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base languages developed based on the object-oriented, object
relational, temporal, active, and deductive data models.

RELATIONAL DATA MODEL, RELATIONAL ALGEBRA, AND
RELATIONAL CALCULUS

DATABASE LANGUAGES
The relational data model was introduced by Codd (2,3). It
provides the simplest and the most uniform structure amongBACKGROUND
all the data models. A relational database consists of a collec-
tion of tables (relations). A table is a two-dimensional struc-A database management system (DBMS) is a collection of pro-
ture, where a row (tuple) represents a collection of relatedgrams that enables users to create and maintain a database.
data values and a column (attribute) represents the roleIn general, the user accesses and manipulates the database
played by some domain in the table. A super key is a set ofwith a data definition language (DDL) to define database
attributes that can uniquely identify the tuples in a relation.schemata. After the schemata are compiled and the database
A major restriction of the relational data model is that eachis populated with the data, the user uses a data manipulation
attribute has to have a single value: no multivalues or com-language (DML) to retrieve, insert, delete, or modify the data
posite values can be carried by an attribute. A relation satis-stored in the database.
fying this requirement is said to be in the first normal form.There are basically two types of DMLs. A low-level or pro-

The relational data model comes with two DMLs: the rela-cedural DML can be used to specify complex database opera-
tional algebra and the relational calculus, where the rela-tions in a concise manner. In this case the user has to know
tional algebra is procedural and the relational calculus de-how to execute the operations in the right order. Otherwise,
clarative. The basic operators in relational algebra are union,a high-level or declarative DML can be used: The user only
difference, selection, projection, and Cartesian product. Thespecifies what the result is, leaving the decisions about how
union, difference, and Cartesian product operations come di-to execute the operations to the DBMS. Declarative DMLs are
rectly from the mathematical set theory. The selection opera-usually easier to learn and use than procedural DMLs. How-
tion takes a relation and selects from the relation those tuplesever, since a user cannot specify the procedures to access the
that satisfy some conditions. The projection operation choosesdata, these languages may not be as efficient as procedural
certain attributes from a relation. Finally, the join operationlanguages in terms of performance.
(which can be derived from the basic operations) combinesLow-level DML statements may be embedded in a general
two relations into one based on the common attributes. Differ-purpose programming language such as COBOL, Pascal, or C.
ent from the relational algebra, which is procedural in nature,These languages are also referred to as record-at-time DMLs
a query in the relational calculus is expressed as �t�P(t)�,because they retrieve and process each individual record from
where t is a tuple variable that designates a typical tuple ina set of records at a time. High-level DMLs can specify and
the answer set and P(t) is a set of predicates combined byretrieve many records in a single statement and hence are
logical connectives that qualify the attributes of t. It can bereferred to as set-at-time DMLs. Whenever a DML, whether
shown that the relational algebra and the relational calculushigh level or low level, is embedded in a general purpose pro-
are identical in expressive power. In other words, any querygramming language, the latter is called the host language,
that can be specified in the relational algebra can also beand the DML is called the data sublanguage. On the other
specified in the relational calculus, and vice versa. A rela-hand, a high-level DML used in a stand-alone, interactive
tional language L is relational complete if we can express inmanner is called a query language.
L any query that can be expressed in the relational calculus.A major criterion used to classify a database language is
Therefore relational completeness is an important criterionthe data model based on which the language is defined. Con-
for comparing the expressive power of relational languages.ventional data models employed in database languages in-
Most commercial query languages have a higher expressiveclude the relational, network, and hierarchical models.
power than that of the relational algebra or calculus due toAmong them, the relational model has been successfully used
the introduction of additional operations such as aggregatein most commercial database management systems. This is
functions, grouping, and ordering.due to the fact that relational database languages can provide

high-level query specifications and set-at-time retrievals,
whereas network and hierarchical database languages can STRUCTURED QUERY LANGUAGE (SQL)
only support low-level query and record-at-time retrievals. A
comparison among the three types of database languages is Structured Query Language (SQL) is a declarative query lan-

guage that was developed based on a combination of the rela-shown in Table 1. Later we will discuss some modern data-

Table 1. A Comparison of Relational, Network, and Hierarchical Database Languages

Query Query
Navigational Set-at-a-Time Specification Optimization

Relational languages No Yes Declarative System
Network languages Yes No Procedural User
Hierarchical languages Yes No Procedural User

