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OBJECT-ORIENTED DATABASES

Traditional database management systems (DBMS), based on
the relational data model, are not able to directly handle data
managed by a large variety of applications, such as design
and manufacturing systems (CAD/CAM, CIM), scientific and
medical databases, geographic information systems, and mul-
timedia databases. Those applications have requirements and
characteristics different from those typical of traditional data-
base applications for business and administration. They are
characterized by highly structured data, long transactions,
and data types for storing images and texts, as well
as by nonstandard, application-specific operations. Object-
oriented database management systems (OODBMS) (1–3)
have been developed in order to meet the requirements im-
posed by those applications. The object-oriented approach pro-
vides the required flexibility not being constrained by the
data types and query languages available in traditional data-
base systems. One of the most important features of
OODBMS is the possibility they give to the applications of
specifying both the structures of complex objects and the op-
erations to manipulate these structures.

OODBMS result from the integration of database technol-
ogy with the object-oriented paradigm developed in the pro-
gramming languages and software engineering areas. The ba-
sic principle of the object-oriented approach in programming
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is to consider the program consisting of independent objects, (10). Each real-world entity is modeled as an object. An object
has an identifier (OID), a state, and a set of operations. Thegrouped in classes, communicating among each other through

messages. The same concepts, however, have been introduced effect of the execution of an operation on an object depends
on both the object state and the operation arguments and canalso in other computer science areas, such as knowledge rep-

resentation languages, and they have often been interpreted result in an update of the object state.
Classify group objects with similar characteristics—for ex-in different ways.

In an object-oriented programming language, objects exist ample, all the objects answering the same set of messages. A
class is also a template from which objects can be created,only during program execution. In an object-oriented data-

base, by contrast, objects can be created that persist and can through a new operation. Objects belonging to the same class
have the same operations and thus they exhibit a uniformbe shared by several programs. Thus, object-oriented data-

bases store persistent objects in secondary memory and sup- behavior. Classes have an interface, specifying the operations
that can be invoked on objects belonging to the class, and anport object sharing among different applications. This re-

quires the integration of the object-oriented paradigm with implementation, specifying the code implementing the opera-
tions in the class interface.typical DBMS mechanisms such as indexing mechanisms,

concurrency control, and transaction management mecha- Inheritance allows a class to be defined starting from the
definitions of existing classes. A class can be defined as a spe-nisms.

The history of OODBMS has been characterized by an ini- cialization of one or more existing classes and thus can inherit
attributes and methods of those classes. The class defined astial stage of strong development activity, with the realization

of many prototype and commercial systems. The first systems a specialization is called a subclass, whereas the classes from
which it is derived are called superclasses. An object can usewere released at the end of the 1980s, and many commercial

products were already available at the beginning of the 1990s. operations defined in its base class as well as in its super-
classes. Inheritance is thus a powerful mechanism for codeOnly at a second stage was the need felt for formal founda-

tions and standardization. Thus, the definition of a standard reuse.
Encapsulation allows us to hide data representation andobject-oriented data model [by the Object Data Management

Group (ODMG)] is quite recent. In the same time, there has operation implementation. Each object encloses both the pro-
cedures (operations, or methods) and the interface throughbeen an evolution from the first systems, which mainly were

persistent versions of object-oriented programming lan- which the object can be accessed and modified by other ob-
jects; the object interface consists of the set of operations thatguages, toward the full support of typical DBMS features,

such as declarative query languages, concurrency control, and can be invoked on the object. An object state can be manipu-
lated only through the execution of object methods.authorization mechanisms. At the current stage, the field of

OODBMS is rather mature, with a standard data model and Polymorphism (overloading) allows us to define operations
with the same name for different object types; together withquery language having been defined and with several com-

mercial products available. A different evolutive direction overriding, that is, the possibility of redefining implementa-
tions of inherited methods in subclasses, and late binding,that has been taken, starting from traditional relational

DBMS and which is now converging with the one taken by this functionality allows an operation to behave differently
on objects of different classes. Different methods can thus beOODBMS, is that of object-relational database systems, that

is, object extensions of relational database systems. The latest associated with the same operation name; and the task to de-
cide, at execution time, which method to use for executing aproposed version of the SQL standard, SQL3, indeed includes

many features of the object paradigm. given operation, is left to the system.
The impact of the above concepts on programming method-In this article, we first briefly introduce the notions and

the advantages of the object-oriented paradigm in software ologies is relevant. Objects encapsulate operations together
with the data these operations modify, thus providing a data-development, and then we discuss in detail the application of

that paradigm to the database context, focusing on data oriented approach to program development. Objects are dealt
with as first class values in the language, and thus they canmodel and query language aspects. After having introduced

these notions, we examine some OODBMS; in particular, we be passed as parameters and can be assigned as values to
variables and organized in structures. Classes simplify han-discuss the GemStone and ObjectStore systems. The ODMG

standard is then presented; we discuss its data model and its dling collections of similar objects. Finally, inheritance among
classes is a mechanism to organize collections of classes, thusquery language. Finally, we briefly discuss object-relational

databases and compare them with object-oriented ones. allowing the application domain to be described by class hier-
archies.

The great popularity of the object-oriented approach in
software development is mainly due to increased productivity.THE OBJECT-ORIENTED PARADIGM
With respect to the software life cycle, the object-oriented par-
adigm reduces time on two different sides: On one side, theMost of the principles underlying the object-oriented pro-

gramming paradigm date back to the Simula language (4); development time is reduced, because of specification and im-
plementation reuse; on the other side, the maintenance costhowever, this paradigm started to be widely used in the fol-

lowing years, mainly because of the development of the is reduced, because of the locality of modifications. The object-
oriented paradigm enhances software reusability and extensi-Smalltalk (5) language. Many object-oriented programming

languages have been proposed, namely, Eiffel (6), CLOS (7), bility. It reduces the amount of code to be written and makes
the design faster through reuse. This paradigm can be seenC�� (8), Java (9).

The key concepts of the object-oriented paradigm are those as a collection of methods and tools for structuring software.
In this respect, class libraries have a fundamental relevance.of object, class, inheritance, encapsulation, and polymorphism
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A class library is a set of related classes concerning a specific ment of several prototype systems, whereas only later theo-
domain. Class libraries can be bought, in the case of standard retical foundations have been investigated and standards
base modules, or they can be developed in house, if applica- have been developed. In what follows, we introduce the main
tion-specific. The style of programming based on reusable concepts of the object-oriented data model. We then discuss
modules, besides improving productivity, also improves qual- two specific systems (GemStone and ObjectStore) to better il-
ity and testability and makes it easier to modify a program. lustrate the object-oriented data model. Finally, we present

A further advantage of object orientation is represented by the recently proposed ODMG standard.
the uniqueness of the paradigm. In the traditional software
life cycle, many barriers should be overcome when passing Objects
from the real world (the problem domain) to analysis (e.g.,

An object-oriented database is a collection of objects. In ob-structured analysis or DFD), to programming (e.g., in For-
ject-oriented systems, each real-world entity is represented bytran, C, or Cobol), and finally to databases [usually relational
an object. Each object has a state and a behavior. The stateones, and designed through the Entity–Relationship ap-
consists of the values of the object attributes; the behavior isproach (11)]. Each of these steps introduces some communica-
specified by the methods that act on the object state. One oftion problems. In the object-oriented software life cycle, by
the most important properties of an object is that of havingcontrast, all the various phases (analysis, design, program-
an identity, different from the identity of any other object andming, and so on) rely on the same model, and thus the transi-
immutable during the object lifetime.tion from one phase to another is smooth and natural. Re-

Many OODBMS actually do not require each entity to bequirement analysis and validation is also easier. By using an
represented as an object; rather they distinguish between ob-object-oriented database system, moreover, the problem of
jects and values. The differences between values and objectstype system mismatch between the DBMS and the program-
are the following (12):ming language, known as ‘‘impedance mismatch,’’ is over-

come, and there is no longer the need for separately designing
• Values are universally known abstractions, and theythe database structure.

have the same meaning for each user; objects, by con-Finally, the object-oriented paradigm represents a funda-
mental shift with respect to how the software is produced: trast, correspond to abstractions whose meaning is speci-
The software is no longer organized according to the computer fied in the context of the application.
execution model (in a procedural way); rather it is organized • Values are built-in in the system and do not need to be
according to the human way of thinking. This makes the anal- defined; objects, by contrast, must be introduced in the
ysis and design of software systems easier, by allowing the system through a definition.
user to participate in the analysis and design. The object-ori-

• The information represented by a value is the value it-
ented paradigm, being based on the human view of the world, self, whereas the meaningful information represented by
overcomes the communication difficulties often arising be-

an object is given by the relationships it has with othertween the system analyst and the domain expert.
objects and values; values are therefore used to describeThe object-oriented technology offers some other advan-
other entities, whereas objects are the entities being de-tages with respect to analysis and design. It improves the in-
scribed.ternal coherence of analysis results by integrating data and

operations on them. The inheritance mechanism naturally
Thus, values are elements of built-in domains, whereas ob-supports the decomposition of problems in subproblems, thus

jects are elements of uninterpreted domains. Typical exam-facilitating the handling of complex problems by identifying
ples of values are: integers, reals, strings. Each object is as-common subproblems.
signed an immutable identifier, whereas a value has noFinally, the object-oriented paradigm is well-suited for het-
identifier (rather it is identified by itself).erogeneous system integration, which is required in many ap-

plications. An important requirement is that new applications
Object Identity. Each object is uniquely identified by an ob-be able to (a) interact with existing ones and (b) access the

ject identifier (OID), providing it with an identity indepen-data handled by those applications. This requirement is cru-
dent from its value. The OID is unique within the system andcial since the development of computerized information sys-
is immutable; that is, it does not depend on the state of thetems usually goes through several phases. Very often, the
object. Object identifiers are usually not directly visible andchoice of a specific programming language or of a specific
accessible by the database users; rather they are internallyDBMS depends on current requirements of the application or
used by the system to identify objects and to support objecton the available technology. Since both those factors vary over
references through object attribute values. Objects can thustime, organizations are frequently forced to use heteroge-
be interconnected and can share components. The semanticsneous systems, which are often of different types and thus
of object sharing is illustrated in Fig. 1. The figure shows twointerconnection problems arise. There is a growing interest in
objects that, in case (b), share a component, whereas in casethe possibility of exploiting the object-oriented approach to

integrate heterogeneous systems. The object-oriented para- (a) these objects do not share any component and simply have
digm itself, because of encapsulation, promises to be the most the same value for the attribute date. While in case (a) a
natural approach to solve the integration problems not yet change in the publication date of Article[i] from March
solved by traditional approaches. 1997 to April 1997 does not affect the publication date of

