
DATA STRUCTURES AND ALGORITHMS f (n) � �[g(n)]. Usually we express the run times (or the space
complexities) of algorithms using �(). The algorithm for

An algorithm is any technique used to solve a given problem. finding the minimum of n given numbers takes �(n) time.
An algorithm designer is faced with the task of developingThe problem could be that of rearranging a given sequence

of numbers, solving a system of linear equations, finding the the best possible algorithm (typically an algorithm whose run
time is the best possible) for any given problem. Unfortu-shortest path between two nodes in a graph, and so on. An

algorithm consists of a sequence of basic operations, such as nately, there is no standard recipe for doing this. Algorithm
researchers have identified a number of useful techniques,addition, multiplication, comparison, and so on and is typi-

cally described in a machine-independent manner. When an such as the divide-and-conquer, dynamic programming,
greedy, backtracking, and branch-and-bound. Application ofalgorithm is coded in a specified programming language, such

as C, C��, or Java, it becomes a program that can be exe- any one or a combination of these techniques by itself may
not guarantee the best possible run time. Some innovationscuted on a computer.

For any given problem, there could be many different tech- (small and large) may have to be discovered and incorporated.
Note that all logarithms used in this article are to the baseniques that solve it. Thus it becomes necessary to define per-

formance measures to judge different algorithms. Two popu- 2, unless otherwise mentioned.
lar measures are time complexity and space complexity.

The time complexity or the run time of an algorithm is the
total number of basic operations performed in the algorithm. DATA STRUCTURES
As an example, consider the problem of finding the minimum
of n given numbers. This is accomplished by using (n � 1) An algorithm can be thought of as a mapping from the input
comparisons. Of the two measures perhaps time complexity is data to the output data. A data structure refers to the way
more important. This measure is useful for the following rea- the data are organized. Often the choice of the data structure
sons: (1) We can use the time complexity of an algorithm to determines the efficiency of the algorithm using it. Thus the
predict its actual run time when it is coded in a programming study of data structures plays an essential part in algorith-
language and run on a specific machine. (2) Given several dif- mic design.
ferent algorithms for solving the same problem, we can use Examples of basic data structures include queues, stacks,
their run times to identify the best one. etc. More advanced data structures are based on trees. Any

The space complexity of an algorithm is defined as the data structure supports certain operations on the data. We
amount of space (i.e., the number of memory cells) used by can classify data structures depending on the operations sup-
the algorithm. This measure is critical especially when the ported. A dictionary supports Insert, Delete, and Search
input data are huge. operations. On the other hand a priority queue supports In-

We define the input size of a problem instance as the sert, Delete-Min, and Find-Min operations. The operation
amount of space needed to specify the instance. For the prob- Insert is to insert an arbitrary element into the data struc-
lem of finding the minimum of n numbers, the input size is n ture. Delete is the operation of deleting a specified element.
because we need n memory cells, one for each number, to Search takes an element x as input and decides if x is in the
specify the problem instance. For the problem of multiplying data structure. Delete-Min deletes and returns the mini-
two (n � n) matrices, the input size is 2n2 because that many mum element from the data structure. Find-Min returns the
elements are in the input. Both the run time and the space minimum element from the data structure.
complexity of an algorithm are expressed as functions of the
input size.

Queues and Stacks
For any given problem instance, its input size alone may

not be enough to decide its time complexity. To illustrate this In a queue, two operations are supported, namely, insert
and delete. The operation insert is supposed to insert apoint, consider the problem of checking if an element x is in

an array a[1 : n]. This is called the searching problem. One given element into the data structure. On the other hand, de-
lete deletes the first element inserted into the data struc-way of solving this problem is to check if x � a[1]. If not check

if x � a[2], and so on. This algorithm may terminate after the ture. Thus a queue employs the first in, first out policy. A
stack also supports insert and delete operations but usesfirst comparison, after the second comparison, . . ., or after

comparing x with every element in a[]. Thus it is necessary the last in, first out policy.
A queue or a stack is implemented easily by using an arrayto qualify the time complexity as the best case, the worst case,

the average case, etc. The average-case run time of an algo- of size n, where n is the maximum number of elements that
is ever stored in the data structure. In this case an insertrithm is the average run time taken over all possible inputs

(of a given size). or a delete is performed in O(1) time. We can also imple-
ment stacks and queues by using linked lists. Even then theAnalysis of an algorithm is simplified using asymptotic

functions, such as O(.), �(.), and so on. Let f (n) and g(n) be operations take only O(1) time.
We can also implement a dictionary or a priority queuenonnegative integral functions of n. We say f (n) is O[g(n)] if

f (n) � c g(n) for all n � n0, where c and n0 are some constants. using an array or a linked list. For example consider the im-
plementation of a dictionary using an array. At any givenAlso, f (n) � �[g(n)] if f (n) � c g(n) for all n � n0, for some

constants c and n0. If f (n) � O[g(n)] and f (n) � �[g(n)], then time, if there are n elements in the data structure, these ele-

1
J. Webster (ed.), Wiley Encyclopedia of Electrical and Electronics Engineering. Copyright # 1999 John Wiley & Sons, Inc.

2 DATA STRUCTURES AND ALGORITHMS

ments are stored in a[1 : n]. If x is a given element to be In-
serted, it is stored in a[n � 1]. To Search for a given x, we
scan through the elements of a[] until we either find a match
or realize the absence of x. In the worst case this operation
takes O(n) time. To Delete the element x, we first Search
for it in a[]. If x is not in a[], we report so and quit. On the
other hand, if a[i] � x, we move the elements a[i � 1], a[i �

2], . . ., a[n] one position to the left. Thus the Delete opera-
tion takes O(n) time.