J. Webster (ed.), Wiley Encyclopedia of Electrical and Electronics Engineering. Copyright # 1999 John Wiley & Sons, Inc.



DATABASE LANGUAGES 569

tional algebra and relational calculus (2). It was originally sult. Therefore a query expressed in the form above has the
following intuitive meaning: Retrieve �attribute list� of thoseimplemented in a relational DBMS called SYSTEM R devel-

oped by IBM. Over the years it has evolved to be the standard tuples satisfying �condition� from �relation list�. The fol-
lowing are two example queries, assuming that the relationsquery language for commercial (relational) database manage-

ment systems. SQL is considered a comprehensive language University-personnel, Car-ownership, Membership are de-
fined asthat supports data definition, data manipulation, and view

definition.
University-personnel (pname, residence, birth-date, salary)
Car-ownership (pname, cname)Data Definition
Membership (pname, society)

The basic commands for data definition include CREATE, AL-
TER, and DROP, which defines the attributes of a relation,

Query 1. Retrieve the names and residences of all univer-
adds an attribute to a relation, and deletes a relation, respec-

sity personnel who were born on June 25, 1970.
tively. The basic format of the CREATE command is

SELECT pname, address
CREATE TABLE table name �attribute name�: �attribute

FROM University-personnel
type�[�constraints�]

WHERE birth-date � ‘6/25/75’

where each attribute is given its name, a data type that de-
Query 2. Retrieve the names and residences of all univer-

fines its domain of values, and possibly some constraints. The
sity personnel who own a ‘Taurus’.

data types are limited to system-defined data types such as
numbers and character strings. Since SQL allows NULL

SELECT pname, residence
(which means ‘‘unknown’’) to be an attribute value, the con-

FROM University-personnel, Car-
straint ‘‘NOT NULL’’ can be specified on an attribute if NULL

ownership
is not allowed for that attribute. A table defined by the CRE-

WHERE (cname � ‘Taurus’) AND
ATE command is called a base table, which is physically

(University-personnel.pname
stored in the database. Base tables are different from virtual

� Car-ownership.pname)
tables (views), which are not necessarily physically stored in
the database. The following example shows how a University-

Query 3. Retrieve the names and residences of all univer-
personnel table can be created using the above command:

sity personnel who are members of any society of which
‘John’ is a member.

CREATE TABLE University-personnel
�pname: char(10) NOT NULL, UNIQUE,

SELECT pname, residence
residence: char(30),

FROM University-personnel, Membership
birth-date: date NOT NULL�

WHERE (University-personnel.pname � Member-
ship.pname) AND

If the University-personnel table is no longer needed, we can
(society in (SELECT society

delete the table with the following command:
FROM Membership
WHERE pname � ‘John’))

DROP TABLE University-personnel

Note that Query 3 is a nested query, where the inner query
If we want to add an attribute to the relation, we can use the

returns a set (of values), and it is used as an operand in the
ALTER command. In this case all tuples of the relation will

outer query.
have NULL as the value of the new attribute. For example,

Several aggregate functions can be applied to collections of
we can add an attribute ‘salary’ with the following command:

tuples in a query, where the collections are formed by a
GROUP BY clause that groups the answers to the query ac-

ALTER TABLE University-personnel
cording to some particular attribute(s) (i.e., each collection

ADD salary �integer�
consists of answers that have the same value for the attri-
bute(s) specified; in case no GROUP BY clause is used, all the
answers to the query are considered to be in a single collec-

Data Manipulation—Querying
tion). The COUNT function returns the number of values as-
sociated with a particular attribute in a collection. The SUM,A basic SQL query consists of three clauses:
AVG, MAX, and MIN functions return the sum, average, max-
imum, and minimum value of a particular attribute in a col-SELECT �attribute list�

FROM �relation list� lection, respectively. The following are two example queries,
assuming that the relation University-personnel is defined asWHERE �condition�

where the SELECT clause identifies a set of attributes to be University-personnel (pname, residence, birth-date, salary,
dname)retrieved, the FROM clause specifies a list of tables to be used

in executing the query, and the WHERE clause consists of
a set of predicates that qualifies the tuples (of the relations Query 4. Find the average salary of all university person-

nel associated with the ‘computer science’ department.involved) to be selected by the query in forming the final re-
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SELECT AVG (salary) data types such as alphanumerical values are allowed in a
relation. Second, each attribute is allowed to carry only oneFROM University-personnel

WHERE dname � ‘computer science’ value. Finally, a logical object with complex structure has to
be decomposed and stored in several relations. These limita-

