficult to work with in beliefample, 100 variables with 10 values each gives rise to 10100

networks. One issue is whether time should be made discretedifferent events that could occur. Of course, it would be rare
as a set of points, or intervals. Another is how the affect ofthat all of the variables would be deemed as relevant or de-
time on influences in a belief network should be representedscriptive of the situations or events that are interesting. For
and reasoned about. For example, the influence of a mother’sexample, the variable Car–Color is irrelevant to the expected
opinion wanes as a child becomes an adult. A standard beliefcost of an accident. In a belief network, all the data describing
network will track that changing influence, but does not rep-cars with different colors would essentially be grouped to-
resent that change explicitly, or provide ways to reason aboutgether and treated as if the color variable does not exist. This
the change of influence directly. Several approaches haveeffectively reduces the size of the distribution that must be
been proposed to deal with this, including replicating the net-learned. Continuing this example, if only 20 of the 100 vari-
work for each time step, or representing time as a new typeables are needed to describe the most complicated interesting
of influence with unique semantics. Representing temporalevents, then the size reduces to about 1020 probabilities to
influences is still a very open challenge in the field.model. The total size of the distribution, however, is not a

Some dependencies are difficult to efficiently model in agood indicator of how many data are needed to cover it. There
belief network. The standard formalization cannot distin-will also be an uneven distribution of the probability mass
guish between when all parent variable instantiations impactover the unique parent instantiations of a CPT. In other
the child variable, and when only one subset does. If this waswords, certain columns of a CPT are much more probable
directly representable, the resulting CPTs for some nodesthan others, and thus are essentially data magnets. Even if
could be substantially smaller. For example, say weather isthe database is very large, it will be relatively easy to find
described with 20 different conditions (sunny, foggy, etc.).CPTs that have columns that have seen few relevant samples,
Weather will not typically impact whether or not an indoorleaving the probabilities in that column largely undeter-
swim meet will go on. It may only be under three types ofmined.
conditions that the meet has a chance of being cancelled—Thinking in terms of representing and learning a function
tornado alert, hurricane alert, or blizzard conditions. To rep-from the parents of a node to the conditional probabilities in
resent this effect, the size of the CPT for the meet isa node, it immediately becomes evident that the statistical
multiplied by nearly seven.induction approach is equivalent to the table-learning meth-

ods of generalization explored by Samuel (29). Table learning
methods do not generalize well. One approach that has re- CONCLUSION
ceived attention recently is to apply stronger learning algo-
rithms to the task. A neural network (for example) will gener- Belief nets are an extremely active area of research; more

than one-third of the papers published in the mid-1990s inalize from the data in the data-rich columns to supplement
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