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retrieval (6), software engineering (7,8) as well as machine
learning and data compression (9).

In database clustering, the ability to categorize data ob-
jects into groups allows the reallocation of related data to im-
prove the performance of DBMSs. Good placement of objects
could significantly decrease the response time needed to
query object-oriented databases (OODBs) (5) and help further
improve the performance of relational systems (10). Data rec-
ords which are frequently referenced together are moved in
close proximity to reduce access time. To reach this goal, clus-
ter analysis is used to form clusters based on the similarities
of data objects. Data may be reallocated based on values of
an attribute, group of attributes, or on accessing patterns. By
reallocating data objects, related records are physically placed
closely together. These criteria determine the measuring dis-
tance among data objects. Hence, it is anticipated that the
number of disk accesses required to obtain required data for
the materialization of queries will diminish.

With the proliferation of OODBs the need for good perfor-
mance clustering techniques becomes more crucial if accept-
able overall performance is to be maintained. Some OODBs
have already incorporated clustering strategies to improve
query response times; however, these strategies are mostly
heuristic and static in nature (11). The case of OODBs is
unique in that the underlying model provides a testbed for
dynamic clustering. Recently, a number of studies have ap-
peared dealing with this problem (12,13,5,14,15). In addition,
there have been studies that investigate adaptive clustering
techniques. In this context, clustering techniques can effec-
tively cope with changing access pattern and perform on-line
grouping (16,10). The need for data clustering becomes even
more pressing in light of contemporary systems and applica-
tions such as distributed databases, data mining, and knowl-
edge discovery. Frequently in distributed databases volumi-DATA REDUCTION
nous data unable to be stored in a single site are fragmented
and dispersed in a number of remote sites (17). If requestedTWO-DIMENSIONAL DATA CLUSTERING
and unclustered data are located at different locations theyUSING GROUP-BASED DISTANCES
can have tremendous impact on distributed query response
times. In data mining and knowledge discovery (18,19), clus-Data clustering enjoys wide application in diverse fields such
ter analysis can be used to reveal data associations not pre-as data mining, access structures, knowledge discovery, soft-
viously encountered (20).ware engineering, organization of information systems, and

We use the term ‘‘objects’’ in a broad sense. They can bemachine learning. In this article, the behavior and stability
anything that requires classification based on a number ofof two clustering techniques are examined: unweighted pair-
criteria. For instance, objects can represent attributes in rela-group using arithmetic averages and Ward clustering. Three
tional databases (13), complex objects in object-oriented sys-different statistical distributions are used to express how data
tems (15), software modules (7,8), etc. The only hard require-objects are drawn from a two-dimensional space. In addition,
ment needed is that they can be mapped as a unique point intwo types of distances are utilized to compare the resulting
a measurement space. Obviously, all objects to be clusteredtrees: Euclidean and Edge distances. The results of an ex-
should be defined in the same measurement space. The wayhaustive set of experiments that involve data derived from
to evaluate the degree of similarities among a number of ob-two-dimensional spaces are presented. These experiments in-
jects to be clustered varies according to the application do-dicate a surprisingly high level of similarity between the two
main and the characteristics of data used. Most of the workmethods under most combinations of parameter settings.
done today addresses problems where objects are mapped asThe main objective of cluster analysis is to create groups
points in one dimensional environment (21,15,7,5,14,8). Moreof objects based on the degree of their association (1,2). Simi-
specifically, objects are represented as points belonging to alarities among otherwise distinct data objects are exploited so
segment defined by an interval [a, b] where a and b are arbi-that these objects are classified into groups. Cluster analysis
trary numbers.has been used to determine taxonomy relationships among

In this article, we carry out an exhaustive study of knownentities in diverse disciplines including management and
clustering techniques involving objects in the two-dimen-classification of species (1), derivation of medical profiles (2,3),

census and survey problems (4), databases (5), information sional space. This type of data objects is pervasive to spatial
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databases, image databases, and so on (22). Multidimensional associations between items is needed. This can be a measure
of distances or similarities. There is a number of similarityindexing techniques and temporal databases (23) may also

tremendously benefit from efficient clustering analysis tech- measures available and the choice may have an effect on the
results obtained. Multidimensional objects may use relativeniques. There has been little reported work evaluating clus-

tering in the above context. In this study, our aim is to inves- or normalized weight to convert their distance to an arbitrary
scale so they can be compared. Once the objects are definedtigate the impact of two-dimension objects generation on the

clustering process. Issues examined include: in the same measurement space as the points, it is then possi-
ble to compute the degree of similarity. In this respect, the

• Calculation of the degree of association between different smaller the distance the more similar two objects are. The
types of data. most popular choice in computing distance is the Euclidean

distance with:• Determination of an acceptable criterion to evaluate the
‘‘quality’’ of clustering methods.