Query 5. For each department, retrieve the department tions make it difficult to model complex data such as multime-
name and the highest salary. dia, geographical, and engineering information in advanced

applications.
SELECT dname, MAX(salary) The object-oriented data model has emerged to overcome
FROM University-personnel these problems. The basic concepts in the object-oriented
GROUP BY dname model includes encapsulation, object identity, inheritance,

and complex objects:
Data Manipulation—Updates

Encapsulation refers to the ability to define a set of opera-In SQL three commands can be used to modify a database:
tions (methods) that can be applied to objects of a partic-DELETE, INSERT, and UPDATE. The DELETE command
ular class (object type). Thus objects that share the sameremoves tuples from a table. It includes a WHERE clause to
attributes and methods are grouped into a single class.select the tuples to be deleted. Tuples are explicitly removed
All accesses to these objects have to be done via one offrom only one table one at a time. The following example
the associated methods. An object consists of an inter-shows a query to delete those university personnel with birth-
face and an implementation; the implementation is pri-date ‘6/25/70’:
vate and may be changed without affecting the inter-
face.DELETE University-personnel

WHERE birth-date � ‘6/25/70’ Object identity is the ability to identify each object indepen-
dent of its attribute values. This is typically realized by

The INSERT command inserts one or more tuples into a an object identifier, which is generated by the system.
table. The following example shows a query to insert a new Hence any attribute of an object can be updated without
person into a University-personnel table: destroying its identity.

Inheritance is the ability to reuse the attributes and meth-
INSERT University-personnel ods of an existing class. Object classes can be organized
VALUES (‘John’, ‘NULL’, ‘6/25/70’) into a type hierarchy based on the is-a relationship be-

tween a superclass and its subclasses. A subclass can
The UPDATE command modifies certain attribute values inherit the attributes and methods for its superclass.

of some selected tuples. It includes a WHERE clause to select
Complex objects in the object-oriented model can be definedthe tuples and a SET clause that specifies the attributes to

from previously defined objects in a nested or hierarchi-be modified and their new values. The following example
cal manner.shows a query to increase by 10% the salary of those univer-

sity personnel with birth-date later than ‘6/25/70’:
An object relational data language extends a relational

language such as SQL by incorporating the main conceptsUPDATE University-personnel
from the object-oriented model. Consequently, with an objectSET salary :� salary * 1.1
relational language, we can retain the strengths of a rela-WHERE birth-date � ‘6/25/70’
tional language such as declarative specification and query
optimization. A standard language for object relational sys-View Definition
tems, called SQL3, has been proposed. Following is a sum-

A view is a table which is derived from other (base and/or mary of its key features (6).
virtual) tables. The command to define a view is as follows:

Class Definition
CREATE VIEW �table name�
AS �query statement� Conceptually an object can be viewed as a tuple in a relation,

and a class can be viewed as a relation, except that an object
The following example shows the definition of a view called encapsulates a set of attributes (which are objects as well)
‘Young-University-personnel’ which are those university per- and methods into a single unit. For instance, we can define a
sonnel born after June 25, 1970: class ‘address’ as follows:

CREATE VIEW Young-University-personnel CREATE CLASS address �
AS SELECT pname, birth-date [attributes] street: char(20),

FROM University-personnel city: char(10),
WHERE birth-date �‘6/25/70’ state: char(2);

[methods] change-address();
�OBJECT RELATIONAL DATABASE LANGUAGES

Although a relational database language such as SQL is use- In the above, the class ‘address’ consists of two parts: attri-
butes and methods. Each object in the class ‘address’ containsful, it has several critical limitations: First, only primitive
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the attributes ‘street’, ‘city’, and ‘state’; and they share the Operator Overloading
same method ‘change-address’ defined in that class.

Operator overloading allows the same operator name to be
bounded to two or more different implementations, depending

Complex Data Types on the type of objects to which the operator is applied. For
example, the operator ‘�’ can invoke different implementa-In the relational model the value of a tuple attribute has to
tions when applied to operands of different types. In a tradi-be primitive as required by the first normal form. However,
tional language, operator overloading is usually limited tothe object relational model extends the relational model so
system-defined operators. Object-oriented languages extendthat the value of an attribute can be a complex object or a set/
operator overloading to support user-defined operators, espe-multiset/sequence of complex objects. (This is called a nested
cially in conjunction with a class hierarchy. In this case arelation.) For example, we may define a class ‘University-per-
method defined in a subclass overwrites any one defined insonnel’ as follows:
its superclass. For example, if the way to compute salary for
research-assistants is different from that of university-staff,

CREATE CLASS University-personnel � then the class ‘research-assistant’ can inherit only the name
/attributes/ name: char (10), of the method, namely compute-salary, from University-staff.

residence: REF(address), In this case the subclass can implement its own ‘compute-
birth-date: date; salary’.

