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TEMPORAL DATABASES ticular second. Here we see a problem of indeterminacy (10).
That is, for example, we know that a file is created within a

Time is an important component of many real-world applica- particular second, but we are not sure of at which moment
within the second. This indeterminacy is often desirable sincetions. Applications like accounting, billing, and marketing

deal with current as well as past (historical) data, or even the information available may not or need not have to be pre-
cisely identified. This leads to multiple granularities in thedata about the future. Database systems store information

about the real world and provide easy and efficient access to domain to allow different degrees of indeterminacy.
There are other reasons to have multiple granularities. Forit. Conventional databases, however, cannot efficiently sup-

port temporal applications. Instead, temporal databases have example, some facts may hold over the entire time of a month.
Instead of labeling the facts by the time period (starting sec-been proposed (1). The term temporal database refers to ‘‘a

database that supports some aspect of time’’ (2). In the late ond and ending second), we may simply label them by the
month. It is much easier to use and semantically more mean-1990s, research in the area of temporal databases has shown

an enormous growth, evidenced by the many publications, ingful.
In the current Structured Query Language (SQL) stan-books (3–6), and conferences related to the field. A recent bib-

liography (7) accounts for approximately 1,100 temporal data- dard, the data type of a column can be date (with year,
month, and day components), time (with hour, minute, andbase publications until the end of 1995. As it is practically

infeasible to cover all this research, this article attempts a second components), or timestamp (i.e., a combination of
date and time). (For the sake of completeness, we want togeneral overview; for more detailed coverage of the various

topics, appropriate references are provided. Furthermore, mention that SQL also has an interval data type, i.e., the
directed distance between two time points, e.g., 3 months.)there are other computing areas where time plays an impor-

tant role, for example, temporal reasoning and planning, spa- However, a date value does not pinpoint down to a particular
period of time unless the time zone is specified. In a sense,tiotemporal databases (8).

The issues involved in managing temporal data include: (1) for each time zone, there is a date granularity in SQL.
The research of multiple granularities for databaseshow the temporal information is conceptually and physically

represented, (2) in what form user requests for information started fairly recently, perhaps with an article by Clifford and
Rao in 1987 (11). The formal treatment of multiple granulari-are presented to the database management system (DBMS),

and (3) how these requests are processed by the system. The ties described below is mostly from Ref. 12.
A basic time domain is a totally ordered set. This totallyfirst two issues are the focus of temporal data models re-

search, whereas the last issue regards system implementation ordered set can be dense or discrete. The basic time domain
serves as the underlying absolute time flow. A granularity isand query optimization. We start our discussion with a de-

scription of the time domain. Then we introduce temporal a pair (I, G), where I is a discrete totally ordered set, called
the index set, and G is a mapping from I to all the subsetsdata models and discuss temporal database design. Imple-

mentation and query processing are covered next. Finally, we (including the empty set) of the basic time domain such that
the following two conditions are satisfied: for each pair i andexamine the notion of time as it appears in real-time and ac-

tive databases. j in I, if i � j, G(i) � 0, and G( j) � 0, then each element in
G(i) is less than all the elements in G( j), and for i, j, and k
in I, if i � k � j, G(i) � 0 and G( j) � 0, then G(k) � 0 (13).

The first condition states that the mapping G should beTHE TIME DOMAIN
monotonic, and the second condition imposes that the indices
that are mapped to nonempty sets be contiguous. It is ratherThe explicit time dimension in a temporal database is usually

represented by labeling nontemporal information by time clear that days, months, and weeks and all the everyday
granularities satisfy the above definition.stamps. The first question is what constitutes a time stamp,

or, equivalently, what is the domain for time stamps. There are natural relationships between granularities. The
There are two philosophical views regarding the flow of first one is so-called finer-than. Granularity (I1, G1) is said to

time. One is continuous, and the other is discrete. Translating be finer than granularity (I2, G2) if for each index i in I1 there
to the choice of domain for time stamps is either to use a exists j in I2 such that G1(i) � G2( j). For example, day is finer
continuous set (like the reals) or to use a discrete set (like the than week and business-day is finer than month. Another re-
integers). In practice, however, since any number stored in a lationship is group-into. Granularity (I1, G1) is said to group
computer system has to be discretized, most researchers in into granularity (I2, G2) If for each j in I2 there exists a subset
the field of temporal databases have adopted a discrete set as S of I1 such that G2( j) � �i�S G(i). For example, day groups
the time domain. The study of temporal logics accommodates into month, however, business-day does not group into week.
other views of time flow (e.g., branching and complete flows). A special case of group-into relationship is interesting be-
See Ref. 9 for a more extensive discussion. cause it deals with periodicity. A granularity (Z, G1) is said to

Another question regarding a time domain is what an ele- group periodically into a granularity (Z, G2) where Z is the
ment in the time domain represents. For example, each ele- set of the integers, if: (i) (Z, G1) groups into (Z, G2) and (ii)
ment in the chosen time domain can represent a particular there exist positive integers n and m, where n is less than the
second as in the Unix operating system. There the time do- number of nonempty granules of G2, such that for all i in Z,
main used to label operating system events (such as the cre- if
ation of a file) is the set of positive integers, and each number
in the set represents the number of seconds since 00 : 00 : 00
UTC of January 1, 1970. Or more precisely, each number rep-
resents the particular period of time represented by that par-

G2(i) =
k⋃

r=0

G1( jr) and G2(i + n) �= �

J. Webster (ed.), Wiley Encyclopedia of Electrical and Electronics Engineering. Copyright # 1999 John Wiley & Sons, Inc.
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then

G2(i + n) =
k⋃

r=0

G1( jr + m)

In other words, the pattern of how G1 groups into G2 repeats
indefinitely. Most everyday granularities show such a rela-
tionship. For example, day groups periodically into week. In
this case, n � 1 and m � 7. Also, day groups periodically into
year. In this case, n � 400 and m � 14,697. These numbers

Table 1. Facts about Profits

Plant Product Cost Profit Year

Baltimore Portable Humidifier $5M 10% 1990–1991
Baltimore Cellular CarPhone $10M 20% 1991
Baltimore Digital Amplifier $2M 15% 1991
Baltimore Digital Amplifier $1.5M 15% 1990
Los Angeles Paper Towel $1M 5% 1990–1991
Los Angeles Portable Humidifier $3M 11% 1991
Denver Rock Candy $0.5M 30% 1990

are rather large because we have to incorporate the leap
years.

extension to multiple granularities and other index sets is notTEMPORAL DATA MODELS
difficult to work out.

Conceptually, a relation in a temporal database can beIn any existing data model, one can always store time infor-
viewed as consisting of many nontemporal relations, namelymation as regular data. For example, in a relational database,
one nontemporal relation for each time point. More specifi-one can set up a column in a table (relation) to store time or
cally, assume that the relation scheme is R � �A1, . . ., An�.date values. Many of the temporal information management
Then for each integer t, there is a relation r[t], and the tempo-requirements can actually be handled by using such a non-
ral relation is an infinite sequence . . ., r[0], . . ., r[t], . . ..temporal data model. However, due to the special nature of
Certainly, some of the relations in the sequence may bethe time dimension, temporal information is generally inade-
empty. In this snapshot view, given a time point t, we knowquately supported in a nontemporal environment, resulting
what facts hold at that time.in many difficulties in system development and maintenance,

As an example, consider the facts listed in Table 1. It isas well as inefficiency in system operations (14).
easily seen that in terms of the snapshot view, we have twoAs an example (15), suppose an employee table has four
nonempty snapshots, namely for year 1990 and year 1991.columns: Name, Manager, Dept, and When, where When is of
Table 2 shows the two nonempty snapshots. For all otherperiod type. [A time period is defined as the time between
years, the associated relations are all empty and omitted.two instants (2).] A record in this table records an employee

With the above snapshot view, it is easy to formulate que-with his/her manager at a department together with a time
ries on a temporal database. First-order logic with linear or-period. The query ‘‘give the history of the number of employ-
der has been used. The basic idea is that each relation nameees in each department’’ is very difficult to express in the
is a predicate with the last place being a temporal sort. Forquery language of the current SQL standard. A temporal data
example, we can use a five place predicate T to represent themodel can be considered as an attempt to correct the above
information of Table 1. Hence,situation by giving a special status to the time dimension and

providing special language constructs and software mecha-
T(Baltimore, Portable Humidifier, $5M, 10%, 1990)nisms to handle the temporal information in a convenient and

efficient manner.
is true since in 1990, the Portable Humidifier produced by theTypically, a temporal data model is formed by adding a
Baltimore plant did have a cost of $5M with a profit of 10%.time dimension to an existing nontemporal data model, for
With this predicate view, we can easily formulate queries. Forexample, the relational data model. The query language of

the nontemporal data model is then extended with constructs
to handle the temporal dimension. Here we consider temporal
extensions to the relational model (extensions for other mod-
els are summarized later).

