
540 DATABASE DESIGN

enable a global, uniform, and integrated view on the stored
data.

The last part of this article describes the process of design-
ing a global, integrated schema as an integration of the local
schemata. The schema integration has to overcome heteroge-
neity on data model and schema level. Due to the complexity
of this task an ad hoc solution for practical scenarios often
fails. Therefore a design method helps to integrate the local
schemata. We will give a short overview of the design prob-
lems and approaches to overcome heterogeneity.

DATABASE DESIGN
TRADITIONAL DATABASE DESIGN

Databases and database technology play a major role in mod-
In this section we give an overview of the classical databaseern companies and organizations. Information is one of the
design process. As usual in software engineering, the processkey factors of production and administration, and information
of databases design can be separated in phases where an ab-has to be managed by a reliable technology: database man-
stract informal description is transformed into a usable data-agement systems.
base implementation. Of course this process has feedbackHowever, reliable software for storing and retrieving data
loops where problems detected in later phases influence thecan only provide properties like crash recovery, synchroniza-
earlier phases. Each phase has specific types of design docu-tion, availability, and efficient access. The quality of data can
ments and methods.only be guaranteed by carefully designing the database struc-

We will start with an overview on the design process andtures. For this reason, the database design process becomes
then discuss the single phases in detail. Because we will focusimportant. The best database management system is not able
on integration of databases on the conceptual and logical levelto correct a bad database design that does not reflect the se-
in the remainder of this contribution, our focus is on thosemantics of the application information.
phases connected with this topic. For the other phases we de-Database design is therefore one of the major research
scribe the key principles only.areas of database technology. There are several textbooks fo-

cusing on the various phases of the design process, for exam-
Database Design Processple, Refs. 1, 2, and 3, and whole conference series and jour-

nals are devoted to database design problems. The classical database design process is depicted in Fig. 1.
Usually, a database system is composed from one or sev- There are numerous variations of this process in the litera-

eral databases (DB) and a database management system ture. We follow roughly the presentation of the design phases
(DBMS). Following this convention, the design of a database in Ref. 4.
system focuses on a static database structure. However, the
dynamics part of the use of the data has to be designed, too. • Requirements Analysis. During the requirements analy-
Therefore, we often use the term design of database applica- sis, the functions and information objects of the applica-
tion if we want to highlight the joint design of database struc- tion are detected and analyzed using informal descrip-
ture and application dynamics. tion techniques.

Because it is impossible to handle such a broad area in • Conceptual Design. Based on the output of the require-
detail in a single article without restricting the scope to cer- ments analysis the conceptual design produces a first for-
tain aspects, we focus on design of database applications in mal description of the database structure and application
the presence of legacy databases and legacy applications. In
such scenarios an integrated database schema cannot be de-
signed from scratch but has to respect the existing software
and data. This type of scenario is more realistic than the clas-
sical scenarios where a database infrastructure introduces
electronic information management into a company or organi-
zation that has had a noncomputer-based management.

However, we will start with describing the classical data-
base design process, which is a variant of the well-known soft-
ware life-cycle models. The single phases have specific data
models for describing the information structure on different
abstraction levels, corresponding consistency rules, as well as
normalization methods. Between these representations trans-
formation methods support the design process. As usual in
software design, later design phases influence earlier phases,
leading to feedback cycles in the process.

After the description of the classical database design pro-
cess, we present the concepts and architectures of multi-data-

Requirements analysis

Conceptual database design

Logical database design

F
e

e
d

b
a

ck
 c

yc
le

Physical database design

Implementation and maintenance
base and federated database systems, which allow the coexis-
tence of local (legacy) databases in an information system and Figure 1. Phases of the database design process.

J. Webster (ed.), Wiley Encyclopedia of Electrical and Electronics Engineering. Copyright # 1999 John Wiley & Sons, Inc.



DATABASE DESIGN 541

functions on an abstract implementation-independent
level. A typical description model on this level is the en-
tity–relationship (ER) model for specifying the database
structure.

• Logical Database Design. The logical database design
transforms the conceptual schema into the logical data-
base model supported by the intended implementation
platform. A typical example for this process is the trans-
formation into the relational model and the normaliza-
tion of the resulting schema.

• Physical Database Design. During the physical database
design the logical schema is mapped onto physical data-
base structures for efficient use of the database. A typical
method for this phase is the clustering of data on pages
and the definition of indexes for efficient retrieval.

• Implementation and Maintenance. The last phase is the
coding and maintenance of the database schema and the

Data layer

Abstract data types

Object layer

Semantic data models

Process layer

Petri nets, process languages, etc.

Evolution layer

Temporal logic

Action layer

Preconditions and
postconditions

related database transactions on an existing platform.
Figure 2. Layers of conceptual model descriptions.

During the database design process, there will be of course
feedback from later phases to the earlier phases. Problems or
incomplete specifications may only be detected during trans- tions and application workflow as discussed in the next
action realization when they influence, for example, the con- section.
ceptual design. Conceptual database models offer several high-level ab-

straction mechanisms to model the data structures on an
Requirements Analysis abstract level. These models are variants of knowledge repre-

sentation formalisms and often derivates of the entity-The first design phase is the requirements collection and anal-
relationship model [see (2)]. Currently, the structural modelysis. During this phase the expectations of the users and the
of object-oriented design approaches is often used as the con-intended use of the database are analyzed.
ceptual database language.For this aim, the parts of the complete information system

that will interact with the database are identified and infor-
Layered Conceptual Models. A layered approach to design-mally specified. Possible sources for the requirements are

ing conceptual database applications was presented in Refs.the following:
(6, 7). These approaches aim at capturing all aspects of data-
base application development on an abstract conceptual level,• Interviews with representatives of the identified user
that is, by abstracting from concrete realizations. Such frame-groups
works have to model the database structure as a submodel• Existing documentation of the application areas
but also have to capture the application dynamics.

• Already existing software solutions in the intended appli-
In this subsection we give a short introduction to layeredcation area

conceptual modeling in order to show the whole design task
• Legal or organizational requirements for the supported before focusing on the structural aspect of designing the data-

processes base itself for the rest of the section.
Overview on Model Layers. A conceptual model of a data-

The resulting requirements documents are usually written base application can be structured into several specification
in an informal style. Graphical presentations support the in- layers following Refs. 6, 7, 8, 9, and 10. Those layers use spec-
tuitive semantics of the identified concepts, data items, and ification formalisms building a hierarchy of semantic inter-
workflow processes typically do not use formal techniques. pretation structures. At the level of describing database evo-
The book by Wieringa (5) gives an overview of popular re- lution, the strict hierarchy of layers is broken because we
quirements analysis techniques. have two independent description formalisms building com-

At the end of the classical requirements analysis process, plementary specifications of the same target. Concepts of
functional requirements are separated from the data require- lower layers are integrated appropriately into upper layers.
ments. Current proposals aim at avoiding this separation The hierarchy of layers is shown in Fig. 2.
with the use of object-oriented techniques.

Data Layer. On the data layer we have to describe the
Conceptual Database Design

state-independent basic data structures. In software specifi-
cations these data structures are encapsulated in abstractThe conceptual model is the first formal model of the database

and the connected system functions. Its role can be compared data types together with related functions and predicates on
the data elements. These state-independent data structureswith formal specification techniques in software development.

In the database design process the conceptual database define the structures of basic data items stored in the data-
base as properties of persistent objects. They are also knownschema ‘‘real-world’’ objects. This conceptual database schema

is connected to conceptual descriptions of application func- as printable or lexical object types in the database modeling



542 DATABASE DESIGN

literature [see (10) for a more detailed discussion and a litera- Object Layer. At the object layer, the consistent database
ture overview]. states are described. A database state can be seen as a snap-

In general, modern implemented database management shot of the persistent objects representing the information
systems support a small set of standard data types but—in stored in the database. The modeling of the object layer is
contrast to the area of programming languages— no construc- done by way of the classical design techniques for database
tors are offered for building arbitrarily complex data types on structure using conceptual data models like the ER model,
top of the standard ones. A specification formalism merging semantic data models, or object-oriented models.
the fields of these both classical disciplines has to offer more The description of the object layer consists of two parts,
powerful specification concepts as done in classical database the description of the proper database structure in terms of a
design. In recent years the development of extensible database data model and the description of correct extensions of this
management systems tries to bridge this gap at the level of structure definition in terms of integrity constraints.
database implementations too. As mentioned before, we want to describe collections of per-

Examples for user-defined data types are geometric data sistent objects carrying information. The information carried
types like point, line, or circle with related operations by objects is expressed in terms of data-valued object proper-
like circle_cut or distance. Other examples are enumera- ties (called attributes) and relationships between objects.
tion types, data types for engineering applications like vector, These concepts are the basic modeling concepts offered by the
as well as types for large unstructured data like bitmap pic- entity-relationship approach (12).
tures or video sequences. Experiences with modeling complex applications, espe-

As specification formalism for abstract data types, we can cially in the area of so-called nonstandard applications like
choose from the well-established description formalisms that engineering databases, have shown that we need further con-
can be found in the related software engineering literature. cepts to support special relationships between persistent ob-
Specification of abstract data types is not specific to database jects like ISA or PART_OF relations. These additional con-
applications, and we will not go into detail here. cepts originating from the development of semantic data

An established specification formalism is the algebraic models (13,14) can be integrated into the ER approach
specification of abstract data types using equational specifi- (4,10,15).
cation [see (11) for a textbook]. The following example shows The discussion of object models has brought new aspects to
a part of the specification of the geometric data type point the discussion on appropriate modeling constructs, among
done in the equational framework. them inheritance along subclass hierarchies and temporal ob-

ject identity independent of current attribute values (16). An-Example 1 The geometric type point together with related
other interesting extension is to use rules to derive implicitlyoperations can be specified explicitly as follows:
expressed objects, properties, and relationships.

It should be mentioned here that each schema of a concep-
DATATYPE point BASED ON real;

tual data model defines the signature of a many-sorted predi-SORTS point;
cate logic where the sort symbols are given by the object sortsOPERATIONS distance : (point � point): real;
(and data type sorts, too) and functions and predicates arexcoord, ycoord : (point): real;
induced by the attribute and relationship definitions of thecreatepoint : (real � real): point;
schema. This logic is the basis for query formalisms and re-add : (point � point): point;
sults in a language for integrity constraints. Another lan-...
guage induced by the object schema is a language for elemen-VARIABLES p,q : point;
tary updates (15).x,y,x1,y1 : real;

Up to now we have concentrated on the proper structureEQUATIONS
of our object collections. If we want to express additional re-x = xcoord(createpoint(x,y));
strictions and knowledge from the application area in the ob-y = ycoord(createpoint(x,y));
ject layer specification, we have to state integrity constraintsdistance(createpoint(x,y),createpoint(x1,y1))
restricting the correct database states. Some common integ-= sqrt((x-x1)�(x-x1) + (y-y1)�(y-y1));
rity constraint patterns are usualy directly supported by spe-add(p,q)
cific language features, for example, cardinality constraints= createpoint(xcoord(p)+xcoord(q),ycoord(p)+
on relationships. On the conceptual level, other constraintsycoord(q));
are formulated in a first-order logic induced by the concep-...
tual schema.

To support the usual mechanisms in constructing new
types from already defined ones, we additionally have a col- Example 2 The constraint that each employee of a depart-
lection of parameterized data type constructors like set or ment has to earn less than the manager of her/his depart-
list construction. With each of these constructors a family ment can be formulated as follows:
of operations is associated. For example, the operations in,
insert, and union are associated with the set constructor

FOR ALL (P : PERSON), (M : MANAGER),(among others). These constructors can be used to build a
(D : DEPARTMENT) :family of polymorphic types to simplify the use of data types
( Works_For(P,D) AND D.manager = Min specifications. The data type constructors are also used for
AND NOT P = PERSON(M) )defining the result structures of queries and for the definition

of the type of multivalued attributes. IMPLIES P.salary < M.salary;



DATABASE DESIGN 543

In this example we have used an explicit conversion of a piled into a specification using the alternative approach [see
(7,22) for the transformation from temporal logic into autom-MANAGER object into a PERSON object along the subtype hier-

archy defined by a specialization relationship. ata]. This transformation into transition automata can be in-
terpreted also as a transformation into transitional con-

Another way to express additional application semantics is straints restricting local state transitions instead of whole
by use of rules to derive information from explicitly stored state sequences. As an interesting extension of dynamic con-
objects. For the modeling of database states, it is common to straints, Ref. 23 additionally propoes to distinguish between
use model-based semantics because it is appropriate for speci- dynamic constraints and deontic constraints separating the
fying database states being implemented by concrete inter- correct database sequences and the desired temporal evolu-
pretations of a data model. Therefore rules are used only in a tions.
restricted way, namely to compute derived attributes, objects, It should be noted that both approaches need a formal se-
and relationships in a determined fashion. A commonly used mantics of temporal object identity because temporal logic for-
derivation is the definition of so-called computed or derived mulas or transition automata are formulated locally for single
attributes by a data-valued function. objects changing their properties during database evolution.

There is a close relationship between rules and integrity For example, a PERSON object remains the same object even
constraints. If derived information is modeled explicitly on if all its observable properties are changing [assuming an im-
the object layer, the derivation rules can be read as special plicitly given temporal object identity as offered by object-
integrity constraints. On the conceptual level, both views are oriented models (24)]. We give two examples for temporal
equivalent and need not to be distinguished. However, the logic constraints.
modeling of derivation rules is an important part of the appli-
cation modeling and should be supported by appropriate lan- Example 3 The dynamic constraint that salaries of employ-
guage constructs. ees must not decrease can be formulated as follows:

Evolution Layer. Until now, we have described the static
FOR ALL (E : EMPLOYEE) (s : integer):

aspects of database states only. The next specification layer,
ALWAYS (E.salary = s IMPLIES

the evolution layer, specifies the temporal evolution of the per-
ALWAYS NOT E.salary < s );

sistent objects. This is done completely without referring to
the concrete modification actions changing the stored infor-

The temporal operator ALWAYS denotes a temporal quanti-mation. The reference time scale is the causal time induced
fication over all future states. The first ALWAYS defines theby the sequence of database modifications.
bound subformula as an invariant; that is, the formula mustThe semantics domain to be specified is the set of correct
be satisfied for an inserted PERSON object in all future data-database state sequences. This is done independently from con-
base tail sequence. The inner implication states that if oncecrete transactions or application processes. The temporal evo-
the salary of an EMPLOYEE is equal to an integer value s, itlution of the stored information is specified by restricting the
must be greater or equal to s for all future states (due to thelife cycles of persistent database objects. Such restrictions are
inner quantification by ALWAYS).called dynamic or temporal constraints. In other words, we

state which long-term evolutions of object (or object combina-
Example 4 The second dynamic constraint states that sala-tions) properties and relations are desired. Examples of such
ries of employees must not decrease while working at thelong-term dynamic constraints are as follows:
same company—even if she/he has worked for another com-
pany in the meanwhile:• Salaries of employees must not decrease.