Article[j], in case (b) the change is also reflected on Ar-
ticle[j].OBJECT-ORIENTED DATA MODELS

The notion of object identifier is quite different from the
notion of key used in the relational model to uniquely identifyResearch in the area of object-oriented databases has been

characterized by a strong experimental work and the develop- each tuple in a relation. A key is defined as the value of one
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The notion of object identity introduces at least two differ-
ent notions of object equality:

• Equality by identity: Two objects are identical if they
are the same object—that is, if they have the same iden-
tifier.

• Equality by value: Two objects are equal if the values
for their attributes are recursively equal.

Obviously, two identical objects are also equal, whereas
the converse does not hold. Figure 2 shows an example of ob-
jects which are equal but not identical. Some object-oriented
data models also provide a third kind of equality, known as
shallow value equality by which two objects are equal, though
not being identical, if they share all attributes.

Object Structure. In an object-oriented database the value
associated with an object (that is, its state) is a complex value
which can be built starting from other objects and values, us-
ing some type constructors. Complex (or structured) values
are obtained by applying those constructors to simpler objects
and values. Examples of primitive values are integers, char-
acters, strings, booleans, and reals. The minimal set of con-
structors that a system should provide include sets, lists, and
tuples. In particular, sets are crucial since they are a natural
way to represent real-world collections and multivalued attri-
butes; the tuple constructor is important since it provides a
natural way to represent the properties of an entity; lists and
arrays are similar to sets, but they impose an order on the
elements of the collection and are needed in many scientific
applications. Those constructors can be arbitrarily nested. A
complex value can contain as components (references to) ob-
jects.

Object-oriented databases thus provide an extensible type
system that enables the users to define new types, according
to the requirements of the applications. The types provided
by the system and those defined by the users can be used
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authors: {Author[i], Author[k]}
journal: CAD Journal
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exactly in the same way.
Many OODBMSs support storage and retrieval of non-Figure 1. Object-sharing semantics: in case (a) the two objects have

structured values of large size, such as character strings orthe same value for attribute date, whereas in case (b) they share a
component. bit strings. Those values are passed as they are—that is,

without being interpreted—to the application program for the
interpretation. Those values, which are known as BLOBs (bi-
nary large objects), are big-sized values like image bitmaps or
long text strings. Those values are not structured in that the
DBMS does not know their structure; rather the applicationor more attributes, and it can be modified, whereas an OID is
using them knows as to interpret them. For example, the ap-independent from the value of an object state. In particular,

two different objects have different OIDs even when their at-
tributes have the same values. Moreover, a key is unique with
respect to a relation, whereas an OID is unique within the
entire database. The use of OIDs as an identification mecha-
nism has a number of advantages with respect to the use of
keys. First of all, because the OIDs are implemented by the
system, the application programmer does not have to select
the appropriate keys for the various sets of objects. Moreover,
because the OIDs are implemented at a low level by the sys-
tem, better performance is achieved. A disadvantage in the
use of OIDs with respect to keys could be the fact that no
semantic meaning is associated with them. Note, however,

Date [h]

name: Rossi
affiliation: DSI
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authors: Author[j]
journal: CAD Journal
date: March 1997 

Article [k]

title: CAD Databases
authors: Author[h]
journal: CAD Journal
date: March 1997 

Date [ j]

name: Rossi
affiliation: DSI

that very often in relational systems, for efficiency reasons,
users adopt semantically meaningless codes as keys, espe- Figure 2. An example of equal, but not identical objects. They have

the same state, though different identifiers.cially when foreign keys need to be used.
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plication may contain some functions to display an image or that simply access and modify object attributes. Those appli-
cations are obviously very common in the database context.to search for some keywords in a text.
Strict encapsulation would require writing many trivial meth-
ods. Other systems, like O2, allow us to specify which methodsMethods. Objects in an object-oriented database are ma-

nipulated through methods. A method definition usually con- and attributes are visible in the object interface and thus can
be invoked from outside the object. Those attributes andsists of two components: a signature and an implementation.

The signature specifies the method name, the names and methods are called public, whereas those that cannot be seen
from outside the object are called private. Finally, some othertypes of method arguments, and the type of the result for

methods returning a result value. Thus, the signature is a systems, including GemStone, force strict encapsulation.
specification of the operation implemented by the method.
Some OODBMS do not require the specification of argument Classes
types; however, this specification is required in systems per-

Instantiation is the mechanism offering the possibility of ex-forming static type checking. The method implementation
ploiting the same definition to generate objects with the sameconsists of a set of instructions expressed in a programming
structure and behavior. Object-oriented languages providelanguage. Various OODBMS exploit different languages. For
the notion of class as a basis for instantiation. In this respectinstance, ORION exploits Lisp; GemStone exploits a
a class acts as a template, by specifying:Smalltalk extension, namely OPAL; and O2 exploits a C ex-

tension, namely O2C. Other systems, including ObjectStore
• A structure—that is, the set of instance attributesand Ode, exploit C��.
• A set of operations defining the instance interfaceThe use of a general-purpose computationally complete
• A set of methods implementing the operationsprogramming language to code methods allows the whole ap-

plication to be expressed in terms of objects. Thus there is no
Given a class, the new operation generates objects onlonger the need, typical of relational DBMSs, of embedding

which all methods defined for the class can be executed. Obvi-the query language (e.g., SQL) in a programming language.
ously, the attribute values must be stored separately for each
object; however, there is no need to replicate method defini-Encapsulation. In a relational DBMS, queries and applica-
tions, which are associated with the class.tion programs acting on relations are usually expressed in an

There are, however, some class features that cannot beimperative language incorporating statements of the data
seen as attributes of its instances, such as the number of classmanipulation language (DML) and are stored in a traditional
instances present in each moment in the database or the av-file system rather than in the database. In such an approach,
erage value of an attribute. An example of an operation whichtherefore, there is a sharp distinction between programs and
is invoked on classes rather than on objects is the new opera-data and between query language and programming lan-
tion for creating new instances. Some object-oriented dataguage. In an object-oriented database, as well as operations
models, like those of GemStone and ORION, allow the defini-manipulating them, are encapsulated in a single structure:
tion of attributes and methods characterizing the class as anthe object. Data and operations are thus designed together
object, which are therefore not inherited by the class in-and they are both stored in the same system. Encapsulation
stances.thus provides a sort of ‘‘logical data independence,’’ allowing

In almost all object-oriented data models, each attributemodifications on the data without requiring modifications to
has a domain specifying the class of possible objects that canthe applications using the data.
be assigned as values to the attribute. If an attribute of aThe notion of encapsulation in programming languages de-
class C has a class C� as domain, each C instance takes asrives from the concept of abstract data type. In this view, an
value for the attribute an instance of C�, or of a subclass ofobject consists of an interface and an implementation. The
C�. Moreover, an aggregation relationship is established be-interface is the specification of the operations that can be exe-
tween the two classes. An aggregation relationship betweencuted on the object, and they are the only part of the object
the class C and the class C� specifies that C is defined inthat can be seen from outside. Implementation, by contrast,
terms of C�. Since C� can in turn be defined in terms of othercontains data—that is, the representation or state of the ob-
classes, the set of classes in the schema is organized into anject—and methods specifying the implementation of each op-
aggregation hierarchy. Actually, it is not a hierarchy in aeration. This principle, in the database context, is reflected in
strict sense, since class definitions can be recursive.the fact that an object contains both programs and data, with

a variation: In the database context it is not clear whether or
not the structure defining the type of an object is part of the Extent and Persistence Mechanisms. Besides being a tem-

plate for defining objects, in some systems the class also de-interface. In the programming language context, the data
structure is usually part of the implementation and, thus, is notes the collection of its instances—that is, the class has also

the notion of extent. The extent of a class is the collectionnot visible. For example, in a programming language the data
type list should be independent from the fact that lists are of all the instances generated from this class. This aspect is

important since the class is the basis on which queries areimplemented as arrays or as dynamic structures, and thus
this information is correctly hidden. By contrast, in the data- formulated, because queries are meaningful only when they

are applied to object collections. In systems in which classesbase context, the knowledge of class attributes, and refer-
ences made through them to other classes, is often useful. do not have the extensional function, the extent of each class

must be maintained by the applications through the use ofSome OODBMS, like ORION, allow us to read and write
the object attribute values, thus violating encapsulation. The constructors such as the set constructor. Different sets can

contain instances of the same class. Queries are thus formu-reason for that is to simplify the development of applications
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lated against such sets, and not against classes. The auto- object to modify its features—that is, attributes and opera-
matic association of an extent to each class (like in the OR- tions—but still retaining its identity. Object migration among
ION system) has the advantage of a simplifying the classes introduces, however, semantic integrity problems. If
management of classes and their instances. By contrast, sys- the value for an attribute A of an object O is another object
tems (like O2 and GemStone) in which classes define only O� (an instance of the class domain of A) and O� changes class
specification and implementation of objects and queries are and if the new class of O� is no longer compatible with the
issued against collections managed by the applications pro- class domain of A, the migration of O� will result in O con-
vide a greater flexibility at the price of an increased complex- taining an illegal value for A. For this reason, migration is
ity in managing class extents. not currently supported in most existing systems.

