
DATABASE PROCESSING

FUNCTIONAL LAYERS IN DATABASE SYSTEMS

The practical need for efficient organization, creation, ma-
nipulation, and maintenance of large collections of infor-
mation, together with the recognition that data about the
real world, which is manipulated by application programs,
should be treated as an integrated resource independently
of these programs, has led to the development of database
management. In brief, a database system consists of a piece
of software, the database management system, and some
number of databases. The former is a special-purpose pro-
gram stored in a computer’s main memory and executed
under the control of the operating system. Due to their
size, which can easily reach terabyte (TB) or even petabyte
(PB) ranges, databases are commonly stored in secondary
memory, and the system then acts as an interface between
users and their databases. It ensures that users can access
data conveniently, efficiently, and under centralized con-
trol and that the data itself is resilient against hardware
crashes and software errors and persists over long periods
of time independent of the programs that access it.

We can view the functionality of a database manage-
ment system as being organized in six different layers as
shown in Fig. 1. The language and API layer manages the
interfaces to the various classes of users, including the
database administrator, casual users, and application pro-
grammers and application programs (e.g., Web servers).
These interfaces may be menu-based, graphical, language-
, or forms-based and provide a data definition language
(DDL) and a data manipulation language (DML, e.g., struc-
tured query language [SQL]) as stand-alone languages or
as languages embedded in host languages. Often, queries
to a database are not explicitly specified by a user, but gen-
erated by a system based on user input; for example, Web
servers often “talk” to a database system by sending off
a query in a request and obtaining an answer in a reply.
The query processing and optimization processing layer has
to process the various forms of requests and queries that
can be sent to a database. To this end, views used in a
query need to be resolved (replaced by their definition),
semantic integrity predicates are added if applicable, and
access authorization is checked. Ad hoc queries are pro-
cessed by an interpreter, and queries embedded in a host
language program are compiled. Next, a query is decom-
posed into elementary database operations. Then the re-
sulting sequence is optimized with the goal of avoiding ex-
ecutions with poor performance. An executable query or
program (“access plan” or query execution plan) is passed
to the transaction management layer, which is in charge of
controlling concurrent accesses to a shared database (“con-
currency control”) and at the same time makes the system
resilient against possible failures (through main-memory
buffer management and through logging and recovery). At
the query execution layer, individual queries are executed
based on the execution plan created earlier, and subject
to concurrency control and recovery mechanisms. Query
execution will typically access stored data through the ac-

Figure 1. Functional DBMS layers.

cess layer, at which index structures for speeding up stor-
age access are maintained. Finally, the storage manage-
ment layer takes care of the physical data structures (files,
pages, indexes) and performs disk accesses. In this context
secondary storage is used for holding the database itself
and also for keeping logs that allow restoring a consistent
state after a crash (“recovery”) and for keeping the data
dictionary in which schema information is collected.

RELATIONAL DATABASES

Relational database systems are based on a simple concep-
tual model introduced by Codd in (1) that allows for easy-to-
use, yet powerful query languages. In particular, tables are
accessed and manipulated via operators that process them
as a whole. The most relevant of these will be described
later. The model is based on the mathematical notion of
a relation and organizes data in the form of tables. A ta-
ble has attributes describing properties of data objects (as
headline) and tuples holding data values (as other rows). In
essence, a table is a set of tuples, whose tuple components
can be identified by their associated attributes. This was
originally restricted at least from the point of view of types
in programming languages, because it allows only the ap-
plication of a tuple constructor to attributes and given base
domains, followed by the application of a set constructor;
on the other hand, the simplicity of the relational model al-
lows an elegant and in-depth formal treatment, which can
be found, for example, in Maier (2) or Ullman (3). Codd’s
relational model has meanwhile undergone various exten-
sions, in particular in the direction of object- as well as
document orientation; a discussion of object-relational or
XML-based systems is, however, beyond the scope of this
paper; the reader is referred to Elmasri et al. (4) or Sil-
berschatz et a. (5) for details. Most notably, the relational
model has been combined with object-orientation into what
is now known as object-relational databases, with powerful
typing and querying facilities that smoothly integrate with
modern programming languages.

A sample relational database is shown in Fig. 2. This
database, which illustrates a banking application and will
be used as our running example, comprises three tables

J. Webster (ed.), Wiley Encyclopedia of Electrical and Electronics Engineering. Copyright © 2007 John Wiley & Sons, Inc.

2 Database Processing

Figure 2. Sample relational database for a bank.

called Account (A), Branch (B), and Customer (C). Table A
shows account balances for customer accounts. Individual
accounts are identified by an ID. Table B indicates which
accounts are kept at which branch of the bank and in which
city district that branch, identified by a branch ID, is lo-
cated. Finally, Table C holds customer information. Note
that customers do not necessarily have their bank accounts
in the city district where they live.

To be able to look at several aspects of the relational
model in a formally precise manner, we next introduce
some notation commonly used in this context. Let X =
{A1, . . . , Am} be a set of attributes, and let each attribute
A ∈ X have a non-empty, finite domain dom(A) of atomic
values (integers, strings, etc.). (Note that here attribute
A is not to be confused with the table name we are us-
ing in the sample relational database shown in Fig. 1.)
Let ∪ A ∈ X dom(A) =: dom(X). A tuple over X is a mapping
µ : X → dom(X) satisfying µ : (A) ∈ dom(A) for each A ∈ X.
For a given X, let Tup(X) denote the set of all tuples over
X. A relation r over X is a finite set of tuples over X, that
is, r � Tup(X). The set of all relations over X is denoted by
Rel(X).

A relation schema has the form R = (X, �). It consists
of a name (R), a set of attributes X, and a set � of lo-
cal integrity constraints. It serves as a description of the
set Sat(R) of all relations over X that satisfy �. Next
let R = {R1, . . . , Rk} be a (finite) set of relation schemas,
where Ri = (Xi, �i), 1 ≤ i ≤ k, and Xi �= Xj for i �= j. A (rela-
tional) database d (over R) is a set of (base) relations, d =
{r1, . . . , rk}, such that ri ∈ Sat(Ri) for 1 ≤ i ≤ k. Let Dat(R)
denote the set of all databases over R.

Now let R be a set of relation schemas, and let �R be a
set of global integrity constraints. A (relational) database
schema is a named pair D = (R, �R). It represents a de-
scription of the set of all consistent databases over R sat-
isfying all local and global constraints. In our running ex-
ample, a local constraint on Table A would say, for exam-
ple, that the IDs used for identifying accounts have to be

unique. A global constraint on the database would say that
customer names in Table A must have a counterpart in Ta-
ble C, that is, full information is recorded in Table C for
each customer with an account. We do not pay any fur-
ther attention to integrity constraints here since they are
mostly used in the design phase of a database.