• Airplanes have to be maintained at least once in a year,
FOR ALL (E : EMPLOYEE) (s : integer)or at least every 50,000 miles.
(C : COMPANY):• Employees have to spend their yearly holidays by May of
ALWAYS ((E.salary = s AND Works_For(E,C))the following year.
IMPLIES ALWAYS ( Works_For(E,C) IMPLIES
NOT E.salary < s) );There are several specification formalisms for such dy-

namic constraints proposed in the literature:
The interesting point of the second example is that this

constraint implicitly uses historical information, namely the• Temporal logic specifications offer a descriptive formal-
former salaries of persons earned at companies, even if theism for temporal constraints. Their semantics is directly
explicit information that a specific person had worked for aexpressed using sequences of predicate logic interpreta-
company in the history is not modeled in the object schemations, namely of database state sequences.
directly. The identification and consideration of such addi-Several temporal logic dialects for temporal con-
tional object structure induced by dynamic constraints is anstraints are proposed in the literature, for example, in
important part of the conceptual database design process.Refs. 7, 9, 17, 18, 19, and 20.
This problem is discussed in more detail in (25).• An alternative, more procedural way to express temporal

constraints is to use transition automata or simple Petri
Action Layer. In the previous subsection we have presentednets. This technique is, for example, proposed by Ref. 21.

a specification method to describe database evolutions inde-
pendently of concrete modification transactions. The actionBoth approaches are equivalent in the sense that a given

specification using one approach can be automatically com- layer offers the complementary description of database se-



544 DATABASE DESIGN

quences in terms of correct database state transitions by so- • The frame rule states that an action effect should be as
minimal as possible. The existence of a minimal transi-called actions.

Actions are schema-specific database updates, namely tion is, however, an undecidable problem, for example, if
we have disjunctive postconditions. An elaborate discus-functions from database states into new correct database

states. They are the elementary building blocks of transac- sion of the frame rule and related problems can be found
in Ref. 18. The frame rule forbids undesired side effectstions preserving integrity.

Examples of actions are insertion of an employee, or a sal- of actions (‘‘no junk’’).
ary upgrade, while respecting the constraints on employees’ • The consistency rule states that each action has to obey
salaries and more typically a flight reservation in a travel the (static and dynamic) integrity constraints. It handles
agency database. the desired side effects of actions like update propa-

There are several proposals on specification techniques for gation.
database actions. Popular specification techniques are used in
the behavior part of the OMT- and the UML-approach (cf. Both rules work complementally: The consistency rule ex-
14,26,27). A language proposal combining the structural and tends the action specification such as by additional postcondi-
specification description into object specifications is TROLL tions to guarantee integrity. The frame rule, on the other
(28). Since an action is a function on database states, we can hand, has to add invariants, guaranteeing that only object
use specification mechanisms for functions on values of a com- modifications can occur that are explicitly enforced by post-
plex structured data type, for example, algebraic specification. conditions or by the need of integrity preservation.
However, this approach neglects somehow our more abstract
view on database states as interpretation structures of a logic

Process Layer. In Ref. 10 the four specification layers de-theory. We prefer to use specification formalisms interpreting
scribed until now are identified as being relevant to describeaction specifications as a relation between first-order logic
databases as stand-alone components. However, to describemodels fitting to the semantic domains used for the evolu-
database applications as software systems consisting of a da-tion layer.
tabase and further components, we have to add an additionalA natural way to describe transitions between interpreta-
layer describing these system components and their interac-tion structures is to use pre- and postconditions. This descrip-
tion in a suitable framework. Moreover this descriptiontive style of action specifications fits well to the use of tempo-
framework should be compatible to the semantics of the pureral logic for describing database evolutions. A detailed
database description layers.language proposal independent of a fixed data model and its

At this process layer we describe a database application asformal semantics can be found in Ref. 29. A language proposal
a collection of interacting processes. The database describedfor an extended ER model is presented in Ref. 10.
using the four lower layers is handled as one special persis-Pre- and postconditions are a restricted form of a modal or
tent process where the actions determine the event alphabetaction logic using explicit logic operators referring to actions.
of the process. The database process is purely reactive; ac-Such specification frameworks are used in Refs. 30, 31, to
tions are triggered from other processes only. This approachspecify actions using arbitrary modal/action logic formulae.
is powerful enough to handle distributed applications, formalAn example of an action specification using pre- and post-
user modeling, and multiple database applications in theconditions is the action FireEmployee specified in the follow-
same framework.ing example.

Semantically the database process can be described as a
linear life cycle over the event alphabet together with an ob-Example 5 The action specification FireEmployee removes
servation function mapping prefixes of the life cycle into data-a person from the database if she or he is not currently a
base states. This semantics is conform with the semanticmanager of another person:
models used for the pure database specification, namely with
linear sequences of database states.

ACTION FireEmployee (person_name : string); The database process is only one among others that to-
VARIABLES P : PERSON; gether build the database application. The application con-
PRECONDITION P.name = person_name IMPLIES sists of several independent software components communi-
NOT EXISTS (PP : PERSON) cating by sending and receiving messages. Examples for such
P = PERSON(PP.manager); components are

POSTCONDITION NOT EXISTS (P : PERSON)
P.name = person_name;

• interaction interfaces communicating with users using an
application-specific communication protocol

The object variable P is implicitly universally quantified
• long-term engineering transactions performing complexover all currently existing persons.

activities in cooperation with several users and data-
bases

A specification using pre- and postconditions describes the
• other integrated software systems

desired effects of an action only. There are usually several
• several data and object bases possibly implemented usingtransition functions between database states satisfying such

different DBMSs and data modelsa specification. To capture desired and undesired side effects
of state transitions satisfying the specification, we need two
implicit rules to choose minimal correct transitions as a stan- The formal specification of interacting processes is still a

vivid field of software engineering research. Languages aredard semantics:



DATABASE DESIGN 545

Begin of
ConTract

End of
ConTract

Input of
journey
request

Print
documents
for traveling

Hotel
reser-
vation

Rent
a

car

Flight
reser-
vation

Cancel reservation

Look up in
flight schedules

T1
(Failure)

(Failure)

S1 S2 S4 S5 S9S3

S2

S2

T2

S6

S8

S7

Figure 3. Example process using the CONTRACT notation.

proposed in the area of engineering transactions as well as in of type point. An example for an object-valued attribute
would be the attribute manager of type PERSON associ-the area of workflow management.

A typical approach from this area is the CONTRACT model ated with an object type DEPARTMENT. Object-valued at-
tributes can often be adequately modeled by functionaldescribed in Ref. 32. Figure 3 shows a process description in

the CONTRACT model and gives an impression of the necessary relationships or complex object construction, too.
modeling primitives. For example, S4 and S5 belong to one • Objects are abstract entities observable by their attri-
atomic transaction T1 which is part of the larger process. butes only. To distinguish different objects having the

same properties, we have to introduce an object identifi-
Abstraction Principles. On the conceptual level, data models cation mechanism (24). Object identity can be specified

should support the four abstraction principles known from in- explicitly by key functions, namely by choosing some ob-
formation modeling: ject properties as object ‘‘separators’’ inside one object

type. An alternative solution is to introduce an implicit
• Classification. Objects having the same set of properties object identity as a property of the data model as it is

are classified into classes. done in some object-oriented approaches (33,34).
• Specialization/Generalization. A class is a specializa- • With an object type we associate the class of currently

tion of another class if the subclass inherits the proper- existing objects of this type. Usually these classes are
ties of the superclass and the population (extension) of disjoint. But there are several interesting cases where
the subclass is a subset of the population of the super- this intuitively is not the case. In these cases we talk
class. about type or class construction by generalization, spe-

cialization, or partition. Constructed classes inherit the• Aggregation. Objects are composed from other objects.
identification from their base types. For the formal se-• Grouping. A group of objects builds conceptually a new
mantics of type constructions, see Ref. 35.composed object. A typical example is the Team as a set
1. Specialization is used to build a subclass hierarchy,of persons.

for example, starting with the type PERSON and de-
fining MANAGER and PATIENT as independent sub-These basic principles lead to several modeling principles
classes of PERSON. Specialization induces a subset re-which should be supported by a suitable conceptual database
lation (ISA hierarchy) between the current objectmodel. The following list of basic modeling concepts should
class populations and a inheritance of properties ofbe supported by an appropriate language for describing the
the input type.conceptual object layer:

2. Partition is a special case of specialization where a
class is partitioned into several disjoint subclasses. An• The first modeling primitive is the concept of abstract
example is the partition of PERSON into WOMAN andentities called objects or entities. Objects are abstract in
MAN.the sense that they can only be observed by the values

of their properties. Properties are data- or object-valued 3. Generalization works the other way round—several
functions for objects and are called attributes. input classes are generalized into a new class. An ex-

ample is the generalization of PERSON and COMPANY• Objects with the same set of properties can be grouped
into LEGAL_PERSON.into object types. Examples for object types are the types

PERSON or COMPANY with corresponding data-valued at- • Another modeling concept known from the ER approach
are arbitrary relationships between objects, for example,tributes, for example, name of type string or location



546 DATABASE DESIGN

the relationship Works_For between persons and com- 1. View Modeling: The different perspectives identified
during the requirements collection are modeled usingpanies. There are several interesting special relations be-

tween objects that should be explicitly modeled in a spec- the conceptual database design model.
ification. Examples are the already mentioned ISA 2. View Analysis: These views are analyzed to detect syn-
relation or functional relationships (being equivalent to onyms and homonyms, to identify structural conflicts,
object-valued attributes in the binary case). and to find corresponding elements. This process is very

similar to the preintegration (homogenization) process• Another special relation which should be made explicit is
in database federation, which will be discussed in detailthe PART_OF relation leading to the notion of complex
later in this article.objects. In particular in engineering applications, the ap-

propriate definition of complex objects is a mandatory 3. View Integration: Based on the results of the view anal-
feature of a conceptual data model (36,37). There are sev- ysis, an integrated database schema is constructed.
eral properties associated with the notion of complex ob-
jects, among them weak object types (a component object The process of view integration is very similar to the pro-
cannot exist outside its aggregate object), the distinction cess of databases integration described in the section entitled
between disjoint and nondisjoint complex objects, and ‘‘Schema Merging.’’ In contrast to view integration, the pro-
the problem of update propagation for complex objects. cess of database integration has to analyze existing databases

and may have to preserve them in a federated environment.

Modern conceptual database languages support most of
Logical Database Designthese modeling principles.

Mapping to Logical Database Models. The first phase of a
logical database design is the transformation of the concep-Conceptual Database Models. The previous subsection listed
tual schema into the logical database model. This transforma-modeling constructs important for the conceptual design of
tion can be done ‘‘by hand’’ or using a database design tool.database structures. One can choose from a multitude of con-
As an example, we will discuss the mapping from ER to theceptual database models for these design tasks. The most im-
relational model.portant directions are the following:

For the transformation process, we can state a quality
property of the mapping: Capacity Preservation—Both sche-

• ER Models and Extended ER Models. Based on the basic mata are able to store exactly the same database contents.
ER model presented by Chen in Ref. 12, several extended The ER model supports the concepts of entity, relationship,
ER models are proposed as conceptual database models. and attributes. Key attributes denote identifying properties
The basic ER model has three modeling primitives: enti- of entities. In contrast, the relational model supports only re-
ties, relationships, and attributes. Extended ER models lations (with keys) and attributes. There is no explicit rela-
add concepts for specialization and generalization tionship construct; however, foreign keys can manage interre-
(2,4,10,15). lation relationships.

• SDM (Semantic Data Models). Semantic data models are Table 1 [taken from (46)] summarizes the mapping from
based on the presented abstraction concepts. Usually ER to the relational model. As shown in the table, the map-
they support functions, aggregation, and specialization ping of attributes and entities to relations is straightforward.
hierarchies (38,39,40). The mapping of relationship types, however, has to consider

the different types of relationships available in the ER model.• OOD (Object-Oriented Design Models). Object-oriented
Especially cardinalities of binary relationships influence thedesign models combine the concepts of semantic database
choice of key attributes for the relation derived from an ERmodels with concepts from object-oriented programming
relationship.languages. Popular models are OMT (41) and OOD (42).

During the mapping process already some additional opti-These models are currently combined toward the Unified
mizations are possible. For example, relations can be mergedModeling Language (UML) to become the future stan-

dard of object-oriented design notations (27).

Besides these closely related main stream models, some
other frameworks are used for conceptual modeling based on
other paradigms. Examples are functional database models
(43,44) and binary-relationship object models, also known as
object-role models [e.g., NIAM (45)]

View Integration. The aim of the conceptual design phase
is to produce an integrated abstract model of the complete
database. As a result of the requirements analysis, the start-
ing points are the different and usually inconsistent views of
different user groups on the application data.

Therefore the process of view integration plays a central
role in conceptual design. There are several phases of the
view integration process:

Table 1. Mapping of ER Schemata onto Relational Ones

Mapped onto
ER Concept Relational Contruct

Entity type Ei Relation Ri

Attributes of Ei Attributes of Ri

Key Pi Primary key Pi

Relationship type RSj Relation schema RSj with
attributes P1, P2

Attributes of RSj Additional attributes of RSj

1 : n P2 primary key of RSj

1 : 1 P1 and P2 both keys of RSj

m : n P1 � P2 primary key of RSj

IsA relationship R1 has additional key P2

Note: E1, E2: entities participating in relationship RSj ; P1, P2: primary keys of
E1, E2 ; 1 : n relationship: E2 is on the n-side; IsA relationship: E1 is specialized
entity type.



DATABASE DESIGN 547

depending on the cardinality and optinality of the mapped composed key. Since 2NF is implied by 3NF, it is enough
to enforce 3NF.ER relationship.

• The third normal form (3NF) excludes relations, where a
Relational Database Design. Based on the relational schema nonkey attribute is transitively dependent on a key.

resulting from the mapping from the conceptual schema, fur- These transitive dependent attributes should be moved
ther optimizations and normalization are possible. This pro- to a separate relation avoiding redundancy.
cess is especially important if the conceptual phase is skipped

• The Boyce–Codd normal form (BCNF) generalizes 3NF
and database designers model directly in the logical data- to dependencies inside a composed key.
base model.