A relational database consists of a collection of relation
names, each of which is associated with a relation (i.e., a set
of tuples). We use R, possibly with subscripts, to denote rela-
tion names and, when no confusion arises, to denote their as-
sociated relations.

There are in general two families of temporal data models,
the abstract and the concrete (16). An abstract model is in-
tended as an abstract vehicle to study the properties of the
time dimension and to set up guidelines for designing a con-
crete data model, while a concrete data model is more con-
cerned with the management and manipulation of the tempo-
ral information in a practical setting.

Abstract Temporal Data Models

To simplify the discussion, we assume only one granularity is
used and the index set for the granularity is the integers. An

Table 2. Two Snapshot Views of Table 1

t � 1990

Plant Product Cost Profit

Baltimore Portable Humidifier $5M 10%
Baltimore Digital Amplifier $1.5M 15%
Los Angeles Paper Towel $1M 5%
Denver Rock Candy $0.5M 30%

t � 1991

Plant Product Cost Profit

Baltimore Portable Humidifier $5M 10%
Baltimore Cellular CarPhone $10M 20%
Baltimore Digital Amplifier $2M 15%
Los Angeles Paper Towel $1M 5%
Los Angeles Portable Humidifier $3M 11%
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example, the query ‘‘which plant (and in which year) in- The bitemporal data model is an effort to add both valid
and transaction time (2). Conceptually, each (nontemporal)creased its cost on the Digital Amplifier from the previous

year?’’ can be expressed as follows: fact is labeled by two timestamps, namely valid time and
transaction time, specifying the time the fact holds and the
time that the database knows it. From the transaction-time
point of view, a bitemporal relation is a sequence of valid-time
temporal relations, each of which gives the temporal facts

{〈p, y′〉|∃c, c′, x, x′, y, [c < c′ ∧ y = y′ − 1

∧ T(p, “Digital Amplifier”, c′, x′, y′ )

∧ T(p, “Digital Amplifier”, c, x, y)]} known at the corresponding (transaction) time. From the
valid-time point of view, on the other hand, a bitemporal rela-

(Note that, the subformula y � y
 � 1 is an abbreviation of tion is a sequence of transaction-time temporal relations, each
[y � y
 ∧ ¬�y� (y � y� ∧ y� � y
)], that is, y
 is greater than y of which gives the facts holding at the (valid) time together
and yet there is nothing between y and y
.) Intuitively, this with the time(s) when the corresponding facts are known to
query is to find plant p and year y
 such that plant p in year the database. It is interesting to note that in a bitemporal
y
 had a cost c
 on the Digital Amplifier, whereas in the previ- relation, a fact (together with its valid time) known to the
ous year (y), the plant had the smaller cost (c). database at (transaction) time i but unknown at (transaction)

Algebraic query languages can also be easily formulated time i � 1 can be seen as (logically) deleted at (transaction)
(17,18). The operations of the algebra may simply extend the time i � 1.
relational algebra operations, namely projection, selection, A temporal database is categorized as a transaction-time,
join, union, intersection and difference, to work on each snap- valid-time, or bitemporal database, according to which tempo-
shot of temporal relations. For example, the temporal projec- ral dimension(s) it supports. A transaction-time database rep-
tion of a temporal relation gives a sequence of relations, each resents the history of the database rather than real-world his-
of which is the regular projection of the corresponding snap- tory. Because previously entered transaction times cannot be
shot of input temporal relation. Using the plant-profit exam- changed, the past is retained and a transaction-time database
ple given earlier, we see that the projection to attributes can answer queries about what it ‘‘knew’’ as of some past
‘‘Plant’’ and ‘‘Profit’’ will give the temporal relation consisting transaction time. In contrast, a valid-time database main-
of two nonempty snapshots corresponding to the projection tains the entire history of an enterprise as best known now,
�Plant,Profit on the two snapshots shown in Table 2. that is, it stores our current knowledge about the enterprise’s

The algebraic query language outlined above consists of current, past, and/or future. Any errors discovered in this his-
operations that map temporal relations to temporal relations. tory, are corrected by modifying the database. If a correction
However, it seems that such a query language cannot de- is applied on a valid-time database, previous values are not
scribe some of the queries that are expressed using the calcu- retained; therefore it is not possible to view the database as
lus query given earlier (19). The basic reason is that each it was before the correction. Clearly both time dimensions are
operation preserves the temporal relation (i.e., the number of needed to accurately model reality. In a bitemporal database
time columns in the input as well as in the output is only one can query tuples that are valid at some (valid) time as
one). This limits the expressiveness of the algebra. Extensions known at some other (transaction) time.
of the above simple algebraic query language have been con- A calculus query language can be formulated along the line
sidered in order to capture more queries. similar to the calculus language presented for the valid-time

The above temporal relational data model only regards the temporal relations shown earlier. For bitemporal relations,
time when a fact holds. This time is called valid time, that is, predicates have two time positions. For example, SALA-
the time when the fact is valid in the real world. Another kind RY(John, 50K, vi, ti) is true if and only if at time ti the data-
of time is the transaction time, which is the time when the base knows that John’s salary is 50K at time vi.
fact is stored in the database (1) or equivalently, when the Detailed studies of abstract temporal data models can be
database ‘‘knows’’ about the fact. Transaction times corre- found in the literature (e.g., in Refs. 16 and 21). Also, expres-
spond to the commit time of the transaction that entered the siveness of query languages on abstract data models has been
information about the fact into the database. Thus they are studied (22,23).
generated by the DBMS and are monotonically increasing.
Note that past transaction times cannot be changed. If our Concrete Data Models
knowledge about the fact changes, the new knowledge will be

The temporal data models discussed in the previous subsec-entered into the database by a new transaction which will be
tion may have an infinite time dimension. For example, aassigned by the DBMS a later commit time. A fact is then
valid-time relation may be an infinite sequence of nontempo-assigned a transaction time interval that corresponds to the
ral relations. To physically realize such a temporal relation,period during which the database knew about this fact. If a
some finite representation is needed. It should be noted thatfact is never changed after entered into the database, the da-
it is not necessary to restrict the sequence to be finite. Indeed,tabase knows about it for all larger transaction times after it
for example, if each snapshot after time T in the temporalwas entered.
relation is exactly the same as the snapshot at time T, we canThe two kinds of time assigned to a fact may not coincide:

the transaction time of a fact may start before or after the then represent these infinite number of snapshots by the
snapshot at time T and remember that this snapshot actuallystart of the valid time and may end before or after the end of

the valid time. For example, a raise of salary may be known holds for time period [T, ��).
On the other hand, simply restricting the number of snap-to the database before it takes effect (20), and a transition of

temperature reading may happen long before the value can shots in a temporal relation to be finite while storing each
snapshot as a separate (nontemporal) relation is not a satis-be entered into the database.
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factory solution. Obviously, for a valid time relation, a fact is gers. This brings in the need of a ‘‘coalescing’’ operation,
which reduces into one tuple any group of tuples with thelikely to hold over a time period rather than simply at a time

point. It is then more economical to store this tuple once but same nontemporal attribute values but consecutive times-
tamps (17).remember the time period in which the tuple holds.