Operations on Relations

We next look at the operational part of the relational model,
namely algebraic operations on relations. These opera-
tions directly provide the formal semantics of a relational
data manipulation language known as relational algebra.
Among their common features are that they all yield new
(derived) relations from given ones and that they can be
computed efficiently. We define only three algebraic oper-
ations on relations here: selection (S), projection (P), and
natural join (J). These form the important subclass of SPJ
expressions for which a host of interesting results is avail-
able in the literature; see Maier (2), Ullman (3) or Elmasri
and Navathe (4) for details. The first two of these opera-
tions are unary, and the third is binary. SPJ expressions
suffice to demonstrate important concepts in query pro-
cessing and in query optimization.

Projections and Selections. The two unary operations we
define next can be used to “cut” a table in a vertical (projec-
tion) or horizontal (selection) direction. Let R = (X, �) be a
relation schema, R ∈ Rel(X), Y � X, and for a tuple µ over
X, let µ[Y] denote its restriction onto Y. Then the projection
of r onto Y is defined as follows:

πY (r) := {µ[Y]|µ in r} (1)

Next, the selection of r with respect to condition C is
defined as

σC(r) := {µ in r|µ satisfies C} (2)

Here, conditions may be either a term of the form
A�a or A�B, where A, B ∈ X, A, A and B have the same

Database Processing 3

domain, a ∈ dom(A), � ∈ {{<}, ≤, > , ≥ , =, �= }, or several
such terms connected by logical ∧ , and ¬ . As an exam-
ple, consider relation C from our running example. A pro-
jection of C onto attributes Name and YearOfBirth, that is,
πName, YearOfBirth(C), will yield the following table:

Name YearOfBirth

Adams 1955
Barbara 1963
Jones 1949
Kelly 1970
Kline 1961
Maier 1953
Paul 1965
Smith 1936

In the standard relational query language SQL this
query is expressed as

select distinct Name, YearOfBirth
from C

where “distinct” is needed for removing duplicate tuples
from the result. Similarly, a selection of all downtown ac-
counts from Table B, that is, σCityDistrict=′downtown′(B), results
in the following table:

BID AID CityDistrict

1 110 downtown
1 120 downtown
1 130 downtown

In SQL this is written as

select*
from B
whereCityDistrict = ‘downtown’

Notice that a number of simple rules apply to the selec-
tion and projection operations. Let r be a relation in Rel(X):

1. If Z � Y � X, then πZ [πY (r)] = πZ (r);
2. if Z, Y � X, and Z ∩ Y �= 0, then πZ [πY (r)] = πZ∩Y(r);
3. σC1 [σC2 (r)] = σC2 [σC1 (r)] for any selection conditions

C1 and C2;
4. if A ∈ Y � X, then πY [σA�a (r)] = σA�a [πY (r)], where �

is an admissible comparison operator.

Natural Join. Next, we introduce the binary operation
of the natural join. Intuitively, this type of join combines
two relations into a new one, by looking for equal val-
ues for common attributes. The resulting relation has all
attributes from both operands, where common ones are
taken only once. Formally, we have the following. Let
r ∈ Rel(X), s ∈ Rel(Y):

r� s := {µ ∈ Tup(X ∪ Y)|µ[X] ∈ r ∧ µ[Y] ∈ s} (3)

As an example, consider A � B in our sample database
from Fig. 2, which is formed over the (only) common at-
tribute AID. The result is the following relation:

AID CustName Balance BID CityDistrict

110 Smith 1,324 1 downtown
120 Jones 256 1 downtown
130 Maier 22,345 1 downtown
220 Paul 2,550 2 beach area
240 Kline 86 2 beach area
310 Adams 1,360 3 lower east
320 Kelly 23,022 3 lower east
330 Barbara 345 3 lower east

In SQL, this result is obtained from the following ex-
pression:

select A.AID, Cust, Balance, BID, CityDistrict
from A, B
where A.AID = B.AID

In other words, an SQL formulation requires a speci-
fication of the attributes of the result relation (in the se-
lect clause) and also that of a join condition (in the where
clause). Variations of these rules brought along by modern
SQL implementation, which result in simpler ways to state
joins, are neglected here. Notice that by using explicit join
conditions, it is possible to formulate more general joins,
such as a join of Tables A and C over customer names (us-
ing the join condition “A.CustName = C.Name”) or a join of
B and C over city districts. It is even possible to specify join
conditions with comparison operators other than equality.
Without the possibility of equating attributes CustName
and Name, a join of A and C would formally result in a
Cartesian product of the operands, because all their at-
tributes have pairwise distinct names. In general, a natu-
ral join degenerates to a Cartesian product (intersection)
if the sets of attributes of the operands are disjoint (iden-
tical), respectively.

The operation of a natural join has additional proper-
ties. For example, we easily see that it is commutative
and associative. In other words, the expressions (A � B)
C, A � (B � C), (B � A) � C, (C � B) � A, C � (B � A)
or A � (C � B) and so on all yield the same result (up
to the ordering of attributes, which is considered immate-
rial), independent of the current contents of the operand
tables. Additional rules for algebraic operations state un-
der which conditions selection and projection distribute
over joins. We list some of these rules next. Again let
r ∈ Rel(X), s ∈ Rel(Y), and t ∈ Rel(Z):

1. σC (r � s) = σC (r) � s if the attributes mentioned in
C are a subset of X;

2. σC (r � s) = σC (r) � σC (s) if the attributes mentioned
in C are a subset of X and Y;

3. if V � X ∪ Y, then πV (r � s) = πV [πW (r) � πU (s)],
where W = X ∩ (V ∪ Y), U = Y ∩ (V ∪ X).

For more on this topic, see Maier (2) or Silberschatz et
al. (5). The typical way to prove such equalities (of sets of
tuples) is to show set containment in both directions (i.e.,
“left-hand side � right-hand side” and vice versa), which
is basically derived from the definitions of the operations
involved.

4 Database Processing

Figure 3. Steps in query processing.

Query Processing

Although we are not going to define the query language of
relational algebra formally here, we mention that database
queries, as shown by the previous SQL expressions, are al-
ways formulated in terms of the underlying schema. On
the other hand, their evaluation takes place on the current
contents of the respective database, and to this end, it is
important that query evaluation can be done efficiently. Ef-
ficiency is determined by two aspects. First, the individual
operations included in a query language must be efficiently
implemented. We will see later on that this is particularly
true for the operations introduced so far. Second, even if the
operations used in a query are locally efficient, the overall
query could be improvable, so that globally high efficiency
can also be guaranteed. This latter aspect, called query
optimization, is discussed next.

Figure 3surveys query processing in its entirety and the
role of query optimization in it. A user-defined query is first
parsed and checked for correct syntax. Next, validation en-
sures that the user who issued the query has the appropri-
ate access rights, that attributes mentioned in the query
indeed occur in the relations the user has specified, or that
selection conditions use applicable comparisons. If view
names occur as abbreviation for subqueries in the query,
these are resolved, i.e., replaced by their defining expres-
sions. Then the query is subject to optimization. Depending
on the storage structures used at the internal level and the
implementation available for the language operators, dif-
ferent access plans may be generated and evaluated w.r.t.
execution costs, one of which is finally transformed into
executable code and executed on the current state of the
database.