12

7 17 30

28

9 25

It is also easy to see that a priority queue is realized by
Figure 2. Examples of a binary search tree.using an array such that each of the three operations takes

O(n) time. The same is also done by using a linked list.

that is smaller than 8. Figure 2 shows an example of a binary
Binary Search Trees search tree.

We can verify that the tree of Fig. 2 is a binary search treeWe can implement a dictionary or a priority queue in time
by considering each node of the tree and its subtrees. For thebetter than that offered by queues and stacks with the help
node 12, the keys in its left subtree are 9 and 7 which areof binary trees that have certain properties.
smaller. Keys in its right subtree are 25, 17, 30, and 28 whichA binary tree is a set of nodes that is either empty or has
are all greater than 12. Node 25 has 17 in its left subtree anda node called the root and two disjoint binary trees. These
30 and 28 in its right subtree, and so on.trees are called the left and right subtrees, respectively. The

We can implement both a dictionary and a priority queueroot of the left subtree is called the left child of the root. The
using binary search trees. Now we illustrate how to performright child of the root is also defined similarly. We store some
the following operations on a binary search tree: Insert, De-data at each node of a binary tree. Figure 1 shows examples
lete, Search, Find-Min, and Delete-Min.of binary trees.

To Search for a given element x, we compare x with theEach node has a label associated with it. We might use the
key at the root y. If x � y, we are done. If x 	 y, then if x isdata stored at any node itself as its label. For example, in Fig.
in the tree at all, it has to be in the left subtree. On the other1(a), 5 is the root. Eight is the right child of 5 and so on. In
hand, if x
 y, x can only be in the right subtree, if at all.Fig. 1(b), 11 is the root. Five is the left child of 11. The subtree
Thus after making one comparison, the searching problem re-containing the nodes 5, 12, and 8 is the left subtree of 11, etc.
duces to searching either the left or the right subtree, i.e., the

We can also define parent relationship in the usual manner. search space reduces to a tree of height one less. Thus the
For example, in the tree of Fig. 1(a), 5 is the parent of 8, 8 is total time taken by this search algorithm is O(h), where h is
the parent of 3, and so on. A tree node is called a leaf if it the height of the tree.
does not have any children. Nine is a leaf in the tree of Fig. To Insert a given element x into a binary search tree, we
1(a). The nodes 8 and 9 are leaves in the tree of Fig. 1(b). first search for x in the tree. If x is already in the tree, we can

The level of the root is defined as 1. The level of any other quit. If not, the search terminates in a leaf y such that x can
node is defined as (� � 1), where � is the level of its parent. be inserted as a child of y. Look at the binary search tree of
In the tree of Fig. 1(b), the level of 3 and 5 is 2, the level of Fig. 2. Say we want to insert 19. The Search algorithm be-
12 and 1 is 3, and the level of 8 and 9 is 4. The height of a gins by comparing 19 with 12 realizing that it should proceed
tree is defined as the maximum level of any node in the tree. to the right subtree. Next 19 and 25 are compared to note
The trees of Fig. 1 have a height of 4. that the search should proceed to the left subtree. Next 17

A binary search tree is a binary tree such that the data (or and 19 are compared to realize that the search should move
key) stored at any node are greater than any key in its left to the right subtree. But the right subtree is empty. This is
subtree and smaller than any key in its right subtree. Trees where the Search algorithm terminates. The node 17 is y.
in Fig. 1 are not binary search trees because, for example, in We can insert 19 as the right child of 17. Thus we see that
the tree of Fig. 1(a), the right subtree of node 8 has a key 3 we can also process the Insert operation in O(h) time.

A Delete operation can also be processed in O(h) time.
Let the element to be deleted be x. First we Search for x. If
x is not in the tree, we quit. If not, the Search algorithm
returns the node in which x is stored. There are three cases
to consider. (1) The node x is a leaf. This is an easy case. We
just delete x and quit. (2) The node x has only one child y. Let
z be the parent of x. We make z the parent of y and delete x.
In Fig. 2, if we want to delete 9, we can make 12 the parent
of 7 and delete 9. (3) The node x has two children. There are
two ways to handle this case. The first is to find the largest
key y from the left subtree. Replace the contents of node x
with y, and delete node y. Note that the node y can have one
child at most. In the tree of Fig. 2, say, we desire to delete 25.

(b)

5

3

9

8

(a)

11

12 1

8 9

5 3

The largest key in the left subtree is 17 (there is only one
node in the left subtree). We replace 25 with 17 and deleteFigure 1. Examples of binary trees.

DATA STRUCTURES AND ALGORITHMS 3

node 17 which happens to be a leaf. The second way to handle ALGORITHMS FOR SOME BASIC PROBLEMS
this case is to identify the smallest key z in the right subtree

In this section we deal with some basic problems such as ma-of x, replace x with z, and delete node z. In either case, the
trix multiplication, binary search, etc.algorithm takes time O(h).