Hence, a temporal relation is usually stored in a form simi- Due to the above consideration, it is beneficial to collect all
the tuples having the same nontemporal attribute values intolar to Table 1. The simplest model is to have a temporal rela-

tion defined as a nontemporal relation with an additional col- one. This obviously requires some extension of allowed data
types for the timestamp column, because a nontemporal factumn (timestamp) whose data type is a period of time (the end

points of the period can be ��). may hold over two disjoint time intervals (e.g., on [1, 6] and
[10, 20]). A proposal was to use finite unions of intervals (i.e.,The SQL query language on nontemporal relations can be

extended to handle the above model. As an example, we look temporal elements) (31). Each temporal element syntactically
is a finite union of intervals, whereas its semantics are a setat SQL/Temporal, which is a proposal to add valid-time sup-

port to SQL3 (15). In SQL/Temporal, a nontemporal relation of time points. The set operations, namely union, intersection,
and difference, are all defined on the sets that these temporalcan be added with an implicit additional column usually re-

ferred to as Valid to become a valid time relation. This im- elements represent. The collection of all the temporal ele-
ments has the property that it is closed under all set opera-plicit column usually registers a time period for each (non-

temporal) tuple. This implicit column is not normally tions. That is, given two sets that are represented by tempo-
ral elements, the union, the intersection, and the differenceaccessed as a regular attribute. Rather, some facilities are

provided to handle the time dimension. A regular SQL query of the two sets all provide a set that can be represented by
temporal elements. Furthermore, it is easily seen that the re-(i.e., no special facility provided by SQL/Temporal is used)

accessing a valid time relation will only work on the snapshot sulting temporal element can be computed easily from the
two input temporal elements.that corresponds to the time ‘‘now.’’ This provides a way to

access the current information without having to deal with When temporal elements are used as timestamps, we can
require that each temporal relation does not contain two dif-the temporal aspect of the relations.

When the key word VALIDTIME is added to the SQL ferent tuples with the same nontemporal attribute values. In
other words, we may require that the system always performsquery (before SELECT), then the SQL query works on every

snapshot of the temporal relations, and the result is a valid- coalescing. A further coalescing has also been proposed that
collects all the tuples in the relation about one entity into onetime relation. This way, snapshot-wise queries can be speci-

fied rather easily. To access information across snapshots, tuple. For example, in a temporal relation with nontemporal
attributes Name, Department, Salary that records the jobSQL/Temporal provides the key words NONSEQUENCED

VALIDTIME. In this mode, the valid-time relations are ac- and salary histories of employees, one may collect all the in-
formation about a particular employee into one tuple. An ex-cessed as if the valid-time column was available. The query

makes use of the column by saying VALIDTIME(S), where S ample of such a tuple is:
is the alias for the valid-time relation. Various period compar-
isons (before, after, meet, contain, etc.) can be applied to the John [1, 100] Toy Dept [1, 30] 30K [1, 40]
valid-time column. Shoe Dept [31, 100] 32K [41, 80]

There are also other proposals of extensions to SQL such 33K [81, 100]
as TempSQL (24), TSQL (25), HSQL (26), IXSQL (27),
TOSQL (28). Efforts to extend Quel to handle temporal rela-

It is easily seen that the temporal relation with such ations are also reported (29). A new effort on extending SQL is
tuple is not in the first normal form. This kind of relation isreported in Ref. 30. The basic idea of an extension is to treat
seen as attribute timestamping (31) in contrast to the rela-the temporal dimensions in a special way with special opera-
tions with tuple timestamping as discussed earlier. Query lan-tors for comparing temporal domain values; such as ‘‘before’’
guages are available for attribute timestamped relations.and ‘‘after,’’ etc. Aggregation along the time dimension is also
Also, a comparison between attribute timestamping and tupleproposed to handle queries such as monthly mean, yearly to-
timestamping can be found in Ref. 14.tal, and cumulative sum.

Algebraic query languages on temporal relations have also
Other Researchbeen studied extensively. Reference 18 is a good survey of ear-

lier algebras, totally 12 of them. In general, an algebraic Although most of the research in temporal database modeling
query language extends (standard) relational algebra opera- concentrates on extending the relational model, extensions to
tions to handle the relations with a time dimension. The other models have also been investigated. For example, tem-
abundance of temporal algebras is due to the fact that there poral extensions are done on object-oriented data models (32).
are many ways to add the time dimension into the relations Also, a logic-based temporal data model is discussed in Ref.
and each different way requires different language con- 33. On the other hand, temporal information management
structs. Algebras that work on abstract models are also inves- has been among the topics studied in the constraint database
tigated (19). research (34).

When time periods are used and manipulated by the query
constructs, care must be taken because two different temporal
relations may be equivalent if the snapshot view is taken. For TEMPORAL DATABASE DESIGN
example, from the snapshot point of view, the two tuples (a,
[1, 5]) and (a, [6, 7]) represent the same temporal information Before creating a database, first its database schema is speci-

fied by the Database Administrator. The schema (metadata)as one tuple (a, [1, 7]) when the domain of time is the inte-
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is a description of the database data in terms of a particular els employ relational structures that are different from con-
ventional relations. For example, consider a temporal relationdata model (relational, object-oriented, etc.) For example, in

a relational database, the schema includes the names of the that contains a column whose data type is a time period; a
conventional functional dependency will treat this column asrelations and their attributes as well as attribute data types,

index information, and so on. The schema information is just another attribute, with values like ‘‘1990–1992’’ being
atomic (i.e., like strings). In addition, the data constraintsstored in the system catalog and is heavily used during data

processing. may have a temporal aspect that is not present in traditional
integrity constraints. Various notions of temporal dependen-The efficiency of a database is affected by how well its

schema is designed, because the schema identifies which rela- cies have been proposed, like the dynamic functional depen-
dency (42), the temporal dependency (43), the interval andtions are formed and with what attributes, as well as which

attributes are indexed. In general, database design is a point functional dependencies (44), and the temporal depend-
encies (45 and 46). The temporal functional dependencies ofmultistep process. The very first step, called the requirements

analysis (35), is to understand what data the database will Ref. 47 further generalize this framework to support temporal
granularities. Similarly, various temporal normal forms havestore and what constraints apply to this data. Using this in-

formation, the second step (called the conceptual design) de- been proposed, including the time normal forms (43,48), the
first temporal normal form (49) and the P and Q normal formsvelops a high-level description of the data along with the

constraints over it. This step is usually carried out using a (44). Most of these proposals are in the context of a particular
temporal data model. Reference 50 assumes the largest com-high-level data model, the entity-relationship (ER) model

(35). Because there are no database systems that directly sup- mon denominator of existing temporal models (the bitemporal
conceptual data model) and presents a general framework toport the ER model, the high-level description (ER diagram) is

translated (using mapping algorithms) to the particular data define temporal keys, dependencies, and normal forms.
model (relational, object-oriented, etc.) with which the data-
base will be implemented (36). This process results into an

TEMPORAL QUERY PROCESSING
initial database schema. This schema is then improved using
the identified data constraints. This step is called schema re-

We first review query processing in a traditional database
finement (or normalization) and is usually based on depen-

management system (DBMS). We then discuss how the basic
dencies (functional, multivalued, etc.) and normal forms (like

components of a DBMS are affected by supporting time and
Third Normal Form (3NF) or Boyce–Codd Normal Form

finally we concentrate on the special characteristics of tempo-
(BCNF) (35). The final step is the physical database design

ral query optimization. The presentation here has been in-
where the database schema is further refined by considering

fluenced by Refs. 3, 51, and 52; we thus refer the reader to
expected workloads that the database must support.

these references for a more detailed discussion.
Research in temporal database design has been concen-

trated on temporal ER modeling and on temporal normal-
Basics of Database Management Systems

ization. Capturing the temporal aspects of a database in a
traditional ER diagram is difficult; it usually results in diffi- Database users submit queries to a DBMS in high-level query

languages (like SQL), which are user friendly and easy to ex-cult-to-comprehend diagrams (37). A simple solution would be
to use nontemporal ER diagrams with textual notations indi- press queries with. Then the DBMS performs query pro-

cessing, which first lexically and syntactically analyzes thecating that the particular ER diagram has temporal support.
Of course this approach leaves the burden of translating the query and then transforms it into a sequence (query plan) of

more primitive operators (usually relational algebra opera-ER diagram to the actual data model on the database
administrator/programmer. The research community has de- tors) for accessing the stored data. Often the hardest part of

query processing is to find an efficient query plan to executeveloped a number of temporally enhanced ER models that at-
tempt to model the temporal aspects of information more nat- the given query; this is called query optimization (35).

The basic architecture of a DBMS is shown in Fig. 1. Thereurally (38–41).
Most of these proposals add new temporal constructs to the are three basic components, the query manager, the storage

manager, and the transaction manager. At the bottom thereER model. Some have changed the semantics of the ER
model, whereas others have retained the traditional ER se- is the disk where data and the catalog (metadata or database

schema) reside. Arcs identify the ways that the different partsmantics. Almost all models assume valid time [with the ex-
ception of TempEER (39), which assumes both vaid and of the system communicate.

