
DATABASE MODELS

The development of database management systems
(DBMSs) over the last 40 years has had a significant im-
pact on the way in which we work. Whether at home, in
the office, in the classroom, or on the factory floor, we are
faced with the need to store and retrieve data that we use
in the day-to-day operation of our personal lives and com-
mercial endeavors. This fact is especially evident with the
widespread use of personal computers, laptops, and net-
working facilities such as the Internet. Data are truly at
our fingertips.

To use data effectively, data must be organized and data
must be shared. At a very basic level, data can be stored
within files and managed using the file system facilities
provided by the computer’s operating system. In the early
years of computing, files provided the primary facility for
the storage and management of data. Several basic prob-
lems exist, however, with the use of traditional file pro-
cessing. First of all, it is generally the user’s responsibility
to understand how to interpret the contents of a file or
to understand how the contents of several different files
may be related. Furthermore, files can be difficult to share
when concurrent access is required. This difficulty can of-
ten lead to the redundant storage of data as users create
their own individual files of information. A database pro-
vides a way of collecting together related data that are 1)
described and accessed using a common language, where
all users have a consistent interpretation of the data; and
2) stored in a form where multiple users can share access
to the same data. As described by Elmasri and Navathe
(1), a DBMS is a “general-purpose software system that
facilitates the processes of defining, constructing, and ma-
nipulating databases for various applications.”

This article focuses on the process of defining a database
through the use of database models. A database model pro-
vides a way to conceptually describe the data that are to
be stored in a database. A database model thus provides
an abstract, conceptual layer on top of the actual database
that protects users of the database from the need to be
concerned with low-level, implementation details. The con-
ceptual description that is created through the use of a
specific model is developed by modeling a real-world enter-
prise that will ultimately provide the data that are to be
stored in the database.

Several different types of database models have been
developed since the 1960s. Some database models, such
as the network, hierarchical, and relational data models,
are closely tied to specific types of DBMSs. Other database
models, known as semantic or conceptual data models, pro-
vide a DBMS-independent way of describing data that
can then be translated to the database model of a specific
DBMS implementation. All of these models generally pro-
vide a way to describe data in terms of the objects that
are to be stored, the relevant characteristics of the objects,
and the relationships that exist between objects. More re-
cent object-based data models, including object-oriented
and object-relational database models, provide a way to
describe the behavioral characteristics of data through the
specification of operations on objects.

A database model also provides the basis for the ex-
pression of semantic integrity constraints. Semantic in-
tegrity constraints are concerned with describing the valid-
ity of the data within a database according to restrictions
that exist in the real-world enterprise that the database
represents. At any given time, the data in the database
must accurately reflect the constraints associated with the
database; otherwise, the data may not be a true repre-
sentation of the world it is intended to model. Some in-
tegrity constraints are a natural part of the structural con-
structs supported by the database model; other integrity
constraints can be expressed in separate constraint lan-
guages that enhance the functionality of the database
model. Still other constraints may be specified and enforced
through the use of operations on objects. The different
database models that have been introduced over the years
provide varying degrees of support for semantic integrity
constraints. Database modeling and the specification of in-
tegrity constraints has generally progressed from DBMS-
dependent models (with limited support for the specifica-
tion of integrity constraints), to conceptual data models
(with greater support for the specification of integrity con-
straints), to object-oriented data models (with operations
that encapsulate the specification and enforcement of con-
straints).

The following pages present the fundamental con-
cepts associated with conceptual and relational database
models. The article begins with a description of ba-
sic data modeling concepts, establishing the terminol-
ogy and definitions that are relevant throughout the
rest of this article. After presenting a brief history of
the development of database models, several representa-
tive database models are described. Conceptual model-
ing concepts are introduced using the Entity-Relationship
Model (2). More advanced conceptual modeling concepts
are presented using the Enhanced Entity-Relationship
Model (1). The Relational Data Model (3) is then pre-
sented as a DBMS-dependent model that can be used
to implement database applications that are initially
specified using a conceptual model. Throughout the ar-
ticle, the role of integrity constraints in the different
types of data models is emphasized. Mapping procedures
from conceptual models to the relational model are also
addressed. This article ends by describing the object-
oriented data model, the integration of object-oriented and
relational concepts in the object-relational data model,
and new directions for data modeling in the context of
advanced applications, distributed computing, and the
Internet.

FUNDAMENTAL DATA MODELING CONCEPTS

To develop a database for a specific application, a database
model is used to develop a schema for the application.
A schema is developed using a data definition language
(DDL) that provides a means for describing the entities or
objects that will be stored in the database and the relation-
ships that exist between the objects. The DDL also provides
a means for specifying the data types of the attributes that
characterize each object and for specifying several of the

J. Webster (ed.), Wiley Encyclopedia of Electrical and Electronics Engineering. Copyright © 2007 John Wiley & Sons, Inc.



2 Database Models

integrity constraints of the application. Some DDLs are
textual in nature, whereas others provide graphical lan-
guages for specifying a schema.