The operation Find-Min can be performed as follows. We
Matrix Multiplicationstart from the root and always go to the left child until we

cannot go any further. The key of the last visited node is the Matrix multiplication plays a vital role in many areas of sci-
minimum. In the tree of Fig. 2, we start from 12, go to 9, and ence and engineering. Given two (n � n) matrices A and B,
then go to 7. We realize that 7 is the minimum. This opera- the problem is to compute C � AB. By definition, C[i, j] �
tion also takes O(h) time. �n

k�1 A[i, k] � B[k, j]. Using this definition, each element of C
We can process Delete-Min using Find-Min and Delete, can be computed in �(n) time and because there are n2 ele-

and hence this operation also takes O(h) time. ments to compute, C can be computed in �(n3) time. This al-
If we have a binary search tree with n nodes in it, how gorithm can be specified as follows:

large can h become? The value of h can be as large as n. Con-
sider a tree whose root has the value 1, its right child has a for i :� to n do
value 2, the right child of 2 is 3, and so on. This tree has a for j :� to n do
height n. Thus we realize that in the worst case even the bi- C[i, j] :� 0;

for k :� 1 to n donary search tree may not be better than an array or a linked
C[i, j] :� C[i, j] � A[i, k] � B[k, j];list. But fortunately, it has been shown that the expected

height of a binary search tree with n nodes is only O(log n).
One of the most popular techniques for developing (bothThis is based on the assumption that each permutation of the

sequential and parallel) algorithms is divide and conquer. Then elements is equally likely to be the order in which the ele-
idea is to partition the given problem into k (for some k � 1)ments are inserted into the tree. Thus we arrive at the follow-
subproblems, solve each subproblem, and combine these par-ing theorem.
tial solutions to arrive at a solution to the original problem.
It is natural to describe any algorithm based on divide and

Theorem 1. Both the dictionary and the priority queue can conquer as a recursive algorithm (i.e., an algorithm that calls
be implemented by using a binary search tree so that each of itself). The run time of the algorithm is expressed as a recur-
the underlying operations takes only an expected O(log n) rence relationship which upon solution indicates the run time
time. In the worst case, the operations might take O(n) time as a function of the input size.
each. Strassen has developed an elegant algorithm based on the

divide-and-conquer technique that multiplies two (n � n) ma-
trices in �(nlog2 7) time. This algorithm is based on the criticalIt is easy to see that any binary tree with n nodes has to
observation that two (2 � 2) scalar matrices can be multipliedhave a height of �(log n). There are a number of other
using only seven scalar multiplications (and 18 additions—schemes based on binary trees which ensure that the height
the asymptotic run time of the algorithm is oblivious to thisof the tree does not become very large. These schemes main-
number). Partition A and B into submatrices of size (n/2 �tain a tree height of O(log n) at any time and are called bal-
n/2) each as shown:anced tree schemes. Examples include red–black trees, AVL

trees, 2–3 trees, etc. These schemes achieve a worst case run
time of O(log n) for each of the operations of our interest. We
state the following theorem without proof.

A =
[
A11 A12
A21 A22

]

B =
[
B11 B12
B21 B22

]
Theorem 2. A dictionary and a priority queue can be imple-
mented so that each of the underlying operations takes only Now use the formulas developed by Strassen to multiply
O(log n) time in the worst case. two (2 � 2) scalar matrices. Here there are also seven multi-

plications, but each multiplication involves two (n/2 � n/2)
submatrices. These multiplications are performed recursively.Theorem 2 has been used to derive several efficient algo-
There are also 18 additions [of (n/2 � n/2) submatrices]. Be-rithms for differing problems. We illustrate just one example.
cause two (m � m) matrices can be added in �(m2) time, allConsider the problem of sorting. Given a sequence of n num-
of these 18 additions need only �(n2) time.bers, the problem of sorting is to rearrange this sequence in

If T(n) is the time taken by this divide-and-conquer algo-nondecreasing order. This comparison problem has attracted
rithm to multiply two (n � n) matrices, then T(n) satisfiesthe attention of numerous algorithm designers because of its

applicability in many walks of life. We can use a priority
queue to sort. Let the priority queue be empty to begin with. T(n) = 7T

�n
2

�
+ �(n2)

We insert the input keys one at a time into the priority queue.
This involves n invocations of the Insert operation and whose solution is T(n) � �(nlog2 7).
hence takes a total of O(n log n) time (see Theorem 2). Fol- Coppersmith and Winograd proposed an algorithm that
lowed by this we apply Delete-Min n times to read out the takes only O(n2.376) time. This is a complex algorithm details
keys in sorted order. This also takes another O(n log n) time. of which can be found in the references at the end of this ar-

ticle.Thus we have an O(n log n)-time sorting algorithm.

4 DATA STRUCTURES AND ALGORITHMS

Binary Search quences becomes empty. At this time, output all the elements
of the remaining sequence (in order).Let a[1 : n] be a given array whose elements are in nonde-

Whenever the above algorithm makes a comparison, it out-creasing order, and let x be another element. The problem is
puts one element (either from X or from Y). Thus it followsto check if x is a member of a[]. A simple divide-and-conquer
that the algorithm cannot make more than (l � m � 1) com-algorithm can also be designed for this problem.
parisons.The idea is first to check if x � a[n/2]. If so, the problem

has been solved. If not, the search space reduces by a factor
Theorem 3. We can sort n elements in �(n log n) time.of 2 because if x
 a[n/2], then x can be only in the second

half of the array, if at all. Likewise, if x 	 a[n/2], then x can
be only in the first half of the array, if at all. If T(n) is the It is easy to show that any general sorting algorithm has
number of comparisons made by this algorithm on any input to make �(n log n) comparisons, and hence the merge sort is
of size n, then T(n) satisfies T(n) � T(n/2) � 1, which reduces asymptotically optimal.
to T(n) � �(log n).

Integer Sorting

SORTING We can perform sorting in time better than �(n log n) by
making additional assumptions about the keys to be sorted.