Users prepare queries in two possible ways, either as adtransaction time]. Typically, the existing proposals assume
that their temporal ER schemas are mapped to the relational hoc queries through a generic query interface or as part of a

program through an application program interface. Applica-model. Their mapping algorithms simply add time-valued at-
tributes to relational schemas (which, however, are not inter- tion programs query the database through special calls to the

DBMS. Since application programs are usually written in apreted by the relational model, i.e., they have no built-in se-
mantics in the relational model). Clearly, more research is programming (host) language that embeds query language

(SQL) statements, they first go through a precompiler thatneeded in this area as none of the existing proposals uses
one of the existing temporal relational data models as their separates the database calls (SQL queries) from the host lan-

guage statements. Queries are then passed to the query man-implementation model. For details we refer to Ref. 37 which
presents a detailed comparison of various temporal ER pro- ager for analysis and optimization. Despite its name, the

query manager handles also requests for modification of theposals according to nineteen criteria.
Traditional relational normalization concepts are not di- data or the metadata. Its task is to find the best way to carry

out a request (query or modification).rectly applicable to temporal data models, because such mod-
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that data is not lost or corrupted even when a system failure
occurs. A typical DBMS allows a user to group together one
or more queries and/or modifications into what is called a
transaction. Through the transaction manager the DBMS
guarantees that each transaction will be executed as an
atomic, consistent, isolated, and durable operation. Atomicity
implies that either all or none of the transaction is executed.
Consistency means that a transaction leaves the database in
a consistent state. With isolation, each transaction executes
with no interference from other concurrently executed trans-
actions. Finally, if a transaction successfully completes its
work, its effects should not be lost even if the system fails.
The transaction manager interacts with the query manager
so as to control the execution of queries (at times it may delay
a query if it conflicts with another concurrent query). It also
interacts with the storage manager, because it stores a log of
changes to the data needed to protect against data losses or
corruptions from system failures.

Temporal Database Management System Implementation Issues

For practical experiences with implementing a temporal data-

Application
programs

PrecompilerAd-hoc queries

Query
manager

Transaction
manager

Storage
manager
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base we refer the interested reader to the various temporal
database system prototypes that have appeared in the litera-Figure 1. The basic architecture of a database management system
ture. A recent list of such prototypes has been presented else-(DBMS).
where (53). The discussion below concentrates on how each
component of a DBMS is affected by the addition of temporal
support.

The only change in the catalog of a temporal DBMS is theA given query can have many equivalent query plans; such
addition of transaction-time relations. It is possible that asplans can be derived by using well-known equivalence proper-
time proceeds, the schema of the database changes (by addingties of relational algebra operators (this is called algebraic op-
new relations, attributes, etc.); this is called schema ver-timization). It is the responsibility of the optimization process
sioning (54,55). Note that such schema changes are related toto enumerate (find) alternative query plans, estimate the cost
transaction time only (i.e., schema evolution does not involveof executing each such plan and select the best plan. Estimat-
valid time). The catalog should also include statistical anding the cost of a given plan involves estimating the cost of
other information about the data stored in the database,each primitive operator that is part of it (this is called opera-
which can be useful for query optimization. Examples includetor evaluation). Usually more than one implementation per
the lifespan over which a relation is defined and temporalprimitive operator are available. Moreover, other information
data granularities and distributions.like the size of the relation or whether there exists an index,

At the lower DBMS level (storage manager), performanceplays a key role in the query manager’s search for the best
is affected by the way temporal data is actually stored onquery plan. As the number of possible query plans in general
disk. The most common approach is tuple timestamping,can be exponentially large (in terms of the size of the query)
where each tuple (data record) is augmented by two atomicand the optimization must be fast, in practice the query man-
temporal attributes per time dimension supported. For exam-ager picks a very efficient (probably not always the best)
ple, in a valid-time database each record would be augmentedquery plan. It then issues commands to the storage manager
with the beginning and the end of the record’s validity inter-that will carry out the request according to the chosen plan.
val. Then the page layout of a temporal relation does not dif-The storage manager in a simple database system can be
fer from the layout of a conventional relation. (The page lay-nothing more than the file system of the underlying operating
out becomes more complex if the attribute timestamping issystem. For efficiency though, DBMSs usually control the da-
used; then each record attribute can be associated with itstabase data/metadata on the disk directly. There are two ba-
own temporal attributes. For simplicity we consider onlysic subcomponents of a storage manager, the file manager and
tuple timestamping in our discussion.)the buffer manager. The file manager keeps track of the loca-

Various file structures have been proposed for more effi-tion of database files (that store data, metadata, or indices)
cient accesses to temporal data. One approach termed tempo-on the disk and can obtain the pages of such a file upon re-
ral partitioning (56) keeps the current data in a separate storequest. Since accessing data on the disk (performing disk in-
than past data. Current data is assumed to be queried moreputs–outputs, or I/Os) is expensive, the DBMS uses buffers
often, so by separating it from past data, the size of the searchthat hold in main memory pages that have been read and
structure is decreased and queries for current data becomemay be needed later. Which pages are kept in main memory
faster. New records are inserted in the current store. When aand for how long is under the control of the buffer manager.
record is updated, its version existing in the current store isThe transaction mangager is responsible for the integrity
moved to the past store and a new (updated) version replacesof the DBMS. It must ensure correct DBMS operation even if

several queries are run simultaneously. It should also ensure it in the current store. All previous versions of a given record
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are linked together in reverse chronological order. This is time is not known until after commit, it is, of course, impossi-
ble to post the transaction time with the data at the time ofcalled reverse chaining and was introduced in Ref. 48 and fur-

ther developed in Ref. 56. Reverse chaining can be further the update. One approach is to initially assign some identifier
to the data a transaction updates and subsequently replaceimproved by the introduction of accession lists (57). An acces-

sion list clusters together all version numbers (timestamps) this identifier with the transaction timestamp. This may re-
quire some data that has been read earlier by the transactionof a given record. Each timestamp is associated with a pointer

to the accompanying record version which is stored in the to be read again in order to assign the timestamp.
Because of its large amounts, temporal data is usually in-past store; thus finding a past version of a given record be-

comes faster. At worst, versions of a given record could be dexed by a temporal index. Concurrency control for temporal
indexing has been addressed in Ref. 63.assigned to different disk pages. Performance can be further

improved if such versions are clustered or stacked together Conventional DBMS take periodic backups to guard the
system against disk failures. The backup reflects the data-and clusters are linked using cellular chaining. These ap-

proaches are compared analytically in Ref. 57. base at a past time. If a media failure occurs, the backup to-
gether with the transaction log are used to bring the databaseClearly, there is not a single file structure for a temporal

database that universally dominates all the rest. The suitabil- into a consistent state. An interesting application of transac-
tion-time databases is that historical data (past states) can beity of a structure depends on the data and the most frequent

access pattern (queries) on it. For example, the reverse chain- used to support recovery.We refer to Ref. 62 for a detailed
description of this idea.ing is a good approach for querying the complete history (past

versions) of a given record. In a different approach (58), the Transaction support can be incorporated in a layered tem-
poral DBMS, where a commercial relational DBMS has beenevolution of a record is viewed as a (time) sequence of its val-

ues. Many such sequences can be grouped together as they extended to include temporal support (64). This approach ex-
ploits the transaction features of the underlying commercialshare the time dimension. This creates a two-dimensional

array whose value at point (r, t) is the value of record r at DBMS to perform operations on the temporal relations.
The query manager is probably the component that is mosttime t. Schemes that map data points from this two-dimen-

sional array to data pages on the disk are presented in affected from adding temporal support to a DBMS. Any new
constructs of the temporal query language have to be incorpo-Ref. 59.

For many temporal applications (especially the ones that rated so that the query manager can perform the lexical and
syntactic analysis of temporal queries. Furthermore, thesupport transaction time), the data accumulated on disk

tends to increase with time. To make space available for new query manager should be extended to support temporal query
optimization. This is a hard problem for which approachesdata, the file organization should support means by which

‘‘old’’ temporal data could be easily moved to another medium from conventional databases usually fail (51). For example,
traditional query managers focus on optimizing equality pred-(tape or optical disk) or even physically deleted from disk.