A sample portion of a schema for a relational database
application describing movie stars and film projects is
shown in Fig. 1. The schema in Fig. 1 describes the data to
be stored in terms of tables and the type of information to be
stored in each table. The MOVIE-STAR table describes the
information to be stored about movie star entities, whereas
the FILM-PROJECT table describes the information asso-
ciated with film project entities. The ACTS-IN table de-
scribes the information that will be needed to capture the
film projects in which a star works and the amount of in-
come that a star receives from each project. A schema such
as the one shown in Fig. 1 is also referred to as the intension
of the database.

The schema of an application is compiled to create the
actual physical data structures that will be used to support
the database. Figure 2 presents an example of the data
that might be stored according to the schema in Fig. 1. The
data are referred to as the extension of the database. The
individual rows of each table are referred to as records.
The columns of each row define the data elements of each
record. The data elements must conform to the attribute
types define in Fig. 1. Attribute types are referred to as
domains. For example, the domain of a movie star’s name
is defined to be a character string of length 30.

The extension can alternatively be referred to as the
instance of the database. At any given time, the database
instance must satisfy the integrity constraints of the ap-
plication. An example of an integrity constraint from the
schema of Fig. 1 is the PRIMARY KEY statement of the
MOVIE-STAR table definition. The PRIMARY KEY state-
ment defines that the value of the STAR-ID attribute for
each movie star entity must be unique (i.e., there must
never be two stars that have the same identifier). Simi-
lar PRIMARY KEY statements are defined for the FILM-
PROJECT and ACTS-IN tables. The FOREIGN KEY state-
ments also define constraints on the types of values that
can appear in the ACTS-IN table. The first FOREIGN KEY
statement defines that values in the STAR-ID column of
the ACTS-IN table must be valid values from the STAR-ID
column of the MOVIE-STAR table. The second FOREIGN
KEY statement defines a similar constraint on the FILM-
ID attribute of the ACTS-IN table.

In addition to a DDL, a DBMS also provides a data ma-
nipulation language (DML). A DML is used to insert data
into a database, to delete data from a database, and to mod-
ify the database contents. A DML also includes a query lan-
guage for retrieving data from the database. For example, a
query may be needed over the database of Fig. 2 to retrieve
the movie stars that are making more than $5,000,000 in
a film project. Another example of a query might be a re-
quest to display the names of the stars that are currently
working on a specific film project.

Query languages can be procedural in nature, where the
query is expressed in the style of imperative programming
languages. Procedural query languages are navigational,
retrieving data one record at a time. Query languages can
also be declarative, specifying what data are to be retrieved
rather than how data are to be retrieved. Declarative query

languages provide a set-oriented style of retrieval, where
several records can be retrieved at once. SQL, which stands
for Structured English Query Language, is the declarative
query language of the relational data model (4). A query
specification expressed using a language such as SQL can
be used to define views over a database. For example, a
specific user may not need to see the entire database of
Fig. 2 but may only need to see the stars working on the
Louisiana Saturday Night film project. The corresponding
view created using an SQL query is expressed as follows:

CREATE VIEW LSN-STARS AS
SELECT STAR-ID, NAME
FROM MOVIE-STAR, FILM-PROJECT, ACTS-IN
WHERE FILM-PROJECT.TITLE = “Louisiana Saturday Night” and
ACTS-IN.STAR-ID = MOVIE-STAR.STAR-ID and
ACTS-IN.FILM-ID = FILM-PROJECT.FILM-ID;

The schema in Fig. 1 is DBMS-dependent because it
is specifically associated with the relational database ap-
proach to describing data. Figure 3 provides an example of
the same schema described in a DBMS-independent man-
ner. The specific graphical notation used is that of the
Entity-Relationship model, which is explained in greater
detail later in this article. The Entity-Relationship model
is a type of conceptual data model that is used to describe
database applications in a manner that is independent of
the type of database that will eventually be used for the im-
plementation. For complex applications, it is often easier
to first describe the application using a model such as the
Entity-Relationship model and then to map the descrip-
tion to an implementation-oriented model, such as the re-
lational model.

To place the concepts described above into perspec-
tive, Fig. 4 presents a diagram of the three-schema
database architecture that was originally developed by the
ANSI/SPARC committee (5). As shown in Fig. 4, a database
can be viewed as consisting of an internal level, a con-
ceptual level, and an external level. The internal level de-
scribes the physical structures that are used to store and
retrieve the extension of the database, such as the data in
the tables in Fig. 2. The conceptual level describes the data
at a more abstract level, such as the description in Fig. 1
or in Fig. 3. The external level is defined over the concep-
tual level using queries to create user-specific views, such
as the LSN-STARS view defined above.