An important issue concerns the persistence of class in-
stances—that is, by which modalities objects are made persis-

Inheritancetent (that is, inserted in the database) and are eventually de-
leted (that is, removed from the database). In relational Inheritance allows a class, called a subclass, to be defined
databases, explicit statements (like INSERT and DELETE in starting from the definition of another class, called super-
SQL) are provided to insert and delete data from the data- class. The subclass inherits attributes, operations, and meth-
base. In object-oriented databases, two different approaches ods of its superclass; a subclass may in addition have some
can be adopted with respect to object persistence: specific, noninherited features. Inheritance is a powerful re-

use mechanism. By using such a mechanism, when defining
• Persistence is an implicit property of all the class in- two classes, their common properties, if any, can be identified

stances; the creation (through the new operation) of an and factorized in a common superclass of theirs. The defini-
instance has also the effect of inserting the instance in tions of the two classes will, by contrast, specify only the dis-
the database; thus the creation of an instance automati- tinguishing specific properties of these classes. This approach
cally implies its persistence. This approach is usually not only reduces the amount of code to be written, but it also
adopted in systems in which classes also have an exten- has the advantage of giving a more precise, concise, and rich
sional function. Some systems provide two different new description of the world being represented.
operations: one for creating persistent objects of a class, Some systems allow a class to have several direct super-
the other one for creating temporary (transient) objects classes, in this case we talk of multiple inheritance, whereas
of that class. other systems impose the restriction to a single superclass, in

• Persistence is an orthogonal properties of objects; the this case we talk of single inheritance. The possibility of de-
creation of an instance does not have the effect of in- fining a class starting from several superclasses simplifies the
serting the instance in the database. Rather, if an in- task of class definition. However, conflicts may arise. Such
stance has to survive the program that created it, it must conflicts may be solved according to different strategies:
be explicitly made persistent, for example, by assigning
it a name or by inserting it in a persistent collection of

• An ordering is imposed on the superclasses, and conflict-objects. In some systems, an object is persistent if it is
ing features are inherited from the superclass precedingreachable from some persistent object. This approach is
the others in the ordering;usually adopted in systems in which classes do not have

the extensional function. • An explicit qualification mechanism is provided whereby
the user explicitly specifies from which superclass each

With respect to object deletion, two different approaches conflicting feature has to be inherited.
are possible:

In scientific literature and in various object-oriented lan-• The system provides an explicit delete operation. The
guages there are different inheritance notions. In the knowl-possibility of explicitly deleting objects poses the problem
edge representation context, for instance, inheritance hasof referential integrity, if an object is deleted and there
quite a different meaning from the one it has in object-ori-are other objects referring to it, references are no longer
ented programming languages. In the former context, a sub-valid (such references are called dangling references).
class defines a specialization with respect to features and be-The explicit deletion approach is adopted by the ORION
haviors of the superclass, whereas in the latter the emphasisand Iris systems.
is on attribute and method reuse. Different inheritance no-• The system does not provide an explicit delete operation.
tions can then be considered, corresponding to which threeA persistent object is deleted only if all references to it
different hierarchies can be distinguished:have been removed (a periodic garbage collection is per-

formed). This approach, adopted by the GemStone and
O2 systems, ensures referential integrity. • Subtype Hierarchy: expresses the consistency among

type specifications by specifying subtype relationships
Migration. Because objects represent real-world entities, supporting the substitutability of a subtype instance in

they must be able to reflect the evolution in time of those each context where a supertype instance is expected (13);
entities. A typical example is that of a person which is first of

• Implementation Hierarchy: supports code sharing amongall a student, then an employee, then a retired employee. This
classes;situation can be modeled only if an object can become an in-

• Classification Hierarchy: expresses inclusion relation-stance of a class different from the one from which it has been
created. This evolution, known as object migration, allows an ships among object collections.
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Each hierarchy refers to different properties of the type/ mentation is redefined for each class; this redefinition is
known as overriding. As a result, a single name denotes dif-class system; those hierarchies are, however, generally

merged in a single inheritance mechanism. ferent programs and the system takes care of selecting the
appropriate one at each time during execution. Thus the code
shown above is compacted asOverriding, Overloading, and Late Binding. The notion of

overloading is related to the notion of inheritance. In many
for x in X do display(x)cases it is very useful to adopt the same name for different

operations, and this possibility is extremely useful in the ob- This approach to design application code provides several
ject-oriented context. Consider as an example (14) a display advantages. The application programmers implementing the
operation receiving as input an object and displaying it. De- classes write the same number of methods, but the applica-
pending on the object type, different display mechanism are tion designers do not have to take care of that. The resulting
exploited: If the object is a figure, it should appear on the code is simpler and easier to maintain, since the introduction
screen; if the object is a person, its data should be printed in of a new class does not require us to modify the applications.
some way; if the object is a graph, a graphical representation At any moment, objects of other classes—for example, infor-
of it should be produced. Another problem arises for dis- mation on some products—can be added to the application
playing a set of objects, the type of whose members is not and displayed by simply defining a class—for example, prod-
known at compile-time. uct—providing a proper (re)definition of the display opera-

In an application developed in a conventional system, tion. The important advantage is that the above compact ap-
three different operations display_graph, display_ plication code would not require any modification. By
person and display_figure would be defined. This re- contrast, the traditional application code would require modi-
quires the programmer to be aware of all possible object types fications to deal with the new object classes.
and all the associated display operations and to use them To support this functionality, however, the system is no
properly. Under a conventional approach, the application code longer able to bind operation names to corresponding code at
performing the display of a set of objects on the screen would compile time; rather it must perform such binding at run-
be organized as follows: time: This late translation is known as late binding.

Thus, the notion of overriding refers to the possibility that
a class will redefine attributes and methods it inherits from
its superclasses; the inheritance mechanism allows thus to
specialize a class through additions and substitutions. Over-
riding implies overloading, since an operation shared along a
class hierarchy can have different implementations in the
classes belonging to this class hierarchy; therefore, the same
operation name denotes different implementations.

for x in X do
begin
case of type(x)
person: display_person(x);
figure: display_figure(x);
graph: display_graph(x);

end;
end;

In an object-oriented system, by contrast, the display op-
An Example

eration can be defined in a more general class in the class
hierarchy. Thus, the operation has a simple name and can be Figure 3 illustrates an example of object-oriented database

schema. In the figure, each node represents a class. Eachused indifferently on various objects. The operation imple-

Figure 3. An example of object-oriented da-
tabase schema that will be used in the text
as a running example to discuss various
systems.
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Set

Set
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List
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Technical Report

institution: String
number: Number
date: Date
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node contains names and domains of the attributes of the rived attributes or as predicate methods. A method used as
derived attribute is similar to an attribute; however, whereasclass it represents. For the sake of simplicity, we have not

included in the figure either operations or class features. the attribute stores a value, the method computes a value
starting from data values stored in the database. A predicateNodes can be connected by two different kinds of arcs. The

node representing a class C can be linked to the node repre- method is similar, but it returns the boolean constants true
or false. A predicate method evaluates some conditions on ob-senting class C� through:
jects and can thus be part of the boolean expressions de-
termining which objects satisfy the query.1. a thin arc, denoting that C� is the domain of an attri-

Moreover, object-oriented query languages often providebute A of C;
constructs for expressing recursive queries, though recursion2. a bold arc, denoting that C is superclass of C�.
is not a peculiar feature of the object-oriented paradigm and
it has already been proposed for the relational data model.Note that the figure represents both the aggregation (thin
It is, however, important that some kind of recursion can bearcs) and the inheritance (bold arcs) links among classes.
expressed, since objects relevant for many applications are
naturally modeled through recursion.

The equality notion also influences query semantics. TheQUERY LANGUAGES
adopted equality notion determines the semantics and the ex-
ecution strategy of operations such as union, difference, inter-Query languages are an important functionality of any

DBMS. A query language allows users to retrieve data by section, and duplicate elimination. Finally, note that external
names that some object-oriented data models allow to associ-simply specifying some conditions on the content of those

data. In relational DBMS, query languages are the only way ate with objects provide some semantically meaningful han-
dlers that can be used in queries.to access data, whereas OODBMS usually provide two differ-

ent modalities to access data. The first one is called naviga- A relevant issue for object-oriented query languages is re-
lated to the language closure. One of the most remarkabletional and is based on object identifiers and on the aggrega-

tion hierarchies into which objects are organized. Given a characteristics of relational query languages is that the re-
sults of a query are, in turn, relations. Queries can then becertain OID, the system is able to directly and efficiently ac-

cess the object referred by it and can navigate through objects composed; that is, the result of a query can be used as an
operand in another query. Ensuring the closure property inreferred by the components of this object. The second access

modality is called associative and is based on SQL-like query object-oriented query language is, by contrast, more difficult.
The main difficulty derives from the fact that often the resultlanguages. These two different access modalities are used in

a complementary way: A query is evaluated to select a set of of a query is a set of objects whose class does not exist in
the database schema and which is defined by the query. Theobjects which are then accessed and manipulated by applica-

tions through the navigational mechanism. Navigational ac- definition of a new class ‘‘on-the-fly’’ as result of a query poses
many difficulties, including where to position the new classcess is crucial in many applications—like, for example, graph

traversal. This type of access is inefficient in relational sys- in the inheritance hierarchies and which methods should be
defined for such class. Moreover, the issue of generating OIDstems because it requires the execution of a large number of