• Adaptability of the clustering methods with different dis- d(i, j) =
√

(xi1
− xj1

)2 + (xi2
− xj2

)2 + · · · + (xin
− xjn )2 (1)

tributions of data: uniformly distributed, skewed or con-
centrated around certain regions, etc. where n is the number of dimensions. Consequently for the

one-dimensional space, the distance becomes:The work reported here builds upon previous work that
we have conducted using clustering algorithms such as Slink, d(i, j) = |xi − xj | (2)
Clink, and Average in the one-dimensional space (16). Our
experimental framework takes into consideration a variety of

Coefficients of correlation are the measurement that describeenvironment parameters in order to test the clustering tech-
the strength of the relationship between two variables X andniques sensibility and behavior.
Y . It essentially answers the question how similar are X andThe organization of the article is as follows. In the first
Y ?. The values of the coefficients of correlation range from 0section, the clustering methods used in this study are de-
to 1 where the value 0 points to no similarity and the value 1scribed. Following that, we detail the experiments conducted
points to high similarity. The coefficient of correlation is usedin this study, provide the interpretations of the experiment
to find the similarity among (clustering) objects. The correla-results, and finally offer some concluding remarks.
tion r of two random variables X and Y where: X � (x1, x2,
x3, . . ., xn) and Y � (y1, y2, y3, . . ., yn) is given by the for-

CLUSTER ANALYSIS METHODS mula:

Groups of Objects and Distances

Cluster analysis groups entities that comply with a set of r = |E(X , Y ) − E(X ) · E(Y )|√
(E(X 2) − E2(X )

√
(E(Y 2) − E2(Y )

(3)

definitions (rules). A formed group should include objects
that demonstrate very high degree of association. Hence, a where E(X ) � (�n

i�1 xi)/n, E(Y ) � (�n
i�1 yi)/n, and E(X , Y ) �

cluster can be viewed as a group of similar or resembling ob- (�n
i�1 xi. � yi)/n

jects. The primary goal of clustering is to produce homoge-
neous entities. Homogeneity refers to the common properties Methods of Clustering
of the objects to be clustered. In addition, clustering displays,

Clustering methods can be classified according to the type ofsummarizes, predicts, and provides a basis for understanding
the group structures they produce: partitioning or hierar-patterns of behavior. Clusters of objects are displayed so that
chical.differences and similarities become apparent at a glance.

The first family is widely used and methods here divide aProperties of clusters are highlighted by hiding properties of
given data set of N objects into M clusters with no overlap-individuals. Thus, clusters easily isolated offer a basis for un-
ping allowed. These algorithms are known as partitioningderstanding, and speculations can be derived about the struc-
methods. Here, a cluster may be represented by a centroid orture of the cluster system. Unusual (or unexpected) formula-
cluster representative that represents the characteristics of alltions may reveal anomalies that need special consideration
contained objects. It should be noted that this method is pre-and attention.
dominantly based on heuristics.Clusters can be represented in the measurement space in

On the other hand, hierarchical methods work mostly in athe same way as the objects they contain. From that point of
bottom-up or top-down fashion. In the example of the bottom-view, a single point is a cluster containing exactly one object.
up approach, the algorithm proceeds by performing a seriesThere are generally two ways to represent clusters in a mea-
of successive fusions. This produces a nested data set insurement space as:
which pairs of items or clusters are successively linked until
every item in the data set is linked to form one cluster. Hier-• a hypothetical point which is not an object in the cluster,

or as archical methods can be further categorized as:
• an existing object in the cluster called centroid or cluster

• Agglomerative in which N–1 pairwise joins are producedrepresentative.
from an unclustered data set. In other words, from N
clusters of one object, this method gradually forms oneTo cluster data objects in a database system or in any

other environment, some means of quantifying the degree of cluster of N objects. At each step, clusters or objects are
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joined together into larger clusters ending with one big similarity between two clusters is called the similarity coeffi-
cient. This is not to be confused with coefficient of correlationscluster containing all objects.
as the latter are used to compare outcomes (i.e., hierarchical• Divisive in which all objects belong to a single cluster at
trees) of the clustering process. The way objects and clustersthe beginning, then they are divided into smaller clusters
of objects coalesce together to form larger clusters varies withuntil the last cluster containing two objects have been
the approach used. Below, we outline a generic algorithm thatbroken apart into atomic constituents.
is applicable to all clustering methods (initially, every cluster
consists of exactly one object):In both families of methods, the result of the procedure is

a hierarchical tree. This tree is often presented as a dendro-
1. Create all possible cluster formations from the existinggram, in which pairwise couplings of the objects in the data

ones.set are shown and the length of the branches (vertices) or
2. For each such candidate compute its corresponding sim-the value of the similarity is expressed numerically. Divisive

ilarity coefficient.methods are less commonly used (24) and in this article, we
only discuss agglomerative techniques. As we are targeting 3. Find out the minimum of all similarity coefficients and
the area of databases, agglomerative approaches naturally fit then join the corresponding clusters.
in within this paradigm (13,14,11). 4. If the number of clusters is not equal to one (i.e., not all

clusters have coalesced into one entity), then go to step
Clustering Techniques 1. Otherwise terminate.