This process is called vacuuming, which uses two basic ap- icates, because these are the most frequent query predicates.
In temporal queries though, the most frequent predicates in-proaches: (a) With the manual approach, a process is manu-

ally invoked and will vacuum all records that are ‘‘old’’ when volve time intervals (which are inequality-based predicates),
making traditional techniques very inefficient.the process is invoked; this vacuuming process can be invoked

at any time. (b) With the automated approach, such ‘‘old’’ re- There are two characteristics of temporal queries that the
query manager can benefit from. First, in most temporal ap-cords are automatically migrated to the optical disk during a

data update (52,60,61). plications time is assumed to be always increasing. This prop-
erty must be utilized during optimization for efficient dataThe issues related to the temporal transaction manager

deal with timestamping, concurrency, and recovery. Since in clustering, ordering, and so on. It has led to very efficient
temporal indices (access methods) (52). Second, temporal que-databases that support transaction time temporal data is

timestamped by the transaction that enters it in the data- ries usually deal with much larger relations (for example,
transaction-time or bitemporal relations grow in size as timebase, the first question is whether to stamp the data at the

beginning of the transaction or at the end of the transaction. proceeds), which means that unoptimized temporal queries
take much longer to run. As a result the optimizer can spendNote that a major characteristic of transaction-time data-

bases is that past data can be read but is never changed. Be- more time searching for an efficient temporal query plan. (In
contrast, the processing time spent for traditional query opti-cause read-only access does not create any concurrency prob-

lems, we have to concentrate only on the data that can be mization is usually limited, which implies that various query
plans are not considered during optimization). Because of itsupdated (i.e., the most current data). This implies that a tra-

ditional concurrency control scheme can be used for temporal importance to efficient temporal database implementation, we
databases, too. Among many alternatives, experience from examine temporal query optimization in more detail.
conventional databases has shown that two-phase locking
(2PL) is more robust and efficient than timestamping-order- Temporal Query Optimization
ing protocols. Using 2PL for concurrency implies that the

A given temporal query written in a high-level temporalabove question on when to timestamp has to be answered in
query language, is transformed by the temporal query man-the context of 2PL. As timestamps are used for updates only
ager into an equivalent temporal algebra expression (i.e.,(when the data is inserted/updated) they should correctly re-
some initial query plan). The temporal query manager mustflect the serialization order imposed on transactions by 2PL.
then enumerate alternative equivalent query plans. This im-As a result, the choice of the timestamp to accompany the
plies the use of equivalences among the temporal algebra op-data records updated by a transaction is delayed until the

transaction is being committed (62). Since the transaction erators. It is usually the case that the temporal algebra intro-
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duces new operators for which equivalences have to be conversion uses a collection of equivalencies and various heu-
ristics. In particular the algorithm attempts to perform selec-derived. Such equivalences are known for most of the pro-

posed temporal query languages. Examples of various tempo- tions and projections as early as possible and tries to reduce
the size of cross-products, and a special restructuring operatorral algebras and their equivalences are presented in Refs. 65–

68. Reference 18 presents desirable algebraic equivalences of the temporal algebra.
Instead of introducing new temporal algebra operatorsthat a temporal algebra should have and compares proposed

relational algebras on their ability to support such equiva- that would then need new optimization techniques, Ref. 74
takes a different approach. The type system of an existinglences.

In assessing the cost of a query plan the temporal query object-oriented DBMS is extended to include temporal func-
tions and constraints. A temporal query is then written in themanager needs cost estimates for executing each individual

temporal operator that appears in the plan. Such estimation system’s object-oriented query language and translated using
the system’s existing object-oriented algebra. Traditional opti-is based on determining the cardinality of the base relation(s)

involved in the operator, the cardinality of the result, whether mization techniques of the object-oriented DBMS can then be
used to optimize temporal queries, too. However, as the physi-the operator is implemented using an index, and so on. Cost

models for the temporal operators involved in TQuel (17) and cal representation of temporal data and temporal indices are
different than for other data, Ref. 74 agrees that new algo-estimates for the size of the results of various temporal join

operators are presented in Refs. 69 and 70, respectively. rithms still need to be developed for evaluating the existing
algebraic operators but when they are applied to temporalThe first study on temporal query optimization was per-

formed in Ref. 71, where the performance of a brute-force ap- data.
A framework for optimizing sequence queries is presentedproach to add time support on a conventional relational

DBMS was analyzed. The relational DBMS was minimally in Ref. 75. This is a view of temporal data as time series (in-
stead of temporal relations). An example of a time series isextended to support a basic temporal query language (TQuel).

Transaction-time, valid-time, and bitemporal relations were the ordered sequence of prices for a given stock over a year.
This is a positional view of temporal data. For every time in-implemented. A collection of temporal queries were run using

the optimization techniques of the relational DBMS. The re- stant (say a day) there is a record value (the stock price for
that day). In contrast, a temporal relation is a record-orientedsults were discouraging, because traditional approaches like

sequential scanning, hashing, or indexing suffered a lot due view of temporal data as it associates time elements to re-
cords. A number of sequence operators have been introducedto the ever growing characteristic of temporal data. [For ex-

ample, if we consider transaction-time data, past data has to that are useful for expressing sequence queries (75). Critical
in optimizing such queries is the notion of operator scope (ba-be retained and queried as well as current data. If a tradi-

tional B-tree is used as an index, values that appeared at dif- sically how many positions are important for evaluating a
given operator). Using operator scopes, an algorithm is thenferent times will be placed under the same B-tree leaf (i.e.,

the time period where each value appeared is not directly in- presented for optimizing general sequence queries. Because
sequences are ordered, the optimization process takes advan-dexed).] This work however emphasized the importance of ef-

ficient query optimization for temporal databases. tage of this order.
Since then there has been substantial work on the subject.

Several ways to optimize temporal query blocks (including Optimizing Individual Temporal Operators. Because data in
a relational database is organized in relations, the only wayplan generation and selection) are available (71–75); we dis-

cuss these general approaches in this section. A large amount to combine selected data from more than one relations is by
the join operator. Joins are probably the most important rela-of research has concentrated on implementing individual tem-

poral operators (76–82) and on inventing temporal indices tional operators. A straightforward way to implement a join
operator is to first perform a Cartesian product among the(52). An index (or access method) is an additional data struc-

ture that enables various selection-based queries to run relations involved in the join. This is clearly inefficient. Due
to the importance and frequency of join-related queries, afaster. We examine these categories in separate subsections.

Reference 72 presents a general framework for query opti- large amount of research has been performed for efficient join
implementations (83). Joins are also very important in tempo-mization in a transaction-time database. This framework in-

tegrates conventional query processing techniques with tech- ral databases. Temporal joins are more difficult to implement
than traditional joins, because the join condition may includeniques from differential computation of queries. Differential

computation allows queries to be computed incrementally a predicate on the record timestamps. Among the proposed
approaches, those in Refs. 76 and 78 have generally been ex-from cached and indexed results of previously computed que-

ries. An internal algebra for transaction-time relations is pre- tensions to nested-loop or sort-merge joins, whereas those in
Ref. 75 use a partition-based join approach and temporal in-sented and enlarged with differential operators (in order to

take advantage of previously cached results when implement- dexed joins are considered in Ref. 80.
An analysis of the characteristics and processing require-ing a query). A new formalism (the state transition network

STN) is used to enumerate the set of equivalent query plans ments for the time-intersection equijoin (76) and the event join
(or entity join) (77) have been presented. The time-intersectionto the original query. A dynamic programming approach is

used to generate and select query plans. Pruning rules are equijoin is the temporal equivalent of the standard equijoin:
two tuples from the joining relations are joined if their joinintroduced to reduce potentially large STNs by cutting away

parts of STNs that contain inferior query plans. attribute values are equal and their time intervals intersect.
If no attribute values take part on the join predicate (i.e., ifBased on the temporal algebra of Ref. 68, Ref. 73 presents

an algorithm that converts a given query to another equiva- only the time interval intersection is used to join two tuples),
we have a time-intersection join. An event join groups severallent expression, which would execute more efficiently. The
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temporal attributes of an entity into a single relation. This ing is similar to duplicate elimination in conventional data-
bases and is needed before other operators like aggregationoperation is useful because temporal attributes belonging to

the same entity may be stored in separate relations and be or selection. Operators with a similar effect to coalescing are
included in various temporal algebras, like the COMPRESSassigned their own time intervals. Based on the physical or-

ganization of the relations that take part in a temporal join of Ref. 43, the Coalesce of Ref. 26, and the FOLD operator of
Ref. 84. Efficient implementations for the coalescing operator(i.e., whether the relations are timestamp-ordered or not) sev-

eral algorithms are presented for processing such joins effi- are presented in Ref. 82.
ciently. If a relation is timestamp-ordered and of an append-
only nature, a special index called the append tree is used to Temporal Indexing. Any index used to organize time-evolv-

ing data is characterized by the following costs: space (thefacilitate event joins. There are several optimization tech-
niques for temporal joins involving three or more relations space consumed by the index in order to keep such data), up-