Mappings exist between each level to create the no-
tion of data independence. For example, the mapping be-
tween the conceptual level and the internal level repre-
sents physical data independence. If a database environ-
ment supports physical data independence, then it should
be possible to modify the underlying physical structure
without affecting the conceptual description of the data.
In other words, the user should not be concerned with how
a database, such as the one in Fig. 2, is implemented. If the
physical implementation details change, the user’s concep-
tual view should remain the same. The mapping between
the external and the conceptual level represents logical
data independence. Logical data independence defines the
ability to modify the conceptual schema without affecting
the external views. Logical data independence is more dif-
ficult to achieve because the specification of queries that



Database Models 3

Figure 1. A relational database schema expressed using a textual data definition language.

Figure 2. Three tables illustrating an extension of the relational schema in Fig. 1

Figure 3. An Example of an ER diagram illustrating the ActsIn relationship between MOVIE-STAR entities and FILM-PROJECT
entities.



4 Database Models

Figure 4. The ANSI/SPARC three-schema architecture. External views are queries defined on conceptual schemas such as relational or
entity-relationship schemas. Conceptual schemas are implemented using the physical, internal schema of a specific DBMS.

define external views may be affected by changes to the
conceptual schema.

DEVELOPMENT OF DATABASE MODELS

Figure 5 presents a hierarchical view of the major database
models that have been developed since the 1960s. As men-
tioned in the previous section, database models can be
broadly divided into implementation models that are as-
sociated with specific types of DBMSs and conceptual data
models that provide an abstract, DBMS-independent way
of modeling database applications. The oldest database
models, which are now referred to as legacy data models,
are the Network Data Model and the Hierarchical Data
Model. The Network Data Model was developed by Bach-
mann (6) as part of General Electric’s Integrated Data
Store (IDS) product. Standards associated with the Net-
work Data Model were developed by the Conference on
Data Systems Languages Database Task Group (CODA-
SYL) (7). Around the same time, the Hierarchical Data
Model was developed as part of IBM’s Information Man-
agement System (IMS) (8). The network data model pro-
vides a graph-based approach to the description of data,
whereas the hierarchical data model provides a tree-based
structure for organizing data. Both data models provide
procedural DMLs for the retrieval and modification of
data.

In 1970, Ted Codd published the first description of
the Relational Data Model (3). The relational data model
provided a different approach to the description of
database applications that is based on the simple concept

of tables. In addition to its simplicity, the model also pro-
vided a formal basis for the description of data using con-
cepts from set theory. Perhaps the most important aspect
of the relational model was the definition of the relational
algebra for the set-oriented retrieval of data, providing a
significant departure from the record-at-at-time retrieval
approach provided by network and hierarchical models. By
the later part of the 1970s, several relational database re-
search projects had developed, the most notable being Sys-
tem R at IBM (9) and Ingres at the University of California,
Berkeley (10) under the direction of Michael Stonebraker.
By the early 1980s, commercial relational database prod-
ucts began to appear on the market with SQL as the stan-
dard query language interface.

Around the same time that relational database research
projects were gaining strength, interest began to develop in
describing data in a more abstract way than that provided
by the network, hierarchical, and relational database mod-
els. In 1976, Peter Chen published his description of the
Entity-Relationship model (2). The Entity-Relationship
model was not based on any particular DBMS implementa-
tion, providing a more conceptual approach to the descrip-
tion of database entities, their attributes, and their rela-
tionships. The model was presented as a database design
tool that could be used to characterize the data needed by
a database application before developing a specific imple-
mentation using one of the three major types of database
systems.

At about the same time that the Entity-Relationship
model was developed, Smith and Smith (11) defined the
concepts of aggregation, generalization, and specialization
as data modeling abstractions that provided an even more



Database Models 5

Figure 5. A hierarchical view of database models.

semantic approach to the description of data than that pro-
vided by the Entity-Relationship model. The data abstrac-
tions described by Smith and Smith were based on concepts
from knowledge representation as used in the area of arti-
ficial intelligence. The introduction of these data abstrac-
tions to the database community invoked the development
of several semantic data models that were developed in
the late 1970s and early 1980s (12–15), although credit for
the first semantic data model is generally given to Abrial
who developed the Binary Data Model in 1974 (16). The
Binary Data Model established a conceptual modeling ap-
proach that used binary relationships for the description of
database application semantics. In general, semantic data
models provide features that allow the database designer
to incorporate a higher degree of semantic integrity con-
straints directly into the description of the data. Semantic
data models also provide a more object-oriented approach
to the description of data than that found in the network,
hierarchical, and relational data models. Excellent surveys
of semantic data modeling can be found in References 17
and 18.