Query Optimization. Consider the following query to our
sample database: select the account balances of customers
who were born before 1950 and do their banking downtown.
Intuitively, this query needs to join together information
from all three relations in our database:

1. account balances are found in Table A;
2. branch districts are stored in Table B; and
3. birth years of customers are available from Table C.

A corresponding SQL formulation is as follows:

select Balance
from C, B, A
where A.AID = B.AID and A.Cust = C.Name
and YearOfBirth < 1950
and CityDistrict = ‘downtown’

An SQL query processor evaluates this expression by
forming first the product of the operands mentioned in
the from clause, then applying the conditions given in
the where clause, and finally projecting onto the at-
tributes mentioned in the select clause. Thus, it evaluates
the following algebraic expression (which assumes that
A.CustName and C.Name are equated):

πBalance(σYearO fBirth≤1950 ∧ CityDistrict=′downtown′(C�B�A))

Notice that the inner join produces an intermediate re-
sult that is much larger than the final result. Indeed, the
join of A, B, and C contains 8 tuples, whereas the final re-
sult consists only of the following two tuples:

Balance
1,324
256

(Only customers Smith and Jones qualify.) Fortunately,
there is a straightforward way to do better in terms of
query evaluation, namely, to apply the rules of relational
algebra so that selections and projections are applied
as early as possible. For example, because we are inter-
ested only in customers born before 1950, it would be rea-
sonable to apply this selection condition to Table C before
it is joined with another table. Similarly, the section on
CityDistrict could be applied before any join. The resulting
expression now reads as follows:

πBalance(σYearO fBirth<1950(C)� CityDistrict=′downtown′(B)�A)

Clearly, we can still do better by projecting out as many
attributes as possible based on what is relevant to the
query result or needed for proper join computations. The
important point is that already the previous expression
would never yield an intermediate result that contains
more tuples than the final result, simply because those cus-
tomers born before 1950 are selected right away.

The aspect illustrated in this example is one facet of the
wide field of query optimization, which, when performed
at the schema level, attempts to reduce the evaluation or
response time without knowing the internal data struc-
tures of the relations involved. Clearly, another such facet
is implementation-dependent query optimization, which is
at least equally important for system implementations.
Again, the goal is to avoid bad execution time, now, by
characterizing them via cost functions based on the “se-
lectivity” of operations, the availability of indexes, or the
implementation chosen for the operations. The interested
reader should consult Yao (6), Elmasri and Navathe (4),
Silberschatz et al. (5), or Freytag et al. (7).

Internal Join Processing. Next we look at two ways to im-
plement the join operator because this gives an impression
of what can be done beyond the type of optimization dis-
cussed previously. To this end, it is first reasonable to clar-
ify the role of an algebra and its operators within the “land-
scape” of languages used to query databases. As shown in

Database Processing 5

Figure 4. Role of query algebras.

Fig. 4, at the user level there is a typical SQL or another
form of a declarative language (e.g., a rule-based language
such as Datalog). Relational algebra can be seen as an “as-
sembly language” for relational databases, because typi-
cally it does not pop up at the user interface. Instead, high-
level queries are transformed by the system into an expres-
sion from the algebra to apply optimization techniques and
to perform an efficient evaluation. However, although op-
timization is done to a logical algebra that corresponds to
what we have described previously, implementation and
execution is done in terms of a physical algebra that cor-
responds directly to system processes run on the bare ma-
chine.

We explain the difference between the two types of alge-
bras by way of the join example. As seen earlier, the natu-
ral join has a formally precise definition, which on the one
hand, tells what to expect from applying this operation to
given tables, but which on the other hand, does not state
how to implement the operation efficiently. The latter is
treated in the context of physical join operators, of which
we mention the nested-loop join and the sort-merge join.

The nested-loop join is immediately based on the join
definition: A join of relations r and s is computed by fixing
one relation, say r, as the “outer” relation, the other as the
“inner”, and searching for each new tuple of the outer rela-
tion to determine whether there exists a tuple in the inner
relation with equal values for common attributes. We can
write this as follows, where Z := X ∩ Y :

initialize Result to the empty set;
for i: = 1 to |r| do
for j: = 1 to |s| do
if Tuple i of r matches Tuple j of s on Z
then add join of the 2 tuples to Result;

We mention that an implementation of this procedure
needs to read both operands from secondary memory into
the database buffer in the main memory to perform the
equality tests. Correspondingly, the result relation is con-
structed in the main memory and eventually written back
to the disk in case it is to be stored for further process-
ing. This reveals an important observation we will study
in more detail later when we talk about transaction pro-
cessing: read and write operations are at the interface be-
tween the database and its portion that is currently being
processed in the main-memory buffer. As seen later, these
operations, if issued by distinct processes, require careful
synchronization, so as not to corrupt the database or the

results to be returned to the user.
Now it is easy to calculate the number of accesses a

nested-loop join must perform on relations r and s of size
n and m, respectively. The number of tuples to be handled
is roughly O(nm), because every tuple of s is compared for
each tuple of r. If, for example, |r| = 105 and |s| = 5 ∗ 104,
this will result in 5*109 tuple accesses. Real-world sys-
tems will normally improve on this by accessing relations
in blocks that hold more than one tuple at a time. For ex-
ample, if a block holds 102 tuples, the number of accesses
drops to approximately 107.

The sort-merge join is a different method for computing
a join. As the name suggests, this method proceeds by first
sorting both operands, for example, according to increas-
ing values for their common attributes. In a second phase,
both are then scanned sequentially, and tuples satisfying
the join condition are joined and added to the result. We
can write this as follows, where as before Z denotes the
common attributes, comparison is done in lexicographical
order, index i ranges over relation r, and index j ranges
over relation s:

sort r according to increasing values of common at-
tributes;
sort s correspondingly;
initialize Result to the empty set;
i: = 1;
j: = 1;
repeat
while Tuple j of s does not match Tuple i of r on Z do
while j < |s| do j: = j+1;
if Tuple i of r matches Tuple j of s on Z
then add join of the 2 tuples to Result;
i: = i+1
until i > |r|;

If r is of size n and s of size m, sorting requires the
additional effort of O(n log n), respectively, O(m log m),
but from then on the time complexity reduces to O(n +
m), which is proportional to the size of the bigger relation.
Again, the number of accesses can be reduced even further
by utilizing the fact that more than one tuple often fits into
one block. We mention that similar considerations apply
to selection and projection implementations. As is easily
verified, writing physical operators for them is even easier
than for the natural join.

Considerations like the previous are crucial for
database system implementation. Therefore we refer the
interested reader to Graefe (8), O’Neil and O’Neil (9), and
Ramakrishnan and Gehrke (10). Issues like block sizes for
appropriate units of transfer between secondary and pri-
mary memory, buffer size in main memory, or storage struc-
tures to manage secondary memory are subject to physical
database design, but also subject to database tuning; see
Shasha and Bonnet (11) for details.