date time (the time needed to update the method’s data struc-(multi-way joins) (77).
The approach of Ref. 78 takes advantage of the special tures for data changes), and query time (the time needed to

compute a temporal query). All three costs are functions ofcharacteristics of time-evolving data and introduces the no-
tion of stream processing. A stream is an ordered sequence of three basic parameters: the query answer size s, the total

number of changes (updates) n in the time evolution of thedata objects. Because temporal data is often ordered by time,
treating temporal relations as ordered sequences of tuples database and the page (block) size b. The answer size s is the

number of objects satisfying the query predicate. A change is(i.e., streams of tuples) suggests that stream processing can
be effective for temporal queries, too. Reference 78 shows how the addition, deletion, or modification of a record. We say that

an index is the I/O optimal solution for a given query if itto use stream processing techniques to efficiently optimize
various temporal joins like the contain join, the contain semi- minimizes the number of I/Os needed to answer the query

while using linear [O(n/b)] space.join, the intersect join and many more. The contain join out-
puts the concatenation of two tuples x, y if the time interval Given the usually large size that temporal data attains,

finding efficient temporal indices is important. A variety ofof x contains the time interval of y. The contain semijoin se-
lects those tuples x whose time interval contains that of any temporal indices have been proposed in recent years. The

worst-case performance of such indices has been comparedtuple y. The intersect join is similar to the time-intersection
join of Ref. 77. Under stream processing, each relation is (52). Most approaches directly support a single time axis; the

majority of these indices assume that time is always increas-treated as a stream and a processor joins the two relations by
combining their streams (much like a conventional merge ing and/or updates are always applied on the latest state (i.e.,

the past is not changed). These are characteristics of transac-join). The processor is also allowed to maintain local informa-
tion about the state of each joined relation as the streams tion time. Assuming a transaction-time database, a common

query is the pure-snapshot query. For example: ‘‘find all em-are processed. More complex queries involving intervals were
also addressed. ployees recorded as working on January 1, 1990.’’ More gen-

eral is the range-snapshot query, where the predicate adds aAn algorithm to efficiently evaluate time-intersection equi-
joins (also termed valid-time natural joins) is based on tuple condition on the objects’ attribute space: ‘‘find all employees

recorded as working on January 1, 1990 with salary betweenpartitioning (79). Tuples with similar valid time intervals are
first clustered together, and the corresponding partitions of 30K and 45K.’’

Various methods have been proposed to solve the pure-the input relations are then joined together. The efficiency of
a partition-based join depends on how well the partitions are snapshot query (78,85–88). Among them, the Snapshot Index

(88) provides the I/O optimal solution for this query: it usescreated (ideally each partition should have approximately an
equal number of tuples per relation). An obvious way is to O(n/b) space, O(1) processing per update, and O(logbn � s/b)

I/Os for answering a query. Here s is the number of all em-sort the intervals of the two relations; however, this may be
expensive. A better solution is to choose partitioning intervals ployees that were working in the company on January 1,

1990.that with high probability are closed to the optimal ones. An
efficient method for approximate partitioning is based on ran- Methods that optimize the range-snapshot query include

(89–94). The I/O optimal solution for this query is provideddom sampling (79).
In an index-based time-intersection-join implementation by the Multi-Version B-tree (89) and the Multiversion Access

method (94). Both use O(n/b) space, logarithmic update pro-(80), the index (called TP-index) maps valid time intervals to
points in a two-dimensional space and partitions this space cessing per change and O(logbn � s/b) query time. Using the

employee example, s is now the number of employees thatinto subspaces. If both relations to be joined have been in-
dexed by the TP-index, a partition in one relation needs to be were working on January 1, 1990 and in addition had salaries

in the requested range (i.e., since we discuss a range-snapshotpartitioned with a predetermined set of partitions from the
other relation. query, s is not the total number of employees working on Jan-

uary 1, 1990). The Time-Split B-tree (92) is another efficientA temporal query may also involve aggregate operators like
avg, min, max, sum, and count. Traditionally aggregates are solution.

Indexing the records in valid-time databases can be per-computed using a sorting, hashing, or indexing approach (35).
Such approaches are not efficient if the temporal query in- formed using a multidimensional dynamic index like the R-

tree (95). Note that in valid-time databases updates do notvolves temporal grouping (i.e., grouping the results by time).
Efficient techniques for computing temporal aggregates ap- happen in order as in transaction-time databases. R-trees will

work well for most practical cases; however they do not pro-pear in Ref. 81.
Another temporal operator that appears in temporal que- vide I/O optimal solutions as the transaction-time indices dis-

cussed above. Note that an R-tree has the advantage of beingries is the coalescing operator introduced earlier (17). Coalesc-
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a multidimensional index; however, due to overlapping Temporal query performance can be improved if parallel-
ism is used. This is possible if historical data is spread acrossamong the areas covered by its nodes, an R-tree cannot guar-
a number of disks that can be accessed in parallel. This ideaantee that a single path will be followed to answer a given
was explored in Ref. 102, where a way to efficiently declusterquery.
the Time-Split B-Tree (92) is presented, and in Ref. 103,Bitemporal indexing is addressed in Refs. 96 and 97. A bi-
which examines declustering of the Time Index (85).temporal database can be visualized as a sequence of states

Most of the research on temporal indexing assumes a lin-(indexed by transaction time) where each state contains the
ear transaction-time evolution (51). This implies that a newvalid time intervals known to the database at that transac-
database state is created by updating only the current data-tion time. Reference 96 flashes various such states on disk
base state. Another option is the so-called branching transac-and logs the changes between them. Each state is individually
tion time, by which evolutions can be created from any pastindexed. The effectiveness of this approach depends on how
database state. Such branched evolutions form a tree of evolu-often states are flashed to disk; however, this implies in-
tions that resembles the version trees found in versioning en-creased storage. The approaches proposed in Ref. 97 all use
vironments. A version tree is formed as new versions emanatespace linear to the number of updates in the bitemporal evo-
from any previous version (assume that no version merging islution. The first approach visualizes each bitemporal object as
allowed). There is, however, a distinct difference that makeshaving two intervals, one for transaction time and one for
branched evolutions a more difficult problem. In a versionvalid time, and stores it in a multidimensional structure like
tree, every new version is uniquely identified by a successivethe R-tree. Although this approach has the advantage of us-
version number that can be used to directly access it (91). Ining a single index to support both time dimensions, the char-
contrast, branched evolutions use timestamps. These time-acteristics of transaction time create an overlapping problem
stamps will enable queries about the evolution on a giventhat affects the query performance of the R-tree. To avoid
branch. However, timestamps are not unique. The same timeoverlapping, the use of two R-trees (2-R approach) has also
instant can exist as a timestamp in many branches in a treebeen proposed. The third and most efficient approach uses the
of evolutions simply because many updates could have beenbitemporal R-tree which is an R-tree that keeps its past states
recorded at that time in various branches. We are aware ofas it evolves over transaction time. The advantage of the bi-
only two works that address problems related to indexingtemporal R-tree is that queries to any past state are efficient
branching transaction time (namely Refs. 104 and 105). Inwhile the space remains linear.
the first, version identifiers are replaced by (branch identifier,In addition to indexing, another popular method to effi-
timestamp) pairs (104). Both a tree access method and a for-ciently address membership queries is external hashing (35).
est access method are proposed for these branched versions.Given a dynamic set S of objects, the traditional membership
In the second, data structures are provided for (a) locatingquery asks whether an object with identity k in the most cur-
the relative position of a timestamp on the evolution of arent S. However, if set S is time-evolving, the problem be-
given branch and (b) locating the same timestamp among sib-comes: ‘‘find whether object with identity k was in the set S
ling branches (105).

at time t.’’ An efficient solution to the temporal-hashing query Although the above approaches deal with temporal data-
has been presented (98). bases, recently various research has addressed the problem of