In this section, we discuss hierarchical agglomerative cluster-
Essentially, the algorithm consists of two phases: the firsting methods and their characteristics. More specifically, we
phase records the similarity coefficients. The second phasefocus on two methods that enjoy wide usage (1,25).
computes the minimum coefficient and then performs the
clustering.

Group Average Link Method. This method uses the average There is a case where ambiguity may arise when using
values pairwise distance, denoted D X,Y, within each par- average-based methods. For instance, let us suppose that
ticipating cluster to determine similarity. All participating when performing Step 1 (of the previous algorithmic skele-
objects contribute to intercluster similarity. There are two ton), three successive clusters are to be joined. All these three
different submethods based on this approach: Unweighted clusters have the same minimum similarity value. When per-
Pair-Group using Arithmetic Averages (UPGMA) and forming Step 2, the first two clusters are joined. However,
Weighted Pair-Group using Arithmetic Averages (WPGMA). when computing the similarity coefficient between this new
The WPGMA is a special case of UPGMA. In WPGMA, the cluster and the third cluster, the similarity coefficient value
smaller cluster is leveled with the larger one, and the smaller may now be different from the minimum value. The question
group has the same weight as the larger one to enhance the at this stage is what the next step should be. There are essen-
influence of smaller groups. These two methods are also tially two options:
called average linkage clustering methods (26,1,25). The dis-
tance between two clusters is:

• continue by joining clusters using a recomputation of the
similarity coefficient every time we find ourselves in Step
2, orDX ,Y =

∑
Dx,y

nX · nY
(4)

• join all those clusters that have the same similarity coef-
ficient at once and do not recompute the similarity in

where X and Y are two clusters, x and y are objects from X Step 2.
and Y, D x,y is the distance between x and y, and nX and nY are
the respective sizes of the clusters. In WPGMA, these two In general, there is no evidence that one is better than the
numbers are set to the higher number in both clusters. other (1). For our study, we selected the first alternative.

Ward’s Method. This method is based on the statistical Statistical Distributions
minimization of clustering expansion (3). In the course of ev-

As already mentioned, objects that participate in the cluster-ery step, the central point is calculated for any possible com-
ing process are randomly selected from a designated area (i.e.,bination of two clusters. In addition, the sum of the squared
[0, 1] � [0, 1]). There are several random distributions; wedistances of all elements in the clusters from their central
chose three that closely model real world environments (3).points is computed. The two clusters that offer the smallest
Our aim is to examine whether clustering is dependent on thepossible sum are used to formulate the new cluster. The no-
way objects are generated. We use three distributions for thetion of distance used here has no geometric nature.
creation of data, namely: uniform, piecewise (skewed), and
finally Gaussian distribution. Next, we describe these statisti-General Algorithm
cal distributions in terms of distribution and density func-

Before the grouping commences, objects following the chosen tions.
probabilistic guidelines are generated. In this article, objects
are randomly selected and are drawn from the interval [0, Uniform Distribution. The respective distribution function

is the following: F (x) � x. The density function of this distri-1]2. Subsequently, the objects are compared to each other by
computing their distances. The distance used in assessing the bution is f (x) � F 	(x) � 1 
x such that 0 � x � 1.
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Piecewise (Skewed) Distribution. The respective distribution
function is the following:

F (x) =




0.05 if 0 ≤ x < 0.37
0.475 if 0.37 ≤ x < 0.62
0.525 if 0.62 ≤ x < 0.743
0.95 if 0.743 ≤ x < 0.89
1 if 0.89 ≤ x ≤ 1

(5)

The density function of this distribution is: f (x) � F (b) �
F (a)/b � a 
x such that a � x � b.

Guassian (Normal) Distribution. The respective distribution
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Figure 1. Clustering tree using Average.

F (x) = 1

σ
√

2π
e−(x−µ)2/2σ 2

(6)

This is a two-parameter (� and �) distribution, where � is the
values are selected following the uniform distribution (see Ta-mean of the distribution and �2 is the variance. The density
ble 1).function of the Gaussian Distribution is:

Example 1. The steps described in this example give the pro-
gression of the algorithm while deploying the Arithmetic Av-

f (x) = F ′(x) = 1√
2π

µ − x
σ 3

e−(x−µ)2/2σ 2
(7)

erage method with Unweighted Pair-Group. The dendrogram
In producing samples for the Gaussian distribution, we produced by this algorithm is shown in Fig. 1.
choose � � 0.5 and � � 0.1.

1. Join clusters �8� and �9� at distance 0.064530.
2. Join clusters �1� and �3� at distance 0.122205.
3. Join clusters �0� and �2� at distance 0.173403.
4. Join clusters �4� and �5� at distance 0.194439.
5. Join clusters �1, 3� and �6� at distance 0.264958.