/methods/ compute-age();
�

OBJECT-ORIENTED DATABASE LANGUAGES

In the above the declaration ‘residence: REF(address)’ states A main difference between a programming language and a
that the value of the attribute ‘residence’ has to be the identi- database language is that the latter directly accesses and ma-
fier of an ‘address’ object. nipulates a database (called persistent data in many texts),

whereas the objects in the former only last during program
Class Hierarchy execution. In the past two major approaches have been pro-

posed to implement database programming languages. TheSimilar classes can share some attributes and methods. Sup-
first is to embed a database language (e.g., SQL) in a conven-pose that we define two classes called ‘graduate-student’ and
tional programming language; these language are called em-‘university-staff ’. Since graduate students and university
bedded languages. The other approach is to extend an existingstaff members are University-personnel, they can be defined
programming language to support persistent data and data-naturally with inheritance as follows:
base functionality. These languages are called persistent pro-
gramming languages (6).

CREATE CLASS graduate-student � However, use of an embedded language leads to a major
AS SUBCLASS OF University-personnel; problem, namely impedance mismatch. In other words, con-

student-id: char(10), ventional languages and database languages differ in their
advisor: REF(University-personnel); ways of describing data structures. The data type systems in

� most programming languages do not support database rela-
tions directly, thus requiring complex mappings from the pro-
grammer. In addition, since conventional programming lan-CREATE CLASS university-staff �
guages do not understand database structures, it is notAS SUBCLASS OF University-personnel;
possible to check for type correctness./attributes/ years-of-experience: integer;

In a persistent programming language, the above mis-/methods/ compute-salary();
match can be avoided: The query language is fully integrated�
with the host language, and both share the same type system.
Objects can be created and stored in the database without

The subclasses ‘graduate-student’ and ‘university-staff ’ au- any explicit type change. Also the code for data manipulation
tomatically inherit the attributes (i.e., name, residence, and does not depend on whether the data it manipulates is short-
birth-date) and methods (i.e., compute-age) defined in the su- lived or persistent. Despite of the above advantages, however,
perclass ‘University-personnel’. In general, a superclass can persistent programming languages have some drawbacks.
have one or more subclasses. However, a subclass may have Since a programming language accesses the database di-
more than one superclass. In this case the subclass inherits rectly, it is relatively easy to make programming errors that
the attributes and methods defined in all its superclasses. damage the database. The complexity of such languages also
This is called multiple inheritance. For example, we may de- makes high-level optimization (e.g., disk I/O reduction) diffi-
fine a class ‘research-assistant’ that is a subclass of ‘graduate- cult. Finally declarative querying is in general not supported
student’ and ‘university-staff ’: (1).

Several persistent versions of object-oriented languages
such as Smalltalk or C�� have been proposed. Unfortu-CREATE CLASS research-assistant �

AS SUBCLASS OF graduate-student; nately, there exists no standard for such languages. The ob-
ject Database Management Group (ODMG, which is a consor-AS SUBCLASS OF university-staff;

/methods/ compute-salary(); tium of object-oriented DBMS vendors) has attempted to
develop a standard interface, called ODMG 93, for their prod-�
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ucts. The standard includes a common architecture and a TEMPORAL DATABASE LANGUAGES
definition for object-oriented DBMS, a common object model
with an object definition language, and an object query lan- One major drawback of conventional databases is that they do
guage for C�� and Smalltalk. Following is a summary of the not maintain the history of data. Because each update simply
key features of ODMG 93. destroys the old data, a database represents only the current

state of some domain rather than a history of that domain.
The history aspect of databases is important for applicationsPersistence of Objects
such as project management and equipment maintenance. In

In an object-oriented programming language, objects are general, a temporal database must support time points, time
transient, since they only exist when a program is executed, intervals, and relationships involving time such as before,
and they disappear once the program terminates. In order to after, and during. Temporal data models also need to repre-
integrate such a language with a database, several ap- sent time-varying information and time-invariant informa-
proaches have been proposed. One simple approach is to di- tion separately. The temporal relational model (7) extends the
vide object classes into persistent classes and transient relational model based on the above considerations. In this
classes. A persistent class is a class whose objects are stored model, a database is classified as two sets of relations Rs and
in the database, and thus can be accessed and shared by mul- Rt, where Rs is the set of time-invariant relations and Rt is
tiple programs. However, this approach is not flexible because the set of time-varying relations. Every time-variant relation
in many situations it is necesary to have both persistent and must have two time-stamps (stored as attributes): time-start
transient objects in the same class. One possible solution is (Ts) and time-end (Te). An attribute value of a tuple is associ-
to first create a persistent object, called a persistent root; ated with Ts and Te if it is valid in [Ts, Te].
other objects are persistent if they are referred to directly or Temporal SQL (TSQL) is an extension of SQL with tempo-
indirectly from the persistent root. Here the term ‘reference’ ral constructs. TSQL allows both time-varying and time-in-
means that an object is a member of a set-valued persistent variant relations. Thus SQL, a subset of TSQL, is directly
object or a component of a complex object. applicable to time-invariant relations. TSQL has the following