After the definition of semantic data modeling con-
cepts, extensions were made to the Entity-Relationship
model to create the Enhanced Entity-Relationship model
(1), which incorporated additional modeling features typ-
ically found in semantic data models. Several variations
of extensions to the Entity-Relationship model have been
developed (19–23). The Functional Data model also repre-
sents another type of conceptual modeling tool that was de-
veloped by Sibley and Kerschberg in 1977 (24). DAPLEX
is perhaps one of the most well-known research projects
involving the use of the functional data model (25). Func-
tional data models are similar to semantic data models but
use concepts from mathematical functions as the primary
modeling construct.

The 1980s brought forth the development of object-
oriented database management systems (OODBMSs), to-
gether with object-oriented data modeling concepts. Un-

like the relational model, in which a complete formal de-
scription of the model appeared before the development
of research prototypes and commercial systems, commer-
cial object-oriented database systems began to appear be-
fore the database community fully agreed on any com-
mon, formally defined description of an object-oriented
database model. OODBMSs are different from previous
database systems in that they incorporate behavior into
the database definition through the use of encapsulated
objects. Data are defined not only in terms of objects and re-
lationships but also in terms of the operations that manip-
ulate the data. The concepts in object-oriented data model-
ing parallel the concepts found in object-oriented program-
ming languages. As a result, a “marriage” of object-oriented
database and programming language concepts occurred,
providing a more seamless approach to the manipulation
of database objects through procedural programming lan-
guages. Querying in the OODBMS paradigm returned to
the navigational programming style of the network and
hierarchical data models, although object algebras (26,27)
have been defined. The Object Data Management Group
(ODMG) ad hoc standards committee has defined stan-
dards for an object model, an object query language based
on SQL, and programming language bindings (28).

Another milestone in the development of database mod-
els has been the integration of relational and object-
oriented data modeling concepts to create object-relational
database systems. Several relational database researchers
published the Third Generation Database System Man-
ifesto (29) in response to the Object-Oriented Database
Systems Manifesto (30) published by the OODBMS com-
munity. Whereas the Object-Oriented Database Systems
Manifesto defines the characteristics of object-oriented
database systems, the third-generation document de-
scribes the manner in which relational technology can be
extended with object-oriented concepts as well as other ad-
vanced features such as triggers and rules and still re-
tain the data independence and query language advan-



6 Database Models

tages of the relational model. The Postgres research proto-
type (31), an object-relational version of Ingres, is generally
recognized as the seminal work on the definition of object-
relational database modeling concepts, most of which are
documented in Reference 32. Today, object-relational fea-
tures are supported by several commercial database prod-
ucts, such as Oracle and IBM DB2.

Finally, Fig. 5 also includes the Unified Modeling Lan-
guage (UML) Class Diagrams (33) as an intersection of
concepts from object-oriented models and the EER model.
UML is a standard for object-oriented modeling that is
maintained by the Object Management Group (34), pro-
viding a collection of modeling techniques for describing
the structural and dynamic aspects of software application
design, including the specification of use-cases and code
module interaction. Class diagrams, also known as static
structural diagrams, are a subcomponent of UML that pro-
vide graphical techniques for object-relationship modeling
together with the specification of operations that define
the behavioral characteristics of objects. UML class dia-
grams, therefore, provide an ideal modeling approach for
object-oriented and object-relational database designs. Di-
etrich and Urban (35) provide a comparison of UML class
diagrams to EER modeling and describe techniques for
mapping class diagrams to relational, object-oriented, and
object-relational database implementations.

CONCEPTUAL DATA MODELING

No matter what type of DBMS will be used to imple-
ment a database application, database development be-
gins with the design of a conceptual view of the applica-
tion. Since Entity-Relationship modeling is one of the most
well-known techniques for conceptual modeling, the follow-
ing description of conceptual modeling begins by present-
ing the fundamental concepts of the Entity-Relationship
model. More advanced semantic data modeling concepts
are then presented through the use of the Enhanced
Entity-Relationship model.

Entity-Relationship Model

The Entity-Relationship (ER) approach to conceptual mod-
eling is a graphical approach that is used to describe the
entities of an application, the attributes of entities, and the
relationships that exist between entities. There have been
many different graphical notations developed for the ER
model. Although some notations presented in the litera-
ture vary, the underlying concepts remain the same. The
specific notation that will be followed in this article is the
notation as used in Reference 1.

Figure 6 presents an example of an ER schema that will
be used throughout this section to illustrate the fundamen-
tal ER modeling concepts. The specific application involves
the modeling of movie stars, the film projects they work in,
the studios that produce film projects, and the shooting
schedule for each film project.

Entities and Attributes. The most fundamental modeling
component of the ER model is an entity. An entity repre-
sents an object that exists in the world that is being mod-

eled. In some cases, an entity represents an object that
you can actually see and touch in the real world. In other
cases, an entity may represent a more abstract concept. In
either case, entities generally have attributes that are used
to characterize the entity.