join operations. Associative access, by contrast, has the ad- for the new objects, namely, results of the query and in-
stances of the new class, must be addressed.vantage of supporting the expression of declarative queries,

thus reducing application development time. Most of the suc- To ensure the closure property, an approach is to impose
restrictions on the projections that can be executed on classes.cess of relational DBMS is because of their declarative query

languages. A restriction that is common to many query languages is that
either all the object attributes or only a single attribute areIn the remainder of this section we point out the peculiar

aspects of object-oriented query languages, emphasizing the returned by the query. Moreover, no explicit joins are sup-
ported by those languages. In this way the result of a queryfeatures related to the new data model. We do not refer to

any specific language. In the following section, we will present is always a set of already existing objects, instances of an al-
ready existing class; the class can be a primitive class (suchthe GemStone and ObjectStore query languages and we will

discuss OQL, the ODMG query language. For an extensive as the class of integers, string, and so forth) or a user-defined
class. If one wants to support more general queries with arbi-discussion on object-oriented query languages we refer the in-

terested reader to Ref 15. trary projections and explicit joins, a first approach to ensure
closure is to consider the results of a query as instances of aA first feature of object-oriented query languages is the

possibility they offer of imposing conditions on nested attri- general class, accepting all objects and whose methods only
allow to print or display objects. This solution, however, doesbutes of an object aggregation hierarchy, through path ex-

pression, allowing us to express joins to retrieve the values of not allow objects to be reused for other manipulations and
therefore it limits the nesting of queries, which is the mainthe attributes of an object components. In object-oriented

query languages, therefore, two different kinds of join can be motivation for ensuring the closure property.
Another possible approach is to consider the result of adistinguished: implicit join, deriving from the hierarchical

structure of objects, and explicit join, which, as in relational query as a collection of objects, instances of a new class, which
is generated by the execution of the query. The class implic-query languages, explicitly compares two objects. Other im-

portant aspects are related to the inheritance hierarchy and itly defined by the query has no methods; however, methods
for reading and writing attributes are supposed to be avail-methods. First of all, a query can be issued against a class or

against a class and all its subclasses. Most existing languages able as system methods. The result of a query is thus quite
similar to a set of tuples. An alternative solution (12) is, fi-support both these possibilities. Methods can be used as de-
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nally, that of including relations in the data model and of which indicates that a given product is supplied to a given
defining the result of a query as a relation. customer by a given supplier. Associations are characterized

by a degree, which indicates the number of entities participat-
ing in the relationship, and by some cardinality constraintsOBJECT-ORIENTED DBMSs
which indicate the minimum and maximum number of rela-
tionships in which an entity can participate. For example, re-During recent years, several object-oriented database systems
lationship (*) has degree 2—that is, it is binary—and its car-have been developed, both as experimental prototypes and as
dinality constraints are (0,1) for person and (1,n) forcommercial systems. Among them, we recall the following: the
employer. This reflects the fact that a person can have atORION/Itasca system, developed at MCC; the Iris/OpenODB
most one employer, whereas an employer can have more thansystem, developed at Hewlett-Packard laboratories; the Ode
one employee. Referring to maximum cardinality constraint,system, developed at AT&T Bell Labs; the GemStone system
relationships are partitioned in one-to-one, one-to-many, andof ServioLogic; the ObjectStore system of Object Design; the
many-to-many relationships. Finally, relationships can haveO2 system of O2 Technology; ONTOS of Ontologic; Objectivity
their own attributes; for example, relationship (**) can haveof Objectivity Inc.; and Versant of Versant Technology. Those
attributes quantity and unit price, indicating, respec-systems represent only a partial list of available OODBMS.
tively, the quantity of the product supplied and the unit priceTable 1 compares some of these systems along a number of di-
quoted. In most object-oriented data models, relationships aremensions.
represented through object references. This approach, how-In our comparison, we distinguish systems in which
ever, imposes a directionality on the relationship. Some mod-classes have an extensional function—that is, in which class
els, by contrast, allow the specification of binary relationshipsthe set of its instances is automatically associated—from
without proper attributes.those in which object collections are defined and handled by

Finally, the O2 system allows the specification of excep-the applications. We point out, moreover, the adopted persis-
tional instances—that is, of objects that can have additionaltence mechanism, distinguishing among systems in which all
features and/or redefine (under certain compatibility restric-objects are automatically created as persistent, systems in
tions) features of the class of which they are instances.which persistence is ensured by linking an object to a persis-

In the remainder of this section we illustrate two specifictence root (usually an external name), and systems support-
systems, namely GemStone and ObjectStore.ing two different creation operations: one for creating tempo-

rary objects, the other one for creating persistent objects. The
different policies with respect to encapsulation are also GemStone
shown, distinguishing among systems forcing strict encapsu-

GemStone is an object-oriented database management systemlation, systems supporting direct accesses to attribute values,
integrating the object-oriented programming languageand systems distinguishing between private and public fea-
Smalltalk with the functionalities typical of a DBMS. Thetures.
data definition and manipulation language is called OPALAn important concept which exists in many semantic mod-
and is a Smalltalk extension (16). As in Smalltalk, each sys-els and in models for the conceptual design of databases (11)
tem entity is considered an object, including OPAL programs.is the relationship. An relationship is a link between entities
GemStone does not distinguish between objects and values;in applications. A relationship between a person and his em-
rather everything that is manipulated by the system is seenployer (*) is one example; another (classic) example is the re-

lationship between a product, a customer, and a supplier (**), as an object.

Table 1. Comparison Among Data Models of Most Common OODBMSs

GemStone Iris O2 Orion ObjectStore Ode ODMG

Reference: 31 32 33, 34 35, 36 37 38 39
Class extent: No Yes No Yes No Yes Yesa

Persistence: R A R A R 2op Ab

Explicit deletion: No Yes No Yes Yes Yes Yesb

Direct access to attributes: No Yes P Yes P P Yes
Domain specification for attri- O M M M M M M

butes
Class attributes and methods: Yes No No Yes No No No
Relationships: No Yes No No Yes No Yes
Composite objects: No No No Yes No No No
Referential integrity: Yes No Yes No Yesc No Yesc

Multiple inheritance: No Yes Yes Yes Yes Yes Yes
Migration: L Yes No No No No No
Exceptional instances: No No Yes No No No No

R, root persistence; A, automatic; 2op, two different new operations; P, only for public attributes; O, optional; M, mandatory; L, in limited form.
a For those classes in which definition an extent clause is specified.
b In C��, OML created objects are automatically persistent and explicit deletion is supported; in Smalltalk, OML persistence is by root and there is no explicit

delete operation.
c Referential integrity is ensured for relationships but not for attributes.
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In GemStone methods and structures common to all the GemStone, domain specifications are seen as an integrity
constraint specification.instances of a class are factorized in an object, referred to as

CDO (class-defining object); thus a class itself is an object. All • The instancesInvariant clause specifies whether or
the instances of a class contain a reference to their CDO as not the class instances can be modified; the clause argu-
part of their object identifier. Objects are characterized by ment is true if no modifications are allowed, while it is
their attributes, instance variables in GemStone terminology, false otherwise; if the clause has as argument true the
whose values are references to other objects. The specification objects, instances of the class, can be modified only dur-
of attribute domains is not mandatory. Objects can be inter- ing the transaction that created them, after the end of
nally organized in complex structures, obtained by combining that transaction they can no longer be modified.
four different storage formats starting from atomic objects • The isModifiable clause specifies whether or not the
like integers and strings. class can be modified; modifications to a class include ad-

dition and deletion of attributes.
Data Definition in GemStone. A peculiar feature of Gem-

Stone is that it provides a hierarchy of predefined classes, Classes whose isModifiable clause has true value can-
called kernel classes. Each of those classes provides the struc- not be instantiated. Therefore, it is not possible to modify the
ture and methods of most common data types, such as strings, schema of classes that have already been populated, since
booleans, arrays, sets, and so on. This class hierarchy imposes this would require a modification of all the class instances.
some criteria on attribute and method inheritance. The Ob- In GemStone it is not possible to define a class in terms of
ject class is the root of that hierarchy; thus each class is classes which have not yet been defined; thus database
subclass of Object. When a new class is defined, it must be schema whose aggregation hierarchies contain cycles cannot
defined as a subclass of an already existing class: either of be defined directly. A class definition can, however, be modi-
the Object class or of one of the Object subclasses. fied after having been defined, by addition of some domain

The syntax of the OPAL class definition statement is the constraints for its attributes. The class must then be initially
following: declared as modifiable; that is, the isModifiable clause

must contain the true value. Once the class which is the at-
tribute domain has been defined, the first class definition can
be modified through the invocation of the message:

Class Name instVar: ’Attribute Name’ constrainTo: Domain.

This message takes two arguments: The first one is intro-
duced by the keyword instVar: and denotes an attribute;
the second one is introduced by the keyword constrainTo:

Superclass Name subclass ‘Class Name’
instVarNames: Attribute List
classVars: Class Attribute List
poolDictionaries: Shared Attribute List
inDictionary: Dictionary Name
constraints: Domain Constraint List
instancesInvariant: {true � false}
isModifiable: {true � false}

and denotes a class. The effect of this message is to add a
A subclass is defined by sending to the appropriate super- domain constraint to the class receiver of the message. At this

class (denoted in the above statement by Superclass Name) point, the class can be made nonmodifiable through the opera-
the subclass message, for which a method is specified in tion immediateInvariant provided by the system. Once the
each class. Note that a class can have only a direct superclass; class has been made nonmodifiable, it can be instantiated.
that is, GemStone does not support multiple inheritance. A possible OPAL definition for the database schema from
When a class receives a subclass message, it executes a Fig. 3 is the following, in which some class definitions are
method for the creation of a subclass named Class Name, omitted for the sake of brevity.
whose characteristics are specified by other clauses in the

Object subclass ’Employee’class definition statement. In particular:
instVarClassNames: #(’name’,’salary’,

’phone_nbr’,• The instVarNames clause takes as argument a list of
’manager’,string with format #(’string1’,’string2’, . . .);
’project’,’tasks’)each string specifies an attribute name.

classVars: #()• The classVars clause has as argument a list of class
poolDictionaries: #()attribute names; recall that class attributes are attri-
inDictionary: UserGlobalsbutes whose value is associated with the class rather
constraints: #[#[#name,String],than with its instances.