TRANSACTION MANAGEMENT

Now we move to the system layer of a database system,
at which translated user requests finally are executed. We
have already described this for single queries. In particular,
we have mentioned that read and write operations occur
at the interface between a database (on disk) and the por-

6 Database Processing

tion (in buffer) which is accessed to answer user requests.
In general, a database system must perform queries, as
described previously, but also update operations which in-
sert, delete, or modify tuples, and more generally it may
have to run application programs in which read and write
operations to the database occur frequently.

If several such processes are interleaved arbitrarily, in-
correct results may be produced, as seen from the fol-
lowing two examples, known as the lost update and the
inconsistent read problem, respectively. First, consider two
system processes P1 and P2 which are concurrently exe-
cuted as follows:

P1 Time P2
read(x) 1

2 read(x)
update(x) 3

4 update(x)
write(x) 5

6 write(x)

↑
update “lost”
Suppose that x is a numerical data object having a

value of 10 at Time 1. Both P1 and P2 read this value.
Assume that P1 adds 1, whereas P2 adds 2. So in the end x
should have a value of 13. However, because P2 updates the
original value of x, the final value is 12, which is incorrect.
Indeed, if P1 writes its new value back into the database
before P2 does, the former update is lost.

Second, consider three numerical objects x, y, z with cur-
rent valuesx = 40, y = 50, z = 30, that is, x + y + z = 120.
This could arise in banking, where the objects represent ac-
count balances. For transfers between accounts, their sum
obviously remains constant. Process 1 following computes
the current sum, and process 2 transfers a value of 10 from
z to x as follows:

P1 Time P2
sum: = 0 1
read(x) 2
read(y) 3
sum: = sum +x 4
sum: = sum +y 5

6 read(z)
7 z: = z − 10
8 write(z)
9 read(x)

10 x: = x − 10
11 write(x)

read(z) 12
sum: = sum +z 13

Clearly, process 1 returns 110 as a result, which is
wrong. However, this error cannot be recognized by a user.

To allow users shared access to a common database,
database systems know the concept of a transaction, which
goes back to the work of Gray (12, 13). The basic idea
is to consider a given program that wants to operate on
a database as a logical unit and to process it as if the
database were at its exclusive disposal. Now we describe
what needs to be done, in particular from a conceptual point
of view, to make this work.

The ACID Principle

If a database system allows multiple users shared access
to a database, various conflicting goals have to be met in
general: good throughput, shielding one user program from
the others, avoidance of data losses or corruption, etc. To
meet these goals, each individual user program is treated
as a transaction by the system and processed so that the
following properties are fulfilled:

� Atomicity: To the issuing user, it always ap-
pears that the user’s transaction is executed
either completely or not at all. Thus, the effects of the
transaction on the database become visible to other
transactions only if it terminates successfully and no
errors have occurred in the meantime.

� Consistency: All integrity constraints of the database
are maintained by each transaction, that is, a trans-
action always maps a consistent database state to an-
other such state.

� Isolation: Each individual transaction is isolated from
all others. Thus, each transaction is guaranteed to see
only consistent data from the database.

� Durability: If a transaction has terminated normally,
its effects on the database are guaranteed to survive
subsequent failures.

These properties are collectively known as the
ACID principle. To achieve them, the transaction process-
ing component of a database management system has a
concurrency control and a recovery component. In brief, the
goal of concurrency control is to synchronize concurrent
accesses to a shared database, and that of recovery is to
restore a consistent state after a failure and to provide a
guarantee that transaction results are durable.

Read-Write Transactions, Schedules, and Histories

To design concurrency control and recovery mechanisms,
it is necessary to come up with a suitable model of
transactions and their executions, to establish a notion of
correctness of executions, and to devise protocols which
achieve that. For simplicity, we stick to the model of
read-write transactions here. As we have indicated when
discussing the issue of query processing, this model is in
some sense adequate, although it obviously abstracts from
a number of (semantic) issues. The reader is also referred
to Weikum and Vossen (14) for more motivation, but also
for a more sophisticated transaction model.

If several transactions or read–write programs are run
sequentially or one after the other, synchronization prob-
lems generally do not arise. Indeed, if each transaction pre-
serves the consistency of the database on which it operates,
the same is true for any sequential, or serial, execution of
multiple transactions. Therefore, it makes sense to relate
the correctness criterion for concurrent executions to serial
executions, commonly captured by the term serializability.
In other words, an execution of multiple transactions, also
called a schedule for those transactions, is considered cor-
rect if it is “serializable,” or equivalent to some serial exe-
cution of the same transactions.

Database Processing 7

Transactions and their executions in the read–write
model of computation are described formally as follows:
The underlying database is considered a countably infi-
nite set D = {x, y, z, . . .} of objects, which are assumed to be
pages or blocks that are read or written in one step and that
are atomically transferred back and forth between primary
and secondary memory. A single transaction has the form
t = p1 . . . pn, where each pi has the form r(x) (“read x”) or
w(x) (“write x”) for some x ∈ D. In the presence of several
transactions we use indices to distinguish them. We as-
sume that each transaction reads or writes every database
object on which it operates at most once and that reading
of an object is done before writing when both operations
are desired.

A history for transactions t1, . . . , tn is an ordering of all
operations of these transactions, which respects the order
of operations specified by the transactions (formally called
the “shuffle product” of the given transactions), and addi-
tionally contains a pseudostep for each transaction follow-
ing its last operation that states whether this transaction
finally commits (i.e., ends successfully) or aborts (i.e., is
canceled prior to successful termination). If ti appears in
the schedule, a commit [abort] is indicated by ci [ai], re-
spectively. In other words, a history comprises an indica-
tion of how each of its transactions terminates. Following
the ACID principle, committed transactions have been run
completely, preserve the consistency of the database, have
not seen dirty data, and are durable. On the other hand,
aborted transactions have no impact on the database, and
the system must ensure they are undone completely. A his-
tory is serial if for any two transactions ti , tj appearing in
it either all of ti precedes all of tj or vice versa.

Note that histories are rare in practice, because trans-
action processing and execution normally occur highly dy-
namically, that is, transactions come and go unpredictably.
To capture this dynamic situation, we need the following:
A schedule is a prefix of a history. We are interested mostly
in schedules in what follows because this is what an execu-
tion protocol has to create dynamically. On the other hand,
schedule correctness refers back to histories, because se-
rial schedules by definition are complete, and serializabil-
ity means equivalence to seriality.

Our notion of correctness is based on conflicts between
transactions that access common data objects. Two steps
from distinct transactions are in conflict in a given sched-
ule, if they operate on the same database object and at least
one of them is a write operation.