Relational database design is an important area of data- There are efficient algorithms that enforce 3NF and re-
base theory in itself. Several books, among them Refs. 1 and spect the information capacity of the schema. The BCNF re-
47, deal with this area in detail. We will present very shortly moves more redundancy than 3NF, but it cannot be guaran-
some basic concepts that have found their way into practical teed that the normalized schema will enforce all constraints
database design. expressed as functional dependencies.

One major part of relational database design is the theory If we take more kinds of dependencies into account, more
of functional dependencies and resulting normal forms: normal forms can be defined that eliminate further sources of

redundancy but are not expressible using functional depend-
• A functional dependency (FD) describe dependencies be- encies alone.

tween attribute values in a relation. An FD is denoted as
follows: Database Definition: Coding in SQL-DDL. The last part of

the logical database design is the mapping of the logical de-
ISBN � Title, Publisher

scription onto a data definition language. An example is the
coding of a relational database structure using the standard-This FD specifies that two rows of a relation having the
ized SQL language (48).same value for ISBN should also have the same value for

Important parts of this coding are the following steps:the attributes Title and Publisher. The semantics
may be formalized using the following formula:

• Choice of the correct data types for the attributes
• Choice and definition of primary keysX → Y ≡ ∀t1, t2 ∈ r : t1(X ) = t2(X ) ⇒ t1(Y ) = t2(Y )

• Definition of uniqueness constraints for the remaining
This formalization says that for two rows (� tuples) of a keys
concrete relation r, whenever they have the same values • Definition of referential integrity constraints resulting
for the X attributes, they have to have the same values from the mapping of ER relationships
for the Y attributes too.

• Formulation of suitable check constraints for attributes
• A key of a relation is a (minimal) set K of attributes,

• Transformation of complex constraints into triggerswhere K � R for R being all attributes of a relation. In
other words, a key identifies the rows of a relation

Physical Database Designuniquely.
The logical database schema still abstracts from the internal• There are rules for manipulating FDs. The closure of a
realization of the data. Modern database systems support sev-set F of functional dependencies is the set of all FD
eral data structures and storage management techniques forwhich are logical consequences of F . Logical consequence
efficient management of large databases.for functional dependencies is efficiently computable.

The physical design step has to be system-specific because
commercial database vendors support different techniques forIn general dependency theory, several other dependency
optimizing the internal structure of databases.classes are important. Among them are multi-valued depen-

Typical methods to optimize the internal structure of a re-dencies, inclusion and exclusion dependencies, and joint de-
lational database are the following:pendencies. We will not detail this area but refer to the rele-

vant literature.
• The step of denormalization reverses the normalization

step of the logical design. The motivation is to introduceNormal Forms and Normalization. One popular application
redundant storage of data to fasten specific kinds of que-of functional dependencies is the normalization of relational
ries. Typical denormalization steps are to store fre-schemata. The aim of normalization is to remove redundant
quently occurring joins as materialized relations or to re-storage of attributes from a relational database. This is done
alize a specialization relationship by adding possiblyby analyzing the functional dependencies and afterward con-
null-valued attributes of the specialized class to the basestructing a database schema, where all functional dependen-
class. Some books (e.g., 49) on database design presentcies are enforced by key constraints of relations.
some typical patterns for denormalization for relational
databases.• The first normal form (1NF) characterizes the relational

model as having only atomic values for attributes (ex- • The definition of indexes allows specification of efficient
cluding repeating groups for attributes). access structures for attributes or attribute combina-

tions. Indexes are typically variants of B-tree structures,• The second normal form (2NF) excludes relations, where
some nonkey attributes are partially dependent on a but some systems also support hash-based indexes or bit-



548 DATABASE DESIGN

map-indexes for data warehouse applications. Data ac- are a lot of problems caused by schema evolution. For in-
stance, Refs. 56, 57, 58, 59, 60 consider those problems forcess structures for indexes are part of the realization of

DBMS and therefore not part of the database design object-oriented databases and propose different approaches to
overcome several of these problems.phase. Typical index structures are presented in most

textbooks on database systems (e.g., 50,51,52). A good Another problem that may arie in connection with schema
evolution is database (schema) versioning. An evolution of asurvey on common algorithms can be found in A. L.

Tharp’s File Organization and Processing (53). The opti- database schema may lead to the necessity of having several
versions of the database schema on hand. In general, schemamal choice of indexes for a given application profile is

part of the process of database tuning (54) and an impor- evolution produces new versions of an existing database
schema. A general overview on versioning and configurationtant phase of the physical database design.
management can be found in Ref. 61. Several models for ver-• The table organization defines the way relations are
sioning in object-oriented database systems are discussed instored. Besides storing the rows of a table sequentially
Refs. 62, 63. However, database and database schema ver-in operating system blocks, one may choose to store rows
sioning should be mainly considered as a matter of conceptualof a table sorted, in a hash order or in a tree structure.
and logical database design. Planning an adequate schemaAs for indexes, the table organization is not covered by
versioning concept during the early phases of database designthe SQL standard and it therefore differs for commercial
may help improve database maintenance in case of require-databases. Again, typical textbooks on database systems
ments for schema evolution.(50,51,52) give detailed introductions in this area.

• The clustering of database objects aims at storing rows
from different relations in such a way that database DATABASE INTEGRATION AND INTEROPERATION
items commonly retrieved together in queries are located
on the same file system blocks. Clustering can especially Interoperability of databases (or database systems) plays a
improve the execution of join queries. Some commercial more and more important role in today’s development of infor-
DBMS like Oracle8 support different clustering methods. mation systems within companies and other organizations.
Again, the methods and language constructs are not part Facing the fact that during the last decades a large number
of the SQL standard. The basic principles are also han- of different information systems have been developed and a
dled in the above mentioned database texts. huge amount of data is currently stored in numerous and of-

ten heterogeneous databases, it becomes clear that the devel-• For distributed and parallel databases the partition, allo-
opment of a completely new information system covering allcation, and replication of database relations are impor-
aspects relevant for an organization is usually impossible.tant steps in optimizing their internal structure. Parti-

Preserving the investments made over years as well astioning splits a relation into several parts to be
guaranteeing the smooth continuation of everyday businessdistributed on several nodes. The allocation establishes
are only two essential reasons for taking care of existing sys-the relation between partitions and actual nodes,
tems within organizations. Nevertheless, new requirementswhereas a partition can be replicated onto several nodes
ask for interoperability of existing systems.as part of the allocation process. All these steps can be

In this section we focus on multi-database systems andused to reach a higher performance in a distributed envi-
federated database systems as basic architectures for data-ronment. Textbooks on distributed databases (e.g., 55)
base interoperability. Of course there are other possible archi-give detailed descriptions of these design processes.
tectures for implementing interoperability among database
systems. Due to the fact that this article is dedicated to theFor other database models additional techniques are sup-
general theme of ‘‘database design,’’ those architectures hav-ported, for example, specific indexes for supporting path que-
ing inherent design-relevant aspects come to the fore of ourries in object-oriented databases.
discussion. Although we mainly consider the structural part
of databases or information systems, the role of the behav-Implementation and Maintenance
ioral part is not to be underestimated. The intended behavior

The last phase of the design process is the implementation
of database objects and database applications provides a lot

and maintenance of the database application. Besides the
of information that has to be respected during database inte-

concrete definition of database structures, this phase also con-
gration. Another important aspect is the integration of behav-

tains the coding of database transactions.
ior. Because there are only very few and preliminary results

The data must be loaded into the database. If data are
concerning behavior integration so far (see, for instance, Refs.

imported from other systems, they may be reformatted using
64, 65), we here do not consider this aspect in more detail.

conversion routines. The maintenance of the database is one
In the following sections, we first discuss basic properties

of the most time-consuming steps of database design. A data-
that are often used for distinguishing different database ar-

base may have a lifetime of decades, and both the software
chitectures. Next we present three basic architectures for

environment and the application requirements will change
multi-database systems and federated database systems. Fi-

several times during its lifetime. The changes will affect all
nally, we discuss major requirements for design approaches

levels of database definitions, and it is very important that
in this context.

changes are documented on all design document levels to
allow further maintenance even after several years.

Basic Characteristics
A problem often occurring in maintaining a database is

schema evolution. Changing requirements of the applications For characterizing database architectures the following three
properties are frequently used:may require changes of the database schema. However, there



DATABASE DESIGN 549

Figure 4. Classification of database architectures based
on distribution, autonomy, and heterogeneity, Refs.

Autonomy

Heterogeneity

Logically
integrated and

homogeneous DBS

Federated DBS
(heterogeneous)

Distributed DBS
(heterogeneous)

Distributed DBS
(homogeneous)

Federated DBS
(homogeneous)

Distribution

(66,67).

• Distribution • Design autonomy
• Communication autonomy• Autonomy
• Execution autonomy• Heterogeneity

Design Autonomy. Implicit in complete design autonomyFor instance, Refs. 66 and 67 present a classification based
are the following characteristics:on these properties. Figure 4 depicts this classification and

shows how the most important database architectures oc-
• The databases of the component systems have been de-curring in practice fit into this classification.

signed independently of each other.
• Changing the local database schemata cannot be re-Distribution. The property of distribution refers to the stor-

quired for building a federation.age of data. A distribution of data is given in case the data
are stored at different sites. Distributed storage of data may • A global system (e.g., a federation layer for uniform ac-
be for either of two reasons: The distribution of data is in- cess) also cannot cause changes in the local database
tended, or the distribution of data has occurred accidentally. schemata later on.

A typical example for intended distribution is a distributed
database (68,69,70). A distributed database is based on a com- In principle, design autonomy w.r.t. the component databases
mon database schema for which a reasonable partition has further means that a designer of a component database may
been fixed. Following this partition the database is split into change his or her local database schema without restriction.
parts being stored at different sites. In a narrower sense a It is quite obvious that design autonomy must be limited to
partition means that no data are stored redundantly at sev- a certain degree in allowing the global system to have such
eral sites. For allowing a more efficient query processing or functionalities like global integrity control.
for improving the availability of data, a controlled kind of re- Communication Autonomy. We speak of communication au-
dundancy (called replication) is often introduced. tonomy in cases where a database system can be decided in-

Besides the intended distribution of data by means of dis- dependently of other systems with which the system commu-
tributed database systems, we frequently find an accidental nicates. This kind of decision is usually made by the database
and usually uncontrolled distribution of data. Within organi- administrator. An additional aspect of communication auton-
zations several information systems have usually been devel- omy is that the decision to join a federation or to leave a fed-
oped independently for different purposes. Thereby different eration can be made independently as well.
database management systems as well as other data manage- Communication autonomy is particularly important for ar-
ment systems have been introduced into the same organiza- chitectures in which the component systems have to negotiate
tion. Each of these systems manages a certain portion of data. with each other about access to data. In other architectures
Usually the corresponding database schemata have been de- only the communication with a global component (e.g., a fed-
signed independently, and no common database schema ex- eration layer) is of great importance.
ists. In consequence uniform access to all the data is currently Execution Autonomy. The notion of execution autonomy
not possible. Furthermore, consistency for all the data cannot covers the question whether a component system can inde-
be checked. This is a typical situation in which the construc- pendently decide on the execution of local application pro-
tion of a federated database system incorporating the existing grams as well as on the processing of queries and manipula-
systems is worth considering. tion operations. Execution autonomy implies that a federation

layer or a component system cannot, for instance, force an-
other component system to execute or not to execute certainAutonomy. The notion of autonomy has several facets that

play an important role in the context of federated database application programs. Furthermore the component system is
independent w.r.t. its decision on execution order of localor multi-database systems. In particular, we distinguish the

following three aspects of autonomy (71): transactions.



550 DATABASE DESIGN

Heterogeneity. Heterogeneity can occur on different levels. same real-world aspect (the schema on the left-hand side is
There are system-dependent heterogeneities that occur when based on an object-oriented model or on an extended entity-
we federate or integrate different database systems. For inte- relationship-model, whereas on the right-hand side a rela-
grating database schemata the resolution of schematic hetero- tional description is given).
geneities is important. Schematic heterogeneities can often be While the heterogeneity on the data model level can be
found as differences between local schemata. For integrating overcome by transforming the local database schemata into
given schemata correctly, these differences must be found one common data model, such a transformation usually does
(the possible kinds of schematic conflicts are surveyed in Sec- not resolve all problems caused by data model heterogeneity.
tion 3.4). To a certain extent schematic heterogeneities result There are schematic heterogeneities caused by the modeling
from heterogeneities on the system level. Beside this, a lack concepts offered by different data models. We describe these
of common understanding of the meaning and the usage of schematic heterogeneities below, and in addition a classifica-
data can be a source of schematic heterogeneities. Another tion of schematic conflicts occurring during schema integra-
kind of heterogeneity is data heterogeneity. In the following tion is given in the section entitled ‘‘Classification of Sche-
we consider the different kinds of heterogeneities in more matic Conflicts.’’
detail. Another source of heterogeneity can be found in the use of

System-Dependent Heterogeneity. Database systems can be integrity constraints in modeling and in their support by ex-
heterogeneous with regard to a large number of aspects. Ex- isting database systems. Depending on the data model, cer-
amples for such aspects are as follows: tain kinds of integrity constraints do not need to be expressed

explicitly because they are already inherent in the modeling
• Data model (or database model) concepts of the data model. All other kinds of constraints
• Query language and database programming language must be expressed explicitly. Nevertheless, there are rather

great differences w.r.t. the support of explicit constraints by• Query processing and optimization
existing database systems. For instance, the current standard• Transaction processing
for the relational database language SQL [SQL-92 (48)] pro-• Mechanisms for integrity control
vides a variety of means for expressing explicit integrity con-
straints. However, existing relational database systems doHere we mainly focus on aspects that are relevant from a da-
not support everything that is described in the standard. Thistabase design point of view.
holds in particular for older releases of these systems beingThe first aspect is the heterogeneity of data(base) models.
still in use.In organizations we often have to face the situation that dif-

Other system-dependent heterogeneities often refer toferent database systems were purchased over the course of
query languages. While it may be obvious that there are dif-time. Thereby database systems may be comprised of hierar-
ferent query languages coming with different data models, wechical database models, network models, relational models,
sometimes find in practice that there are different query lan-object-oriented database models, and any number of other
guages or different versions (dialects) of one query languagesmodels.
used for the same data model. Taking the relational model asThe problems caused by such heterogeneous databases are
an example, we find SQL to be the query language for almostdue to the fact that different data models offer different sets
all existing systems. However, there are still some ‘‘legacyof modeling concepts for describing the universe of discourse.
systems’’ having other relational query languages like QUELObviously this implies that we are usually faced with quite
(4). There are also differences between systems offering SQLdifferent database schemata—even in the database schemata
as the query language. Then there are not only different stan-that describe the same universe of discourse. Figure 5 gives

an example of two different database models describing the dards for SQL fixed over time (SQL-89, SQL-92) but also even

P_No CityZip Street

Addresses

Persons

Relational:Object-oriented:

P_No Name Age

Person

Name Address City

Zip

Street

Age

Figure 5. Using heterogeneous data models.