#[#salary,Integer],
• The poolDictionaries clause takes as argument a list #[phone_nbr,Integer]]

of shared attribute names; a shared attribute (pool vari- instancesInvariant: false
able) is a particular storage structure allowing different isModifiable: true.
classes and their instances to share information. Set subclass ’Employees’

• The inDictionary clause takes as argument the name instVarClassNames: #()
of a predefined dictionary in which the name of the class classVars: #()
being created is inserted; in such a way the class can be poolDictionaries: #()
simply referred through its name. inDictionary: UserGlobals

constraints: Employee• The constraints clause specifies attribute domains;
note that in GemStone, domain specification is not man- instancesInvariant: false

isModifiable: false.datory; the name of that clause is due to the fact that in
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Object subclass ’Document’ functionality. Each object collection in OPAL is defined as a
(either direct or indirect) sublcass of the kernel class Set.instVarClassNames: #(’title’,’authors’,

’state’,’content’) Usual operations on sets are inherited from the Set class. A
collection can then be used as attribute domain in otherclassVars: #()

poolDictionaries: #() classes.
In OPAL a method specification consists of two compo-inDictionary: UserGlobals

constraints: #[#[#title,String], nents: a message pattern, representing the method signature,
and an implementation. As in Smalltalk, a message in OPAL#[#authors,Employees],

#[#state,String], denotes the invocation of an operation on an object. A mes-
sage consists of:#[#content,String]]

instancesInvariant: false
isModifiable: false. • an OID or an expression, denoting the object to which

Set subclass ’Documents’ the message is sent;
� � �

• one or more identifiers, referred to as selectors, speci-
Document subclass ’Article’ fying the method to be invoked;

instVarClassNames: #(’journal’,
• possibly one or more arguments; arguments can in turn’publ_date’)

be denoted by message expressions.classVars: #()
poolDictionaries: #()

Messages are classified in three categories:inDictionary: UserGlobals
constraints: #[#[#journal,String],

#[#publ_date,Date]] 1. Unary Messages. The simplest kind of message consists
instancesInvariant: false of a receiver object and a single selector. An example is
isModifiable: false. the expression 7 negated, returning �7.

Documents subclass ’Articles’ 2. Binary Messages. A binary message consists of a re-
� � � ceiver, a selector, and a single argument. An example is

Document subclass ’Technical_Report’ the expression myObject = yourObject returning
� � � the boolean constant true if the two objects myObject

Documents subclass ’Technical_Reports’ and yourObject have the same value, whereas the ex-
� � � pression myObject == yourObject returns true if the

Object subclass ’Task’ two objects are identical, that is, if they have the same
� � � OID.

Set subclass ’Tasks’
3. Keyed Messages. A keyed message consists of a receiver� � �

and several key-argument pairs (up to a maximum ofObject subclass ’Project’
15). Each key is a simple identifier terminated by theinstVarClassNames: #(’name’,’documents’,
character ‘:’. An example is the message expression Em-’tasks’,’leader’)
ployee instVar: ’tasks’ constrainTo:Tasks,classVars: #()
which contains two key-argument pairs; the first pairpoolDictionaries: #()
has instVar: as key and an attribute name as argu-inDictionary: UserGlobals
ment, the second one has constrainTo: as key and aconstraints: #[#[#name,String],
class name (the domain for the attribute) as argument.#[#documents,Documents],

#[#tasks,Tasks],
Messages as the ones illustrated above can be combined,#[#leader,Employee]]

and messages can be as well sent in cascade to the sameinstancesInvariant: false
object.isModifiable: false.

A method implementation consists of:Set subclass ’Projects’
� � �

Employee instVar: ’manager’ • declarations of temporary variables;
constrainTo:Employee. • one or more OPAL expressions; this language includes

Employee instVar: ’project’ expressions typical of programming languages such as
constrainTo:Project. conditional expressions and assignments;

Employee instVar: ’tasks’ constrainTo:Tasks.
• a return statement which returns a value for the mes-

Employee immediateInvariant. sage expression which has invoked the method.
Note that each class definition is followed by the definition

of a subclass of the kernel class Set whose constraints Note that in GemStone, object attributes are directly ac-
class has the first class as argument. For instance, the defini- cessible only by the object methods. Thus, to simply read or
tion of class Employee is followed by the definition of the modify an attribute the appropriate methods must be defined.
class Employees, whose instances are sets of objects belong- The following example illustrates how methods for reading
ing to class Employee. In such a way the extent of the class and modifying values of the title attribute of the Document

class can be defined.is specified, since in GemStone classes have no extensional
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Consider the following OPAL method definition state- Data Manipulation in GemStone. With respect to persis-
tence, GemStone falls in the category of systems in which ob-ments:
jects are not automatically persistent. The simplest way to
make an object persistent is to associate an external name
with the object. The statement for assigning a name to an
object is the following:

Dictionary Name at: Name put: Object

Each object which can be reached by a persistent object is
itself persistent. A common approach is to define a set of in-

method: Document
title

ˆtitle
%
method: Document
title: aTitle

title := aTitle
% stances and to make this set persistent (for instance, by as-

signing it a name). All the objects belonging to this set areIn the above definitions, the clause method: Document
therefore made persistent, even if they have no explicitly as-denotes that a method of the Document class is being defined.
sociated external names. The following statement sequenceThe character % is a statement terminator. The characterˆ
define a persistent collection of projects myProjects and in-denotes the method return value. The above methods have
serts into it a newly created project.the same name, that is, title, but different signatures: The

first method is indeed an unary message, while the second
one is a keyed message. The system determines depending on
the message type which code to use to answer an invocation.
For example, for the invocation aDocument title the first
method will be executed, whereas for the invocation aDocu-

�Proj aProj�
Proj := Projects new.
aProj := Project new.
Proj add: aProject.
UserGlobal at: #myProjects put: Proj.

ment title: ’Databases’ the second one will be exe-
To delete an object, all its persistence roots must be re-cuted.

moved. Then, the object is automatically deleted. GemStoneGemStone allows the definition of class methods. The fol-
does not provide an explicit delete operation; rather it relieslowing OPAL method definition defines a method for creating
on a garbage collection mechanism. Referring to the projectand initializing objects of the Document class.
object above, it can be deleted by simply removing it from the
persistent collection through the statement

myProjects remove: aProject

while for deleting the collection including all projects the as-
sociation between the object and its name must be removed,
through the statement

UserGlobal at: #myProjects put: nil.

GemStone supports a limited form of object migration. The

classmethod: Document
nTitle: aTitle nAuthors: AuthorSet
nState: aState nContent: aContent
�tempDoc�
tempDoc := self.new.
tempDoc title: aTitle; authors: AuthorSet;

state: aState; content: aContent;
ˆtempDoc

%
message for requiring the migration of an object is

The method creates a new instance of the Document class
changeClassTo, whose only argument is the class into which

and it assigns the method arguments to the instance attri- the object migrates. An object can only migrate from a class
butes. The method also contains the declaration of a tempo- to a subclass, which cannot have redefined attribute domains
rary variable �tempDoc�. The first statement creates an in- and whose storage format must be the same as that of the
stance of the Document class through the new operation and class from which the object migrates. Moreover, the subclass
assigns it to the temporary variable. Then, four messages are cannot have additional instance attributes.
sent in cascade to that instance for initializing its attributes. Queries in GemStone can be issued only against objects

As we have already said, GemStone supports single inheri- defined as set, whose instances must belong to a class whose
tance. When defining a subclass, new attributes and methods attribute domains are specified. Queries are expressed
can be added, and methods can be redefined. New attributes through a special select message. This message takes as
can always be added; the only exception is when the super- argument a string denoting a combination of boolean predi-
class instances have the set or collection as structure—for ex- cates defining the query. The query result is a set of objects
ample, the Documents class above. Class attributes and whose class is the same as the one of the objects against
shared attributes can be added as well. If the instance attri- which the query is issued. Queries can also contain path ex-
butes of a class have domain constraints, the constraints are pressions. The following OPAL query returns all tasks with a
inherited by the subclasses. An inherited domain constraint manpower greater than 20 months whose coordinator earns
can be modified, but it can only be made more restrictive; that more than 20000:
is, the domain specified in the subclass must be a subclass of
the domain specified in the superclass. A method can be rede- Tasks select: {:t � (t.man_month > 20 &

t.coordinator.salary > 20000) }fined by defining in the subclass a method with the same mes-
sage schema and a different implementation. A method can In addition to the select message, the query language
also be redefined. Method refinement is the addition of code supports other query protocols. In particular, the reject
to an inherited method implementation. In OPAL, as in message selects all the objects that do not satisfy a given
Smalltalk, the pseudovariable super can be used to refer to predicate, while the detect message returns an object satis-

fying the predicate.the superclass method which is being refined.
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ObjectStore • The public clause introduces the list of declarations of
public features (attributes and methods) of the class;

The ObjectStore system is tightly integrated with the C��
these features can be directly accessed from outside the

language, and it provides the possibility of storing in persis-
objects. The private clause, by contrast, introduces the

tent memory C�� objects. This approach allows us to over-
list of declarations of private features (attributes and

come the impedance mismatch problem (17) between a pro-
methods) of the class; these features can be accessed only

gramming language and a DBMS, where the data structures
within methods of the class. Actually, in the class defini-

provided by the DBMS are different from those provided by
tion some features can be specified before the public:

the programming language. ObjectStore can exploit the C��
keyword; all the properties specified before this keyword

class definition language as data definition language. Actu-
are private, that is, they are visible only within the class.

ally, an extended C�� including additional constructs for
• Each attribute in the list is declared asdata handling is used. Objects in a class can be transient;

that is, they can be deleted at the end of program execution
or can be persistent—that is, permanently stored in the data- Domain Attribute Name;
base. Objects, however, are manipulated according to the
same modalities independently from their persistence status. where Domain is either a base type, a structured type,
Persistence is thus an orthogonal property with respect to ob- or a class name or is a pointer to one of these.
ject use. Persistent objects can be shared by several pro- • Each method signature in the list is declared as
grams.