Now we are ready to write schedules for the lost update
and the inconsistent read problem, called L and P, respec-
tively:

L = r1(x)r2(x)w1(x)w2(x)c1c2 (4)

P = r1(x)r1(y)r2(z)w2(z)r2(x)w2(x)c2r1(z)c1 (5)

The following is an example of a history for four transac-
tions, in which t0, t2 and t3 are committed and t1 is aborted:

S = w0(x)r1(x)w0(z)r2(x)w0(y)c0r3(z)w3(z)w2(y)c2w1(x)w3(y)a1c3(6)

If T is a subset of the set of all transactions in a schedule
s, the projection of s onto T is obtained by erasing from s all
steps from transactions not in T. For example, the projec-

tion of schedule S [Eq. (8)] onto its committed transactions
is the schedule

w0(x)w0(z)r2(x)w0(y)c0r3(z)w3(z)w2(y)c2w3(y)c3

A serial schedule for the original four transactions is
given by S’ = t0t2t1t3. Note that generally there always
exist n! serial schedules for n transactions.

An important observation at this point is that transac-
tions, schedules, and histories are purely syntactic objects,
which describe only the sequencing of data accesses per-
formed by a database program, how these are interleaved,
and what eventually happens to each transaction. A com-
mon assumption in traditional concurrency control theory
is that the semantics of transactions are not known. On
the other hand, a pseudosemantics can be associated with
a given transaction as follows. It is assumed that the (new)
value of an object x written by some step w(x) of a given
transaction t depends on all values of objects previously
read by t. The value of x read by some step r(x) of t depends
on the last w(x) that occurred before r(x) in t or on the “ini-
tial” value of x if no such w(x) exists. This can be extended
to schedules and histories in the obvious way, with the ad-
ditional condition that transactions aborted in a schedule
or history are ignored. For example, in the schedule S [Eq.
(8)], t1 reads x and z from t0, but the value produced by
w1(x) does not appear in the database.

As mentioned already, the distinction between a his-
tory and a schedule captures a dynamic situation in which
transactions arrive at a scheduling device step-by-step,and
the device has to decide on the spot whether or not to ex-
ecute a given step. For various reasons it might happen
that at some point the device discovers that a transaction
cannot be completed successfully, so that it has to output
an abort operation for this transaction. We do not consider
how aborts (and also commits) are processed internally. To
this end, we refer the reader to Weikum and Vossen (14) as
well as to Gray and Reuter (15). Next we turn to the issue
of schedule correctness.

Conflict Serializability

Because serializability relates to serial executions as a
correctness notion, next we introduce a corresponding no-
tion of equivalence for schedules. We mention that essen-
tially every notion of serializability described in the lit-
erature is obtained in this way, including final-state and
view serializability; see Papadimitriou (16). The notion we
are about to introduce here enjoys a number of interesting
properties: Unlike final-state or view serializability, which
have an NP-complete decision problem, it can be tested in
time linear in the number of given transactions, and it al-
lows designing simple protocols that can be implemented
economically.

The conflict relation conf(s) of a schedule s consists of all
pairs of steps [a, b] from distinct, unaborted transactions
which are in conflict in s and for which a occurs before b. If
s and s’ are two schedules for the same set of transactions,
s and s’ are conflict equivalent, denoted s ≈ cs′, if conf(s) =
conf(s’). Finally, a history s is conflict serializable if there
exists a serial schedule s’ for the same set of transactions
such that s ≈ cs′. Let CSR denote the class of all (complete

8 Database Processing

Figure 5. Cyclic conflict graph for schedules L and P.

and) conflict serializable histories.
Let us investigate the sample schedules, shown earlier,

in the light of this correctness notion: For schedule L shown
in Eq. (6),

conf (L) = {[r1(x), w2(x)], [r2(x), w1(x)], [w1(x), w2(x)]} (7)

Now the only possible serial schedules are t1t2, whose
conflict relation would avoid the second pair of conflicting
operations, and t2t1, whose conflict relation would comprise
only the second pair. Thus, schedule L cannot be conflict
serializable. Next, for schedule P shown in Eq. (7),

conf (P) = {[r1(x), w2(x)], [w2(z), r1(z)]} (8)

which again cannot be obtained from t1t2 or from t2t1.Thus,
P /∈ CSR. Finally, for schedule S shown in Eq. (8),

conf (S) = con f (t0t2t3) (9)

Because the latter schedule, which ignores the aborted
t1, is serial, S /∈ CSR.

Thus we can state two important facts. First, the sit-
uations of lost update and inconsistent reads, identified
above as unwanted, are “filtered out” by the correctness cri-
terion of conflict serializability. Second, as also seen from
these examples, conflict equivalence for two given sched-
ules is easy to test: Compute their conflict relations, and
check them for equality. Testing conflict serializability for
a given schedule is, however, more complicated because in
principle we would have to compute the conflict relation for
every serial schedule over the given transactions and com-
pare that to the conflict relation of the schedule in question.
Fortunately, there is an easy test to determine whether a
history S is in CSR: First, construct the conflict graph G(S)
= (V, E) of S, whose set V of nodes consists of those trans-
actions from S which are not aborted and which contains
an edge of the form (ti , tj) in E if some step from ti is in
conflict with a subsequent step from tj . Second, test this
graph for acyclicity. Then, it can be shown that for every
schedule S, S ∈ CSR iff G(S) is acyclic. Because testing a
directed graph for acyclicity is polynomial in the number
of nodes, therefore membership of a schedule in class CSR
is computationally easy to test.

To complete our example, Fig. 5shows the conflict graph
of both schedules L and P, which contains two transac-
tions involved in a cyclic conflict. Figure 6shows the conflict
graph of schedule Sabove, which is acyclic.

Finally we mention that correctness of schedules gen-
erally involves a second issue, that of fault tolerance
or resiliency against failures. To this end, notions like
recoverability or strictness have been proposed, see Bern-
stein et al. (17) or Weikum and Vossen (14), and synchro-
nization procedures, to be discussed next, normally have to
ensure that their output is both serializable and recover-
able.

Figure 6. Acyclic conflict graph for schedule S.

Concurrency Control Protocols

Our next interest is in protocols, that is, algorithmic ap-
proaches for creating (correct) schedules dynamically. In
essence, such protocols take several transactions (or an
arbitrary schedule for them) as input and generate a
correct schedule from these as output, as indicated in
Fig. 7. Strictly speaking, only output schedules contain
abort or commit operations for their transactions, but input
schedules never do. This is the reason why we distinguish
schedules from histories: A history describes the output
produced by a scheduler and hence the complete sequence
of operations that has been executed over time, whereas
in a schedule only the data operations (reads and writes)
matter.

Concurrency control protocols developed for system im-
plementation can generally be divided into two major
classes:

1. Pessimistic protocols are based on the assump-
tion that conflicts between concurrent transactions
are likely, so that provisions need to be taken to
handle them. Known protocols in this class in-
clude two-phase locking, time-stamp ordering and
serialization graph testing.