DATABASE DESIGN 551

ences can only be detected by inspecting the way the database
applications use the data.

Different precisions in the representation of numerical val-
ues, which can also be considered as a kind of schematic het-
erogeneity problem, complicate the comparability of values.
In general, it is not possible to decide whether two values
stored in different databases represent the same value in the
real world. On the surface we may see two equal values, but

(a) (b)

Person

Sex

Person

Name

Age

Birth_year

Name

Woman

Man

this equality may be due to the fact that one database had a
restricted precision that caused the value to be rounded off.Figure 6. Heterogeneous modeling.

Beside the problem of different precisions for numerical
values, which is usually due to design autonomy, we fre-
quently have to face another problem. Even when values candifferent levels of ‘‘compatibility’’ such as are defined in the

current SQL standard. be stored with the same precision in different databases, we
often cannot decide on actual equality of two values stored inSchematic Heterogeneity. Having covered system-depen-

dent heterogeneities, we can now focus on the schema level. existing databases. The reason is that application programs
(or users) do not always store values with maximal precision.Schematic heterogeneity can occur in manifold ways (see the

classification of schematic conflicts later in this article). Here Values are rounded off for convenience or because of laziness.
In certain cases values are only estimated or guessed becausewe give a basic idea of the different origins and manifesta-

tions of schematic heterogeneity. no precise values are available. In effect we always have to
be extremely careful in comparing two values.Object-oriented models, for instance, offer a concept of spe-

cialization that is not available in the relational model. As a To a certain extent the examples we just gave can be con-
sidered as special kinds of data heterogeneity.consequence, missing modeling concepts must be simulated

by means of other concepts. Unfortunately, there is in general Data Heterogeneity. A heterogeneity often neglected that
unfortunately occurs almost always in practice concerns theno uniquely determined way of simulating a missing concept.

This is due to the fact that there usually exist several ways data. Heterogeneity of data can occur even if all other kinds of
heterogeneities are not present or have already been resolved.to model a real-world fact within a single data model. Because

of design autonomy we cannot exclude these different possi- Figure 7 shows an example of data heterogeneity. The two
databases considered correspond completely with regard tobilities of modeling.

Figure 6 depicts a simple example of heterogeneous model- data model and database schema. Differences in correct data
values can result, for instance, from different conventions foring using the same data model. Parts (a) and (b) of the figure

represent the same real-world fact within the same data putting properties down in writing or from using synonyms
or words with similar meanings.model [here an extended entity-relationship model (10) with

specialization]. Note that in part (a) the attribute sex allows In the example there are the different conventions for writ-
ing names of persons whereby the order of first name and lastthe system to distinguish persons by their sex, but there are

two subclasses woman and man used for the same purpose in name is different. The terms Poet and Writer could be inter-
preted as synonymous, but there could be a slight intentionalpart (b).

This example shows that a database designer can have difference in the meaning of these terms. Then misspellings of
words as well as typing errors may lead to further undesiredseveral possibilities for modeling the same real-world facts. If

we want to integrate database schemata designed by different differences. Yet another problem frequently occurring in prac-
tice is that databases can contain obsolete data.persons (or even by the same person at different moments),

we must seriously take into account this heterogeneity (which Obviously these kinds of heterogeneities cannot be easily
separated from each other. System-dependent heterogeneityis often called structural heterogeneity as well).

In general, it is not very difficult to detect such differences frequently causes schematic heterogeneity. And certain forms
of schematic heterogeneity may result in data heterogeneityand to find a way to resolve them. However, it is much more

difficult to detect and resolve another form of heterogeneity, as well.
sometimes called semantic heterogeneity. This kind of hetero-
geneity results from the fact that there is often no common
understanding and usage of data stored redundantly in sev-
eral systems or of data which are in some way related. In
order to give an impression of this particular problem, we now
consider some simple examples.

If we, for instance, want to integrate two databases in
which prices of products are stored, we cannot decide what
the relationship between these prices is without having addi-
tional knowledge. We first have to find out whether these
prices are given w.r.t. the same currency. Then we need to
know the current rate of exchange for the currencies used.
Besides this currency problem the prices stored in the two
databases may differ from each other because in one database

NamePersons

Konrad Zuse

Christa Wolff

Birth_year

02

28

…

Profession

Scientist

Writer

……

Name

Zuse, Konrad

Wolff, Christa

Birth_year

1902

1928

…

Profession

Scientist

Poet

……

Persons

the value-added tax (VAT) is included in prices, whereas in
the other database the VAT is excluded. Often such differ- Figure 7. Heterogeneous data.



552 DATABASE DESIGN

Database

Private
schema

Application

Component system 1

Export
schema

Import
schema

Database

Private
schema

Application

Component system 2

Export
schema

…

Import
schema

Database

Private
schema

Application

Component system n

Export
schema

Import
schema

Figure 8. Import/export-schema architecture, Ref. (72).

Architectures priori integration a user or application programmer can rely
on.

Among the architectures for interoperable database systems,
The import/export-schema architecture is often used as a

there are three examples frequently referred to in the litera-
basic architecture for loosely coupled federated database sys-

ture. In the following we describe the basic properties of
tems because it gives full autonomy to the component

these architectures.
systems.

Import/Export-Schema Architecture. One of the very first Multi-Database Architecture. The multi-database architec-
architectures proposed for database interoperation is the ture (73) is often used for accessing several databases having
import/export-schema architecture (72). In this architecture, the same database model, in particular, for relational data-
depicted in Figure 8, we distinguish three different kinds of bases. Nevertheless, the property that the component system
schemata: have the same local data model is not a necessary re-

quirement.
Private Schema. The usual local conceptual schema for all In contrast to the import/export-schema architecture, a ne-

data stored and managed by a component system. gotiation between component systems does not take place. For
accessing data from several component databases, a multi-Export Schema. Each component system offers an export
database language is provided to users and application pro-schema describing the data that may be accessed by
grams. Examples for relational multi-database languages areother systems. This description includes access rights
MSQL (73,74) and SchemaSQL (75), which extend SQL con-defining which other system may access which portion
ceptually by querying multiple databases within one query.of the data. In this way the access to the local data can

In the multi-database architecture (see Fig. 9) we distin-be restricted and controlled.
guish five kinds of schemata:Import Schema. By description of the data imported from

other systems a component system can give its applica-
Physical Schema. In this architecture the physical schemation programs access to data stored at other component

is the usual internal schema of a component database.databases. An import schema gives an integrated view
Internal Logical Schema. This schema is the usual concep-of the export schemata provided by other component

tual schema of a component database.systems. However, a real schema integration is not re-
quired in this architecture. Conceptual Schema. This schema can be considered as an

external schema of a component system defining the
part of the internal logical schema accessible from theFor this architecture it is assumed that the component sys-
multi-database layer. The conceptual schemata are de-tems negotiate with each other about the access to their ex-
scribed by means of the common global data model. If aport schemata. In this way a system can obtain the access
component system has a different local data model, arights to certain portions of data stored in another compo-
translation of its internal logical schema (expressed innent database.
the local data model) into the global data model is re-Applications running at a certain site can access the data
quired. If no data model translation is needed and alloffered by the corresponding component system at that site.
data described by the internal logical schema are in-Applications have access to two schemata of their component
tended to be available at the multi-database layer, thesystem, its private schema and its import schema. In using
conceptual schema and the internal logical schema aretwo different schemata, the integration of the data can be re-
the same. Then we have an explicit conceptual schema.alized within the applications. Then the responsibility for ad-

equacy and correctness of an integration is given to the appli- External Schema. Superposed on the conceptual schemata
of the component systems are external schemata de-cation programmer or to the user. In general, there is no a



DATABASE DESIGN 553

Figure 9. Multidatabase architecture,Database

PS1

CS1

ES1

User 1

Database

PS2

ILS2

CS2

User 2

…

…

…

…

ESn1 ESn2

User 3

Database

PSn

ILSn

CSn

User 4

DS1

User 5

External layer

Internal layer

Conceptual layer

external schemaES
conceptual schemaCS
dependency schemaDS
internal logical schemaILS
physical schemaES

DSj…

Ref. (73).

fined by the user or application programmer. The exter- parts of the component schema, and thereby the parts of
the component database, that can be accessed by globalnal schema usually includes one or more conceptual

schemata. By means of external schemata the data applications. If all data are to be exported, no separate
export schema is needed.stemming from the component databases can be fil-

tered, restructured, and integrated according to the per- Federated Schema. The federated schema (also called inte-
sonal needs or preferences of the user. In order to define grated schema or global schema) provides an integrated
these views, a multi-database language is needed. view on all export schemata given for the component

systems participating in a federation. The major empha-Dependency Schema. Interdatabase dependencies and ad-
ditional global integrity constraints dependency are de- sis is given to integration. This means that any redun-

dancy found in the export schemata is removed in thefined by these schemata making global integrity check-
ing and enforcement possible. federated schema. Furthermore structural differences

and other conflicts between export schemata are re-
solved. The federated schema is the conceptual schemaAlthough this architecture is quite different from the

import/export-schema architecture described before, the re- of the federation. It hides the distribution of data as
well as all heterogeneities like different local data mod-sponsibility for integrating data stored in different component

databases is given to the users and application programmers. els and different ways of modeling or structuring data.
Nevertheless, this architecture requires a common global
data model and a multidatabase language as a means for
users to access different databases.

Five-Level-Schema Architecture. The third architecture that
must be considered is the 5-level-schema architecture (50). In
this architecture (Fig. 10) we distinguish five different kinds
of schemata:

Local Schema. The local conceptual schema of a compo-
nent system is here called a local schema. Hence a local
schema is expressed in the local data model of the corre-
sponding component system.

Component Schema. In order to overcome the heterogene-
ity w.r.t. data models, the local schemata are translated
into a common global data model. As a result we obtain
component schemata. If a component system already
uses the global data model as local data model, the local
schema and component schema are the same.

Export Schema. Due to the fact that a component schema

Federated (global) schema

External schemaExternal schema

Export schemaExport schema

Component schemaComponent schema

Local schemaLocal schema
still describes all data stored in the component data-
base, an export schema can be defined for restricting the Figure 10. Five-level-schema architecture, Ref. (71).



554 DATABASE DESIGN

External Schema. Like external schemata in the tradi-
tional 3-level-schema architecture, external schemata
are specific views on the conceptual schema (here on the
federated schema) for certain applications or users.

The main property of this architecture in comparison with
the two described before is that it provides a federated
schema. The users and application programmers can rely on
that federated schema. The designer of the federated schema
is responsible for its adequacy and correctness. A federated
schema has to fulfill several criteria, such as described in the
next section.

Requirements for Integrated Schemata

Objects of
global class CG

Objects of
local class C1

Objects of
local class C2

When we integrate the given local schemata into a federated
Figure 11. Semantically equivalent class extensions.schema, several requirements must be taken into account.

Besides being important for building a federated schema in
the 5-level-schema architecture, these requirements extend to

given in Ref. 77 where four classes of conflict are identified.the import/export-schema architecture and to multi-database
Due to the fact that the class of heterogeneity conflicts de-architecture as well. The user or application programmer is
scribed in Ref. 77 mainly refers to system-dependent hetero-responsible for the quality of the integration he (she) is mak-
geneity (see Subsection 3.1.3) we here consider the remaininging for himself (herself). Hence, the same criteria apply.
three classes:Following Ref. 76, there are four major criteria for

schema integration:
• Semantic conflicts

Completeness. The integrated schema must contain all • Description conflicts
schema elements given in at least one of the local sche- • Structural conflicts
mata. This means that there must be no loss of informa-
tion contained in local schemata. There is some overlap between these classes. Combina-

Correctness. For each element in the integrated schema, tions of different kinds of conflicts usually occur together be-
there must exist a corresponding (semantically equiva- cause there are some causal relationships between them.
lent) element in one of the local schemata. There must Semantic Conflicts. During the integration of database
not exist invented schema elements in the integrated schemata, we have to deal with semantically overlapping uni-
schema. Due to the fact that the original database sche- verses of discourse. As a consequence there are in a local
mata were isolated, there is one exception. During the schema elements that correspond to schema elements in an-
integration process we may have found interschema de- other local schema. In particular, there are corresponding
pendencies which cannot be expressed in a single local classes (or relations). However, they often do not represent
schema. For these interschema dependencies we may exactly the same set of real-world objects. Therefore we usu-
add corresponding elements into the integrated schema. ally distinguish four basically different situations: There may
Of course these additions must be consistent with the be a semantic equivalence, inclusion, overlapping, or dis-
information adapted from the local schemata. jointness of class extensions (where class extension refers to

Minimality. Each real-world concept modeled in several the collection of objects represented by a class or relation):
local schemata may only be represented once in the in-
tegrated schema. Redundancy on the schema level must Semantically Equivalent Class Extensions. The two classes
be avoided. (or relations) always represent exactly the same collec-

tion of real-world objects (see Fig. 11). Therefore theUnderstandability. The integrated schema should be un-
sets of instances stored for these two classes must rep-derstandable to global users.
resent the same real-world objects at each instant of

The last criterion is the most difficult one because there is time. Obviously this is a very strong property.
obviously no way to check it formally. It is a very subjective Semantic Inclusion of Class Extensions. In the case where
property. For instance, global users who are used to a certain only a subset of objects represented by one class is rep-
representation of their application world, because they have resented by another class, a semantic inclusion is given
used one of the local systems for many years, may have prob- (Fig. 12). A semantic inclusion means that there is a
lems in understanding a integrated schema if the part they subset relationship between the two sets of instances
already know is represented in a completely different way. stored for these classes in the different local databases
For those users understandability goes along with similarity at each instant of time. In object-oriented approaches
to the original local schemata. such an inclusion is modeled as a specialization between

a class and its subclass.
Classification of Schematic Conflicts

Semantically Overlapping Class Extensions. In contrast to
a semantic equivalence, the sets of instances stored doA large number of classifications for schematic conflicts can

be found in the literature. Here we follow the classification not need to completely match each other (see Fig. 13).



DATABASE DESIGN 555

Objects of
global class CG

Objects of
local class C1

Objects of
local class C2

Figure 12. Semantic inclusion of class extensions.