Graphically, entities are depicted using rectangles,
whereas attributes are depicted using ovals that are at-
tached to entities. In Fig. 6, for example, four entities are
displayed. The movie star entity and the studio entity are
examples of physical entities, whereas the film project and
the shooting schedule entities are abstract entities. Each
entity is characterized as having several attributes. For
example, an actor has a StarId, a Name, a Bdate (or birth-
date), and an Age. An entity together with its attributes
constitute the definition of an entity type. An entity type
is used to collect together all of the entities that can be
characterized in the same way. The collection of all entities
of an entity type is referred to as an entity set. Any given
entity in the entity set is referred to as an instance of the
entity type. Using the database modeling terminology in-
troduced earlier, an entity type is part of the intension of
the database, whereas the entity set represents the actual
extension of the database.

The attributes that are used to describe entities can be of
several different types. The most common type of attribute
is a single-valued attribute. A single-valued attribute is
denoted by an oval drawn with a single line, such as the
StarId attribute of the movie star entity. If an attribute is
single-valued, then an entity instance can only have one
value for such an attribute. Each star, therefore, can only
be assigned one value to serve as a StarId. If an attribute
is denoted by a double oval, such as the PhoneNumber at-
tribute of the studio entity, then entity instances are al-
lowed to have more than one value for such an attribute.
The schema in Fig. 6 thus defines that a studio entity can
have more than one PhoneNumber. An attribute such as
PhoneNumber is referred to as a multi-valued attribute.

The Name attribute of the movie star entity is an exam-
ple of a composite attribute. A composite attribute such as
Name can be broken down into its constituent parts, such
as FirstName, MiddleInit (for middle initial), and Last-
Name. A composite attribute allows the value of the at-
tribute to be globally viewed as one combined attribute
value, where the individual subcomponents are concate-
nated to create the combined attribute value. Alternatively,
a composite attribute can be accessed in terms of the indi-
vidual components that make up the composite value.

Another distinction that can be made between at-
tributes is whether they are stored or derived. The value
of a stored attribute is to be physically stored within the
database that will be constructed to represent the applica-
tion described by the ER schema. A derived attribute, on
the other hand, is an attribute having a value that can be
derived from other stored or derived attribute values. As a
result, derived attributes do not require any physical space
within the database, but a procedure must be developed to
calculate the value when it is needed. Derived attributes
are indicated through the use of an oval with a dashed bor-
der. For example, the Age attribute of the movie star entity
is a value that can be derived using a procedure that takes
as input the star’s Bdate value.



Database Models 7

Figure 6. A graphical schema illustrating fundamental ER modeling concepts.

In Fig. 6, attributes that are underlined, such as StarId,
FilmId, and StudioId, are referred to as keys. Keys provide
a way to uniquely identify the instances of an entity set,
thus establishing a uniqueness constraint that must be en-
forced by the database. If an attribute of an entity type is
defined as a key, then it is assumed that no two entities
of that type can have the same value. Some attributes of
an entity are not appropriate to use as keys. For exam-

ple, more than one movie star can have the same Name or
Bdate value. Star’s can, however, be assigned unique val-
ues for StarId.

By defining an attribute as a key, it is also implied that
every entity must have a value for the key attribute, thus
establishing a required value constraint. A key such as
StarId is never allowed to be null, whereas a movie star
entity could have a null value for the Bdate attribute if the



8 Database Models

star’s birth date is not known. A null value is a special value
that is used in the database to indicate that an attribute
value is either unknown (the entity has such as value, but
the value is not known to the database), or that an attribute
value is inapplicable (the entity does not have a value for
the attribute). A movie star, for example, may not have a
value for the Initial attribute, or as in the case of the singer
Madonna, the Last attribute of Name may be null.

One aspect of entity definitions that is not graphically
depicted in the notation as shown in Fig. 6 is the fact that
each attribute is associated with a specific domain. A do-
main defines the valid set of values that may be assigned
to an attribute. The StarId attribute, for example, could be
defined to be from the domain of character strings that are
nine characters long. Numeric domains, such as integers
and real numbers, can be constrained with specific range
values. For example, the Age attribute of a star can be con-
strained to be from the set of integers between 5 and 100.

Relationships Between Entities. Relationships are used to
describe the interaction that can exist between the entities
in the real world that the schema is intended to represent.
As an example, Fig. 6 shows that a movie star ActsIn a film
project. Structurally, a relationship is depicted through the
use of a diamond that is connected by single or double lines
to the entities that are involved in the relationship. A rela-
tionship together with the entities of the relationship form
a relationship type.Attributes can be attached to a relation-
ship type, as shown by the Income attribute of the ActsIn
relationship. Relationships can also be recursive, in which
an entity type participates in a relationship with entities of
the same type. The IsMarriedTo relationship in Fig. 6 is an
example of a recursive relationship. The actual occurrence
of a relationship between the entities involved is referred
to as a relationship instance. Each relationship in Fig. 6 is
referred to as a binary relationship because each relation-
ship describes the interaction between two entity types.