2. Optimistic protocols are based on the opposite assump-
tion that conflicts are rare. As a consequence, it is pos-
sible to schedule operations vastly arbitrarily and just
make sure from time to time that the schedule gener-
ated is correct. Protocols based on this idea are known
as certifiers or as validation protocols.

Detailed descriptions of the protocols just mentioned
and of many of their variations can be found, for example,
in Weikum and Vossen (14). Here we sketch the idea behind
locking schedulers only because these are most widely used
in commercial systems. The basic idea underlying any lock-
ing scheduler is to require that accesses to database objects
by distinct transactions are executed mutually exclusively.
In particular, a transaction cannot modify (write) an ob-
ject as long as another transaction is still operating on it
(reading or writing it). Notice that this corresponds to the
notion of conflict between data operations, as introduced
earlier. The central paradigm to implement this idea is the
use of locks, which are set by the scheduler on behalf of
a transaction before the latter reads or writes and which
are removed after the access has been executed. Two types
of lock operations suffice for read and write operations: If
a transaction wants to read [write] an object, it requests
a read lock [write lock], respectively. A read lock indicates

Database Processing 9

Figure 7. Scheduling situation.

to other transactions, which want to write, that the object
in question is currently available for reading only. A write
lock indicates that the object is currently not available. Two
locks from distinct transactions are in conflict if both refer
to the same object and (at least) one of them is exclusive.
In this case, only one of the requests can be granted be-
cause the requests are incompatible. A scheduler operates
according to a locking protocol if in every schedule gen-
erated by it all simultaneously held locks are compatible.
It operates according to a two-phase protocol (2PL) if addi-
tionally no transaction sets a new lock after it has released
one. The most popular variant of 2PL is to hold all locks of a
transaction until this transaction terminates (strict 2PL).
A straightforward motivation for its use is that a time at
which a scheduler can be sure that a transaction will not
request any further locks is the end of the transaction.

It is easy to verify that 2PL is correct, that is, that ev-
ery schedule generated by 2PL is conflict serializable. In
addition, its strict variant even generates strict schedules.
Although this protocol is easy to implement, outperforms
other protocols, and is easily generalized to distributed sys-
tems, it also has its shortcomings. For example, it is not
free of deadlocks, so that additional means must be taken
to discover and resolve these. We refer the reader to Gray
and Reuter (15) for implementation issues.

We indicate the way 2PL works by way of our
sample schedules. First, let us consider input sched-
ule L shown in Eq. (6), whose sequence of data op-
erations is r1(x)r2(x)w1(x)w2(x): 2PL creates the output
rl1(x)r1(x)rl2(x)r2(x), where wl stands for “write lock,” rl

for “read lock,” and ul for “(read or write) unlock.” Now the
scheduler must stop, because w1(x) needs a write lock on x,
incompatible with the existing read lock from t2, and w2(x)
needs another write lock on x, incompatible with the ex-
isting lock from t1. Thus, we observe a deadlock situation
which can broken only by aborting one of the two transac-
tions and restarting it at some later time.

Next, let us look at input schedule P from
Eq. (7). Now a 2PL protocol starts out as
rl 1(x)r1(x)rl1(y)r1(y)wl2(z)r2(z)w2(z). At that point, t2

requests a write lock on x for doing r2(x)w2(x), which
would not be granted. Moreover, r1(z) requires a read lock
on z, incompatible with the existing z lock from t2. So
again, one of the transactions must be aborted, and this

particular schedule is avoided.
Finally, let us consider schedule S from Eq. (8), for which

2PL could generate the following output:

wl0(x)w0(x)wl0(z)w0(z)wl0(y)w0(y)ul0(x, z, y,)c0rl1(x)r1(x)
rl1(z)r1(z)rl2(x)r2(x)wl2(y)w2(y)ul2(x, y)c2rl3(z)r3(z)wl1(x)
w1(x)a1ul1(z, x)wl3(z)w3(z)wl3(y)w3(y)ul3(z, y)c3

Even in this case, the order of operations in the sched-
ule (not within individual transactions!) has been modified
slightly, but only relative to allowed commutations of oper-
ations. Clearly, there could be other ways a 2PL scheduler
handles this input, in particular if the output is addition-
ally required to be strict.

In system implementations, a concurrency control pro-
tocol such as 2PL is commonly complemented with an ap-
propriate recovery protocol that takes care of transaction
aborts (by undoing or redoing the respective operations),
by keeping a log in which a record of activities is kept,
and by handling system restarts after crashes. Logs typi-
cally keep track of each and every operation done to a page
(through sequence numbers) as well as done on behalf of
a transaction; they are processed during a recovery opera-
tion in order to bring the database back into a stable state.
To this end, it is crucial that a log is kept in a safe place,
i.e., on disk, or that it is at least copied to disk in regu-
lar intervals. Various recovery techniques are described by
Weikum and Vossen (14) or Gray and Reuter (15).

DISTRIBUTED DATABASE SERVERS

As recognized a long time ago, organizations are fre-
quently decentralized and hence require databases at mul-
tiple sites. For example, a nationwide bank has branches
all over its country and wants to keep customer data
local, so that the data is available where it is actu-
ally used. In addition, decentralization increases the
availability of a system in the presence of failures. As
a result, distributed database systems began to emerge
during the 1980s, and nowadays all major database
system vendors are commercializing distributed tech-
nology. In brief, a distributed database is a collection
of multiple, logically interrelated databases distributed
over a computer network, as illustrated in Fig. 8. A
distributed database management system is the software

10 Database Processing

Figure 8. Distributed Database Environment.

that permits the management of a distributed database
and makes the data distribution transparent to its users.
The latter means that a distributed system should look
to its users as if it were nondistributed. This objective
has a number of consequences and creates many new
challenges for implementors. Among the core require-
ments for a distributed database system are the follow-
ing: Each site in the system should be locally autonomous
and should not depend on a central master site. Users do
not need to know at which site data is physically stored
(location transparency), how data sets are internally frag-
mented (fragmentation transparency) or replicated at dis-
tinct sites (replication transparency), or how queries or
transactions that access data at multiple sites are executed
(processing transparency). Özsu and Valuriez (18) are a
good source on the subject.

We will look at some implications that database distri-
bution has on the underlying processing concepts; further
information can be found in Öszu and Valduriez (18). In
particular, we again consider query processing at multiple
sites and transaction processing in distributed databases.