Several optimal algorithms have been developed for sorting. In particular, we assume that the keys are integers in the
We have already seen one such algorithm in the section on range [1, nc], for any constant c. This version of sorting is
Binary Search Trees that employs priority queues. We as- called integer sorting. In this case, sorting can be done in
sume that the elements to be sorted are from a linear order. �(n) time.
If no other assumptions are made about the keys to be sorted, We begin by showing that n integers in the range [1, m]
the sorting problem is called general sorting or comparison can be sorted in time �(n � m) for any integer m. We use an
sorting. In this section we consider general sorting and sort- array a[1 : m] of m lists, one for each possible value that a key
ing with additional assumptions. can have. These lists are empty to begin with. Let X � k1, k2,

. . ., kn be the input sequence. We look at each input key and
put it in an appropriate list of a[]. In particular, we appendGeneral Sorting
key ki to the end of list a[ki] for i � 1, 2, . . ., n. This takes

We look at two general sorting algorithms. The first algorithm �(n) time. Basically we have grouped the keys according to
is called the selection sort. Let the input numbers be in the their values.
array a[1 : n]. First we find the minimum of these n numbers Next, we output the keys of list a[1], the keys of list a[2],
by scanning through them. This takes (n � 1) comparisons. and so on. This takes �(m � n) time. Thus the whole algo-
Let this minimum be in a[i]. We exchange a[1] and a[i]. Next rithm runs in time �(m � n).
we find the minimum of a[2 : n] by using (n � 2) comparisons, If one uses this algorithm (called the bucket sort) to sort n
and so on. integers in the range [1, nc] for c
 1, the run time is �(nc).

The total number of comparisons made in the algorithm is This may not be acceptable because we can do better using
(n � 1) � (n � 2) � � � � � 2 � 1 � �(n2). the merge sort.

An asymptotically better algorithm is obtained using di- We can sort n integers in the range [1, nc] in �(n) time by
vide and conquer. This algorithm is called the merge sort. If using the bucket sort and the notion of radix sorting. Say we
the input numbers are in a[1 : n], we divide the input into two are interested in sorting n two-digit numbers. One way of do-
halves, namely, a[1 : n/2] and a[n/2 � 1 : n]. Sort each half ing this is to sort the numbers with respect to their least sig-
recursively, and finally merge the two sorted subsequences. nificant digits and then to sort with respect to their most sig-
The problem of merging is to take two sorted sequences as nificant digits. This approach works provided the algorithm
input and produce a sorted sequence of all the elements of the used to sort the numbers with respect to a digit is stable. We
two sequences. We can show that two sorted sequences of say a sorting algorithm is stable if equal keys remain in the
length l and m, respectively, can be merged in �(l � m) time.

same relative order in the output as they were in the input.
Therefore, the two sorted halves of the array a[] can be

Note that the bucket sort previously described is stable.
merged in �(n) time.

If the input integers are in the range [1, nc], we can thinkIf T(n) is the time taken by the merge sort on any input of
of each key as a c log n-bit binary number. We can conceivesize n, then T(n) � 2T(n/2) � �(n), which reduces to T(n) �
of an algorithm where there are c stages. In stage i, the

�(n log n).
numbers are sorted with respect to their ith most significantNow we show how to merge two given sorted sequences
log n bits. This means that in each stage we have to sort nwith l and m elements, respectively. Let X � q1, q2, . . ., ql log n-bit numbers, that is, we have to sort n integers in theand Y � r1, r2, . . ., rm be the sorted (in nondecreasing order)
range [1, n]. If we use the bucket sort in every stage, the stagesequences to be merged. Compare q1 and r1. Clearly, the mini-
takes �(n) time. Because there are only a constant number ofmum of q1 and r1 is also the minimum of X and Y combined.
stages, the total run time of the algorithm is �(n). We get theOutput this minimum, and delete it from the sequence from
following theorem.which it came. Generally, at any given time, compare the cur-

rent minimum element of X with the current minimum of Y,
Theorem 4. We can sort n integers in the range [1, nc] inoutput the minimum of these two, and delete the output ele-

ment from its sequence. Proceed this way until one of the se- �(n) time for any constant c.

DATA STRUCTURES AND ALGORITHMS 5

SELECTION Let T(n) be the run time of this algorithm on any input of
size n and for any i. Then it takes T(n/5) time to identify the
median of medians M. Recursive selection on X1 or X2 takesIn this section we consider the problem of selection. We are
no more than T(7/10n) time. The rest of the computations ac-given a sequence of n numbers, and we are supposed to iden-
count for �(n) time. Thus T(n) satisfiestify the ith smallest number from these for a specified i, 1 �

i � n. For example, if i � 1, we are interested in finding the
smallest number. If i � n, we are interested in finding the
largest element.