Return Value Type Method Name (Arguments);
Data Definition in ObjectStore. C�� distinguishes between

objects and values, and so does ObjectStore. In particular, in- Methods are distinguished from attributes in that after
stances of base types character (char), integer (int), real the name specification they contain the specification of
(float), and string (char*) are values; moreover, the parameters enclosed within brackets; if a method has no
struct constructor allows us to specify structured values. An parameter, only the brackets () are included. A method
asterisk (*) is used to specify a reference (pointer). Ob- returning no value has type void.
jectStore extends C�� with a set constructor. Set types can
be specified by declarations of the form os_Set �Argument

The ObjectStore definition of classes Employee, Docu-Type	, where Argument Type is the type of the objects in the
ment, Article and Project of the database schema of Fig.set being defined. For example, the type os_Set <Docu-
3 is the following:ment*> is a set of pointers to objects of type Document. Ob-

jectStore also extends C�� with multiset (bag) and list con-
struct Date {

structors; those constructors are os_Bag and os_List,
int month;

respectively.
int day;

The syntax of ObjectStore class definition statement is the
int year;

following:
}

class Employee {
public:
char* name;
int salary;
int phone_nbr;

class Class Name: superclass_spec {
public: Public Attribute List

Public Method List
private: Private Attribute List

Private Method List
}

Employee* manager;
In the above statement: Project* project;

os_Set<Task*> tasks;
int bonus();• superclass_spec is a list of superclasses, specified as

}public Superclass Name or as private Superclass
Name; if no specification for the inheritance modality is

class Document {specified for a superclass, that is, the superclass name is
public:preceded neither by private nor by public, the class
char* title;inherits in a private way. The difference between inher-
os_List<Employee*> authors;iting from a class in a public or private way is related to
char* state;attribute and method visibility, and it is the same as in
char* content;C��. In particular, the private features of the super-

}class are not visible in the subclass in both cases,
whereas public features of the superclass are (a) public

class Article: public Document {properties of the subclass, if the subclass inherits in a
public way and (b) private properties of the subclass, if public:

char* journal;the subclass inherits in a private way. In what follows,
for the sake of simplicity, we will restrict ourselves to Date publ_date;

}consider subclasses inheriting in a public way.
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class Project { These operations change the task coordinator, delete and
public: add a participant to the task, and compute the sum of the
char* name; salaries of employees assigned to the task, respectively. The
os_Set<Document*> documents; following are possible implementations for those operations:
os_Set<Task*> tasks;
Employee* leader;

}

A further extension of ObjectStore to C�� is related to the
notion of relationship. This extension allows the specifica-
tion of inverse attributes, representing binary relationships.
This functionality is requested through the keyword
inverse_member associated with an attribute and followed
by the inverse attribute name. ObjectStore automatically en-
sures relationship consistency. As an example, the relation-
ship between an employee and a project corresponding to the
fact that the employee leads the project can be modeled by
the inverse attributes leads in Employee and leader in

void Task::change_coord(Employee* ncoord)
{ coordinator = ncoord; }

void Task::delete_part(Employee* part)
{ participants -> remove(part); }

void Task::add_part(Employee* part)
{ participants -> insert(part); }

int Task::salary_budget()
{ int sum = 0; Employee* e;

foreach(i,participants) {
sum += e -> salary;

}
return sum;

}
Project. The ObjectStore class declarations are as follows:

Another C�� feature inherited by ObjectStore is related
to class constructors. A class can have a method whose name
is the same of the class name; this method is executed each
time a new object of the class is created. Constructors can
have parameters; several constructors can also be associated
with the same class (obviously, the number of parameters
must be different).

In ObjectStore, as in GemStone, inherited methods can be
redefined.

class Employee {
� � �
Project* leads

inverse_member Project::leader;
... }

class Project {
� � �
Employee* leader

inverse_member Employee::leads;
... }

Data Manipulation in ObjectStore. In ObjectStore, as in
Through the os_Set constructor, one-to-many and many-

GemStone, persistence is not an automatic property of ob-to-many relationships can be represented as well. Consider
jects. To create an object or a persistent collection of objectsfor example the relationship between an employee and a task,
in ObjectStore the application must assign it a name, whichcorresponding to the fact that the employee participates in
is also referred to as persistent variable. This name can bethe task. This relationship can be modeled by the inverse at-
seen as a persistent reference, stored by the system, to thetributes tasks in Employee and members in Task. The Ob-
object. The statement for assigning a name to an object atjectStore class declarations are as follows:
object creation time has the following format:

Type & Name = Type :: create(DB Name);

An object belonging to a persistent collection of objects is
automatically made persistent.

The following ObjectStore statements illustrate the speci-
fication of a collection Employees, and the creation of an ob-
ject belonging to the class Employee which is made persistent
by inserting it in the collection:

class Employee {
� � �
os_Set<Task*> tasks

inverse_member Task::members;
... }

class Task {
� � �
os_Set<Employee*> members

inverse_member Employee::tasks;
... }

In ObjectStore, method implementation is specified
through the C�� language extended with methods defined
for the collection types os_Set, os_Bag and os_List.
Those methods include insert(e), remove(e) and create
which, respectively, insert and delete an object from a collec-
tion and create a new collection. A foreach (e,c) state-

� � �

os_Set<Employee*> &Employees = os_Set<Employee*>
::create(my_db);
Employee* e = new(my_db) Employee;
Employees.insert(e);
...

ment for iterating over the element e of a collection c is also ObjectStore, as C��, supports explicit object deletion,
provided.

through the delete operation. Referential integrity is en-
As an example, consider the following methods of class

sured for relationships but not for attributes. For what con-
Task:

cerns relationships, upon the deletion of a participating ob-
ject, the relationship is also deleted. Thus, no dangling
references can arise. It can also be specified that the object
participating in the relationship with the deleted object must
in turn be deleted.

void change_coord(Employee* ncoord);
void delete_part(Employee* part);
void add_part(Employee* part);
int salary_budget();
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ObjectStore also provides a query language, which can be refer to the same relationship. The DBMS is responsible for
ensuring value consistency and referential integrity for rela-used to select a set of objects from a collection by specifying a

selection condition. The query result is a set of pointers to tionships. This means that, for example, if an object partici-
pating in a relationship is deleted, any traversal path leadingobjects satisfying the condition. The statements of the query

language can be hosted in the C�� language. to it is also deleted.
The ODMG class definition statement has the followingThe query returning all tasks with a man power greater

than 20 months whose coordinator earns more than 20000 is format:
expressed in ObjectStore as follows:

os_Set<Task*> &sel_tasks =
Tasks [: man_month > 20 &&

coordinator [: salary > 20000 :] :]

THE ODMG STANDARD

ODMG-93 is an OODBMS standard, consisting of a data
model and a language, which has been proposed in 1993 by a

interface Class Name: Superclass List
[(extent Extent Name
key[s] Attribute List ]

{ persistent | transient }
{

Attribute List
Relationship List
Method List

}
consortium of major companies producing OODBMS (covering

In the above statement:about 90% of the market). This consortium includes as voting
members Object Design, Objectivity, O2 Technology, and Ver-
sant Technology and includes as nonvoting members HP, Ser-

• the extent clause specifies that the extent of the classvioLogic, Itasca, and Texas Instruments. The ODMG-93 stan-
must be handled by the OODBMS;dard consists of the following components:

• the key[s] clause, which can appear only if the extent
• an object data model (ODMG Object Model); clause is present, specifies a list of attributes for which
• an object data definition language (ODL); two different objects belonging to the extent cannot have

the same values;• an object query language (OQL):
• interfaces for the object-oriented programming languages • each attribute in the list is specified as

C�� and Smalltalk, and data manipulation languages
for those languages (C�� OML and Smalltalk OML).

attribute Domain Name;

The ODMG Object Model is a superset of the OMG (Object
Management Group) Object Model that gives it database • each relationship in the list is specified as
capabilities, including relationships, extents, collection
classes, and concurrency control. The Object Definition Lan-
guage is a superset of OMG’s Interface Description Language
(IDL) component of CORBA (Common Object Request Broker

relationship Domain Name
[inverse Class Inverse Name]

Architecture), the emerging standard for distributed object-
oriented computing developed by OMG.

where Domain can be either Class, in the case of unary
relationships, or a collection of Class elements, and In-

Data Definition in ODMG verse Name is the name of the inverse traversal path,
whose specification is optional;ODMG supports both the notion of object and the notion of

value (literal in the ODMG terminology). Literals can belong • each method in the list is specified as
to (a) atomic types such as long, short, float, double, boolean,
char, and string, (b) types obtained through the set, bag, list,
and array constructors, (c) enumeration types (enum), and (d) Type Name(Parameter List [raises Exception List]
the structured types date, interval, time, and timestamp. Ob-
jects have a state and a behavior. The object state consists of

where Parameter List is a list of parameters specified asa certain number of properties, which can be either attributes
or relationships. An attribute is related to a class, while a
relationship is defined between two classes. The ODMG in | out | inout Parameter Name
model only supports binary relationships—that is, relation-
ship between two classes: One-to-one, one-to-many, and

and the raises clause allows to specify the exceptionsmany-to-many relationships are supported. A relationship is
that the method execution can raise.implicitly defined through the specification of a pair of tra-

versal paths, enabling applications to use the logical connec-
tion between objects participating in the relationship. Tra-

The ODL definition of classes Employee, Document,versal paths are declared in pairs, one for each traversal
Article, Project and Task of the database schema of Fig.direction of the binary relationship. The inverse clause of

the traversal path definition specifies that two traversal paths 3, extended with the relationships between employees and
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projects, and between employees and tasks introduced above, others as relationship for which a single traversal path, but
not the inverse one, is specified (for example, traversal pathis the following:
project in class Employee). The main difference in repre-
senting a link between objects as a relationship rather than
as a reference (that is, attribute value) is in the nondirection-
ality of the relationship. If, however, only one direction of the
link is interesting, as in the two examples above, the link can
indifferently be represented as an attribute or as a traversal
path without inverse path. In this second case, however, the
system ensures referential integrity, which is not ensured if
the link is represented as an attribute.