Query Processing in Distributed Databases

Query processing is somewhat trickier in a distributed
database, because now it may be much more complicated
to determine an efficient evaluation strategy. Consider our
sample bank database once more. It is easy to imagine that
the bank running this database, having branches in vari-
ous city districts, wants to keep data local. Therefore, rela-
tion B would be horizontally fragmented into the following
three relations:

B1 BID AID CityDistrict
1 110 downtown
1 120 Downtown
1 130 Downtown

B2 BID AID CityDistrict
2 220 beach area
2 240 beach area

B3 BID AID CityDistrict
3 310 lower east
3 320 lower east
3 330 lower east

Because now each branch keeps its account information
separate, it would even suffice to store a projection onto
attributes BID and CityDistrict at each site. Correspond-
ingly, relation A could be distributed to the same sites as
the following fragments:

A1 AID CustName Balance
110 Smith 1,324
120 Jones 256
130 Maier 22,345

A2 AID CustName Balance
220 Paul 2,550
240 Kline 86

A3 AID CustName Balance
310 Adams 1,360
320 Kelly 23,022
330 Barbara 345

Now consider again the query which we have previously
optimized in Eq. (5). Let us assume that the relations and
their fragments are distributed as follows: Site 1 holds A1,
B1, and C, Site 2 keeps A2 and B2, and Site 3 maintains
A3 and B3. Because the query asks for a selection on C
(customers born before 1950) and one on B1 (the downtown
branch), the first join should be executed at Site 1. For the
second join, however, there are various options, including
the following:

1. Ship the result of the first join to Site 2 and the result
computed there to Site 3;

2. ship A2 and A3 to Site 1, and compute the final result at
this site;

3. ship A2 to Site 3, compute a union with A3, and join with
the intermediate result from Site 1.

Database Processing 11

This situation is typical for query processing in dis-
tributed databases, where often a variety of options exist
for shipping data from one site to another to speed up pro-
cessing. Thus, query optimization in distributed databases
is made more complicated by the fact that now even trans-
fer costs have to be taken into account. One technique de-
veloped in this context is the use of semijoins. Referring
back to the terminology introduced for database relations,
let r ∈ Rel(X), s ∈ Rel(Y). The semijoin of r with s is defined
as r| × s := πx(r� s). The following rules are easily verified
for this operation:

1. r � s = r � πX∩Y (s)
2. r � s = (r � s) � s

An immediate exploitation of these rules in a computa-
tion of a join of relations r and s stored at distinct Sites 1
and 2, respectively, is as follows:

1. compute s ′ := πX∩Y (s) in Site 2;
2. ship s ′ to r, and compute r ′ := r � s ′ in Site 1;
3. ship r ′ to s, and compute s ′′ := r ′ � s in Site 2;

The following shows why this strategy is correct:

s′′ = r′� s = (r� s′)� s = (r�πX ∩ Y (s))� s = (r| × s)� s = r� s

Another way of avoiding data transfers between sites
is to keep data replicated at various sites, that is, to keep
copies of certain data to avoid unnecessary transfers. Al-
though this appears attractive at first glance, it bears the
additional complication of keeping the replicas identical,
that is, to propagate updates made to one copy to all oth-
ers consistently, even in the presence of network failures,
a problem that we will briefly look at below in connection
with data sharing systems.

Transaction Processing in Distributed Databases

From a logical point of view, transaction processing in dis-
tributed databases is a vast generalization of that in cen-
tralized databases, which, depending on the protocol used,
introduces only minor additional complications. For ex-
ample, if all sites participating in a distributed database
run the same database software (i.e., if the system is
homogeneous), then each site can run the strict 2PL proto-
col independently.Thus, transactions can access data at the
respective sites and acquire and release locks as needed,
as long as the 2PL property is locally maintained. The only
critical situation arises when a transaction finishes, be-
cause it has to commit in every site where it was active or
it has to abort, but not a combination of both. To this end,
commercial systems apply the Two-Phase Commit (2PC)
protocol, which guarantees consistent termination for dis-
tributed environments. Other problems specific to transac-
tions over distributed data may involve global deadlock de-
tection, difficult in the absence of a central monitor which
would always have complete information, or the computa-
tion of global clock values needed for intersite synchroniza-
tion purposes.

For efficiency, central monitors for whatever purposes
are helpful in distributed scenarios, but at the same time

they are undesirable from a logical point of view because
their presence contradicts the requirement of local au-
tonomy. In this situation, a compromise can be seen in
client-server architectures as commonly used in database
systems. In such an architecture, some sites act as clients
which send processing requests to other sites known to be
able to service them and to return replies as a result. A
request typically is a query or a transaction’s read or write
operation. A general client-server database system model
is described by Weikum and Vossen (14); see also Ramakr-
ishnan and Gehrke (10) or Silberschatz et al. (5).

We conclude by briefly looking at a prominent form
of distributed server today, which exhibits a considerable
amount of parallelism. Recall that some form of paral-
lelism is already found in standard transaction processing,
because multiple transactions are frequently run concur-
rently. Another form of (true) parallelism, also transparent
to applications, occurs in data-sharing clusters. Here, data
is distributed over the available disks, and queries as well
as transactions are decomposed so that they can be exe-
cuted at multiple processors simultaneously, and the en-
tire system comprises servers for data-intensive applica-
tions with very high throughput and very high availability
guarantees. A cluster is a small number, typically between
2 and 8, of machines, each of which runs its own copy of
the operating system, database system, etc., and could be
a shared-memory multiprocessor. The key characteristic is
that each server has its own “private” memory; there is
no shared memory across servers. When a server fails, the
other servers of the cluster continue operating and may
take over the load of the failed server (“fail-over”).

In most implementations, a transaction is executed en-
tirely on a single server. When a transaction accesses a
page, this page is brought into the memory of the corre-
sponding server, either from the shared disks on which
the data resides permanently or from the memory of an-
other server which happened to have that page in its cache.
For consistency reasons, a cache coherency protocol needs
to be employed, so that if a page resides in more than one
cache for an extended time period and is modified in one of
these caches, the other servers are notified. The main in-
variant that each page-oriented coherency control protocol
needs to ensure that (1) multiple caches can hold up-to-
date versions of a page simultaneously as long as the page
is only read, and (2) once a page has been modified in one
of the caches, this cache is the only one that is allowed
to hold a copy of the page. A protocol guaranteeing this
is the callback locking protocolinsisting on “calling back”
pages for update, whose details can be found in Weikum
and Vossen (14).

The data-sharing cluster architecture is illustrated in
Fig. 9. The headers of the various pages will in reality con-
tain log sequence numbers to indicate when they were last
modified. Note that pages p and q reside in two different
caches,and the sequence numbers of the two copies must be
identical by the above coherency requirement. The cached
version of page p will here be more recent than the one in
the stable database on disk, as indicated by their sequence
numbers.

12 Database Processing

Figure 9. Data-Sharing Cluster.

FUTURE CHALLENGES

We conclude our brief summary of database processing by
mentioning selected current and future challenges. Essen-
tially, these fall into two categories: database administra-
tion and XML processing.