T(n) = T
�n

5

�
+ T

� 7
10

n
�

+ �(n)

A simple algorithm for this problem could pick any input
which reduces to T(n) � �(n). This can be proved by in-element k, partition the input into two—the first part is those
duction.input elements less than x and the second part consists of

input elements greater than x—identify the part that con-
tains the element to be selected, and finally recursively per- Theorem 5. Selection from out of n elements can be per-
form an appropriate selection in the part containing the ele- formed in �(n) time.
ment of interest. This algorithm has an expected (i.e.,
average-case) run time of O(n). Generally the run time of any

RANDOMIZED ALGORITHMSdivide-and-conquer algorithm is the best if the sizes of the
subproblems are as even as possible. In this simple selection

The performance of an algorithm may not be completely speci-algorithm, it may happen that one of the two parts is empty
fied even when the input size is known, as has been pointedat each level of recursion. The second part may have (n � 1)
out before. Three different measures can be conceived of: theelements. If T(n) is the run time corresponding to this input,
best case, the worst case, and the average case. Typically, thethen T(n) � T(n � 1) � �(n). This reduces to T(n) � �(n2). In
average-case run time of an algorithm is much smaller thanfact if the input elements are already in sorted order and we
the worst case. For example, Hoare’s quicksort has a worstalways pick the first element of the array as the partitioning
case run time of O(n2), whereas its average-case run time iselement, then the run time is �(n2).
only O(n log n). While computing the average-case run time,So, even though this simple algorithm has a good average-
one assumes a distribution (e.g., uniform distribution) on thecase run time, in the worst case it can be bad. We are better
set of possible inputs. If this distribution assumption does notoff using the merge sort. It is possible to design an algorithm
hold, then the average-case analysis may not be valid.that selects in �(n) time in the worst case, as has been shown

Is it possible to achieve the average-case run time withoutby Blum, Floyd, Pratt, Rivest, and Tarjan.
making any assumptions about the input space? RandomizedTheir algorithm employs a primitive form of ‘‘deterministic
algorithms answer this question in the affirmative. Theysampling.’’ Say we are given n numbers. We group these num-
make no assumptions on the inputs. The analysis of random-bers so that there are five numbers in each group. Find the
ized algorithms is valid for all possible inputs. Randomized

median of each group. Find also the median M of these group algorithms obtain such performance by introducing ran-
medians. We can expect M to be an ‘‘approximate median’’ of domness into the algorithms themselves.
the n numbers. Coin flips are made for certain decisions in randomized al-

For simplicity assume that the input numbers are distinct. gorithms. A randomized algorithm with one possible sequence
The median of each group is found in �(1) time, and hence of outcomes for coin flips can be thought of as different from
all the medians (except M) are found in �(n) time. Having the same algorithm with a different sequence of outcomes for
found M, we partition the input into two parts X1 and X2. X1 coin flips. Thus a randomized algorithm can be viewed as a
consists of all the input elements less than M, and X2 contains family of algorithms. Some of the algorithms in this family
all the elements greater than M. This partitioning can also be might have ‘poor performance’ with a given input. It should
done in �(n) time. We can also count the number of elements be ensured that, for any input, the number of algorithms in
in X1 and X2 within the same time. If �X1� � i � 1, then clearly the family that performs poorly with this input is only a small
M is the element to be selected. If �X1� � i, then the element fraction of the total number of algorithms. If we can find at
to be selected belongs to X1. On the other hand, if �X1� 	 i � least a (1 � �) (� is very close to 0) portion of algorithms in
1, then the ith smallest element of the input belongs to X2. the family that have ‘good performance’ with any given input,

It is easy to see that the size of X2 can be at most ��� n. This then clearly, a random algorithm in the family will have ‘good
can be argued as follows: Let the input be partitioned into the performance’ with any input with probability � (1 � �). In
groups G1, G2, . . ., Gn/5 with five elements in each part. As- this case, we say that this family of algorithms (or this ran-
sume without loss of generality that every group has exactly domized algorithm) has ‘good performance’ with probability �
five elements. There are n/10 groups such that their medians (1 � �). � is called the error probability which is independent
are less than M. In each such group there are at least three of the input distribution.
elements that are less than M. Therefore, there are at least We can interpret ‘good performance’ in many different
��� n input elements that are less than M. In turn, this means ways. Good performance could mean that the algorithm out-
that the size of X2 is at most ��� n. Similarly, we can also show puts the correct answer or that its run time is small, and so
that the size of X1 is no more than ��� n. on. Different types of randomized algorithms can be conceived

Thus we can complete the selection algorithm by per- of depending on the interpretation. A Las Vegas algorithm is
forming an appropriate selection in either X1 or X2, recur- a randomized algorithm that always outputs the correct an-
sively, depending on whether the element to be selected is in swer but whose run time is a random variable (possibly with

a small mean). A Monte Carlo algorithm is a randomized algo-X1 or X2, respectively.

6 DATA STRUCTURES AND ALGORITHMS

rithm that has a predetermined run time but whose output takes no more than 1/�2� loge n stages with probability � 1
� n��. Because each stage takes O(1) time, the run time ofmay be incorrect occasionally.

We can modify asymptotic functions such as O(.) and �(.) the algorithm is Õ(log n).
in the context of randomized algorithms as follows: A random-
ized algorithm is said to use Õ[f (n)] amount of resources (like Example 2 [Large Element Selection]. Here also the

input is an array a[] of n numbers. The problem is to find antime, space, etc.) if a constant c exists such that the amount
of resources used is no more than c�f (n) with probability � 1 element of the array that is greater than the median. We can

assume, without loss of generality, that the array numbers� n�� on any input of size n and for any positive � � 1. Simi-
larly, we can also define �̃[f (n)] and �̃[f (n)]. If n is the input are distinct and that n is even.
size of the problem under consideration, then, by high proba-
bility we mean a probability of �1 � n�� for any fixed � � 1. Lemma 7. The preceding problem can be solved in O(log n)

time by using a Monte Carlo algorithm.
Illustrative Examples

Proof. Let the input be X � k1, k2, . . ., kn. We pick a randomWe provide two examples of randomized algorithms. The first
sample S of size c� log n from X. This sample is picked withis a Las Vegas algorithm, and the second is a Monte Carlo al-
replacement. Find and output the maximum element of S.gorithm.
The claim is that the output of this algorithm is correct with
high probability.Example 1 [Repeated Element Identification]. The

The algorithm gives an incorrect answer only if all the ele-input is an array a[] of n elements wherein there are (n �
ments in S have a value � M, where M is the median. The

�n) distinct elements and �n copies of another element, where
probability that any element in S is � M is 1/2. Therefore,

� is a constant
0 and 	1. The problem is to identify the
the probability that all the elements of S are � M is given byrepeated element. Assume without loss of generality that �n
P � (1/2)c�log n � n�c�. P � n�� if c is picked to be �1.is an integer.