Relationships can be enhanced through the use of struc-
tural constraints. In particular, a relationship can be de-
scribed using cardinality constraints and participation
constraints. Cardinality constraints describe the number of
relationship instances that can be formed between the en-
tities of the relationship. The three main types of cardinal-
ity constraints for binary relationships are 1:1 (one-to-one),
1:N (one-to-many), and M:N (many-to-many). Graphically,
cardinality constraints are depicted by placing the specific
cardinalities on the lines that connect entities to the re-
lationship. Participation constraints describe whether an
entity’s participation in a relationship is total (required)
or partial (optional). Partial participation is shown graph-
ically through the use of a single line to connect an entity to
a relationship. Total participation is shown using a double
line. Total participation defines an existence dependency, in
which the entity cannot exist without being involved in a
relationship instance.

Figure 7 shows a relationship type together with an ex-
ample of a relationship instance for the IsMarriedTo rela-
tionship from Fig. 6. IsMarriedTo is a 1:1, recursive rela-
tionship, which indicates that an instance of a movie star
entity type can only be married to one other instance of the
movie star entity type. The lines in the relationship are la-

beled to distinguish the different roles that an entity can
play in the relationship. For example, in any IsMarriedTo
relationship instance, one star will play the wife role and
the other star will play the husband role. Since the re-
lationship type is described using single lines extending
from the IsMarriedTo relationship diamond to the movie
star entity type, the relationship is a partial relationship.
As a result, a star is not required to be married to another
star. Movie star instance m1, for example, is not connected
to any other star through the IsMarriedTo relationship.

Figure 8 illustrates the ProducedBy 1:N relationship
type together with an example of a relationship instance.
The cardinality constraints indicate that a film project is
produced by one studio. A studio, on the other hand, can
produce many film projects. As the line connecting the film
project entity type to the ProducedBy relationship diamond
is a double line, a film project instance is required to partic-
ipate in the relationship. Every instance of the film project
type must therefore be connected to a studio instance. In
the other direction, the relationship is partial, leading to
studio instances that do not participate in any relationship
with film project entities.

An example of an M:N relationship is the ActsIn rela-
tionship type and relationship instance example in Fig. 9.
In this example, a movie star can act in any number of film
projects and a film project can have several movie stars.
Furthermore, a film project is required to have at least one
star involved. A movie star is not required to participate in
any relationship with a film project.

Weak Entities. Recall that entities can have attributes
that serve as keys for the purpose of uniquely identify-
ing an entity. Some entities, however, may not have keys
and can only be identified through their relationships with
other entities. These entities are referred to as weak en-
tities and are graphically illustrated in an ER schema
through the use of a double rectangle. The shooting sched-
ule entity in Fig. 6 is an example of a weak entity. Weak
entities always participate in a total relationship with an
identifying entity. The identifying entity is said to own the
relationship. The relationship between the weak entity and
its identifying entity is referred to as the identifying rela-
tionship and is graphically indicated using a double dia-
mond. The HasSchedule relationship is the identifying re-
lationship for the shooting schedule entity,with film project
serving as the owner of the relationship.

A weak entity typically has a partial key. The partial
key must be used together with the key of the identifying
entity to form the unique identification for the weak entity.
For example, with the shooting schedule entity, SceneNum
is not unique enough to be used as the identifying number
for all shooting schedule entities; every film will have a
scene one. SceneNum together with the FilmId, however,
forms a unique key for shooting schedule entities. A partial
key is always shown in an ER diagram with a dashed line
underlining the partial key name. A weak entity type can
be owned by more than one identifying entity.

N-ary Relationships. All relationships that have been
discussed so far are binary relationships, involving rela-
tionships between two entity types. In general, relation-



Database Models 9

Figure 7. A 1:1, recursive relationship type and instance for the IsMarriedTo relationship.

Figure 8. A 1:N relationship type and instance for the ProducedBy relationship.

ships can be N-ary, representing relationships between
three or more entity types. Figure 10 presents a modeling
scheme for describing the ProducedBy relationship, which
illustrates ProducedBy as a three-way, or ternary, relation-
ship among a film project, a studio,and a director. Decisions
about whether to use an N-ary relationship or several bi-
nary relationships within a schema depend on the seman-

tics of the application.

Enhanced Entity-Relationship Model

The EER model represents a semantically enhanced ver-
sion of the ER model that was developed as a result of
the object-oriented modeling and knowledge representa-
tion concepts that were used to develop semantic data mod-



10 Database Models

Figure 9. A M:N relationship type and instance for the ActsIn relationship.

Figure 10. A ternary relationship among a studio, a film project, and a director.

els in the late 1970s and early 1980s. Semantic data models
are based on three main forms of data abstraction: clas-
sification, aggregation, and generalization/specialization
(17). Classification is a form of data abstraction in which
objects of the same type are collected together into classes.
Objects are assumed to have unique, internally assigned
object identifiers that are not visible to the outside world.
Classification of objects forms the instance-of relationship,
in which an object is considered to be an instance of a spe-
cific class definition. Entity types in the ER and EER mod-
els support the notion of classification.