The database system internals we have sketched above
result in a number of “knobs” or parameters which a
database administrator can and typically must monitor
and influence. For example, the query optimizer of a
database system can be configured so that emphasis is
given to space or time optimization; it can be switched
on or off depending on the query application at hand
(e.g., a query issued by a Web server several thousand
times a day might be optimized “by hand” instead of leav-
ing this to an optimizer program). Similarly, a transac-
tion processor can be configured w.r.t. to the number of
transactions it may run currently or the number of locks
that can be held simultaneously. Very often, some form
of feedback loop control (14) is employed, which basically
monitors some system parameters(s) on a continuous ba-
sis and adapts the system settings appropriately. If, say,
the concurrency control system spends too much time on
lock management and cannot complete any further trans-
actions, some need to be aborted (and no new ones ac-
cepted) in order to bring down the amount of parallelism,
until the system has recovered enough to accept additional
transactions. Activities like these fall under the general
category of database tuning (11). The point is that many
of these tasks can be automated in such a way that the
system can take care of them without the intervention or
help of a database administrator. As a consequence, one of
the goals for DBMS system development nowadays is to
make systems self-administering and to equip them with
auto-tuning facilities; see Chaudhuri and Weikum (19) for
more on this topic. The importance of this cannot be under-

estimated, given the fact that database systems are more
and more embedded into other systems and then have to
operate without the supervision of an administrator.

While the relational model of data has dominated the
world of database applications for several decades now, it
was discovered already in the early 1980s that the model
is not expressive enough for a number of applications. For
example, a complex artifact such as a car could be broken
down into a relational representation, but it would be way
more appropriate to use a database model at hand that
can support some form of “complex objects”. This has led
to a number of extensions of the relational model and ul-
timately to the “marriage” of relational databases and the
programming paradigm of object-orientation into what is
now known as object-relational systems (20). Moreover, a
wide-spread database application nowadays is integration,
i.e., the task of bringing together and unifying data from a
variety of sources into a consistent data collection. To this
end, XML, the Extensible Markup Language, has found its
way into database systems.As a brief example,Fig 10shows
the representation of book information (with ISBN, author,
title publisher etc.) in an arbitrarily chosen XML format.
Notice that the partial document shown in Fig. 10is struc-
tured by so-called tags (e.g., “BOOK”, “ISBN”), that tags ob-
serve a strict nesting (e.g., LASTNAME inside PERSON in-
side AUTHOR), and that the document in total is ordered,
i.e., moving elements around would formally result in a
new document.

XML is nowadays supported by every major database
management system, either natively or as an extension
to the features already available in the respective system
(e.g., as “Extender” or “Blade”). Clearly, supporting XML re-
quires a number of modifications to a previously relational
system, in particular when it comes to database processing.
Indeed, relational algebra is obviously not directly appli-
cable anymore, so new features are needed for specifying

Database Processing 13

Figure 10. A sample XML document.

and executing queries. To the end, it is important to ob-
serve that XML documents can be perceived as trees, so
that query capabilities can be designed around the notion
of a tree. This has led to the development of XPath as a lan-
guage for navigating through XML document trees and for
selecting nodes from such a tree. XPath poses a number
of challenges to query processing, see Gottlob et al. (21)
for an introduction. On the other hand, XPath is one of
the foundations of XQuery, the next-generation database
query language that has been designed for XML database
systems; see Melton and Buxton (22) for the state-of-the-
art in this respect.

BIBLIOGRAPHY

1. E. F. Codd A relational model of data for large shared data
banks, Commun. ACM, 13: 377–387, 1970.

2. D. Maier The Theory of Relational Databases, Rockville, MD:
Computer Science Press, 1983.

3. J. D. Ullman Principles of Database and Knowledge-Base Sys-
tems, Rockville, MD: Computer Science Press,1988/9, Vols. I
and II.

4. R. Elmasri S. B. Navathe Fundamentals of Database Systems,
5th ed., Boston, MA: Pearson Addison-Wesley, 2006.

5. A. Silberschatz, H.F. Korth, S. Sudarshan Database System
Concepts, 5th ed., New York: McGraw-Hill, 2006

6. S. B. Yao Optimization of query evaluation algorithms, ACM
Trans. Database Syst., 4: 133–155, 1979.

7. J. C. FreytagD. MaierG. Vossen (eds.) Query Processing for Ad-
vanced Database Systems, San Francisco: Morgan Kaufmann,
1994.

8. G. Graefe Query evaluation techniques for large databases,
ACM Computing Surveys, 25: 73–170, 1993.

9. P. E. O’Neil and P.E. O’Neil Database: Principles, Program-
ming, Performance, 2nd ed., San Francisco: Morgan Kauf-
mann, 2000.

10. R. Ramakrishnan and J. Gehrke Database Management Sys-
tems, 3rd ed. New York: WCB/McGraw-Hill, 2003.

11. D. Shasha and Ph. Bonnet Database Tuning – Principles, Ex-
periments, and Troubleshooting Techniques, San Francisco:
Morgan Kaufmann Publishers, 2003.

12. J. Gray Notes on data base operating systems,inR. Bayer, M.
R. Graham, andG. Seegmüller, (eds.), Operating Systems—An

Advanced Course, Berlin: Springer Verlag, 1978, LNCS 60,pp.
393–481.

13. J. Gray The transaction concept: Virtues and limita-
tions,in Proc. 7th Int. Conf. Very Large Data Bases, San Fran-
cisco, CA: Morgan Kaufmann, 1981, pp. 144–154.

14. G. Weikum and G. Vossen Transactional Information Systems:
Theory, Algorithms, and the Practice of Concurrency Control
and Recovery; San Francisco: Morgan-Kaufmann Publishers;
2002

15. J. Gray A. Reuter Transaction Processing: Concepts and Tech-
niques, San Francisco: Morgan Kaufmann, 1993.

16. C. H. Papadimitriou The Theory of Database Concurrency Con-
trol, Rockville, MD: Computer Science Press, 1986.

17. P. A. Bernstein V. Hadzilacos N. Goodman Concurrency Con-
trol and Recovery in Database Systems, Reading, MA:Addison-
Wesley, 1987.

18. M. T. Özsu P. Valduriez Principles of Distributed Database Sys-
tems, Englewood Cliffs, NJ: Prentice-Hall, 1991.

19. S. Chaudhuri, G. Weikum: Rethinking Database System
Architecture: Towards a Self-Tuning RISC-Style Database
System, in Proc. 26th Int. Conf. Very Large Data Bases, San
Francsico, Morgan Kaufmann Publishers, 2000, pp. 1–10.

20. S. W. Dietrich, S. D. Urban: An Advanced Course in Database
Systems: Beyond Relational Databases, Englewood Cliffs, NJ:
Prentice-Hall, 2005.

21. G. Gottlob, Ch. Koch, R. Pichler: XPath Query Eval-
uation: Improving Time and Space Efficiency,in
Proc. 19th Int. Conf. Data Engineering, IEEE Computer
Society, 2003, pp. 379–390.

22. J. Melton, St. Buxton, Querying XML – Xquery, XPath, and
SQL/XML in Context, San Francisco: Morgan Kaufmann Pub-
lishers, 2006

GOTTFRIED VOSSEN

European Research Center for
Information Systems
(ERCIS) University of
Münster, Germany