F (x) =




0.00132 if 0.1 ≤ x < 0.2
0.02277 if 0.2 ≤ x < 0.3
0.15867 if 0.3 ≤ x < 0.4
0.49997 if 0.4 ≤ x < 0.5
1 for 0.0 ≤ x ≤ 1

(8)

6. Join clusters �4, 5� and �7� at distance 0.266480.
7. Join clusters �1, 3, 6� and �4, 5, 7� at distance 0.363847.

For values of x that are in the range [0.5, 1], the distribution
8. Join clusters �0, 2� and �8, 9� at distance 0.481293.is symmetric.
9. Join clusters �0, 2, 8, 9� and �1, 3, 6, 4, 5, 7� at distance

0.558245.Two Examples

Here, we present examples of how data is clustered in order
Example 2. The clustering of the two-dimensional sets ofto illustrate how different clustering method work with the
points using the Ward method is provided here. For eachsame set of data. Example 1 uses the Average while Example
step we give the central point that results in the smallest2 demonstrates the work of the Ward method. The sample
squared sum of distances. The resulting dendrogram is showndata set has 10 items and each item has an identification and
in Fig. 2.coordinate values that help us calculate the distances. Data

1. Clusters �8� and �9� maintain their central point at
(0.951178, 0.136909) and join at distance 0.0020820397.

2. Clusters �1� and �3� have their central point at
(0.533135, 0.833703) and joint at distance
0.0074670143.

3. Clusters �0� and �2� maintain their central point at
(0.492418, 0.260951) and join at distance 0.0150342664.

4. Clusters �4� and �5� have their central point at
(0.642992, 0.502933) and join at distance 0.0189031674.

5. Clusters �6� and �7� maintain their central point at
(0.837329, 0.714292) and join at distance 0.0359191013.

6. Clusters �0, 2� and �4, 5� have their central point at
(0.567704, 0.381942) and join at distance 0.1112963505.

Table 1. Example of a Sample Data List (Ordered)

Id X Y

0 0.459162 0.341021
1 0.480827 0.865283
2 0.525673 0.180881
3 0.585444 0.802122
4 0.639835 0.405765
5 0.646148 0.600101
6 0.795807 0.841711
7 0.878851 0.586874
8 0.945476 0.105152
9 0.956880 0.168666
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The correlation coefficient is used as the main vehicle for
comparing two trees obtained from lists of objects. The notion
of distance used in the computation of the correlation coeffi-
cients could be realized in two ways: firstly, actual linear dif-
ference between any two objects could be used resulting in
what is known as the Euclidean or linear difference. Sec-
ondly, the minimum number of edges in a tree that are re-
quired to join any two objects is used; this distance is termed
the Edge difference. It is speculated that the latter way to
compute the difference helps in a more ‘‘natural’’ implementa-
tion of a correlation. Once a distance type is chosen, we may
proceed with the computation of the correlation coefficient.
This is accomplished by first selecting a pair of identifiers
(two objects) from a list (linearized tree) and calculating their
distance and then by selecting the pair of identifiers from the
second list (linearized tree) and computing their distance. We
repeat the same process for all remaining pairs in the sec-
ond list.

There are numerous families of correlation coefficients that
could be examined. This is due to the fact that various param-
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eters are involved in the process of evaluating clustering ofFigure 2. Clustering tree using Ward.
objects in the two-dimensional space. More specifically, the
clustering method is one parameter (i.e., Average or Ward);
the method of computing the distances is another one (i.e.,
linear or edge); and finally, the distribution followed by the

7. Clusters �1, 3� and �6, 7� maintain their central point at data objects (i.e., uniform, piecewise, and Gaussian) is a third
(0.685232, 0.773998) and join at distance 0.1217264622. parameter. In total, there are twelve (e.g., 2*2*3 � 12) possi-

ble ways to compute correlation coefficients for any two lists8. Clusters �0, 2, 4, 5� and �8, 9� have their central point at
of objects. Also, the dimensional space added in this study(0.695529, 0.300264) and join at distance 0.4144132554.
may have a direct influence on the clustering. This deter-9. Clusters �0, 2, 4, 5, 8, 9� and �1, 3, 6, 7� maintain their
mines what kind of data are to be compared and what theircentral point at (0.691410, 0.489758) and join at dis-
sizes are.tance 1.2178387810.

We have identified a number of cases to check the sensitiv-
ity of each clustering method with regard to the input data.

EXPERIMENTAL METHODOLOGY For every type of coefficient of correlation previously men-
tioned, eleven types of situations (hence, eleven coefficients of

The number of data items presented in this study ranges from correlation) have been isolated. All these types of situations
100 to 500; data are drawn from a two-dimensional (2-D) are representative of a wide range of practical settings (16)
space and the values of the two coordinates range from 0 to 1 and can help us understand the major factors that influence
inclusive. In order to generate random sample data, the con- the choice of a clustering method (2,29,30).
gruential linear algorithm described in (27,28) is used with We partition these settings into three major groups, repre-
the seed set to the computing system time. sented by three templates or blocks of correlation coefficients.

Every conducted experiment goes through the following First Block. The coefficients presented in this set examine
three steps: the influence of context in how objects are finally clustered.