Aggregation is a form of abstraction in which a higher
level object is created from relationships between lower

level and/or other higher level objects. In its most basic
form, the collection of simple types, such as those used to
represent a social security number, a name, and an ad-
dress, are combined to create an object, such as a movie
star object. In its more complex form, higher level objects,
such as movie stars and acting classes, can be combined
to create objects that represent the enrollment of stars in
acting classes. The enrollment relationship between stars
and classes can then be viewed as an abstract object that
can participate in relationships with other objects. The ER
and the EER model only support the basic form of aggre-
gation that is used to create entity types. Relationships in
the ER approach cannot be used as objects to form addi-



Database Models 11

tional relationships, which is generally regarded as one of
the major weaknesses of the ER/EER models.

One of the most significant forms of data abstraction
from semantic data modeling that has been incorporated
into the EER model are the dual abstraction concepts of
generalization and specialization. Generalization and spe-
cialization provide a way to form class (or entity type)
definitions into superclass/subclass hierarchies, which are
also known as ISA hierarchies. ISA hierarchies are a fun-
damental modeling concept from knowledge representa-
tion in which object classes can be formed into tree and/or
graph structures that allow objects to be viewed at differ-
ent levels of abstraction. Objects at lower levels of abstrac-
tion, known as subclasses, inherit the characteristics of ob-
jects at higher levels of abstraction, known as superclasses.
Moving from the bottom of the tree to the top of the tree
represents the notion of generalization, in which the object
is viewed in its more general form. Moving from the top of
the tree to the bottom of the tree represents the notion of
specialization, in which an object is viewed in its more spe-
cific form. The discussion in this particular section on the
EER model primarily focuses on the way in which general-
ization and specialization concepts have been incorporated
into the EER model.

In addition to incorporating abstraction concepts from
semantic data models, the EER model has also introduced
an additional form of modeling abstraction known as cat-
egorization (23). A category in the EER model provides a
way to define objects that represent heterogeneous collec-
tions of other object types, similar to the use of union types
in C++ (36). The following subsections describe the use of
generalization, specialization, and categories in further de-
tail.

Generalization and Specialization in the EER Model. Fig-
ure 11 provides an example of an ISA hierarchy in the EER
Model. This particular example illustrates the manner in
which a person object can be viewed at different levels of ab-
straction. At the top of the hierarchy is the person class (we
will use the terms class and entity type interchangeably).
Every person object has an Ssn, PName, BDate, and Gen-
der. The next level of the tree illustrates that a person ob-
ject can be specialized into a person that is a movie profes-
sional or a person that is a celebrity. A movie professional
has attributes, such as OfficePhone and OfficeAddress, that
a celebrity does not have. Movie professionals and celebri-
ties, however, all have an Ssn, a PName, a BDate, and a
Gender. These attributes are automatically inherited from
the person class because the movie professional class and
the celebrity class are both defined to be subclasses of the
person class. The person class is considered to be a super-
class of movie professional and celebrity.

The ISA hierarchy in Fig. 11 is further specialized by
defining the critic and agent classes to be subclasses of the
movie professional class. As a critic is a movie professional,
a critic inherits the attributes defined at the movie profes-
sional level. Furthermore, as a movie professional is a per-
son and a person has an Ssn, a critic also has an Ssn as well
as all of the other attributes that are defined at the person
level. In a similar manner, movie star and model are de-
fined to be subclasses of the celebrity class, thus defining

different types of celebrities, each of which has different
attributes. As with the critic and agent classes, the movie
star and model classes also inherit the attributes of the
person class as a movie star (or model) is a celebrity, and a
celebrity is a person. Notice that by moving from the lower
levels, such as movie star and critic, to the person level, the
concept of generalization is applied; every object in the tree
can be viewed in its more general form as a person. Moving
from the person class down to more specific classes allows
us to make distinctions between different types of person
objects and to view objects in a more specific form.

The notation in Fig. 11 illustrates additional constraints
that are placed on the classes involved in the ISA hierar-
chy. In particular, the circles in Fig. 11 that connect super-
classes and subclasses contain either a “d” or an “o”. A “d”
indicates a disjoint constraint between the instances of the
subclasses. A disjoint constraint defines that the intersec-
tion between instances of movie professional and instances
of celebrity must be the empty set. In other words, it is not
possible in this particular application for an object to be
both a movie professional and a celebrity at the same time.
The same is true for the critic and agent instances. The
“o” connecting the celebrity class with the movie star and
model classes defines that the instances of movie star and
model can be overlapping. At any given point in time, it is
therefore possible for a celebrity object to be an instance of
the movie star class and an instance of the model class.