major temporal constructs, which are illustrated with the fol-
lowing example relations:Object Identification

An object-oriented database system assigns a unique identity
University-staff (sname, salary, Ts, Te)to each object stored in the database. The unique identity is
Car-ownership (sname, cname, Ts, Te)typically implemented via a unique, system-generated object

identifier. The value of an object identifier is not visible to the
external user, but it is used internally by the system to iden- where a tuple (s, c, Ts, Te) of the ‘Car-ownership’ relation
tify each object uniquely. Several major requirements for ob- states the fact that the staff s owns a car c from time Ts to
ject identification need to be considered. Value independence Te; that is, the car c was owned by the staff s continuously
requires that an object does not lose its identity even if some during the interval [Ts, Te].
attributes change their values over time. Structure indepen-
dence requires that an object does not lose its identity even if

WHEN Clausesome structures change over time. In a relational database
system, a set of attributes (i.e., the key attributes) is used to The WHEN clause is similar to the WHERE clause in SQL.
identify the tuples in a relation; therefore value independence It evaluates the associated temporal predicates by examining
cannot be enforced. Another major property of an object iden- the relative chronological ordering of the time-stamps of the
tifier is that it is immutable; that is, the value of an object tuples involved. The available temporal predicates include
identifier for a particular object should not change. It is also predefined temporal comparison operators such as BEFORE,
desirable that each object identifier is used only once; which DURING, and OVERLAP. The binary operator INTERVAL is
means that even if an object is deleted from the database, its used to specify time intervals, namely [Ts, Te]. To qualify a
object identifier should not be assigned to another object. single time-stamp, the unary operators TIME-START or
These two properties imply that an object identifier does not TIME-END can be used.
depend on any attribute values or structures. The following query shows the use of an OVERLAP opera-

When a persistent object is created in a persistent object- tor in the WHEN clause:
oriented database language, it must be assigned a persistent
object identifier. The only difference between a transient iden-

Query. Retrieve the salary of the university-staff withtifier and a persistent identifier is that the former is valid
name ‘John’ when he owned ‘Taurus’.only when the program that creates it is executing; after the

program terminates, the object is deleted and the identifier is
meaningless. Additional requirements have been proposed for SELECT University-staff.salary
persistent object identifiers. Location independence requires FROM University-staff, Car-ownership
that an object does not lose its identity even if the object WHERE (University-staff.sname � Car-owner-
moves between the memory and the secondary storage. An- ship.sname) AND
other requirement is that an identity persists from one pro- (Car-ownership.sname � ‘John’) AND

(Car-ownership.cname � ‘Tauraus’)gram execution to another. Note that a disk pointer does not
satisfy this property, since it may change if the structure of WHEN University-staff.INTERVAL OVERLAP Car-

ownership.INTERVALthe file system is reorganized.
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TIME-SLICE Clause fication and monitoring of general integrity constraints, (2)
flexible timing of constraint verification, and (3) automatic ex-

The TIME-SLICE clause specifies a time period or a point of
ecution of actions to repair a constraint violation without

time point. It selects only those tuples from the underlying
aborting a transaction.

relations that are valid for the specified time period or time
A major construct in active database systems is the notion

point. The following query shows the use of a TIME-SLICE
of event condition action (ECA) rules. An active database rule

operator in the WHEN clause:
is triggered when its associated event occurs; in the mean-
time the rule’s condition is checked and, if the condition is

Query. Retrieve the changes of salary during the years true, its action is executed. An event specifies what causes
1983–1990 for all university-staff whose car was ‘Tau- the rule to be triggered. Typically triggering events include
rus’. data modifications (i.e., SQL INSERT, DELETE, or UP-