There can be objects stored in one database without a conflict if we have different integrity constraints for corre-
corresponding object in the other database. A semantic sponding objects or class extensions.
overlap means that there can be an overlap of the cur- Structural Conflicts. The problem of different modeling pos-
rently stored instances, but it is not required that such sibilities for the same real-world fact is not limited to hetero-
an overlap occur at each instant of time. geneous data models. Even in using the same data model

there are usually several ways to express one fact. In particu-Semantically Disjoint Class Extensions. This situation is of
lar, this holds for semantically rich data models (i.e., datainterest if the two disjoint class extensions (which are
models offering a lot of modeling concepts), but we can findstored in different databases) semantically belong to-
different schemata describing the same universe of discoursegether (see Fig. 14). For calling two class extensions se-
and having the same real-world semantics for data modelsmantically disjoint, we must be sure that at no time one
with only few modeling concepts like the relational model.object can be represented in both databases.

In Figure 6 we already gave an example where different
modeling concepts were used to express the same real-worldDescription Conflicts. Different approaches to describe the
properties. Another typical example of a structural conflict isproperties of real-world objects in the local database sche-
the situation where for one local schema we have an attributemata can lead to conflicting descriptions. Due to different re-
that corresponds to a class or relation in another schema.quirements of local applications, there can be different sets of
This conflict can occur, for instance, if in the first schema onlyproperties (attributes) used to describe the same kind of ob-
a single property of some real-world objects is of interest,jects. Furthermore homonyms and synonyms can occur as
whereas the applications using the second schema need sev-names of object classes, relations, and attributes, since the
eral different properties of these objects.local schemata are designed independently and each designer

makes his/her own choice of names.
Besides these basic conflicts there are a number of more

subtle description conflicts. For instance, range conflicts occur INTEGRATION PROCESS
when different ranges are used for corresponding attributes.
In the same way we may find scaling conflicts if there are The goal of the integration process is to overcome heterogene-
different units of measurement or different scaling of values ity in the data model and schema level. We will explain this
in the local schemata. There is another type of description process in relation to the 5-level-schema architecture de-

scribed in Ref. 71. If necessary, the process can be adapted to
the other schema architectures introduced above.

Common Data Model. The problem of different data models
among the local schemata to be integrated is resolved by
translating the local schemata into a common data model.
Choosing the right common data model for the integration
process is critical to the whole integration process. One crite-
rion to use in choosing the right common data model is the
semantic power of the modeling concepts. In the demand for
completeness, the translation into a common data model must
not be accompanied by a loss of semantics expressed by the
local schemata (78). For this reason most approaches to
schema integration prefer as a common data model a model
with semantically rich concepts. Typically an object-oriented
model is used. For the translation into a semantically more

Objects of
global class CG

Objects of
local class C1

Objects of
local class C2

powerful data model, the local schemata must be semantically
enriched [see (79,80)].Figure 13. Semantically overlapping class extensions.



556 DATABASE DESIGN

Figure 14. Semantically disjoint (but related) class
extensions.

Objects of
global class CG

Objects of
local class C1

Objects of
local class C2

Deciding on an object-oriented data model, however, has a involved. A big problem is just to detect conflict. Unfortu-
nately, conflict is something that cannot be entirely and auto-disadvantage that is not sufficiently considered in the litera-

ture: A semantically rich data model gives a designer freedom matically detected in the schemata to be integrated. In gen-
eral, additional information stemming from the designer ofto model a universe of discourse in many different ways,

which increases the heterogeneity on a schema level; thus the component databases is required for detection. For exam-
ple, knowledge of the semantic equivalence of a class Personmore effort is needed to overcome the increased heteroge-

neity. and a class People can only come from a person knowing the
semantics of the corresponding component databases. Obvi-Beside the semantic richness there is another aspect that

has to be considered in selecting the common data model. The ously a thesaurus could help in some such instances, but each
synonym must be confirmed by a human expert. Further-common data model can be a design data model or a database

model supported by commercial database management sys- more, in general, not all existing correspondences can be
found by means of a thesaurus. Therefore the detection of con-tems. The advantage of a design data model is its abstraction

from implementation detail and the existence of a graphical flicts can only proceed slowly.
Once a conflict is perceived, its resolution can be tricky.notation for its schemata. The resulting integrated schemata,

however, have to be later translated into a database model Often there is more than one way to reach a solution, so the
best way must be decided. There is the additional matter thatwithout loss of information, typically into the ODMG object

model (81). in resolving different classes of conflicts, the resolution of one
conflict can cause another conflict. A clever rule giving an or-We explain here only the main ideas of schema integration.

To make it more understandable, and since most approaches der to resolve conflict could in turn minimize the effort to in-
tegrate schemata. In contrast to conflict detection, schemataprefer the object-oriented data model, we choose the OMT ob-

ject model (41) as the common data model. can be better integrated by applying rules and algorithms.
In summary, there is a need for a design method forFiltering Component Databases. Transforming the local

schemata into the common data model produces the compo- schema integration. Such a method must define successive
phases, classes of conflicts, and unification rules. We next givenent schemata. Export schemata are defined on the compo-

nent schemata in order to hide parts of the component data- an overview of the different methods for schema integration
in terms of the four phases identified in Ref. 76.bases from global applications. The restriction is mainly

specified by applying selection and projection operations on Phases of Schema Integration
the component schemata. The selection operation selects data
records of the component database to be visible to global ap- 1. Preintegration. In many practical environments more
plication in correspondence to selection conditions. The pro- than two schemata are integrated. In this phase the de-
jection operation restricts the visible attributes of selected da- signer has to decide on the strategy to use in integrat-
tabase records. ing the given schemata. Answers to the following ques-

Problems of Schema Integration. The main focus of the fol- tions must be found: Do the schemata have different
lowing sections is a description of how to generate a federated weights of relevance for the integration? Should the in-
schema from a given export schemata in the OMT object tegration problem be broken down into the integration
model. So-called schema integration must control heterogene- of two schemata at one time? And if so, in which order
ity on the schema level. Heterogeneity occurs when the same should they be integrated?
real-world aspect is modeled in different ways in parts of dif-

2. Schema Comparison. Schematic conflicts are detectedferent schemata. Typically the integration of schemata is very
in comparing the schemata. The information on corre-complex. In practice, this process is often the bottleneck of
spondences among different schemata are typically cap-any database integration (82).
tured in correspondence assertions (77).There are many classes of conflicts contributing to hetero-

3. Schema Conforming. Conflicts in the detected corre-geneity. An ad hoc approach without considering the underly-
ing method can thus fail largely because of the complexity spondences in this phase are resolved. This is done by



DATABASE DESIGN 557

Given schemata

(a)

Given schemata

(b)

Figure 15. Weighted binary integration strategy.

schema transformations which homogenize the sche- in the number of intermediate integration steps, the number
of schemata to be integrated in one intermediate integrationmata to be integrated.
step, and the weights associated to the given schemata.4. Merging and Restructuring. The homogenized schemata

The different integration strategies are pictured in Figs.are merged into one federated schema. This schema,
15–18 as different tree types. The leaf nodes denote the givenhowever, has to fulfill quality criteria such as mini-
schemata to be integrated, whereas the nonleaf nodes repre-mality and understandability. Therefore additional re-
sent intermediate results of integration.structuring transformations are often needed.

In the following we introduce four integration strategies
described in Ref. 76. They can be organized into two groups.The phases of schema integration described in Ref. 76 do not
The first group contains binary integration strategies. Thesefit to the 5-level-schema architecture. For example, external
strategies integrate exactly two schemata in one integrationschemata are not considered. We adapt it here in a similar step. Therefore the corresponding tree is a binary one. The

list of phases of schema integration: other group contains n-ary integration strategies, which are
not restricted to two schemata.

1. Preintegration. This phase is the same as the preinte- The advantage of a binary integration strategy is the re-
gration phase described above. duced complexity of each integration step. Only two schemata

2. Schema Homogenization. Schema homogenization com- have to be compared, conformed, and merged. If, however,
bines the phases schema comparison and schema con- more than two schemata have to be integrated, then the
forming. For each conflict class all conflicts have to be, whole integration task must be broken down to various bi-

nary integration tasks. Therefore intermediate integrationfirst, detected and, second, resolved. In this way one
steps have to be performed.class of conflicts is resolved before another class of con-

We distinguish between two binary integration strategies:flicts is detected. This approach simplifiers the de-
the weighted (see Fig. 15) and the balanced (see Fig. 16) inte-tecting of conflicts in contrast to the approach described
gration strategy.in Ref. 76.

3. Schema Merging. In this integration phase the homoge-
nized schemata are merged into one schema. Redun-
dancy among the homogenized schemata is removed in
a way that allows the federated schema to fulfill the
demand for minimality.

4. Derivation of External Schemata. For different global
applications, appropriate external schemata must be
derived. This phase can also encompass a translation to
another data model.

The following subsections describe the phases in more detail.

Preintegration

If more than two schemata have to be integrated, then prein-
tegration allows us to select the right integration strategy.

Given schemata

Partly
integrated

schemata as
intermediate

results

There are a number of integration strategies that integrate
schemata to a single schema. The integration strategies differ Figure 16. Balanced binary integration strategy.



558 DATABASE DESIGN

Schema Homogenization

Many schematic conflicts can occur between two schemata.
We now describe how such conflicts are handled in homoge-
nizing the schemata. The homogenization encompasses the
detection and the resolution of conflicts. For the detection of
conflicts the schemata must be compared. Tools can assist in
this task but only in a restricted way.

Here we focus on which semantic correspondences are
needed and how they are used to homogenize the schemata.
We sketch the main ideas of conflict resolutions. Furthermore
only the most frequently occurring conflict classes, and those
that can be resolved by separate (without schema merging)
schema transformations, are considered here. The subsections
explain the treatment of description conflicts and structural
conflicts. (Semantic conflicts and conflicts of different attribute
sets as a specific type of description conflict that is not re-Given schemata

S1 S2 S3 S4 S5 S6 … Sn

solved by separate schema transformations. The next section
Figure 17. One shot integration strategy. will describe the treatment of these conflict classes.)

Description Conflicts. Different schemata can express re-
dundancy; namely the corresponding databases can contain

Weighted Binary Integration Strategy. The weighted binary semantically equivalent objects. They are often described dif-
integration strategy gives different weights to the schemata ferently in the databases. For instance, the schemata define
to be integrated. Some schemata are integrated in an earlier different sets of attributes for these objects. As mentioned
step than other schemata. The schemata considered early are above, this conflict class is explained in the next section.
analyzed and adjusted many times (as intermediate integra- Other types of description conflicts considered here are the
tion results) during the integration step. Of course there are following:
many variants to a weighted integration tree construction.
Figure 15 shows only two variants of weighted integration

• Name Conflicts. In the schemata the names for classestrees. A designer can influence the weight of each schema to
and attributes can be used in two ways:be integrated by ordering them in this way on an unbal-
If two semantically equivalent classes or attributes areanced tree.

named differently, then a synonym exists.

If a class or an attribute name has a different meaning,Balanced Binary Integration Strategy. The balanced binary
then the given schemata represents a homonym.integration strategy integrates all schemata with the same

weight. No given schema is prioritized. The designer can only • Attribute Conflicts. Two attributes stemming from differ-
decide which given schemata have to be integrated in pairs ent schemata can be in conflict if they express a similar
in the first intermediate integration step. property of the corresponding real-world objects in differ-

In contrast to the binary integration strategies, the n-ary ent ways. This conflict is subdivided into the following
strategies of the second group do not restrict the number of conflict classes which often occur in a combined fashion:
schemata to be integrated to a single intermediate integration
step. Therefore the number of intermediate steps can be fewer
than of those of the binary integration strategy. We distin-
guish between two n-ary integration strategies: the one-shot
(see Fig. 17) and the iterative integration strategy (see Fig.
18).

One-Shot Integration Strategy. A very simple integration
strategy is the one-shot integration strategy. All schemata are
integrated at the same time. The problem with this strategy
is obviously its complexity. For n schemata the complexity in
integrating them results from the fact that each schema can
have correspondences to any number of other schemata.

Iterative Integration Strategy. In contrast to the one-shot in-
tegration strategy the iterative strategy does not integrate all
schemata at the same time. Intermediate integration of sche-
mata is performed. In contrast to the binary integration strat-
egies, the iterative integration strategy is not restricted to
two schemata to be integrated in one intermediate integration
step. The next phases follow the binary approach whereby ex-

Given schemata
actly two schemata are integrated as expressed in the OMT
object model. Figure 18. N-ary iterative integration strategy.



DATABASE DESIGN 559

�schema name� . �class name� . �attribute name�Different Values. Homonyms and synonyms can occur
homonymon a value level. For example, the strings ‘‘red’’ and

�schema name� . �class name� . �attribute name�‘‘rot’’ as values of two semantically equivalent color
attributes are synonyms caused by differently used

To overcome homonym conflicts, different names can be intro-languages (English and German). Another example
duced by the designer and the original names are changed ac-was given previously where one price attribute in-
cordingly.cludes the VAT and the corresponding price attribute

Renaming classes and attributes as a schema transforma-excludes it.
tion involves a very simple transformation. Since class and

Different Precisions. The semantically equivalent attri- attribute names often occur in reference attributes and integ-
butes can describe a property in different units of rity constraints, the renaming operation must be performed
measure. For instance, one integer attribute might there too.
fix the length of a real-world object in meters Attribute Conflicts. If two attributes from different sche-
whereas a corresponding integer attribute gives the mata express a similar property of the corresponding real-
length in inches. The use of different units of mea- world objects in different ways, then an attribute conflict ex-
surement introduces different precision levels. ists. Let us assume that we have two corresponding attributes

• Conflicting Integrity Constraints. This conflict is the a and b of an attribute conflict with domains DOM(a) and
most difficult to assess. For corresponding classes or at- DOM(b). Different design views often cause different but se-
tributes where different integrity constraints are set, the mantically related attribute values of the two attributes:
object states or attribute values have different restric-
tions. Typically incomplete schema specifications are the Different Values. Similar to attribute names, attribute val-
cause of such conflicts. For example, each person of the ues can be synonyms or homonyms. In the homogeniza-
class person of a first schema must be older than 30, tion, the designer must specify the mapping between
whereas for the corresponding class the other schema do the attribute domains. The function
not give an age restriction.

f a→b ⊆ DOM(a) × DOM(b)

Taking these short descriptions of conflict classes, we now
relates a value of attribute a to a value of attribute b.turn to ideas on overcoming these conflicts.
There must also exist an inverse functionName Conflict. The classes and attributes of the schemata

to be integrated can be compared by consulting a thesaurus. f a→a ⊆ DOM(b) × DOM(a)
If two semantically equivalent classes (or attributes) are
found to have different names, then the designer has to spec- in order to propagate global inserts or updates to the
ify a synonym correspondence assertion of the following form: component databases. The mapping must be therefore

one-to-one. As Refs. 77, 83, 84, and 85 show, a table
can be used to express the value correspondences. An�schema name� . �class name�
example is given in Table 2, which compares Englishsynonym
and German words for colors.�schema name� . �class name�

Sometimes it does not make sense to use a table in
order to map attribute values. The functions f a�b andFor attributes the designer has to specify a synonym of the
f b�a can be alternatively defined by arithmetic formulasfollowing form:
or be computed algorithmically (77,83,85,86). An exam-
ple is the definition of the functions f a�b and f b�a in map-

�schema name� . �class name� . �attribute name� ping price values by two arithmetic formulas. In the
synonym first case the VAT is included, and in the other the VAT

�schema name� . �class name� . �attribute name� is excluded:

The placeholder in the brackets is replaced by the actual cor-
responding terms. Synonyms are easily removed by renaming

f a→b(a) = a
1 + VAT

f b→a(b) = b ∗ (1 + VAT)classes and attributes. For the corresponding classes or attri-
butes, respectively, common names are found.