In particular, the correlation coefficients are between:
1. Create the lists of objects.
2. Carry out the clustering process with the two different

1. Pairs of objects drawn from a set S and pairs of objectsclustering methods (i.e., Average and Ward).
drawn from the first half of the same set S. The first

3. Calculate the coefficient of correlation for each cluster- half of S is used before the set is sorted.
ing method.

2. Pairs of objects drawn from S and pairs of objects drawn
from the second half of S. The second half of S is usedFor the purpose of obtaining a statistically representative
before the set is sorted.clustering behavior, there is a need to repeat the same proce-

3. Pairs of objects drawn from the first half of S, say S2,dure a number of times. To achieve that goal, each experi-
and pairs of objects drawn from the first half of anotherment is repeated 100 times and the standard deviation of the
set S	, say S	2. The two sets are given ascending identi-coefficients of correlation is calculated. The least square ap-
fiers after being sorted. The first object of S2 is given asproximation (LSA) is used to evaluate the acceptability of the
identifier the number 1 and so is given the first objectapproximation. If a correlation coefficient obtained using the
of S	2. The second object of S2 is given as identifier theLSA falls within the segment defined by the corresponding
number 2 and so is given the second object of S	2 and sostandard deviation, the approximation is considered ac-

ceptable. on.



DATA REDUCTION 735

4. Pairs of objects drawn from the second half of S, say
S2, and pairs of objects drawn from the second half of
S	, say S	2. The two sets are given ascending identifiers
after being sorted in the same was as the previous case.

Second Block. This set of coefficients determines the influ-
ence of the data size. Coefficients of correlation are drawn be-
tween:

5. Pairs of objects drawn from S and pairs of objects drawn

Table 2. List of Abbreviations

Term Shorthand

Average A
Ward W
Uniform Distr. U
Gaussian Distr. G
Piecewise Distr. P
Linear Distance L
Edge Distance E

from the union of a set X and S. The set X contains 10%
new randomly generated objects.

6. Pairs of objects drawn as in case 5 but the set X con-
tains 20% new randomly generated objects.

how they compare to each other. For the sake of readability,
7. Pairs of objects drawn as in case 5 but the set X con- an abbreviated notation is used to indicate all possible cases.

tains 30% new randomly generated objects. A similar notation has been used in our previous findings
8. Pairs of objects drawn as in case 5 but the set X now (16). For instance, to represent the input with the parameters

contains 40% new randomly generated objects. Average, Uniform distribution, and Linear distance, the ab-
breviation AUL is used. (See Table 2.)

Third Block. The purpose of this group of coefficients is to The derived results are presented in figures and tables.
determine the relationship that may exist between two lists of The figures generally describe the different types of coeffi-
two-dimensional objects derived using different distributions. cients of correlation. The tables on the other hand describe
More specifically, the coefficients of correlation are drawn be- the least square approximations of the coefficients of correla-
tween: tions.

9. Pairs of objects drawn from S using the uniform distri- Analysis of the Stability and Sensitivity
bution and pairs of objects drawn from S	 using the of the Clustering Methods
piecewise distribution.

We first look at the different clustering methods and analyze10. Pairs of objects drawn from S using the uniform distri-
how stable and sensitive they are to the various parameters.bution and pairs of objects drawn from S	 using the
More specifically, we are interested in knowing how sensitiveGaussian distribution.
each clustering method is to the changes of key parameter11. Pairs of objects drawn from S using the Gaussian dis-
values.tribution and pairs of objects drawn from S	 using the

piecewise distribution.
Average: Results Interpretation. We look at the behavior of

the three blocks of coefficients of correlation values as definedIn summary, all eleven types of coefficients of correlation are
in the section on Experimental Methodology. We then providemeant to analyze different settings in the course of our evalu-
an interpretation of the corresponding results.ation.

First Block of Coefficients of Correlation. Figure 3 shows theTo ensure the statistical viability of the results, the aver-
four first coefficients of correlation corresponding to variousage of one hundred coefficient of correlation and standard de-
alternate settings described by the block as the size of theviation values (of the same type) are computed. The least
participating lists ranges from one to five hundred objects. Insquare approximation was then applied to obtain the follow-
addition, the corresponding standard deviations curves for alling equation:
the experiments are shown as well. The difference between
curves computing with either linear (L) or edge (E) distancesf (x) = ax + b (9)
is consistently small across all experiments. We also note that

The criterion for a good approximation (or acceptability) is the values obtained using L are consistently larger than those
given by the inequality: resulting from the application of edge distance E. This is due

to the fact that when L is used, the distance between the
members of two clusters is the same for all members of the|yi − f (xi )| ≤ σ (yi) for all i (10)

considered clusters. However, when E is used, this may not
where yi is the coefficient of correlation, f is the approxima- be true (e.g., tree that is not height balanced) since the dis-
tion function and � is the standard deviation for yi. If this tance is equal to the number of edges connecting two mem-
inequality was satisfied, then f was a good approximation. bers belonging to different clusters. In the case of Fig. 4 (and
The least square approximation, if acceptable, helps predict the subsequent Fig. 8) the difference is attenuated due to the
the behavior of clustering methods for points beyond the use of different distributions. When the values in L and E
range considered in our experiments. are compared against each other, the trend among the four

coefficients of correlation is almost the same. This points to
the fact that the distance type does not play a major role inEXPERIMENTAL RESULTS
the final clustering.