Individual works have used ad hoc approaches to refer to indexing time series (106–108). Given a time series (an evolu-
subsets of temporal queries, sometimes employing conflicting tion) and a pattern, the typical sequence query asks for all
or counterintuitive terminology. In the discussion above, we those times that a similar pattern appeared in the time se-
used terms like pure-snapshot, range-snapshot, or temporal- ries. The search involves some distance criterion that quali-
hashing queries but many more terms have been utilized! To fies when a pattern is similar to the given pattern. The dis-
avoid considerable confusion when referring to temporal que- tance criterion guarantees no false dismissals (false alarms
ries a notation is introduced in Ref. 99. The notation uses one are eliminated afterward). Whole-pattern matching (106) and
entry for the explicit (nontemporal) attribute, and one entry submatching (107) queries have been examined. Searching
per temporal dimension, as in: Expl_attr/Valid/Transaction. that allows sequence transformations like moving average
An entry can take a value from the set: �V, R, S, *, –� where and time warping is examined in Ref. 108. Such time-series
each value has a different meaning. For example, V stands queries are reciprocal in nature to the temporal queries
for a single attribute value or time instant, R for a range of (which usually provide a time instant and ask for the pattern
attribute values or a time interval, and ‘–’ means that the at that time).
entry is not applicable. Then the (transaction-time) range-
snapshot query is represented as R/– /V, because the query
specifies a range of values for the explicit attribute (i.e., sal- TEMPORAL ISSUES IN REAL-TIME AND ACTIVE DATABASES
ary range between 30K and 45K) and a transaction time (Jan-
uary 1, 1990), and no valid time is specified. The notation is The notion of time appears also in real-time database systems
easily extensible to cover spatiotemporal queries as well (99). but in a different sense than in temporal databases. For a

Most transaction-time indices take advantage of the time- comprehensive introduction to real-time databases, the
ordered changes to achieve good update performance. Faster reader is referred to Refs. 51 and 109; in particular Ref. 51
updating may be achieved if updates are buffered and then surveys real-time databases as related to many temporal da-
applied to the index in bulks of work. The Log-Structured tabase issues. Generally speaking, real-time databases are
History Data Access Method (LHAM) (100) and the bulk load- databases where transactions have time constraints (dead-
ing of Ref. 101 are two methods designed to support high up- lines) that must be met. This is a characteristic for applica-

tions that require timely access or processing of data. Suchdate rates.
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examples appear in navigation systems (airplane automatic quence on the data items accessed. For hard deadline transac-
tions, complete knowledge of the worst-case execution ispilots), dialed number services (‘‘800 directory’’ look-ups), au-

tomated factory management (where timely object recognition needed. For soft deadline transactions various priority assign-
ment policies are used for conflict resolution. Examples in-and appropriate response is needed), and so on. Note that the

term real-time does not necessarily mean fast; rather it de- clude the earliest-deadline-first, highest-value-first, and lon-
gest-executed-transaction-first. Transaction processing isnotes the need to finish a task before some explicit time con-

straint. more complex in the case of distributed real-time databases
(110,111). Sometimes, it is acceptable to produce a partial re-Typically, a real-time system consists of a controlled envi-

ronment (like a factory floor) and a controlling system (usu- sult before the deadline rather than the complete result after
the deadline. Timeliness can be achieved by trading off com-ally a computer and its interfaces that enable controlling the

operations in the factory floor). The controlling system inter- pleteness, accuracy, consistency, or currency (109).
Active database systems is another area with a notion ofacts with its controlled environment through sensors that

measure parameters of the environment (for example, tem- time. Again, we only present the basics so as to discuss the
issues related to time. For a detailed coverage of active data-perature sensors or cameras). The sensed data is stored in a

real-time database and is further processed to derive new bases we refer to Refs. 112–114. Such databases are used for
applications that need to continuously monitor changes in thedata and possibly set some of the environment parameters

through specialized controllers. Timely monitoring and pro- database state and initiate actions based on these changes.
The basic building blocks in an active database are the event-cessing of the sensed data is thus necessary. Depending on

the application, the timing constraint may apply to one or condition-action (ECA) rules. An ECA rule has the form:
more database operations like querying (as the ‘‘800 direc-
tory’’ look-up), processing insertions, deletions, or updates (as on event

if conditionin airplane databases), or enforcing data integrity.
Past research in real-time databases has not explicitly dis- then action

tinguished between valid- and transaction-time dimensions.
However the sensors observe the real world environment, When the event occurs, the rule is triggered. Once the rule

is triggered the condition is checked. If the condition holdswhich clearly corresponds to valid time. Since transactions
are used to record the sensed data, access it from the real- the action is executed. The above paradigm provides a good

mechanism by which database systems can perform a numbertime database, or set parameters through the specialized con-
trollers, time in these settings corresponds to transaction of useful tasks in a uniform way. Such tasks are enforcing

integrity constraints, monitoring data access, maintaining de-time. The deadlines in database transactions are sometimes
specified with respect to a given valid time. Such time con- rived data, enforcing protection schemes, and so on.

The event can be arbitrary, including external eventsstraints basically relate valid with transaction time in that
the transaction commit time must be before the specified (events detected outside the scope of the database, but the

rule is processed by the DBMS), database events (such as thevalid time (51).
The basic problem in real-time databases is how to guaran- begin or commit of a transaction that inserts, deletes, or mod-

ifies data), and, for the interests of this article, temporaltee that transaction time constraints are satisfied. A transac-
tion can be distinguished by the effect of missing its deadline; events. Typically temporal events are triggered at particular

absolute times or relative to some time interval. Periodicusually this is done by assigning a value to each transaction.
A hard deadline transaction is one that may result in a catas- events are also possible. POSTGRES supports specific tempo-

ral events like time and date (115). Among various active da-trophe if the deadline is missed (usually applies to safety-crit-
ical activities). A large negative value is assigned to such a tabase system prototypes, HiPAC (116) allows for the most

complex triggering events, including support for temporaltransaction. A soft deadline transaction has some positive
value even after its deadline. Typically this value drops to events. Triggers on temporal aggregate events are examined

in Refs. 117 and 118.zero at a certain point past its deadline. For example, a trans-
action may have components that did not meet their individ- Another notion of time emerges in the specification of con-

ditions and actions that may refer to old or new databaseual (soft) deadlines but the overall transaction could still meet
its deadline. A firm deadline transaction can be viewed as a states with respect to the triggering event (also known as

ECA binding) (113). Usually, there is a mechanism by whichspecial case of a soft deadline transaction where the value
drops to zero at the transaction’s deadline. For example, a conditions in rules triggered by data modifications can refer

to the modified data (new database state) or to data precedingtransaction that has to recognize an object while it passes in
front of the camera has a firm deadline as it must finish be- the triggering modification (old database state). Similarly ac-

tions can refer to the data whose modification caused the rulefore the object goes outside the camera’s view.
Transaction scheduling must take into account the above to trigger. Temporal conditions that can refer to past data-

base states (from the history of evolution of states) have alsotransaction characteristics. A key issue in real-time transac-
tion processing is predictability (109). We would like to pre- been proposed (117).

Temporal issues arise in the rule execution semantics, too.dict beforehand whether a transaction will meet its deadline.
This prediction is possible only if we know the worst-case exe- For many applications that require timely response to critical

events, it may be important to evaluate the condition immedi-cution of the transaction. However in a database system there
are various sources of unpredictability; among others, the ately after an event has occurred, and to execute the action

immediately after the condition is evaluated. HiPAC providescentral processing unit and input–output usage, transaction
aborts, transaction arrival patterns (periodic, sporadic), data for coupling modes between event-condition and condition-ac-

tion that specify when the condition is checked with respectconflicts, and the dependence of the transaction execution se-
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12. C. Bettini, X. Wang, and S. Jajodia, A general framework forto the triggering event and when the action is executed with
time granularity and its application to temporal reasoning, Ann.respect to its condition. Each coupling mode is either imme-
Math. Artif. Intell., 22 (1–2): 29–58, 1998.diate (indicating immediate execution as above), deferred

13. C. Bettini et al., A glossary of time granularity concepts, in(indicating execution at the end of the current transaction),
O.Etzion, S. Jajodia, and S. Sripada (eds.), Temporal Databases:or decoupled (execute in a separate transaction). Not all com-
Research and Practice, Berlin: Springer-Verlag, 1998, pp.binations of coupling modes are allowed (see Ref. 116 for de-
406–413.tails).

14. J. Clifford, A. Crocker, and A. Tuzhilin, On completeness of his-Recently, the integration of real-time and active databases
torical relational query languages, ACM Trans. Database Syst.,has been proposed for applications that combine both the
19 (1): 64–116, 1994.timely monitoring of events (for example emergency events)

15. R. T. Snodgrass et al., Adding Valid Time to SQL/Temporal,and the provision for timely response. The functionality of
Proposal. MAD-146, Madrid. International Organization forsuch databases is discussed in Ref. 119.
Standardization, 1997.

16. C. S. Jensen, M. Soo, and R. T. Snodgrass, Unifying temporal
data models via a conceptual model, Inf. Syst., 19 (7): 513–547,CONCLUSIONS
1994.