For the resolution of different attribute values, one ofHomonyms can be detected by comparing the class and at-
the two representations must be selected. A schematribute names. The designer has to declare class names to

be homonyms in homonym correspondence assertions of the
following form:

�schema name� . �class name�
homonym

�schema name� . �class name�

Homonym corresponding assertions for attributes have the
following form:

Table 2. Color Mapping by a Table

English Colors German Colors

Red Rot
Blue Blau
Green Grün
Black Schwarz
White Weiß



560 DATABASE DESIGN

transformation results in one attribute being moved In Ref. 86 this conflict is solved by adopting both attributes
separately to the merged and external schemata. The seman-into the selected representation. In this instance we
tic relationship between those attributes is expressed by ahave the functions f a�b and f b�a.
specialization relationship. However, only few object modelsSince the domains of corresponding attributes can
support the concept of attribute specialization.have different bounds, for some attribute values no re-

Another approach to deal with different precisions is de-lated value of the corresponding attribute may exist. In
scribed in Ref. 87. Often the more precise attribute can beRefs. 77 and 86 this problem is handled by uniting the
split into two attributes in such a way that between one ofdomains in order to compute the domain of the trans-
them and the corresponding attribute a one-to-one mappingformed attribute. Additional integrity constraints are
can be specified. For example, the attribute name in one data-used to restrict the united domain. In this way the prob-
base contains the first and last name of persons, whereas thelem of differently bounded domains is transformed to
attribute in the other database contains only the last name.the problem of conflicting integrity constraints.
The attributes have different precisions. The conflict is re-Different Precisions. The values of two corresponding attri-
solved by splitting the first attribute into the attributesbutes a and b describe a property with different preci-
first-name and last-name.

sions. Attribute a is more precise than attribute b. In
Conflicting Integrity Constraints. The given schemata to be

this conflict problem the specification of a mapping homogenized often specify integrity constraints on schema el-
function f a�b is needed. Due to the different precisions, ements (classes and attributes). Due to semantic relation-
however, the function is not injective. More than one ships between schema elements, there can exist correspon-
precise value is related to one value of the less precise dence assertions between them. A conflict between the
attribute. Therefore no inverse function exists. integrity constraints occurs if the schemata specify different

These must be specified from the less precise attri- integrity constraints for corresponding schema elements and
bute to the corresponding one by an additional function thus restrict the underlying databases differently.
f b�a that relates to each value exactly one more precise For instance, two classes from different databases with the
value. The existence of the functions f a�b and f b�a is nec- same name person are semantically related to each other by
essary to support global read as well as update opera- a correspondence assertion. The persons of the first database
tions for mappings in both directions. The length of are restricted to persons that are younger than 50, and the
real-world objects, for example, can be expressed by an persons of the corresponding class must be older than 20
integer attribute in inches, whereas the corresponding years. In this case the integrity constraints are in conflict.
integer attribute uses meters (see Fig. 3). Both func- Before we consider the resolution of such conflicts, we in-
tions can be defined as follows: vestigate some explanations for conflicting integrity con-

straints.
Reasons for Conflicting Integrity Constraints

1. Incomplete Database Design. It may happen that com-

f a→b(a) = 
a ∗ 0.0254�

f b→a(b) =
⌈

b
0.0254

⌉
ponent databases were not designed completely or that
not all integrity constraints are defined explicitly,

In Ref. 85 there are distinguished two types of conflict res- though they are fulfilled by the databases due to im-
olution: plicit application semantics. For instance, a database

may contain only persons older than 20, but this integ-
• Preference of More Precise Presentation. The less precise rity constraint is not specified. Due to this application

attribute is transformed to a more precise attribute. If no only valid persons are inserted into the database. In
other words, that integrity constraint exists implicitlyfunction f b�a is given, then the inverse mapping of f a�b

in the database application.produces many precise values for one given value. As
proposed by Ref. 85, we can use a value set, from which 2. Wrong Correspondence Assertions. In the comparison of
exactly one value is correct. To each value of the set an schemata to be homogenized wrong correspondence as-
additional value of probability is computed and associ- sertions are identified. There often are different integ-
ated. rity constraints defined on corresponding schema ele-

If, however, the function f b�a is specified, then it is ments.
used for the transformation. A problem arises because 3. Different Contexts. Corresponding classes do not exactly
f a�b and f b�a are not mutually inverse. The result of this express the same semantics but are close semantically
missing property is that after a global update operation to each other. For example, one class contains employ-
on the transformed attribute, the read operation returns ees of an insurance firm and the corresponding class
a value that can differ from the update value. In this way contains persons insured by the firm. There is a corre-
we have loss of information. spondence between the two classes, since some persons

can be employees and insured persons simultaneously.• Preference of Less Precise Presentation. The more precise
attribute is transformed to the less precise presentation.
A global value can be stored locally and read again as If conflicting integrity constraints are caused by an incom-
the same value. However, due to the less precise presen- plete database design, then an integrity constraint on one
tation, there is information loss during the transforma- schema element is valid to the corresponding schema ele-

ment. Therefore the schemata can be enriched by this integ-tion which violates the demand for completeness.



DATABASE DESIGN 561

ponent databases. Their rejection is not plausible for
global applications.

• References 90, 91, 92. These papers formally describe the
problem of conflicting integrity constraints. They assume
complete schema specification, and they therefore do not
solve the conflict, nor as a matter of fact propose a real
solution.

• References 77, 93. Both approaches propose to adopt the
least restrictive integrity constraint from the conflicting
integrity constraints. This approach is similar to the dis-
junctive combination. Global insertion of objects cannot
always be propagated to the component databases.

Table 3. Mapping Between Different Length Measurements

Inches Meters
. .. .. .
40 1
. .. .. .
78 1
79 2
. .. .. .

118 2
119 3

. .. .. .

• References 94, 95. The approach described in these pa-
pers differs from the other approaches because the speci-
fied integrity constraints are related to potential class ex-rity constraint. In this way a schema integration helps to im-
tensions (set of possible instances of a class). In aprove the given schemata. Conflicting integrity constraints
decomposition step the classes of the schemata to be inte-can also help to detect wrong correspondence assertions.
grated are decomposed in such a way that each pair ofWrong correspondence assertions are removed or replaced by
classes ends up with either identical or disjoint exten-correct ones.
sions. Conflicting integrity constraints can now only oc-Different Contexts. Conflicting integrity constraints caused
cur between classes with identical extensions. For theseby differing contexts require more complex solutions. There
classes the integrity constraints are combined conjunc-are two general approaches:
tively. The building of global classes in that approach is
accompanied by an extensional uniting of disjoint• Disjunctive Combination. For each given schema and for
classes. The integrity constraints of the global class areeach schema element, the existing integrity constraints
then formed by combining disjunctively the integrity con-are combined disjunctively with the integrity constraints
straints of the original classes. The processes of exten-from the corresponding schema element. As a result the
sional decomposition and composition of the GIM-integrity constraints for those objects are weaken as the
approach are explained in more detail in a later section.objects are stored in both databases. Such a weakening

has a disadvantage. A new object may be inserted on the
Structural Conflicts. Most object models give the designerglobal level but not simultaneously stored in the compo-

the freedom to model a real-world aspect differently and notnent databases. In our previous example, a disjunctive
use an identical model concept. This freedom creates struc-combination of the integrity constraints age < 50 and

age > 20 would eliminate the integrity constraints. Per- tural conflicts between schema elements modeling the same
sons younger than 20 would be inserted globally but not real-world aspect. The most frequent type of structural con-
in both databases simultaneously. flict appears between an attribute and a class. An attribute

of a class of one schema corresponds to a class of the other• Conjunctive Combination. An alternate approach is to
schema. On the instance level, there are correspondences be-make the integrity constraints of a schema element more
tween attribute values and objects. The integration designerrestrictive so that not all locally stored objects are valid
has to compare both schemata to find such structural con-with respect to the combined integrity constraints. In
flicts. He has to specify such conflicts as structural correspon-other words, they are not visible on the global level. A
dence assertions of the following form:conjunctive combination example would restrict the ages

of persons to be between 20 and 50. Persons outside this
�schema name� . �class name� . �attribute name�range would be stored locally and not appear in global

structurally corresponds toapplications.
�schema name� . �class name�

The discussion above brings us to the problem of finding in
the literature adequate coverage of integrity constraints, For instance, the first schema has the class Book with the
which is a difficult subject. Our survey below indicates the attributes title, isbn, and publisher whereas the second
problems encountered so far in the work on conflicting integ- schema contains the class Publisher with its attributes
rity constraints: name and address (see Fig. 19). A publisher, such as John

Wiley, can be an attribute value in the first schema and an
• References 88, 89. These papers distinguish between sub- object in the second schema. The structural conflict is speci-

jective and objective integrity constraints. Subjective in- fied by the following structural correspondence assertion:
tegrity constraints are important only in the local con-
text. They are not considered in the integration process
and are therefore not visible on global level.

Due to the weakening of integrity constraints, this ap-
proach is similar to the disjunctive combination. Al-
though subjective integrity constraints are specified lo-

Book
Title
ISBN

Publisher

Publisher
Name

Address

cally, they have consequences for global applications. Not
all global inserted objects can be propagated to the com- Figure 19. Example of a structural conflict.



562 DATABASE DESIGN

S1.Book.publisher example, the name of a person can be stored redundantly in
two databases. Such a problem can occur when values differstructurally corresponds to

S2.Publisher somewhat (data heterogeneity). The merged schema, how-
ever, must present exactly one integrated value for each attri-
bute of two database objects representing the same real-worldStructural conflicts are described in Refs. 77, 82, 96, and 97.
object. Unfortunately, there exists no general algorithm toFor the resolution of this conflict one of the two presentations
compute the integrated values from the given values. The pro-(as class or as attribute) must be preferred. Most approaches
cedure must always be adapted to the specific situation. Twofollow the strategy to prefer the less restrictive presentation.
reasons for different versions of the same attribute value areApplying this strategy to the structural conflict means to se-
the following:lect the class presentation as the preferred variant. The class

presentation enables object sharing because many references
• Obsolete Values. The values represent an attribute of ato the same object are possible. The same situation in the

real-world object at different times before and after someattribute presentation, however, will store the attribute value
change has occurred in the attribute of the real-worldredundantly. Furthermore, in contrast to the attribute vari-
object. Ideally the more current value should be selected.ant, a class presentation allows additionally characterizing
In some cases the more current value is found in one ofattributes.
the databases. Then it is easy to select the right value asFor homogenization the attribute presentation must be
the integrated value. More often the decision is not sotransformed into a class presentation. In this transformation
clearcut. Then an algorithm specific to the situation muststep, a class must be created for each attribute involved in a
be developed to compute the integrated value.structural conflict, whereby the attribute becomes a reference

attribute directed to the new class. The newly created class • Wrong Values. One or both values are wrong. The prob-
then has generated for it an attribute that stores the value of lem is to find the wrong value. In general, this is an un-
a former attribute. solvable problem. For specific situations, however, good

This transformation must consider integrity constraints, heuristics can often be found.
since new integrity constraints appear. For example, there is

So far we have not considered the semantic conflict and thea uniqueness constraint defined for the new class on its gener-
conflict of different attribute sets for corresponding classes.ated attribute. Furthermore all integrity constraints that re-
The next subsection deals with these conflicts and shows howstrict the attribute of the attribute variant are adopted into
they can be resolved by merging the given schemata into onethe generated attribute of the new class.
schema. We will describe the classical approach which never-On the instance level attribute values become objects. With
theless has some disadvantages. In a subsequent subsection,each object a unique object identifier has to be associated. In
we will introduce a newer approach that can be used to over-order to have bijective database state mapping between the
come these disadvantages.schemata before and after the schema transformation, bijec-

tive mapping between the attribute values and the generated
Semantic Conflicts and Different Sets of Attributes. The prob-object identifier must exist. Therefore an auxiliary table has

lem of different semantics is the most frequent contributor toto be managed.
conflict in a schema integration. Conflict can also appear be-
tween semantically related classes when their extensionsSchema Merging
stand in a specific set relationship. For such related classes,

In this design step the homogenized schemata are merged different sets of attributes might be defined. In the literature
into one schema. The merging concerns two types of schema these two types of conflict are often combined as in, for in-
elements: stance, Refs. 77, 96, 98, 99, 100, 101, and 102. Here we follow

the approach of Ref. 77 which is representative of the pro-
• Schema Elements without Correspondences. Unique posed approaches.

schema elements that have no semantic correspondence The semantic conflict between two classes is given by a
to schema elements of the second schema are merged correspondence expression that fixes the semantic (exten-
without modifications. sional) relationship between them. There are five kinds of se-

• Schema Elements with Correspondences. Schema ele- mantic relationships: �, �, �, �, and �.
ments with semantic correspondences cannot be adopted The equivalence (�) means the equivalence of the class ex-
in a one-to-one fashion into the merged schema because tensions: For each instance of the first or the second class,
this approach would violate the demand for minimality. there exists at every instant of time an instance of the corre-
The schema elements with the same semantics are sponding class extension that denotes the same real-world ob-
merged into one schema element of the resulting schema. ject. A subset condition (� or �) express this implication only

in one direction. That is, the class extensions are always in
the specified subset relationship.Due to conflicts not yet resolved we can have semantic cor-

respondences between schema elements that do not express The symbol for disjointness (�) expresses that instances
from two semantically related classes never denote the samethe same semantics. The next subsections will describe these

conflicts and how they are resolved. real-world object. The symbol for overlapping (�) means no
restriction for the class extension. The class extensions canMerging schema elements with correspondences means to

remove redundancy. Redundancy can also appear on the in- contain semantically related and unrelated objects.
A semantic correspondence assertion is defined in the fol-stance level. In component databases, values for the same at-

tributes and for the same real-world objects can exist. For lowing form:



DATABASE DESIGN 563

�schema name� . �class name�
�cor�

�schema name� . �class name�
with cor � ��, �, �, �, ��

For example, each person of the class Person of the first
database is always stored in the class Person of the second
database, and the extension of class S2.Person can contain
more persons than the extension of the corresponding class.
Therefore we have an extensional inclusion between these
classes:

S1.Person
�

S2.Person

The classes related by a semantic correspondence assertion
can have corresponding attributes. Due to the resolution of
attribute conflicts related attributes have same names. The
related classes, however, can have different attribute sets.
The first class of two related classes has the attributes �a1,
. . ., ak, b1, . . ., bl�, whereas the second class has the attri-
butes �a1, . . ., ak, c1, . . ., cm�. That is, the attributes �a1,
. . ., ak� denote the same set of attributes.