The absolute values maintained by the first and secondAs stated earlier, the aim of this article is to conduct experi-
ments to determine the stability of clustering methods and types of correlation throughout the range of objects are larger
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Figure 3. Average: first block of coefficient of correlation.

than their counterparts from the third and fourth types. This ficient of correlation curves. This strongly suggests that the
different types of correlation behave in a uniform and predict-is attributed largely to the corresponding intrinsic semantics:

the first and second types of correlations compare data objects able fashion.
It is worthwhile noting that all the values for the correla-drawn from the same initial set, whereas the third and fourth

types of correlation associate data objects derived from differ- tion coefficients remain greater than 0.5 throughout all the
graphs of Fig. 3. This fact implies that the data context doesent sets. This conforms to the expectation that objects from

the first two correlations would be more closely related than not seem to play an important role in the final data cluster-
ing. In a similar fashion, one can conclude that the data setdata objects for the latter two. The standard deviation curves

exhibit roughly the same behavior as the corresponding coef- size does not seem to have a substantial influence on the final
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Figure 4. Average: third block of coefficient of correlation.

clustering. Note that the slope value is almost equal to zero. strapping the random number generator. This is constant
throughout most of the experiments conducted in this study.This is also confirmed by the uniform behavior across all the

graphs of the standard deviation values above. When the values in the cases of L and E are compared, no
substantial difference is observed. This underlines the inde-
pendence of the clustering from the two types of distancesSecond Block of Coefficients of Correlation. The experimen-
used. As the standard deviation values exhibit the same be-tal results discussed in this section examine the influence
havior as the corresponding coefficient of correlation values,that the data size has on clustering. The produced graphs for
uniform and predictable behavior of the different types of cor-the coefficients described by the second block are shown in
relations is verified.Fig. 5. Both coefficient values and standard deviations are de-

Since coefficient values converge around the value 0.5, thispicted as the number of objects participating in the experi-
indicates that the distributions do not effect the clusteringments increases up to five hundred. The clustering method
very much. The increase in the data size does not influenceremains invariant (i.e., Average) while distance computations
the final clustering outcome as the slope is nearly equal toare performed with both linear and edge fashion using the
zero. Therefore, the data set size does not have a substantialthree distributions.
influence on the final clustering.There is no substantial difference between the curves com-

puted using the linear (L) and edge (E) distances. This is in-
Ward: Results Interpretation. The results of the experimentsdicative of the independence of the clustering from the type

using the Ward clustering method generally following theof distance used. The standard deviation values also exhibit
same type of pattern and behavior as the Average clusteringthe same behavior as one demonstrated by the corresponding
method. Figure 6, Fig. 7, and Fig. 8 depict the first, second,coefficient of correlation values. This implies that the four
and third blocks of coefficients of correlation. The interpreta-types of correlation coefficients described by the second block
tions that apply for the previous clustering method also applymaintain a uniform and predictable behavior despite the
for the Ward clustering methods as the resulting curves herechanges in the data sizes. The high values of the coefficients
follow a similar pattern of behavior. Indeed, the values for theobtained suggest that the context sizes have little effect on
coefficients of correlation and the standard deviations followhow data is clustered. As in the previous case, the data size
similar trends. In fact, there are few differences in the behav-does not seem to influence the final clustering outcome very
ior of the Ward method as compared to the Average method.much as the slope (of the curves) is nearly equal to zero.

Acceptability of the Least Square Approximation
Third Block of Coefficients of Correlation. The subsequent

three coefficients of correlation check the influence of the dis- Tables 3, 4, and 5 represent the least square approximations
for all the curves shown in our study. The acceptability oftribution for L and E. All other parameters are set the same

for all pairs of objects in comparison. The curve representing an approximation depends on whether all the coefficients of
correlation values fall within the interval delimited by thethe case for UP (Uniform and Piecewise distributions) in ei-

ther L or E case demonstrates values lower than the corre- approximating function and the standard deviation. If this is
the case, then we say that the approximation is good. Other-sponding values in the curves for both UG (Uniform and

Gaussian distributions) and GP (Gaussian and Piecewise dis- wise, we identify the number of points that do not fall within
the boundaries and determine the quality of the function. Us-tributions). This can be explained by the problem of boot-
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Figure 5. Average: second block of coefficient of correlation.

ing these functions enables us to predict the behavior of the Ward clustering methods. Asymptotic values are used to
provide a single value to represent the different clusteringclustering methods with higher data set sizes.
situations and for both clustering methods. The leastAs all the tables show, the values of the slopes (deriva-
square approximations are used as a tool for predictingtives) are all very small. This is indicative for the stability of
and asymptotic values.all results. All approximations yield almost parallel lines to

Block 1, Block 2, and Block 3 correspond to the first, sec-the x-axis. The acceptability test was run and all points
ond, and third block of correlation of coefficients described inpassed the test satisfactorily. Therefore, all the approxima-
a previous section. The summary points to a high level of sim-tions listed in the tables mentioned are good approximations.
ilarity when asymptotic values are used when comparing the

Tabular Summary of Results for Average and Ward. Table 6 two methods. This should come as a surprise as the different
parameters used do not seem to play any role in differentiat-summarizes the results obtained using the Average and
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ing between the two methods. We provide a detailed compara- the experiments and are shown in the presented figures
and tables.tive analysis in the next section.