DATE), data retrievals (i.e., SELECT), and user-defined
SELECT University-staff.sname, salary, University- statements; the condition part of an ECA rule is a WHERE

staff.TIME-START clause, and an action could be a data modification, data re-
FROM University-staff, Car-ownership trieval, or a call to a procedure in an application program.
WHERE (University-staff.sname � Car-owner- The following SQL-like statement illustrates the use of an

ship.sname) AND ECA rule:
(Car-ownership.cname � ‘Tauraus’)

WHEN University-staff.INTERVAL OVERLAP Car- �EVENT�: UPDATE University-staff
ownership.INTERVAL SET Salary :� Salary * 1.1

TIME-SLICE year [1983, 1990] �CONDITION�: Salary � 1000K
�ACTION�: INSERT INTO Highly-Paid-University-

Retrieval of Time-Stamps Staff
To retrieve time points or intervals that satisfy certain condi-

Several commercial (relational) database systems supporttions, the target list of time-stamps should be specified in the
some restricted form of active database rules, which are usu-SELECT clause. This target list may include the unary opera-
ally referred to as triggers. In SQL3, each trigger reacts to ators TIME-START or TIME-END. If more than one relation
specific data modification operation on a table. The generalis involved, then new time-stamp values are computed based
form of a trigger definition is as follows (8):on the tuples involved. TSQL allows an INTER operator to be

applied in the target list. The INTER operator takes two time
�SQL3 trigger� ::� CREATE TRIGGER �trigger name�intervals and returns another interval which is their intersec-

�BEFORE�AFTER�INSTEAD OF� �trig-tion, assuming that the two time intervals overlap.
ger event�The following query shows how to use an INTER operator

ON �table name�to retrieve time-stamp values:
WHEN �condition�
�SQL procedure statements�Query. List the salary and car history of all university-
[FOR EACH �ROW�STATEMENT�]staff while their salaries were less than 35K.

�trigger event� ::� INSERT�DELETE�UPDATE

SELECT University-staff.sname, salary, Car-owner-
where �trigger event� is a monitored database operation,ship.cname
�condition� is an arbitrary SQL predicate, and �action� is(University-staff INTER Car-owner-
a sequence of SQL procedural statements which are seriallyship).TIME-START
executed. As shown, a trigger may be executed BEFORE,(University-staff INTER Car-owner-
AFTER, or INSTEAD OF the associated event, where the unitship).TIME-END
of data that can be processed by a trigger may be a tuple orFROM University-staff, Car-ownership
a transaction. A trigger can execute FOR EACH ROW (i.e.,WHERE (University-staff.sname � Car-owner-
each modified tuple) or FOR EACH STATEMENT (i.e., an en-ship.sname) AND
tire SQL statement).(University-staff.salary � 35K)

An integrity constraint can be considered as a special formWHEN University-staff.INTERVAL OVERLAP Car-
of trigger whose action is to issue an error message whenownership.INTERVAL
some conditions are violated. SQL-92 allows integrity con-
straints to be specified in some restricted forms. Table con-
straints are used to enforce permissible values on the domainACTIVE DATABASE LANGUAGES
of a particular attribute of a relation. Typical examples of
such constraints are nonnull values (NOT NULL) and nonre-Conventional database systems are passive. In other words,

data are created, retrieved, and deleted only in response to dundant values (UNIQUE). These constraints are defined as
a part of the CREATE TABLE statement. A referential integ-operations issued by the user or from the application pro-

grams. Proposals have been made to transform database sys- rity constraint specifies that a tuple in one table (called the
referencing table) referencing another table (called the refer-tems to active. This means that the database system itself

performs certain operations automatically in response to cer- enced table) must reference an existing tuple in that table.
They are specified in terms of a FOREIGN KEY clause in thetain events or conditions that must be satisfied by every data-

base state. Typically an active database supports (1) the speci- referencing table, which states that if a delete or update on
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the referenced relation violates the constraint, then (instead Facts: (1) Parent(Mary,Tom)
(2) Parent(John,Mary)of rejecting the operation) some action is taken to change the

tuple in the referencing relation in order to repair the con- (3) Parent(Mary,Ann)
Rules: (1) Ancestor(x,y) :� Parent(x,y)straint violation. Consider the following example: If an up-

date of a tuple in the referenced relation ‘Department’ vio- (2) Ancestor(x,y) :� Parent(x,z), Ancestor(z,y)
(3) Sibling(x,y) :� Parent(z,x), Parent(z,y)lates the referential constraint, then the attribute ‘dept-name’

in the referencing tuple is also updated to the new value.