For example, the classes publication and book from dif-
ferent library databases can have overlapping extensions (�).
The class publication has the attributes �title, author,
year, type�, whereas for the class book the attributes
�title, author, isbn� are defined. The classes overlap inten-
tionally.

The conflicts of semantics and the different sets of attri-

A
a1

…

ak

b1

…

bl

A ∪ B
a1

…

ak

A ∩ B
a1

…

ak

b1

…

bl

c1

…

cm

B
a1

…

ak

c1

…

cm

butes are resolved by applying the specialization concept in
the federated schema. For this reason most approaches to Figure 20. Resolution of a semantic conflict with different sets of at-
schema integration suggest using an object-oriented data tributes.
model as the common data model. For the resolution of these
conflicts two additional classes are generated: a common su-
perclass generated by a process of generalization and a com- the superset and their intersection equals the subset, two

classes can be omitted. The result is illustrated in Fig. 22.mon subclass by application of a specialization step. The ex-
tension of the superclass is defined by the union of the
extensions of the given classes, and the extension of the sub- GIM-Approach. The presented approach of resolving se-

mantic conflicts and different sets of attributes has some dis-class is computed by the intersection. The subclass inherits
all attributes from the superclasses, whereas the common su- advantages. It is based on the existence of binary semantic

correspondence assertions. However, often more than twoperclass contains the common attributes �a1, . . ., ak�. Obvi-
ously the designer has to assign useful names to the new classes are extensionally related, as is the case, for instance,

if two specialization hierarchies are to be integrated. The ex-classes. The four resulting classes are illustrated in Fig. 20.
There we show the inherited attributes explicitly. The appli- tensional relations between more than two classes cannot be

exactly expressed by binary semantic correspondence asser-cation of this approach to the example concerning the overlap-
ping classes publication and book is illustrated in Fig. 21. tions. Therefore we need another formalism. As Ref. 103 pro-

poses, we can use base extensions. In the following exampleThe four classes are essential when the related classes
have overlapping extensions and sets of attributes. Other- we demonstrate the use of base extensions.

Figure 23 shows two example schemata. The union of thewise, some of the four classes can be omitted. For such a re-
duction the extensions of the four classes must be compared. extensions of the classes Employee and People always

equals the extension of the class Person. This informationIf the extensions of some of the four classes are equivalent,
then the highest superclass survives, whereas the other cannot be expressed using binary correspondence assertions.

Table 4 specifies exactly this extensional relationship. The ex-classes are omitted. The set of attributes of the topmost class
is formed by the union of the attribute sets from the classes tensions of the example classes are decomposed into three dis-

joint base extensions. Each class extension is represented aswith equivalent extensions. Besides this reduction, classes
with empty extensions can be removed. the union of the corresponding base extensions. In this way

the extensions of the classes and their extensional relation-The reduction can be demonstrated for the classes
S1.Person and S2.Person. The extension of the class ships can be specified correctly. Of course a base extension

refers to potential class instances, since the extensional rela-S1.Person is always a subset of the extension of class
S2.Person. Since the union of a set with its superset equals tionships are independent of a concrete database state. The



564 DATABASE DESIGN

Table 4. Extensional Relationships of the Example

Base Extension 1 2 3

S1.Person � � �

S1.Employee � �

S2.People � �

following three semantic correspondence assertions, however,
do not completely define the extensional relationships:

S1.Person � S1.Employee
S1.Person � S2.People

S1.Employee � S2.People

The semantic correspondence assertions cannot express
that each person of the class Person is simultaneously stored
as an object in the class Employee or in the class People.

Due to the incomplete information about extensional rela-
tionships, the approach introduced in the previous subsection
cannot produce an adequate merged schema. Furthermore
this approach can result in a merged hierarchy with a lot of
generated subclasses and superclasses. As we will show in

Publication

Publication ∪ book

Title
Author

Title
Author
Year
Type

Book

Title
Author
ISBN

Publication ∩ book

Title
Author
Year
Type
ISBN

the next subsection, the GIM-approach [see (87)] produces in
Figure 21. Resolution for the overlapping classes publication general relatively simple schemata.
and book. Assume that we specified extensional relationships using

base extensions. Following the GIM-approach, each base ex-
tension is now interpreted as a class. Such a class has an
attribute if at least one of the corresponding original classes
defines that attribute. In this way the schemata are merged
into one merged schema considering base extensions as
classes. This merged schema can be regarded as a table relat-
ing base extensions to attributes. Of course this presentation
is simplified because integrity constraints, data types, and
reference attributes are not considered. It is, however, suffi-
cient to explain the main idea of the GIM-approach. Table 5
presents the merged schema of our example. Here all three
attributes are defined for all base extensions.

Since the merged schema cannot serve as a schema for ap-
plications, the merged schema has the function of an interme-

S2.person

Name
Birthdate

S1.person

Name
Birthdate

Profession
diate representation. An additional step is necessary to pro-
duce an understandable schema. This step can also be usedFigure 22. Resolution for the classes S1.Person and S2.Person.
to derive external schemata and is therefore described in the
next section.

Derivation of External Schemata

In general, more than one application runs on the global level
of a database integration. The applications often have differ-
ent views on the integrated data. Analogously to views in re-
lational databases, external schemata have to fit to the view
of the applications and provide logical data independence.
Due to the similarity with the views of traditional databases,
their mechanisms can be applied to derive external schemata.

PersonS1:

Name
Phone

PeopleS2:

Name
Salary

Employee

Salary

Figure 23. Two example schemata.

Table 5. Merged GIM-Schema of the Example

Base Extension 1 2 3

Name � � �

Phone � � �

Salary � � �



DATABASE DESIGN 565

2. C. Batini, S. Ceri, and S B. Navathe, Conceptual Database De-Merging schemata produces an object-oriented, merged
sign—An Entity-Relationship Approach, Redwood City, CA:schema. Therefore the external schemata have to be derived
Benjamin/Cummings, 1992.from an object-oriented schema. In general, this process is

3. T J. Teorey, Database Modeling and Design: The Fundamentalmore complex than deriving views from relational schemata.
Principles, San Francisco: Morgan Kaufmann, 1994.In Ref. 104, we have an overview of view mechanisms for ob-

4. R. Elmasri and S. B. Navathe, Fundamentals of Database Sys-ject-oriented databases.
tems, Redwood City, CA: Benjamin/Cummings, 1994.The GIM-approach results in a merged schema where we

5. R. J. Wieringa, Requirements Engineering: Frameworks for Un-have a lot of disjoint classes. The merged schema is repre-
derstanding, Chichester: Wiley, 1996.sented by a table that assigns attributes to base extensions.

6. G. Saake, Conceptual Modeling of Database Applications, in D.Due to the disjointness of the classes, this schema contains
Karagiannis (ed.), Proc. 1st IS/KI Workshop, Ulm, Berlin:too many classes to be understandable for global applications.
Springer-Verlag, 1991, pp. 213–232.To derive external schemata, however, GIM-classes can be re-

7. G. Saake, Descriptive specification of database object behaviour,lated to classes of the external schemata. Each correct class
Data Knowl. Eng., 6: 47–74, 1991.corresponds to a rectangle in the GIM-schema. To be more

8. U. Schiel et al., Towards multi-level and modular conceptualexact, for each class of the external schemata, there is a se-
schema specifications, Inf. Syst., 9: 43–57, 1984.quence of base extensions and attributes in the table so that

9. J. Carmo and A. Sernadas, A temporal logic framework for athe ticks form a rectangle. Therefore, in order to derive exter-
layered approach to systems specification and verification, in C.nal classes, the designer has to find rectangles in the GIM-
Rolland et al. (eds.), Proc. IFIP Working Conf. Temp. Aspects

schema. For finding a minimal number of external classes the Info. Syst., Amsterdam: North-Holland, 1988, pp. 31–46.
found rectangles must be maximal. Maximal rectangles can-

10. G. Engels et al., Conceptual modelling of database applications
not be extended by attributes or base extensions. using an extended ER model, Data Knowl. Eng., 9: 157–204,

Different classes stemming from maximal rectangles can 1992.
be in a specialization relationship. A class is a subclass of 11. H. Ehrig and B. Mahr, Fundamentals of Algebraic Specification
another class if its set of base extensions is a subset of the 1: Equations and Initial Semantics, Berlin: Springer-Verlag,
base extension set of the other class. In this way a whole spe- 1985.
cialization hierarchy can be generated. To find maximal rect- 12. P. P. Chen, The entity-relationship model—Towards a unified
angles and specialization relations between them the theory view of data, ACM Trans. Database Syst., 1: 9–36, 1976.
of formal concept analysis can be applied. In Ref. 105 is intro- 13. R. Elmasri and S. B. Navathe, Fundamentals of Database Sys-
duced a theory of formal concept analysis. Applying this the- tems, Redwood City, CA: Benjamin/Cummings, 1994.
ory, however, has an exponential computational complexity. 14. R. A. Elmasri, J. Weeldreyer, and A. Hevner, The category con-
Furthermore it produces a lattice that contains removable cept: an extension to the entity-relationship model, Data &
classes. In Ref. 106 is described an algorithm to compute an Knowledge Engineering, 1 (1): 75–116, 1985.
external schema in correspondence to an application view in 15. R. A. Elmasri, J. Weeldreyer, and A. Hevner, The category con-

cept: An extension to the entity-relationship model, Data Knowl.polynomial complexity.
Eng., 1: 75–116, 1985.The GIM-schema of our example has exactly one maximal

16. M. Atkinson et al., The object-oriented database system mani-rectangle. This example demonstrates that the schema inte-
festo, in W. Kim, J.-M. Nicolas, and S. Nishio (eds.), Proc. 1stgration can result in a very simple external schema, whereas
Int. Conf., DOOD’89, Kyoto, Amsterdam: North-Holland, 1990,the other approach produces an unnecessarily complex
pp. 223–240.merged schema.

17. A. Sernadas, Temporal aspects of logical procedure definition,
Info. Systs., 5 (3): 167–187, 1980.

CONCLUSION 18. U. W. Lipeck, Dynamic Integrity of Databases (in German), Ber-
lin: Springer-Verlag, 1989.

The traditional view of the database design process assumes 19. J. Chomicki, Real-time integrity constraints, Proc. 11th ACM
that a database is designed and developed from scratch. In SIGACT-SIGMOD-SIGART Symp. Prin. Database Syst., San
practice, we have to deal with existing databases quite fre- Diego, 1992, pp. 274–281.
quently. Due to the fact that a redesign of an existing data- 20. J. Chomicki and D. Toman, Temporal logic in information sys-

tems, in J. Chomicki and G. Saake (eds.), Logics for Databasesbase is expensive, database integration is often required. The
and Information Systems, Boston: Kluwer, 1998, pp. 31–70.design of a global database is also restricted by the existing

21. J. Eder et al., BIER: The behaviour integrated entity relation-databases and the requirement that their design not be
ship approach, in S. Spaccapietra (ed.), Proc. 5th Int. Conf.changed so that local applications can be continued without
Entity-Relationship Approach (ER’86), Dijon, 1987, pp. 147–166.modifications.

22. U. W. Lipeck and G. Saake, Monitoring dynamic integrity con-The research in the database field shows that database de-
straints based on temporal logic, Inf. Syst., 12: 255–269, 1987.sign and database integration are still highly developing top-

23. R. J. Wieringa, J.-J. Ch. Meyer, and H. Weigand, Specifying dy-ics. Current as well as future application areas (data ware-
namic and deontic integrity constraints, Data Knowl. Eng., 4:houses, databases for OLAP, etc.) will likely need supporting
157–189, 1989.work in design and integration.

24. S. Khoshafian and G. P. Copeland, Object identity, in N. Meyro-
witz (ed.), Proc. 1st Int. Conf. OOPSLA’86, Portland, Oregon,

BIBLIOGRAPHY ACM Press, 1986, pp. 406–416.
25. K. Hülsmann and G. Saake, Representation of the historical in-

1. H. Mannila and K.-J. Räihä, The Design of Relational Databases, formation necessary for temporal integrity monitoring, in F.
Banchilhon, D. Thanos, and D. Tsichritzis (eds.), AdvancesReading, MA: Addison-Wesley, 1992.



566 DATABASE DESIGN

Database Technol.—EDBT’90, Proc. 2nd Int. Conf. Extending 50. D. Heimbigner and D. McLeod, A federated architecture for in-
formation management, ACM Trans. Office Info. Systs., 3 (3):Database Technol., Venice, Berlin: Springer-Verlag, 1990, pp.

378–392. 253–278, 1985.
26. J. Rumbaugh et al., Object-Oriented Modeling and Design, En- 51. R. Elmasri and S. B. Navathe, Fundamentals of Database Sys-

glewood Cliffs, NJ: Prentice-Hall, 1991. tems, Redwood City, CA: Benjamin/Cummings, 1994.
27. G. Booch, I. Jacobson, and J. Rumbaugh, Unified Modeling Lan- 52. R. Ramakrishnan, Database Management Systems, Boston, MA:

guage (version 1.0), Rational Software Corp., Santa Clara, CA, WCB/McGraw-Hill, 1998.
1997.

53. A. L. Tharp, File Organization and Processing, New York: Wi-
28. R. Jungclairs et al., Troll—a language for objected-oriented ley, 1988.

specification of information systems, ACM Trans. Info. Systs., 14
54. D. E. Shasha, Database Tuning: A Principled Approach, Engle-(2): 175–211, 1996.

wood Cliffs, NJ: Prentice-Hall, 1992.
29. U. W. Lipeck, Transformation of Dynamic Integrity Constraints

55. M. T. Özsu and P. Valduriez, Principles of Distributed Databaseinto Transaction Specifications, Theor. Comput. Sci., 76: 115–
Systems, Englewood Cliffs, NJ: Prentice-Hall, 1992.142, 1990.