In other words, if the sample S has �� log n elements,
then the maximum of S is a correct answer with probabilityAny deterministic algorithm to solve this problem must
� (1 � n��).take at least (�n � 2) time in the worst case. This fact can be

proven as follows: Let the input be chosen by an adversary
who has perfect knowledge about the algorithm used. The ad- PARALLEL COMPUTING
versary can make sure that the first (�n � 1) elements exam-
ined by the algorithm are all distinct. Therefore, the algo- One of the ways of solving a given problem quickly is to em-
rithm may not be in a position to output the repeated element ploy more than one processor. The basic idea of parallel com-
even after having examined (�n � 1) elements. In other puting is to partition the given problem into several subprob-
words, the algorithm must examine at least one more ele- lems, assign a subproblem to each processor, and combine the
ment, and hence the claim follows. partial solutions obtained by the individual processors.

We can design a simple O(n) time deterministic algorithm If P processors are used to solve a problem, then there is a
for this problem. Partition the elements such that each part potential of reducing the run time by a factor of up to P. If S
(except possibly one part) has (1/� � 1) elements. Then is the best known sequential run time (i.e., the run time using
search the individual parts for the repeated element. Clearly, a single processor), and if T is the parallel run time using P
at least one of the parts will have at least two copies of the processors, then PT � S. If not, we can simulate the parallel
repeated element. This algorithm runs in time �(n). algorithm by using a single processor and get a run time bet-

Now we present a simple and elegant Las Vegas algorithm ter than S (which is a contradiction). PT is called the work
that takes only Õ(log n) time. This algorithm is comprised of done by the parallel algorithm. A parallel algorithm is said to
stages. Two random numbers i and j are picked from the be work-optimal if PT � O(S). We provide a brief introduction
range [1, n] in any stage. These numbers are picked indepen- to parallel algorithms in the next section.
dently with replacement. As a result, there is a chance that
these two are the same. After picking i and j, we check if i � Parallel Models
j and a[i] � a[j]. If so, the repeated element has been found.

The random access machine (RAM) model has been widelyIf not, the next stage is entered. We repeat the stages as
accepted as a reasonable sequential model of computing. Inmany times as it takes to arrive at the correct answer.
the RAM model, we assume that each of the basic, scalar,
binary operations, such as addition, multiplication, etc. takesLemma 6. The previous algorithm runs in time Õ(log n).
one unit of time. We have assumed this model in our discus-

Proof. The probability of finding the repeated element in any sion thus far. In contrast, many well-accepted parallel models
given stage is given by P � �n(�n � 1)/n2 � �2. Thus the prob- of computing exist. In any such parallel model an individual
ability that the algorithm does not find the repeated element processor can still be thought of as a RAM. Variations among
in the first c� loge n (c is a constant to be fixed) stages is different architectures arise in the ways they implement in-
expressed as terprocessor communications. In this article we categorize

parallel models into shared-memory models and fixed-connec-
tion machines.< (1 − ε2)cα loge n ≤ n−ε2cα

A shared-memory model [also called the parallel random
access machine (PRAM)] is a collection of RAMs working inusing the fact that (1 � x)1/x � 1/e for any 0 	 x 	 1. This

probability is 	n�� if we pick c � 1/�2, that is, the algorithm synchrony which communicate with the help of a common

DATA STRUCTURES AND ALGORITHMS 7

block of global memory. If processor i has to communicate serves the processor and time bounds, but the converse may
not be true.with processor j, it can do so by writing a message in memory

cell j which then is read by processor j.
Conflicts for global memory access can arise. Depending Finding the Maximum

on how these conflicts are resolved, a PRAM can further be
Now we consider the problem of finding the maximum of n

classified into three categories. An exclusive read and exclu-
given numbers. We describe an algorithm that solves this

sive write (EREW) PRAM does not permit concurrent reads
problem in O(1) time using n2 common-CRCW PRAM proces-

or concurrent writes. A concurrent read and exclusive write
sors.

(CREW) PRAM allows concurrent reads but not concurrent
Partition the processors so that there are n processors in

writes. A concurrent read and concurrent write (CRCW)
each group. Let the input be k1, k2, . . ., kn, and let the groups

PRAM permits both concurrent reads and concurrent writes.
be G1, G2, . . ., Gn. Group i is assigned the key ki. Gi is in

For a CRCW PRAM, we need an additional mechanism for
charge of checking if ki is the maximum. In one parallel step,

handling write conflicts because the processors trying to write
processors of group Gi compare ki with every input key. In

at the same time in the same cell may have different data to
particular, processor j of group Gi computes the bit bij � ki �

write and a decision has to be made as to which data are
kj. The bits bi1, bi2, . . ., bin are ANDed using the algorithm of

written. Concurrent reads do not pose such problems because
Lemma 8. This is done in O(1) time. If Gi computes a one in

the data read by different processors are the same. In a com-
this step, then one of the processors in Gi outputs ki as the

mon-CRCW PRAM, concurrent writes are allowed only if the
answer.

processors that try to access the same cell have the same data
to write. In an arbitrary-CRCW PRAM, if more than one pro- Lemma 9. The maximum (or minimum) of n given numbers
cessor tries to write in the same cell at the same time, arbi-

can be computed in O(1) time using n2 common-CRCW
trarily, one of them succeeds. In a priority-CRCW PRAM,

PRAM processors.
write conflicts are resolved by using priorities assigned to
the processors.