As shown in the examples, there are two predicates: Parent
CREATE TABLE University-personnel and Ancestor. An ancestor is defined via a set of facts, each of

person-name: char(9), which means ‘X is a parent of Y’. These facts correspond to a
dept-name: char(20) set of tuples stored in the relation ‘Parent’. Rule 3 is an exam-
FOREIGN KEY (dept-name) REFERENCES Department ple of recursive rules, where one of the rule body predicates

ON DELETE CASCADE is the same as the rule head. A DATALOG program is a set
ON UPDATE CASCADE of rules as exemplified.

A rule is instantiated by replacing each variable in the rule
by some constant. A rule simply states that if all the bodyAn integrity constraint may also be an arbitrary user-de-
predicates are true, the head predicate is also true. Thus afined SQL predicate. There are several ways to evaluate an
rule provides us a way of deriving new facts that are instanti-integrity constraint. Immediate evaluation allows an integ-
ations of the head of the rule. These new facts are based onrity constraint to be checked after every SQL statement
facts that already exist. In other words, the rule body specifieswhich may violate the constraint is executed. In deferred
a number of premises such that if they are all true, we canevaluation, constraint checking is not performed until a
deduce that the conclusion is also true. As an example, sup-transaction commits. Usually system-defined constraints (i.e.,
pose that in rule 3, variable z was replaced by ‘Mary’, variabletable or referential constraints) are evaluated immediately,
x by ‘Tom’, and variable by ‘Ann’. Since the facts correspond-and general assertions are evaluated in the deferred mode.
ing to Parent(Mary, Tom) and Parent(Mary, Ann), we can de-
duce a new fact Sibling (Tom, Ann) from rule 3.

DEDUCTIVE DATABASE LANGUAGES In DATALOG, a query is specified by a predicate symbol
with some variables; this means to deduce the different com-

A deductive database extends the relational data model to binations of constant values that can make the predicate true.
support deductive reasoning via a deductive (or inference) In the above example, a query ‘Find all descendants of John?’
mechanism that can deduce new facts from the database can be expressed as Ancestor(John, x) whose answer set is
rules. It consists of two main types of specifications: facts and �Mary, Tom, Ann�.
rules. Facts are similar to tuples in a relation, and rules are In a deductive database, a model of a set of rules is defined
similar to relational views. They specify virtual relations that to be a set of facts that makes those rules true. An interesting
are not actually stored but can be derived from facts. The point of a DATALOG program is that the intersection of a set
main difference between rules and views is that rules may of models is also a model. Thus any DATALOG program has
involve recursion, which cannot be defined in the relational a unique least model. The procedure to compute a minimal
model. In general, a rule is a conditional statement of the model of a DATALOG starts with a set of given facts I. While
form if �condition� then �deduced relation�. the rule body can be instantiated with the facts in I, the fact

Integrating logical deduction with a database system re- corresponding to the instantiated rule head is generated and
quires the development of a rule language. DATALOG is a added to I. When no new elements can be added to I, this is
declarative query language that can be used to facilitate set- the minimal model. For example, consider the following DAT-
oriented database processing. It is based on the logic pro- ALOG program (3):
gramming language PROLOG. The syntax of DATALOG is
similar to that of PROLOG. However, a major difference be-

�Parent(Sue,Pam), Parent(Pam,Jim), Ancestor(x,y) :� Par-tween DATALOG and PROLOG is that a DATALOG program
ent(x,y)�is defined in a purely declarative manner, unlike the more

procedural semantics of PROLOG. Therefore DATALOG is a
We can compute the following:simplified version of PROLOG.

DATALOG Rules I1 � �Parent(Sue,Pam), Parent(Pam,Jim)�
I2 � I2 union �Ancestor(Sue,Pam)�An atom (or positive literal) has the form P(t1, t2, . . ., tn)
I3 � I3 union �Ancestor(Pam,Jim)�where P is a predicate and t1, t2, . . ., tn are either variables

or constants. Similarly a negative literal has the form NOT
P(t1, t2, . . ., tn). A ground atom (or fact) is an atom con- At this point, since no new fact can be generated, I3 is the

least model.taining only constants. A rule is presented as P :� Q1, Q2,
. . ., Qn, where P is an atom built with a relation predicate One problem associated with DATALOG is to guarantee

the answer set is finite. A rule is called safe if it generates aand Qi’s are atoms built with any predicate. This form of a
rule is called a Horn clause, where P is called the rule head finite set of facts. It is possible to specify rules that generate

an infinite number of facts. Following is a typical example of(or conclusion) and Q1, Q2, . . ., Qn are called the rule body
(or premises). Following are some examples of facts and rules: unsafe rules:
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High_Temperature(y) :� y � 100 (1) Ancestor(x,y) :� Parent(x,z), Ancestor(z,y)
(2) Ancestor(x,y) :� Ancestor(x,z), Ancestor(z,y)