ODMG does not specify any method definition language,
since the idea is to allow using any object-oriented program-
ming language (C��, Smalltalk, etc.).

Data Manipulation in ODMG

ODMG does not support a single DML, rather two different
DMLs are provided, one related to C�� and the other one
to Smalltalk. These OMLs are based on different persistence
policies, corresponding to different object handling ap-
proaches in the two languages. For example, C�� OML sup-
ports an explicit delete operation (delete_object), while
Smalltalk OML does not support explicit delete operations
rather it is based on a garbage collection mechanism.

ODMG, by contrast, supports an SQL-like query language
(OQL), based on queries of the select-from-where form.
The query returning all tasks with a manpower greater than
20 months whose coordinator earns more than 20000, is ex-
pressed in OQL as follows:

select t
from Tasks t
where t.man_month > 20 and

t.coordinator.salary > 20000

OQL is a functional language in which operators can be
freely composed, as a consequence of the fact that query re-
sults have a type which belongs to the ODMG type system.
Thus, queries can be nested. As a stand-alone language, OQL
allows to query object denotable through their names. A name
can denote an object of any type (atomic, collection, structure,
literal). The query result is an object whose type is inferred
from the operators in the query expression. The result of the
query ‘‘retrieve the starting data of tasks with a manpower
greater than 20 months,’’ expressed in OQL as

select distinct t.start_date
from Tasks t
where t.man_month > 20

is a literal of type Set<date>.
The result of the query ‘‘retrieve the starting and ending

dates of tasks with a manpower greater than 20 months,’’ ex-
pressed in OQL as

select distinct struct(sd: t.start_date,
ed: t.end_date)
from Tasks t
where t.man_month > 20

interface Employee
( extent Employees

key name) : persistent
{

attribute string name;
attribute unsigned short salary;
attribute unsigned short phone_nbr[4];
attribute Employee manager;

relationship Project project;
relationship Project leads

inverse Project::leader;
relationship Set<Task> tasks

inverse Task::participants;
int bonus();

}

interface Document
( extent Documents

key title) : persistent
{

attribute string title;
attribute List<Employee> authors;
attribute string state;
attribute string content;

}

interface Article: Document
( extent Articles) : persistent
{

attribute string journal;
attribute data publ_date;

}

interface Project
( extent Projects

key name) : persistent
{

attribute string name;
attribute Set<Document> documents;
attribute Set<Task> tasks;
relationship Employee leader

inverse Employee::leads;
}

interface Task
( extent Tasks) : persistent
{

attribute unsigned short man_month;
attribute date start_date;
attribute date end_date;
attribute Employee coordinator;

relationship Set<Employee> participants
inverse Employee::tasks;

} is a literal of type Set<struct(sd : date, ed : date)>.
A query can return structured objects having objects asNote that, as in the above example, we have arbitrarily

chosen some links between classes as object-valued attributes components, as it can combine attributes of different objects.
Consider as an example the following queries. The query ‘‘re-(for example, attribute coordinator in class Task) and some
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trieve the starting date and the coordinator of tasks with a • complex navigational applications, which include appli-
cations such as CAD and telecommunications; they needman power greater than 20 months,’’ expressed in OQL as
to manipulate data whose structures and relationships
are complex and to efficiently traverse such relation-
ships;

• multimedia applications, which require storage and re-

select distinct struct(st: t.start_date,
c: coordinator)
from Tasks t
where t.man_month > 20

trieval of images, texts and spatial data, in addition to
produces as result a literal with type Set<struct(st : data representable in tables; they require the definition
date, c : Employee)>. The query ‘‘retrieve the starting of application-specific operations, along with the integra-
date, the names of the coordinator and of participants of tasks tion of data and operations from different domains.
with a man power greater than 20 months,’’ expressed in OQL
as Currently, neither the relational DBMS nor the OODBMS

fully meet all the requirements of all those application types:

• Relational DBMS handle and manipulate simple data;
they support a query language (SQL) well-suited to
model most business applications, and they offer good
performance, multi-user support, and access control and

select distinct struct(sd: t.start_date,

cn: coordinator.name,

pn: (select p.name

from t.participants as p))

where Tasks t

where t.man month > 20
reliability

produces as result a literal with type Set<struct(st : da-
• OODBMS allow us to directly represent complex objects

te,cn : string, pn : bag<string>)>. and efficiently support navigational applications; how-
OQL is a very rich query language. In particular it allows ever, they do not offer access control mechanisms and

us to express, in addition to path expressions and projections provide a limited support for concurrency and simple
on arbitrary sets of attributes, illustrated by the above exam- transactional models; moreover, though most of them
ples, explicit joins and queries containing method invocations. provide declarative query languages, those languages are
The query ‘‘retrieve the technical reports having the same ti- not thought of as an essential feature of an OODBMS.
tle of an article’’ is expressed in OQL as

We can thus say that relational DBMS provide an excel-
lent support to applications manipulating simple data,
whereas object-oriented DBMS provide an efficient support

select tr
from Technical_Reports tr, Articles a
where tr.title = a title

for applications manipulating complex data, but without some
The query ‘‘retrieve the name and the bonus of employees of the functions of relational DBMS, such as powerful declara-

having a salary greater than 20000 and a bonus greater than tive, high-level query languages, data security, concurrency
5000’’, is expressed in OQL as control, and recovery. Object relational DBMS (18) have re-

cently been proposed to overcome the shortcoming of rela-
tional DBMS and OODBMS. Object relational DBMS ex-
tend relational systems with the modeling capabilities of

select distinct struct(n: e.name, b: e.bonus)
from Employees e
where e.salary > 20000 and e.bonus > 5000

OODBMS, thus supporting complex operations on complex
OQL finally supports the aggregate functions min, max, data. Object relational DBMS are motivated by the need of

count, sum, and avg. As an example, the query ‘‘retrieve the providing a rich data model, able to represent complex data
maximum salary of coordinators of tasks of the CAD project’’ as in the OODBMS, by supporting at the same time all the
can be expressed in OQL as data management functions that relational DBMSs provide

for the simple data they manage. Object relational DBMS in-
clude DB2 (19), UniSQL (20), Illustra/Informix (21), Oracle
(22), Sybase (23). All these systems extend a relational DBMS
with object-oriented modeling features. In all those DBMS the

select mix(select e.salary
from p.tasks.coordinator e)

from Projects p
where p.name = ’CAD’

type system has been extended in some way, and the possibil-
ity of defining methods to model user-defined operations on
types has been introduced. In what follows we briefly discussOBJECT RELATIONAL DATABASES
the most relevant type system extensions.

As discussed at the beginning of this article, DBMSs are cur-
Type System Extensionsrently used by a large variety of applications. Each type of

application is characterized by different requirements toward Primitive Type Extensions. Most DBMS support predefined
data handling. The most relevant application types include: types such as integers, floating points, strings, and dates. Ob-

ject relational DBMS support (a) the definition of new primi-
tive types starting from predefined primitive types and (b) the• business applications, which are characterized by large

amounts of data, with a simple structure, on which more definition of user-defined operations for these new primitive
types. Operations on predefined types are inherited by theor less complex queries and updates are executed; the

data must be accessed concurrently by several applica- user-defined type, unless they are explicitly redefined. Con-
sider as an example a yen type, corresponding to the Japa-tions, and functionalities for data management (such as

access control) are required; nese currency. In a relational DBMS, this type is represented
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as a numeric type with a certain scale and precision—for ex- address t_Address,

dept REF t_Department,ample, DECIMAL(8,2). The predefined operations of the
DECIMAL type can be used on values of this type, but no other projects TABLE OF REF

t_Project);operations are available. Thus, any additional semantics—for
instance, converting yens to dollars—must be handled by the MEMBER FUNCTION last_name(t_Employee)

RETURNS CHAR(10),application, as the display in an appropriate format of values
of that type. MEMBER FUNCTION cmpare(t_Employee,t_Employee)

RETURNS BOOLEAN;In an object relational DBMS, by contrast, a type yen can
be defined, and the proper functions can be associated with

With each complex type a constructor type, having theit, as illustrated by the following statements:
same name of the type, is associated. This method creates an
instance of the type, given its attribute values. As an exam-
ple, the invocation t_Address(‘Via Comelico’, 39,
‘Milano’, ’I’, 20135) creates a value of t_Address

CREATE DISTINCT TYPE yen AS Decimal(8,2)
MEMBER FUNCTION add(yen,yen) RETURNS yen,
DISPLAY FUNCTION display(yen) RETURNS CHAR(11);

type. The application must, moreover, provide methods for
comparing and ordering values of complex types.