Prefix Computation
A fixed-connection machine can be represented as a di-

Prefix computation plays a vital role in designing parallel al-rected graph whose nodes represent processors and whose
gorithms. This is as basic as any arithmetic operation in se-edges represent communication links. If there is an edge con-
quential computing. Let � be any associative unit-time com-necting two processors, they communicate in one unit of time.
putable binary operator defined in some domain �. Given aIf two processors not connected by an edge want to communi-
sequence of n elements k1, k2, . . ., kn from �, the problem ofcate, they do so by sending a message along a path that con-
prefix computation is to compute k1, k1 � k2, k1 � k2 � k3,nects the two processors. We can think of each processor in a
. . ., k1 � k2 � � � � � kn. Examples of � are addition, multi-fixed-connection machine as a RAM. Examples of fixed-con-
plication, and min. Example of � are the set of integers, thenection machines are the mesh, the hypercube, the star
set of reals, etc. The prefix sums computation refers to thegraph, etc. Our discussion on parallel algorithms is confined
special case when � is addition. The results themselves areto PRAMs because of their simplicity.
called prefix sums.

Boolean Operations Lemma 10. We can perform prefix computation on a se-
quence of n elements in O(log n) time using n CREW PRAMThe first problem considered is that of computing the Boolean
processors.OR of n given bits. With n common-CRCW PRAM processors,

we compute the Boolean OR in O(1) time as follows. The input
Proof. We can use the following algorithm. If n � 1, the prob-bits are stored in common memory (one bit per cell). Every
lem is solved easily. If not, the input elements are partitionedprocessor is assigned an input bit. We employ a common
into two halves. Solve the prefix computation problem on eachmemory cell M that is initialized to zero. All the processors
half recursively assigning n/2 processors to each half. Let y1,that have ones try to write a one in M in one parallel write
y2, . . ., yn/2 and yn/2�1, yn/2�2, . . ., yn be the prefix values of thestep. The result is ready in M after this write step. Using a
two halves.similar algorithm, we can also compute the Boolean AND of

There is no need to modify the values y1, y2, . . ., and yn/2,n bits in O(1) time.
and hence they can be output as such. Prefix values from the
second half can be modified as yn/2 � yn/2�1, yn/2 � yn/2�2, . . .,

Lemma 8. The Boolean OR or Boolean AND of n given bits yn/2 � yn. This modification is done in O(1) time by using n/2
can be computed in O(1) time using n Common-CRCW processors. These n/2 processors first read yn/2 concurrently
PRAM processors. and then update the second half (one element per processor).

Let T(n) be the time needed to perform prefix computation
The different versions of the PRAM form a hierarchy in on n elements by using n processors. T(n) satisfies T(n) �

terms of their computing power. EREW PRAM, CREW T(n/2) � O(1), which reduces to T(n) � O(log n).
PRAM, common-CRCW PRAM, arbitrary-CRCW PRAM, pri-
ority-CRCW PRAM is an ordering of some of the PRAM ver- The processor bound of the preceding algorithm is reduced
sions. Any model in the sequence is strictly less powerful than to n/log n as follows: Each processor is assigned log n input
any to its right and strictly more powerful than any to its left. elements. (1) Each processor computes the prefix values of its
As a result, for example, any algorithm that runs on the log n elements in O(log n) time. Let xi

1, xi
2, . . ., xi

log n be the
elements assigned to processor i. Also let Xi � xi

1 � xi
2 � � � �EREW PRAM runs on the common-CRCW PRAM and pre-

8 DATA STRUCTURES AND ALGORITHMS

� xi
log n. (2) Now the n/log n processors perform a prefix compu- ACKNOWLEDGMENTS

tation on X1, X2, . . ., Xn/log n, using the algorithm of Lemma
10. This takes O(log n) time. (3) Each processor modifies the This work is supported in part by an NSF Award CCR-95-03-

007 and an EPA Grant R-825-293-01.0.log n prefixes that it computed in step (1) using the result of
step (2). This also takes O(log n) time.

BIBLIOGRAPHY
Lemma 11. Prefix computation on a sequence of length n can
be performed in O(log n) time by using n/log n CREW 1. E. Horowitz, S. Sahni, and D. Mehta, Fundamentals of Data
PRAM processors. Structures in C��, San Francisco: Freeman, 1995.

2. J. H. Kingston, Algorithms and Data Structures, Reading, MA:
Realize that the preceding algorithm is work-optimal. In Addison-Wesley, 1990.

all of the parallel algorithms we have seen so far, we have 3. M. A. Weiss, Data Structures and Algorithm Analysis, Menlo
assumed that the number of processors is a function of the Park, CA: Benjamin/Cummings, 1992.
input size. But the machines available in the market may not 4. D. Wood, Data Structures, Algorithms, and Performance, Reading,
have these many processors. Fortunately, we can simulate MA: Addison-Wesley, 1993.
these algorithms on a parallel machine with a fewer number 5. T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to
of processors and preserve the asymptotic work done. Algorithms, Cambridge, MA: MIT Press, 1990.