17. R. T. Snodgrass, The temporal query language TQuel, ACMTime is an important aspect of many real-world applications
Trans. Database Syst., 12 (2): 247–298, 1987.but is not efficiently supported by conventional databases.

18. E. McKenzie and R. T. Snodgrass, Evaluation of relational alge-Temporal databases have been proposed instead. The field of
bras incorporating the time dimension in databases, ACM Com-temporal databases has seen an enormous growth in re-
put. Surv., 23 (4): 501–543, 1991.

search: a number of prototypes have already being built (53);
19. X. Wang, Algebraic query languages on temporal databasesa variety of data models and languages have been proposed

with multiple time granularities, Proc. Conf. Inf. Knowl. Man-(51); temporal query processing and indexing have been stud-
age., 1995, pp. 304–311.

ied extensively (52). This article provides a quick overview of
20. C. S. Jensen and R. T. Snodgrass, Temporal specialization andthe field; the interested reader should follow the many refer-

generalization, IEEE Trans. Knowl. Data Eng., 6 (6): 954–974,ences provided for more detailed coverage of particular sub- 1994.
jects. The field of temporal databases remains a very active

21. X. Wang, S. Jajodia, and V. S. Subrahmanian, Temporal mod-research area. Recently, commercial database vendors have
ules: An approach toward federated temporal databases, Inf.

started including temporal support to their products, and this Sci., 82: 103–128, 1995.
trend is expected to increase.

22. S. Abiteboul, L. Herr, and J. Van den Bussche, Temporal versus
first-order logic to query temporal databases, Proc. 15th ACM
Symp. Prin. Database Syst., 1996, pp. 49–57.
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ganization and Algorithms (FODO) Conf., 1993, pp. 69–84.temporal databases, Proc. VLDB Conf., 1996, pp. 180–191.

107. C. Faloutsos, M. Ranganathan, and Y. Manolopoulos, Fast sub-83. P. Mishra and M. H. Eich, Join processing in relational data-
sequence matching in time-series databases, Proc. ACM SIG-bases, ACM Comput. Surv., 24 (1): 63–113, 1992.
MOD Conf., 1994, pp. 419–429.

84. N. A. Lorentzos and R. G. Johnson, Extending relational algebra
108. D. Rafiei and A. O. Mendelzon, Similarity-based queries for timeto manipulate temporal data, Inf. Syst., 13 (3): 289–296, 1988.

series data, Proc. ACM SIGMOD Conf., 1997, pp. 13–25.
85. R. Elmasri, G. Wuu, and Y. Kim, The time index: An access

109. K. Ramamritham, Real-time databases, Distrib. Parallel Data-structure for temporal data, Proc. 16th Conf. Very Large Data-
bases, 1 (2): 199–226, 1993.bases, 1990, pp. 1–12.

110. B. Kao and H. Garcia-Molina, Deadline assignment in a distrib-86. H. Gunadhi and A. Segev, Efficient indexing methods for tempo-
uted soft real-time system, Proc. 13th Int. Conf. Distrib. Comput.ral relations, IEEE Trans. Knowl. Data Eng., 5: 496–509, 1993.
Syst., 1993, pp. 428–437.

87. V. J. Tsotras, B. Gopinath, and G. W. Hart, Efficient manage-
111. V. Kanitkar and A. Delis, A case for real-time client-server data-

ment of time-evolving databases, IEEE Trans. Knowl. Data Eng.,
bases, in A. Bestavros and S. Wolfe (eds.), Real-Time Database7: 591–608, 1995.
Systems: Issues and Applications, Boston: Kluwer, 1997, pp.

88. V. J. Tsotras and N. Kangelaris, The snapshot index, an I/O- 395–408.
optimal access method for timeslice queries, Inf. Syst. Int. J., 20: 112. S. Chakravarthy, A Comparative Evaluation of Active Relational
237–260, 1995. Databases, Tech. Rep. UF-CIS-TR-93-002, Gainesville: Univ. of

89. B. Becker et al., An asymptotically optimal multiversion B-tree, Florida, 1993.
VLDB J., 5: 264–275, 1996. 113. U. Dayal, E. N. Hanson, and J. Widom, Active database sys-

90. C. Kolovson and M. Stonebraker, Segment indexes: Dynamic in- tems, in W. Kim (ed.), Modern Database Systems: The Object
dexing techniques for multi-dimensional interval data, Proc. Model, Interoperability and Beyond, Reading, MA: Addison-Wes-
ACM SIGMOD Conf., 1991, pp. 138–147. ley, 1995, pp. 434–456.

91. S. Lanka and E. Mays, Fully persistent B� trees, Proc. ACM 114. J. Widom and S. Ceri (eds.), Active Database Systems: Triggers
SIGMOD Conf., 1991, pp. 426–435. and Rules for Advanced Database Processing, San Mateo, CA:

Morgan Kaufmann, 1996.92. D. Lomet and B. Salzberg, Access methods for multiversion
data, Proc. ACM SIGMOD Conf., 1989, pp. 315–324. 115. S. Potamianos and M. Stonebraker, The POSTGRES rules sys-

tem, in J. Widom and S. Ceri (eds.), Active Database Systems:93. Y. Manolopoulos and G. Kapetanakis, Overlapping B� trees for
Triggers and Rules for Advanced Database Processing, San Ma-temporal data, Proc. 5th Jerusalem Conf. Inf. Technol., Jerusa-
teo, CA: Morgan Kaufmann, 1996, pp. 43–61.lem, 1990, pp. 491–498.

116. U. Dayal, A. P. Buchmann, and S. Chakravarthy, The HiPAC94. P. J. Varman and R. M. Verma, An efficient multiversion access
Project, in J. Widom and S. Ceri (eds.), Active Database Systems:structure, IEEE Trans. Knowl. Data. Eng., 9: 391–409, 1997.
Triggers and Rules for Advanced Database Processing, San Ma-95. A. Guttman, R-trees: A dynamic index structure for spatial
teo, CA: Morgan Kaufmann, 1996, pp. 177–206.searching, Proc. ACM SIGMOD Conf., 1984, pp. 47–57.

117. P. Sistla and O. Wolfson, Temporal conditions and integrity con-96. M. Nascimento, M. H. Dunham, and R. Elmasri, M-IVTT: A
straints in active database systems, Proc. ACM SIGMOD Conf.,practical index for bitemporal databases, Proc. Database Expert
1995, pp. 269–280.Syst. Appl. (DEXA) ’96, Zurich, 1996, pp. 779–790.

118. I. Motakis and C. Zaniolo, Temporal aggregation in active data-
97. A. Kumar, V. J. Tsotras, and C. Faloutsos, Designing access

base rules, Proc. ACM SIGMOD Conf., 1997, pp. 440–451.
methods for bitemporal databases, IEEE Trans. Knowl. Data

119. K. Ramamritham et al., Integrating temporal, real-time, and ac-Eng., 10: 1–21, 1998.
tive databases, ACM SIGMOD Rec., 25 (1): 8–12, 1996.

98. G. Kollios and V. J. Tsotras, Hashing Methods for Temporal
Data, TimeCenter Tech. Rep. TR-24, 1998. Available: http://

VASSILIS J. TSOTRASwww.cs.auc.dk/general/DBS/tdb/TimeCenter/publications.html
Department of Computer Science

99. V. J. Tsotras, C. S. Jensen, and R. T. Snodgrass, A notation for and Engineering
spatiotemporal queries, ACM SIGMOD Rec., 27 (1): 47–53, 1998. University of California

100. P. O’Neil and G. Weikum, A log-structured history data access X. SEAN WANG
method (LHAM), High Perform. Trans. Syst. Workshop, Asilomar

Information and Software
Conference Center, Pacific Grove, CA, 1993.

Engineering Department
101. J. Van den Bercken, B. Seeger, and P. Widmayer, A generic ap- George Mason University

proach to bulk loading multidimensional index structures, Proc.
VLDB Conf., 1997, pp. 406–415.

102. P. Muth, A. Kraiss, and G. Weikum, LoT: A dynamic decluster-
ing of TSB-tree nodes for parallel access to temporal data, Proc.
Extending Database Technol. (EDBT) Conf., 1996, pp. 553–572.

103. V. Kouramajian, R. Elmasri, and A. Chaudhry, Declustering
techniques for parallelizing temporal access structures, Proc.
10th IEEE Conf. Data Eng., 1994, pp. 232–242.