Context. The results show that across space dimensions,
the context (i.e., where the objects are drawn) does not com-Comparison of Results across Average
pletely hide the sets. For instance, the first and second typesand Ward Clustering Methods
of coefficients of correlation (as shown in all figures) are a

In this section, we compare the different clustering meth- little different from the third and fourth types of coefficient of
ods against each other in light of the different parameters correlation (as shown in all figures). The values clearly show

that the context is visible.used in this study. These observations are drawn from
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Figure 6. Ward: first block of coefficient of correlation.



740 DATA REDUCTION

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1
100 150 200 250

Ward linkage – Piecewise dist. – Linear

300
Size

Ward linkage – Piecewise dist. – Edge

Ward linkage – Uniform dist. – Linear Ward linkage – Uniform dist. – Edge

Size
350 400 450 500

st
d

/c
c(

5
-8

)

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1
100 150 200 250 300 350 400 450 500

st
d

/c
c(

5
-8

)

0.8

0.9

0.7

0.6

0.5

0.4

0.3

0.2

0.1
100 150 200 250

Ward linkage – Gaussian dist. – Linear

300
Size

350 400 450 500

st
d

/c
c(

5
-8

)

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1
100 150 200 250

Ward linkage – Gaussian dist. – Edge

300
Size

350 400 450 500

st
d

/c
c(

5
-8

)

0.7

0.8

0.6

0.5

0.4

0.3

0.2

0.1
100 150 200 250 300

Size
350 400 450 500

st
d

/c
c(

5
-8

)

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1
100 150 200 250 300

Size
350 400 450 500

st
d

/c
c(

5
-8

)
Legend

fifth cc/sd
sixth cc/sd
seventh cc/sd
eighth cc/sd

Figure 7. Ward: second block of coefficient of correlation.

The second block of coefficients of correlation for both clus- The results also show that the data distribution does
not significantly affect the clustering techniques becausetering methods (fifth to eight coefficient of correlations, see

Fig. 5 and Fig. 7), demonstrate that data size changes (per- the values obtained are very similar to each other (see
Fig. 3, Fig. 5, and Fig. 6, Fig. 7, and Table 6). That is aturbations) do not influence the data clustering because all

coefficients of correlation values are high and somewhat close relatively significant finding as the results strongly point
to the independence of the distribution and the data clus-to 1.

Distribution. The results in all figures and Table 6 show tering.
Stability. The results as shown in all figures also indicatethat given the same distribution and type of distance, both

clustering methods exhibit the same behavior and yield ap- that both clustering methods are equally stable. This finding
comes as a surprise, as intuitively (because of the procedureproximately the same values.
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Figure 8. Ward: third block of coefficient of correlation.

Table 3. Function Approximation of the First Block of Coefficients of Correlation

First Correlation Second Correlation Third Correlation Fourth Correlation

AUL 0.000023 X � 0.72 0.00035 X � 0.73 0.00057 X � 0.62 0.00007 X � 0.63
AUE 0.00074 X � 0.67 0.00042 X � 0.65 0.00095 X � 0.59 0.00106 X � 0.58
APL 0.00061 X � 0.86 �0.00071 X � 0.88 �0.00074 X � 0.67 �0.0007 X � 0.66
APE 0.0000017 X � 0.81 0.000003 X � 0.80 0.0000096 X � 0.60 0.0000108 X � 0.62
AGL 0.00019 X � 0.78 0.00014 X � 0.77 �0.00084 X � 0.67 �0.00086 X � 0.67
AGE 0.0000054 X � 0.72 0.00059 X � 0.69 �0.000095 X � 0.63 0.000116 X � 0.61
WUL �0.000009 X � 0.70 0.000001 X � 0.71 0.00043 X � 0.64 0.00051 X � 0.64
WUE 0.000063 X � 0.63 0.000044 X � 0.61 �0.0009 X � 0.56 0.00093 X � 0.58
WPL �0.0000029 X � 0.80 �0.0004 X � 0.81 �0.00045 X � 0.64 �0.0000034 X � 0.65
WPE �0.00012 X � 0.76 0.00023 X � 0.76 �0.0000074 X � 0.57 �0.0000082 X � 0.59
WGL 0.00022 X � 0.71 0.000004 X � 0.72 �0.0000055 X � 0.63 �0.000055 X � 0.62
WGE 0.0000057 X � 0.68 0.0007 X � 0.64 �0.00076 X � 0.60 �0.00086 X � 0.60