Complex Types. A complex, or structured, type includes one
Encapsulated Types. Encapsulated types are types whoseor more attributes. This notion corresponds to the notion of

content can be accessed only through methods. For example,struct of the C language or to the notion of record of the
if t_Address had been defined as an encapsulated type, itsPascal language. Complex types are called named row types
structure could only be accessed through methods. Thosein SQL-3 (24). As an example, consider the type t_Address,
methods are called accessors and mutators. Thus, an accessordefined as follows:
method should be defined for accessing the street attribute,
another one should be defined for accessing the number attri-
bute, and so on. These types are called value adts in SQL-3.
The statement for defining an encapsulated type is CREATE
VALUE TYPE instead of CREATE TYPE.

CREATE TYPE t_Address (street VARCHAR(50),
number INTEGER,
city CHAR(20),
country CHAR(2),
zip INTEGER);

Reference Types. Reference types model the relationshipsRelations can contain attributes whose type is a complex
among type instances. Those types allow a column in a rela-type. These relations are called object tables or named row
tion to refer to a tuple in another relation. A tuple in a rela-type tables in SQL-3. For example, given the t_Address type
tion is identified through its OID. Given the declarationsdefined above, the following is a definition of a named row

type table:
CREATE TYPE t_Department (name CHAR(10),

dept# INTEGER,

chair REF t_Employee,

dependents TABLE OF REF

t_Employee,

map PICTURE);

CREATE TABLE Departments of t Department;

CREATE TABLE EMPLOYEES (name CHAR(20),

emp# INTEGER,

curriculum TEXT,

address t_Address,

dept REF t_Department,

projects TABLE OF REF

t Project); and the above declarations of the type t_Employee and the
relation Employees:This relation can be equivalently defined as

• The dept column of the Employees relation refers to a
tuple of the Departments relation (corresponding to the
department the employee works in).

• The chair column of the Departments relation refers
to a tuple of the Employees relation (corresponding to
the department chair).

CREATE TYPE t_Employee (name CHAR(20),

emp# INTEGER,

curriculum TEXT,

address t_Address,

dept REF t_Department,

projects TABLE OF REF

t_Project);

CREATE TABLE Employees OF t Employee;
A complex type cannot recursively contain a component of

Components of attributes, whose domain is a complex type, the same type; however, it can contain a reference to another
are accessed by means of the nested dot notation. For exam- object of the same type. To represent the manager of an em-
ple, the zip code of the address of an employee is accessed as ployee, the t_Employee type could be extended to include a
Employees.address.zip.

manager attribute defined as follows:
Methods can be defined on complex types, as part of the

type definition. The definition of the type t_Employee can,
for example, be extended with the definition of some methods
as follows:

CREATE TYPE t_Employee ( ...
manager REF t_Employee,
... );

The attributes of a referred instance can be accessed byCREATE TYPE t_Employee (name CHAR(20),

emp# INTEGER, means of the dot notation. For example, referring to the ex-
ample above, the name of the department the employee workscurriculum TEXT,
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in is Employees.dept.name, while the name of a depart- and address as attributes (inheritance among types). The
queryment chair is Departments.chair.name.

Collection Types. Object relational DBMS support con-
structors for grouping several instances of a given type. Those

SELECT name, address
FROM Teachers
WHERE salary > 2000

constructors model collections of type instances and include can thus be expressed.
SET, MULTISET, LIST, TABLE (multiset of tuples). Refer- Inheritance among types also implies method inheritance,
ring to the Departments relation above, the dependents at- and method overloading. Overriding and late binding are sup-
tribute is a collection of values of the t_Employee type. An ported. Multiple inheritance is also supported.
attribute declared as

LOBs. Object relational DBMS, finally, provide LOB types
a_emp ARRAY OF REF t_Employee to support the storage of multimedia objects, such as docu-

ments, images, and audio messages. LOBs are semanticallyrepresents by contrast an array of references to instances of
stored as columns of relations. Physically, however, they arethe t_Employee type.
stored outside the relations, typically in external files. Usu-Elements of the collections are denoted by indexes in the
ally, for efficiency reasons, those external files are not manip-case of arrays (for example, a_emp[5] denotes the fifth em-
ulated under transactional control (or, at least, logging is dis-ployee in the array), whereas multisets and tables can be iter-
abled). LOBs can be either CLOBs (characters) or BLOBsated over through an SQL query as any other table. The SQL
(binaries). Ad hoc indexing mechanisms are exploited to effi-statement
ciently handle LOBs.

The following relation declaration illustrates the specifica-
tion of an attribute containing textual information and of an
attribute containing an image:

SELECT d.name, (SELECT e.name
FROM d.Employees e
WHERE e.emp# > 1000)

FROM Department d
WHERE d.dept# = 777;

returns the department name and the names of a set of em-
ployees.

CREATE TABLE Patients (name CHAR(20),

ssn INTEGER,

age INTEGER,

clinical-register CLOB,

x-ray BLOB);

Inheritance. Inheritance specifies subtype/supertype rela-
CONCLUDING REMARKStionships among types. Subtypes inherit attributes and meth-

ods of their supertypes. Object relational DBMS allow us to
In this article, we have focused on the modeling aspects andspecify inheritance relationships both among types and
query and data manipulation languages of OODBM and ob-among relations. The following declarations specify types
ject relational DBMS. The effective support of object orientedt_Student and t_Teacher as subtypes of the t_Person
data models and languages requires revisting and possibly ex-type:
tending techniques and data structures used in DBMS archi-
tectures. In the remainder of this section we briefly discuss
some of those architectural issues and point out relevant ref-
erences.

A first important aspect is related to the indexing tech-
niques used to speed up query executions. The following three
object-oriented concepts have an impact on the evaluation of
object-oriented queries, as well as on the indexing support re-
quired.

Class Hierarchy. Unlike the relational model where a
query on a relation R retrieves tuples from only R itself,

CREATE TYPE t_Person (name CHAR(20),

ssn INTEGER,

b_date DATE,

address t_Address);

CREATE TYPE t_Teacher (salary DECIMAL(8,2),

dept REF t_Department,

teaches TABLE OF REF t_Course)

UNDER t_Person;

CREATE TYPE t_Student (avg_grade FLOAT,

attends TABLE OF REF t_Course)

UNDER t Person;
an object-oriented query on a class C has two possible

The following declarations, by contrast, specify inheritance interpretations. In a single-class query, objects are re-
relationships among relations: trieved from only the queried class C itself. In a class-

hierarchy query, objects are retrieved from all the sub-
classes of C since any object of a subclass of C is also an
object of C. The interpretation of the query type (single-
class or class-hierarchy) is specified by the user. To fa-
cilitate the evaluation of such types of queries, a class-

CREATE TABLE Persons OF t_Person;
CREATE TABLE Teachers OF t_Teacher
UNDER Persons;

CREATE TABLE Students OF t_Student
UNDER Persons;

hierarchy index needs to support efficient retrieval of
objects from a single class, as well as from all theAt the data level those two declarations imply that in-
classes in the class hierarchy.stances of Teachers and Students relations are also in-

stances of the Persons relation (inheritance among relations) Aggregation Hierarchy. In an object-oriented data model,
a class can be defined as a nested structure of classes,and that instances of those relations have name, ssn, b_date,



OBJECT-ORIENTED DATABASES 61

giving rise to an aggregation hierarchy. An aggregation computation; such approaches, however, make object updates
index must index object paths efficiently. Without effi- rather expensive. We refer the reader to Ref. 30 for an exten-
cient index support, the evaluation of such queries can sive discussion on indexing techniques for OODBMS.
be slow because it requires access to multiple classes. Another important issue, related to performance, is query

optimization. Since most object-oriented queries only requireMethods. To speed up the evaluation of object-oriented
implicit joints through aggregation hierarchies, the efficientquery predicates that involve methods, efficient index
support of such join is important. Therefore, proposed querysupport is required.
execution strategies have focused on efficient traversal of ag-
gregation hierarchies. Because aggregation hierarchies can beA class-hierarchy index is characterized by two parame-
represented as graphs, and a query can be seen in a visit of aters: (1) the hierarchy of classes to be indexed and (2) the
portion of such a graph, traversal strategies can be formalizedindex attribute of the indexed hierarchy. There are two ap-
as strategies for visiting nodes in a graph. The main methodsproaches to class-hierarchy indexing:
proposed for such visits include: forward traversal, reverse
traversal, and midex traversal. They differ with respect to the

• Class-dimension-based approach (25,26) partitions the
order according to which the nodes involved in a given querydata space primarily on the class of an object.
are visited. A second dimension in query processing strategies

• Attribute-dimension-based approach (25) partitions the concerns how instances from the visited class are retrieved.
data space primarily on the indexed attribute of an The two main strategies are the nested loop and the sort do-
object. main. Each of those strategies can be combined with each

node traversal strategy, resulting in a wide spectrum of strat-
While the class-dimension-based approach supports single- egies. We refer the reader to Ref. 1 for an extensive discussion

class queries efficiently, it is not effective for class-hierarchy on query execution strategies and related cost models.
queries due to the need traversing multiple single-class in- Other relevant issues that we do not discuss here include
dexes. On the other hand, the attribute-dimension-based ap- access control mechanisms, versioning models, schema evolu-
proach generally provides efficient support for class-hierarchy tions, benchmarks, concurrency control and transaction man-
queries on the root class (i.e., retrieving objects of all the in- agement mechanisms. We refer the interested reader to (1).
dexed classes), but is inefficient for single-class queries or
class-hierarchy queries on a subhierarchy of the indexed class
hierarchy, because it may need to access many irrelevant leaf BIBLIOGRAPHY
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