56. J. Banerjee et al., Semantics and implementation of schema evo-30. S. Khosla, T. Maibaum, and M. Sadler, Database specification,
lution in object-oriented databases. In U. Dayal and I. Traigerin T. Steel and R. A. Meersman (eds.), Proc. IFIP WG 2.6 Work-
(eds.), Proc. of the 1987 ACM SIGMOD Int. Conf. on Managementing Conf. Data Semantics (DS-1), Hasselt, Belgium, Amsterdam:
of Data, San Francisco, CA, 311–322, ACM SIGMOD Record, 16North-Holland, 1985, pp. 141–158.
(3): ACM Press, 1987.31. J. Fiadeiro and A. Sernadas, Specification and verification of

database dynamics, Acta Info., 25: 625–661, 1988. 57. G. T. Nguyen and D. Rieu, Schema evolution in object-oriented
database systems, Data & Knowledge Engineering, 4 (1): 43–32. H. Wächter and A. Reuter, The ConTract model, in A. K. Elma-
67, 1989.garmid (ed.), Database Transaction Models for Advanced Appli-

cations, San Mateo, CA: Morgan Kaufmann, 1992, pp. 219–263. 58. S. L. Osborn, The role of polymorphism in schema evolution in
33. M. Atkinson et al., The object-oriented database system mani- an object-oriented database, IEEE Trans. Knowl. Data Eng., 1

festo, in W. Kim, J.-M. Nicolas, and S. Nishio (eds.), Proc. 1st (3): 310–317, 1989.
Int. Conf., DOOD’89, Kyoto, Amsterdam: North-Holland, 1990, 59. J. Andany, M. Leonard, and C. Palisser, Management of schema
pp. 223–240. evolution in databases. In G. M. Lohmann et al. (eds.), Proc. of

34. C. Beeri, Formal Models for Object-Oriented Databases, in W. the 17th Int. Conf. on Very Large Data Bases (VLDB’91), Barce-
Kim, J.-M. Nicolas, and S. Nishio, eds., Proc. 1st Int. Conf., lona, Spain, 161–170, San Mateo, CA: Morgan Kaufmann, 1991.
DOOD’89, Kyoto, Amsterdam: North-Holland, 1990, pp. 60. R. Zicari, A framework for schema updates in an object-oriented
405–430. database system. In N. Cercone and M. Tsuchiya (eds.), Proc. of

35. S. Abiteboul and R. Hull, IFO—A formal semantic database the 7th IEEE Int. Conf. on Data Engineering, ICDE’91, Kobe,
model, ACM Trans. Database Syst., 12: 525–565, 1987. Japan, 2–13, IEEE Computer Society Press, 1991.

36. D. S. Batory and W. Kim, Modeling Concepts for VLSI CAD 61. E. Sciore, Versioning and configuration management in an ob-
Objects, ACM Trans. Database Syst., 5: 322–346, 1985. ject-oriented data model, VLDB J., 3 (1): 77–107, 1994.

37. W. Kim and F. H. Lochovsky, eds., Object-Oriented Concepts,
62. E. Bertino and L. Martino, Object-Oriented Database Systems—Databases, and Applications, New York: ACM Press, 1989.

Concepts and Architectures. Wokingham, England: Addison-
38. M. M. Hammer and D. J. McLeod, Database description with Wesley, 1994.

SDM: A semantic database model, ACM Trans. Database Syst.,
63. A. Kemper and G. Moerkotte, Object-Oriented Database Manage-6: 351–386, 1981.

ment. Englewood Cliffs, NJ: Prentice-Hall, 1994.
39. R. Hull and R. King, Semantic database modelling: Survey, ap-

64. H. Frank and J. Eder, Integration of behaviour models. In S. W.plications, and research issues, ACM Comput. Surveys, 19: 201–
Liddle (ed.), Proceedings ER’97 Workshop on Behavioural Models260, 1987.
and Design Transformations: Issues and Opportunities in Concep-40. S. D. Urban and L. Delcambre, An analysis of the structural,
tual Modeling (6–7 November 1997, UCLA, Los Angeles, CA),dynamic, and temporal aspects of semantic data models, Proc.
1997.Int. Conf. Data Eng., 1986, pp. 382–387.

65. G. Preuner and M. Schrefl, Observation consistent integration41. J. Rumbaugh et al., Object-Oriented Modeling and Design, En-
of business processes. In C. McDonald (ed.), Database Systems:glewood Cliffs, NJ: Prentice-Hall, 1991.
Proceedings of the 9th Australian Database Conference, Perth,42. G. Booch, Object-Oriented Design with Applications, Redwood
Australia, Feb. 1998 (ADC’98), 2 (20); Springer-Verlag: Austra-City, CA: Benjamin/Cummings, 1991.
lian Computer Science Communications, 1998.

43. K. G. Kulkarni and P. Atkinson, EFDM: Extended functional
66. M. T. Özsu and P. Valduriez, Distributed database systems:data model, Comput. J., 29: 38–46, 1986.

Where are we now? IEEE Comput., 24 (8): 68–78, 1991.44. D. Shipman, The functional data model and the data language
67. M. T. Özsu and P. Valduriez, Distributed data management:DAPLEX, ACM Trans. Database Syst., 6: 140–173, 1981.

Unsolved problems and new issues, in T. Casavant and M.45. J. J. V R. Wintraecken, The NIAM information Analysis
Singhal (eds.), Readings in Distributed Computing Systems, LosMethod—Method and Practice. Dordrecht: Kluwer, 1990.
Alamitos, CA: IEEE Computer Society Press, 1994, pp.46. A. Heuer and G. Saake, Databases—Concepts and Languages,
512–514.1. Correction (in German), Bonn: International Thomson, 1997.

68. S. Ceri and G. Pelagatti, Distributed Databases: Principles and47. D. Maier, The Theory of Relational Databases, Rockville, MD:
Systems, New York: McGraw-Hill, 1985.Computer Science Press, 1983.

69. M. T. Özsu and P. Valduriez, Principles of Distributed Database48. C. J. Date and H. Darwen, A Guide to the SQL Standard, Read-
Systems, Englewood Cliffs, NJ: Prentice-Hall, 1991.ing, MA: Addison-Wesley, 1993.

70. D. Bell and J. Grimson, Distributed Database Systems, Reading,49. T. J. Teory, Database Modeling and Design: The Fundamental
Principles, San Francisco, CA: Morgan Kaufmann, 1994. MA: Addison-Wesley, 1992.



DATABASE DESIGN 567

71. A. P. Sheth and J. A. Larson, Federated database systems for 90. J. Biskup and B. Convent, A formal view integration method, in
C. Zaniolo (ed.), Proc. 1986 ACM SIGMOD Int. Conf. Manage. ofmanaging distributed, heterogeneous, and autonomous data-

bases, ACM Comput. Surveys, 22: 183–236, 1990. Data, Washington, DC, pp. 398–407. ACM SIGMOD Rec., 15:
New York: ACM Press, 1986.72. D. Heimbigner and D. McLeod, A federated architecture for in-

91. B. Convent, Unsolvable problems related to the view integrationformation management, ACM Trans. Off. Info. Syst., 3: 253–
approach, in G. Ausiello and P. Atzeni (eds.), Proc. 1st Int. Conf.278, 1985.
Database Theory (ICDT’86), Rome, Berlin: Springer-Verlag,73. W. Litwin, L. Mark, and N. Roussopoulos, Interoperability of
1986, pp. 141–156.multiple autonomous databases, ACM Comput. Surveys, 22:

92. L. Ekenberg and P. Johannesson, Conflictfreeness as a basis for267–293, 1990.
schema integration, in S. Bhalla (ed.), Information Systems and74. J. Grant et al., Query languages for relational multidatabases,
Data Management, Proc. 6th Conf. CIS-MOD’95, Bombay, Berlin:VLDB J., 2: 153–171, 1993.
Springer-Verlag, 1995, pp. 1–13.

75. L. V. S. Lakshmanan, F. Sadri, and I. N. Subramanian, Sche-
93. M. P. Reddy, B. E. Prasad, and A. Gupta, Formulating globalmaSQL—A language for interoperability in relational multi-da-

integrity constraints during derivation of global schema, Datatabase systems, in T. M. Vijayaraman et al. (eds.), Proc. 22nd
Knowl. Eng., 16: 241–268, 1995.Int. Conf. Very Large Data Bases (VLDB’96), Bombay, San Fran-

94. S. Conrad, I. Schmitt, and C. Türker, Dealing with integritycisco: Morgan Kaufmann, 1996, pp. 239–250.
constraints during schema integration, in Engineering Feder-76. C. Batini, M. Lenzerini, and S. B. Navathe, A comparative anal-
ated Database Systems EFDBS’97—Proc. Int. CAiSE’97 Work-ysis of methodologies for database schema integration, ACM
shop, Barcelona, 1997, pp. 13–22. Fakultät für Informatik, Uni-Comput. Surveys, 18: 323–364, 1986.
versität Magdeburg, 1997.

77. S. Spaccapietra, C. Parent, and Y. Dupont, Model independent
95. S. Conrad, I. Schmitt, and C. Türker, Considering integrity con-assertions for integration of heterogeneous schemas, VLDB J.,

straints during federated database design, in Advances in Data-1: 81–126, 1992.
bases, 16th British Nat. Conf. Databases, BN-COD 16, Cardiff,

78. F. Saltor, M. Castellanos, and M. Garcia-Solaco, Suitability of Wales, 1998, Berlin: Springer-Verlag, 1998.
data models as canonical models for federated databases, ACM 96. A. Motro, Superviews: Virtual integration of multiple databases,
SIGMOD Record, 20: 44–48, 1991. IEEE Trans. Softw. Eng., 13: 785–798, 1987.

79. M. Castellanos, Semantic enrichment of interoperable data- 97. S. Spaccapietra and C. Parent, View integration: A step forward
bases, in H.-J. Schek, A. P. Sheth, and B. D. Czejdo (eds.), Proc. in solving structural conflicts, IEEE Trans. Knowl. Data Eng.,
3rd Int. Workshop on RIDE-IMS’93, Vienna, Los Alamitos, CA: 6: 258–274, 1994.
IEEE Computer Society Press, April 1993, pp. 126–129.

98. M. T. Özsu and P. Valduriez, Distributed database systems:
80. U. Hohenstein, Using Semantic Enrichment to Provide Interop- Where are we now? IEEE Comput., 24 (8): 68–78, 1991.

erability between Relational and ODMG Databases, in J. Fong
99. M. V. Mannino, B. N. Navathe, and W. Effelsberg, A rule-basedand B. Siu (eds.), Multimedia, Knowledge-Based and Object-

approach for merging generalization hierarchies, Inf. Syst., 13:Oriented Databases, Berlin: Springer-Verlag, 1996, pp. 210–232.
257–272, 1988.

81. R. G. G. Cattell and D. K. Barry, eds., The Object Database Stan- 100. A. P. Sheth, S. K. Gala, and S. B. Navathe, On automatic rea-
dard: ODMG-93, Release 2.0, San Francisco, CA: Morgan Kauf- soning for schema integration, Int. J. Intell. Coop. Inf. Syst., 2:
mann, 1997. 23–50, 1993.

82. S. Navathe and A. Savasere, A schema integration facility using 101. M. Garcia-Solaco, M. Castellanos, and F. Saltor, A semantic-
object-oriented data model, in O. A. Bukhres and A. K. Elmagar- discriminated approach to integration in federated databases, in
mid (eds.), Object-Oriented Multidatabase Systems—A Solution S. Laufmann, S. Spaccapietra, and T. Yokoi (eds.), Proc. 3rd Int.
for Advanced Applications, Upper Saddle River, NJ: Prentice- Conf. Coop. Inf. Syst. (CoopIS’95), Vienna, 1995, pp. 19–31.
Hall, 1996, pp. 105–128.

102. Y. Dupont and S. Spaccapietra, Schema integration engineering
83. U. Dayal and H. Y. Hwang, View definition and generalization in cooperative databases systems, in K. Yetongnon and S. Hariri

for database integration in a multidatabase system, IEEE (eds.), Proc. 9th ISCA Int. Conf. PDCS’96, Dijon, 1996, pp.
Trans. Softw. Eng., 10: 628–644, 1984. 759–765.

84. L. DeMichiel, Resolving database incompatibility: An approach 103. I. Schmitt and G. Saake, Integration of inheritance trees as part
to performing relational operations over mismatched domains, of view generation for database federations, in B. Thalheim
IEEE Trans. Knowl. Data Eng., 1: 485–493, 1989. (ed.), Conceptual Modelling—ER’96, Proc. 15th Int. Conf., Cott-

85. A. L. P. Chen, P. S. M. Tsai, and J.-L. Koh, Identifying object bus, Germany, Berlin: Springer-Verlag, 1996, pp. 195–210.
isomerism in multidatabase systems, Distributed and Parallel 104. R. Motschnig-Pitrik, Requirements and comparison of view
Databases, 4: 143–168, 1996. mechanisms for object-oriented databases, Info. Syst., 21: 229–

252, 1996.86. J. A. Larson, S. B. Navathe, and R. Elmasri, A theory of attri-
bute equivalence in databases with application to schema inte- 105. B. Ganter and R. Wille, Formal Concept Analysis, Berlin:
gration, IEEE Trans. Softw. Eng., 15: 449–463, 1989. Springer-Verlag, 1998.

87. I. Schmitt, Schema Integration for the Design of Federated Data- 106. I. Schmitt and G. Saake, Merging inheritance hierarchies for
bases, (in German), Dissertationen zu Datenbanken und Infor- schema integration based on concept lattices, Preprint no. 2, Fa-
mationssystemen, vol. 43. PhD thesis. Sankt Augustin: Infix- kultät für Informatik, Universität Magdeburg, 1997. Also avail-
Verlag, 1998. able online via http://wwwiti.cs.uni-magdeburg.de/publika-

tionen/97/SS97.ps.gz88. M. W. W. Vermeer and P. M. G. Apers, The role of integrity
constraints in database interoperation, in T. M. Vijayaraman et
al. (eds.), Proc. 22nd Int. Conf. Very Large Data Bases (VLDB’96), GUNTER SAAKE

Bombay, San Francisco: Morgan Kaufmann, 1996, pp. 425–435. STEFAN CONRAD

INGO SCHMITT89. M. W. W. Vermeer, Semantic Interoperability for Legacy Data-
bases, CTIT PhD thesis 97-11, Enschede, The Netherlands: Cen- Otto-von-Guericke-Universität

Magdeburgtre for Telematics and Information Technology, 1997.



568 DATABASE LANGUAGES

DATABASE FOR RADAR SIGNATURE ANALYSIS.
See OBJECT ORIENTED DATABASE FOR RADAR SIGNATURE

ANALYSIS.