Table 4. Function Approximation of the Second Block of Coefficients of Correlation

Fifth Correlation Sixth Correlation Seventh Correlation Eighth Correlation

AUL 0.00028 X � 0.75 �0.0003 X � 0.74 �0.00019 X � 0.76 0.0004 X � 0.76
AUE 0.000059 X � 0.72 0.00073 X � 0.70 0.00065 X � 0.67 �0.00063 X � 0.67
APL �0.00051 X � 0.93 �0.00052 X � 0.93 �0.00053 X � 0.93 �0.00025 X � 0.89
APE 0.0001 X � 0.81 0.000013 X � 0.78 0.00031 X � 0.79 0.000022 X � 0.79
AGL 0.0000041 X � 0.81 0.00032 X � 0.82 0.00033 X � 0.82 �0.0000023 X � 0.83
AGE 0.0000026 X � 0.78 0.00023 X � 0.77 0.00047 X � 0.76 0.00049 X � 0.75
WUL �0.0000019 X � 0.71 �0.00023 X � 0.72 �0.0003 X � 0.71 �0.000038 X � 0.71
WUE 0.00044 X � 0.70 0.00044 X � 0.68 �0.00056 X � 0.66 �0.00059 X � 0.65
WPL �0.0000055 X � 0.89 �0.000053 X � 0.88 �0.00048 X � 0.87 �0.000033 X � 0.84
WPE 0.00022 X � 0.76 0.00026 X � 0.72 0.000045 X � 0.73 0.00031 X � 0.73
WGL 0.0002 X � 0.78 0.00014 X � 0.76 0.0000027 X � 0.75 0.0000033 X � 0.74
WGE 0.0000032 X � 0.74 0.00036 X � 0.72 0.00068 X � 0.68 �0.00066 X � 0.66
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cluster, and independently from any technique used. The sec-
ond important result this study seems to suggest is that the
sole discriminator for selecting a clustering method should be
based on its computatational attractiveness. This is a signifi-
cant result as in the past there was no evidence that cluster-
ing methods exhibited similar patterns of behavior (1).

Table 5. Function Approximation of the Third Block of
Coefficients of Correlation

Ninth Correlation Tenth Correlation Eleventh Correlation

AL �0.0000116 X � 0.52 �0.00114 X � 0.51 �0.0000121 X � 0.51
AE 0.00092 X � 0.58 �0.00096 X � 0.56 �0.00094 X � 0.56
WL �0.00093 X � 0.51 �0.00098 X � 0.49 �0.00093 X � 0.49
WE �0.0000082 X � 0.53 �0.00092 X � 0.52 �0.00089 X � 0.52

SUMMARY

As clustering enjoys increased attention in data analysis of
various computing fields such as data mining, access struc-
tures, and knowledge discovery, the study of the quality ofin computing the distances), one expects the Average cluster-
various alternative methods becomes imperative. In this pa-ing method to show more stability than Ward.
per, we study the stability and behavior of two such clusteringClustering Behavior. The third block of coefficients of corre-
techniques, namely: the unweighted pair-group using arith-lation (see Fig. 4 and Fig. 8) across both clustering methods
metic averages (termed Average) and Ward clustering. Datashow that the two methods are little or not perturbed even in
objects are drawn from a two-dimensional space followinga noisy environment since there are not significant differences
three different statistical distributions. In the course of ourin results from Uniform and Piecewise, and Gaussian distri-
evaluation two types of distances are used to compare the re-butions. In addition, it is important to mention that the stan-
sulting trees: the Euclidean and Edge distances. An exhaus-dard deviation small values (around 0.2) for all methods as
tive set of experiments is carried out in order to determineshown in the figures seem to suggest a relatively high behav-
the various characteristics that the two methods offer. Theior stability. This important characteristic holds indepen-
three key results of this study are:dently from any changes in all the parameters considered for

this study.
1. The Average and Ward clustering methods offer similarDistance Used. The type of distance (linear or edge) as

behavior and produce directly comparable results in ashown in all figures does not influence the clustering process
large number of diverse settings. We speculate that thisas there are not significant differences between the coeffi-
similarity is attributed to the aggregate way distancescients of correlation obtained using either linear or edge dis-
are computed in order to determine similarity dis-tances.
tances.These findings are in line with earlier findings (16) where

2. The two methods produce stable results.one-dimensional data samples and fewer parameters were
utilized. The results obtained here tend to indicate that no 3. The distributions of the two-dimensional data as well
clustering technique is better than the other when data are as the type of distances used in our exhaustive experi-
drawn from a two-dimensional space. What this essentially ments do not affect the clustering techniques.
means is that there is an inherent way for data objects to

The outcomes presented here are a strong indication that
clustering methods in the two-dimensional space do not seem
to influence the outcome of the clustering process. Indeed,
both clustering methods considered here exhibit a behavior
that is almost constant regardless of the parameters used in
comparing them. Future work includes examination of the
stability of various clustering techniques in the three- and
multidimensional data spaces and studying the effects that
the various data-related and clustering parameters have in
divisive methods.
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