Let A be an algorithm that solves a given problem in time 6. A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and
T by using P processors. We can simulate every step of A on Analysis of Computer Algorithms, Reading, MA: Addison-Wes-
a P
-processor (with P
 � P) machine in time � P/P
. There- ley, 1974.
fore, the simulation of A on the P
-processor machine takes 7. E. Horowitz, S. Sahni, and S. Rajasekaran, Computer Algorithms,
a total time of � TP/P
. The total work done by the P
-pro- San Francisco: Freeman, 1998.
cessor machine is � P
TP/P
 � PT � P
T � O(PT). 8. E. Horowitz, S. Sahni, and S. Rajasekaran, Computer

Algorithms/C��, San Francisco: Freeman, 1997.

9. R. Sedgewick, Algorithms, Reading, MA: Addison-Wesley, 1988.Lemma 12 [The Slow-Down Lemma]. We can simulate any
10. U. Manber, Introduction to Algorithms: A Creative Approach,PRAM algorithm that runs in time T by using P processors

Reading, MA: Addison-Wesley, 1989.on a P
-processor machine in time O (PT/P
) for any P
 � P.
11. S. Baase, Computer Algorithms, Reading, MA: Addison-Wesley,

1988.
BIBLIOGRAPHIC NOTES 12. G. Brassard and P. Bratley, Fundamentals of Algorithms, Upper

Saddle River, NJ: Prentice-Hall, 1996.
There are several excellent texts on data structures. A few of 13. B. M. E. Moret and H. D. Shapiro, Algorithms from P to NP,

Menlo Park, CA: Benjamin/Cummings, 1991.these are by Horowitz, Sahni, and Mehta (1); Kingston (2);
Weiss (3); and Wood (4). A discussion on standard data struc- 14. G. J. E. Rawlins, Compared to What? An Introduction to the Analy-

sis of Algorithms, San Francisco: Freeman, 1992.tures such as red-black trees can be found in algorithm texts
also. For example, see the text by Cormen, Leiserson, and 15. J. D. Smith, Design and Analysis of Algorithms, PWS-KENT,
Rivest (5). 1989.

There are also numerous wonderful texts on algorithms. 16. J. Nievergelt and K. H. Hinrichs, Algorithms and Data Structures,
Here we list only a small group: Aho, Hopcroft, and Ullman Englewood Cliffs, NJ: Prentice-Hall, 1993.
(6); Horowitz, Sahni, and Rajasekaran (7,8); Cormen, Leiser- 17. K. A. Berman and J. L. Paul, Fundamentals of Sequential and
son, and Rivest (5); Sedgewick (9); Manber (10); Baase (11); Parallel Algorithms, Boston: PWS, 1997.
Brassard and Bratley (12); Moret and Shapiro (13); Rawlins 18. M. O. Rabin, Probabilistic Algorithms, in J. F. Traub (ed.), Algo-
(14); Smith (15); Nievergelt and Hinrichs (16); and Berman rithms and Complexity, New York: Academic Press, 1976, pp.
and Paul (17). 21–36.

The technique of randomization was popularized by Rabin 19. R. Solovay and V. Strassen, A Fast Monte-Carlo Test for Pri-
(18). One of the problems considered in Ref. 18 was primality mality, SIAM J. Comput., 6: 84–85, 1977.
testing. In an independent work at around the same time, 20. W. D. Frazer and A. C. McKellar, Samplesort: A Sampling Ap-
Solovay and Strassen (19) presented a randomized algorithm proach to Minimal Storage Tree Sorting, J. ACM, 17 (3): 496–

502, 1977.for primality testing. The idea of randomization itself had
been employed in Monte Carlo simulations a long time before. 21. J. Já Já, Parallel Algorithms: Design and Analysis, Reading, MA:
The sorting algorithm of Frazer and McKellar (20) is also one Addison-Wesley, 1992.
of the early works on randomization. 22. F. T. Leighton, Introduction to Parallel Algorithms and Architec-

Randomization has been employed in the sequential and tures: Arrays-Trees-Hypercubes, San Mateo, CA: Morgan-Kauf-
mann, 1992.parallel solution of numerous fundamental problems of com-

puting. Several texts cover randomized algorithms at length. 23. R. Motwani and P. Raghavan, Randomized Algorithms, Cam-
A partial list is Horowitz, Sahni, and Rajasekaran (7,8), Já bridge, UK: Cambridge Univ. Press, 1995.
Já (21); Leighton (22); Motwani and Raghavan (23); Mulmu- 24. K. Mulmuley, Computational Geometry: An Introduction Through
ley (24); and Reif (25). Randomized Algorithms, Englewood Cliffs, NJ: Prentice-Hall,

1994.The texts of Refs. 7, 8, 21, 22, and 25 cover parallel algo-
rithms. For a survey of sorting and selection algorithms over 25. J. H. Reif (ed.), Synthesis of Parallel Algorithms, San Mateo, CA:

Morgan-Kaufmann, 1992.a variety of parallel models, see Ref. 26.

DATA VISUALIZATION 9

26. S. Rajasekaran, Sorting and Selection on Interconnection Net-
works, DIMACS Series Discrete Math. Theoretical Comput. Sci.,
21: 275–296, 1995.

27. D. E. Knuth, The Art of Computer Programming, vol. 3, Sorting
and Searching, Reading, MA: Addison-Wesley, 1973.

PANOS M. PARDALOS

University of Florida

SANGUTHEVAR RAJASEKARAN

University of Florida

DATA TRANSMISSION CODES. See INFORMATION THE-

ORY OF DATA TRANSMISSION CODES.