In this example some unsafe situations can be identified. Spe-
Indeed there exist database queries that cannot be an-cifically, a variable in the body predicate can have an infinite

swered without using recursion. Consider a query ‘‘Retrievenumber of possible instantiations. It can be shown that it is
all supervisors of the employee John’’. Although it is possiblenot solvable to determine whether a set of rules is safe. How-
to retrieve John’s supervisors at each level, we cannot knowever, a syntactic structure of safe rules has been proposed
the maximum number of levels in advance. An alternative tobased on the notion of range restricted rules. A rule is range
recursion is to embed SQL into a general programming lan-restricted if all variables of the rule’s head appear in a nonne-
guage and iterate on a nonrecursive query, which in effectgated relational predicate in the rule body.
implements the fixed point process. However, writing such
queries is much more complicated than using recursive rules.Extension of DATALOG

Given a DATALOG program, the :� symbol may be re-
To increase the expressive power of DATALOG, several exten- placed by an equality symbol to form DATALOG equations.
sions of DATALOG have been proposed (3). DATA(fun) ex- A fixed point of a set of equations with respect to a set of
tends DATALOG with functions that may be invoked in the relations R1, R2, . . ., Rn is a solution for these relations that
rule body. DATALOG(neg) extends DATALOG with the use satisfies the given equation. A fixed point then forms a model
of negative literals in the rule body. Thus we can generalize of the rules. For a given set of equations it is possible to have
the basic rule definition as follows: P :� Q1, Q2, . . ., Qn, two solution sets S1 �� S2, where each predicate in S1 is a
where Qi’s are positive or negative literals built with any subset of the corresponding predicate in S2. A solution S0 is
predicate. The semantics of DATALOG(neg) is not easy to de- called the least fixed point if S0 �� S for any solution S satis-
fine because the program may not have a least model. For fying those equations. Thus a least fixed point corresponds to
instance, the following program has two models: �Bird(Tiger), a least model. We also note that the existence of fixed point
Bat(Tiger)� and �Bird(Tiger), Has-Egg(Tiger)�. The intersec- always guarantees the termination of a program.
tion of these models is not a model of this program:

ODBC�Bird(Tiger), Has-Egg(x) :� Bird(x), NOT Bat(x)�

Open Database Connectivity (ODBC) (4) is an application pro-
One important extension of DATALOG(neg) is stratified gram interface for multiple database accesses. It is based on

DATALOG. A program is stratified if there is no recursion the call level interface (CLI) specifications and uses SQL as
through negation. For instance, the following example is not its database access language. ODBC is designed for maximum
stratified because it involves a recursion via negative literals interoperability, that is, the ability of a single application to
(3): access heterogeneous databases with the same source code.

The architecture of ODBC consists of three layers to provide
�P(x) :� NOT P(x), Q(x) :� NOT P(x), P(x) :� NOT Q(x)� transparency: an application program calls ODBC functions

to submit SQL statements and retrieve the results; the Driver
Stratified programs have a least model that can be computed Manager processes ODBC function calls or pass them to a
in an efficient way. driver; and the driver processes ODBC function calls, submits

SQL requests to a specific data source, and returns results to
Recursion the application.

Recursive rules are useful to express complex knowledge con-
cisely. The concept of recursion in DATALOG is similar to CONCLUSION
that of general programming languages. A typical type of re-
cusion is transitive closure such as ancestor-parent, supervi- We have considered several modern database languages

based on their underlying data models. Although SQL hassor-employee, or part-subpart relationship. A rule is linearly
recursive if the recursive predicate appears only once in the been widely accepted as the standard query language, it re-

quires additional features such as complex data types, tempo-rule body. Notice that rule 2 below is not linearly recursive.
It is known that most application rules are linear recursive ral data, trigger, and deduction to support advanced applica-

tions. A comparison of the database languages discussed inrules; algorithms have been developed to execute linear re-
cursive rules efficiently. this article is summarized in Table 2.

Table 2. Comparison of Database Languages

Object Object- Temporal
Relational Relational Oriented Relational Active Deductive

Structure Flat table Nested table Class Table with time Table (with trigger) Rule
Query type Declarative Declarative Procedural, declarative Declarative Declarative Declarative
Language SQL SQL3 Persistent C�� TSQL SQL3 DATALOG
Optimization System System User System System System
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