In addition to disjoint and overlapping specifications,
the ISA hierarchy in Fig. 11 also specifies total and partial
constraints on the specialization relationships that exist
between superclasses and subclasses. The double line lead-
ing from the celebrity class to the movie star and model
classes indicates a total specialization in which a celebrity
object is required to exist as an instance in one of its sub-
classes. It is not possible, therefore, for an object to exist as
an instance of the celebrity class and not also participate as
an instance of a class at a lower level. In contrast, the single
line that connects the person class to the disjoint specifica-
tion for its subclasses indicates a partial specialization. In
a partial specialization, an instance of a superclass, such
as person, is not required to be an instance of any of its sub-
classes. It is not possible, therefore, for an object to exist
as an instance of the person class and not be an instance
of either the movie professional class or the celebrity class.
Partial specialization emphasizes the following important
property of ISA hierarchies. Objects at lower levels of a hi-
erarchy always inherit attributes at higher levels because
a lower level object “ISA” higher level object. Objects at
higher levels, however, do not inherit attributes from ob-
jects at lower levels because an instance of a superclass is
not necessarily an instance of its subclasses.

In the ISA hierarchy presented in Fig. 11, membership
in each subclass is user-defined. For example, we know that
a celebrity may be a movie star and/or a model, but it is
left to the user of the application to determine the sub-
classes in which the celebrity object belongs. Nothing ex-
ists within the schema to determine whether a celebrity
object should be a movie star or a model. Membership in
subclasses can also be determined through the use of at-
tribute values at the superclass level, as illustrated in Fig.
12. In this case, projects are specialized into film projects



12 Database Models

Figure 11. A superclass/subclass hierarchy in the EER model demonstrating disjoint and overlapping constraints as well as total and
patial participation constraints.

Figure 12. A superclass/subclass hierarchy in the EER model demonstrating attribute-defined subclasses.

and modeling projects, but the specialization is based on
the value of the Type attribute defined within the project
class. As the specialization is total, an instance of project
must be an instance of one of its subclasses. If Type = “F”,
then a project instance can be automatically placed in the
film projects class; if Type = “M”, then a project instance is
also an instance of modeling projects. This form of special-
ization is known as predicate-defined specialization and is
indicated by placing the predicate on the appropriate path
leading from the superclass to the subclass. If the attribute
that is used to define the specialization is single valued,
then membership at the subclass level will always be dis-
joint.

Multiple Inheritance. The ISA hierarchy examples pre-
sented so far illustrate the case of a subclass that inherits
from only one superclass. In some cases, a subclass may
need to inherit from more than one superclass. Multiple in-
heritance is often used to represent this situation. Figure
13 provides an example of modeling the star-model class
as a subclass of the movie star and the model classes. The
star-model class, therefore, represents the intersection of
its superclasses, containing instances that are both movie
stars and models. The star-model class is referred to as a
shared subclass. As multiple inheritance represents an in-
tersection, a common root to the hierarchy must exist, such
as the celebrity class. A subclass that is defined using mul-
tiple inheritance inherits attributes along all paths that



Database Models 13

Figure 13. A superclass/subclass hierarchy in the EER model demonstrating multiple inheritance.

lead back to the root of the hierarchy.

Modeling with Categories in the EER Model. Figure 14 il-
lustrates a modeling feature of the EER model known as
categorization. Unlike multiple inheritance, categorization
provides a way of creating union types, where a class rep-
resents a union of different classes. Using categorization,
we can model the case where a class inherits from several
superclasses, where each superclass is of a different entity
type. Graphically, categorization is shown by placing a “u”
in the circle that connects the superclasses to the subclass.
The subclass is referred to as a category.

In Fig. 14, sponsor is a category that inherits from the
person and company superclasses. As a modeling project
can be sponsored by either a person or a company, the spon-
sor category provides a convenient way to model the Spon-
soredBy relationship. Instances of the sponsor class inherit
from either person or company, depending on the actual
type of the instance. Membership in the sponsor class can
also be total or partial. Partial membership defines that a
category is a subset of the union of its superclasses. The
schema in Fig. 14 represents partial membership, which is
indicated by a single line leading from the circle to the cat-
egory. When a category such as sponsor has partial mem-
bership, then not every person and company instance is
required to be a sponsor. Total membership defines that a
category is exactly the union of its superclasses; in which
case, every instance of a superclass must also be an in-
stance of the category. Total membership is specified by
placing a double line between the circle containing the “u”
and the entity type that represents the category.

A Complete EER Schema Example. A complete schema ex-
ample illustrating the features of the EER model is shown
in Fig. 15. To simplify presentation of the schema, the only
attributes shown are those on relationships as well as those
needed for predicate-defined subclasses. The schema in-
cludes the person and project ISA hierarchies that have

been discussed above as well as the sponsor category. In
addition, the schema indicates that an agent serves as an
AgentFor celebrities, where every celebrity is required to
have an agent. A movie star ActsIn film projects, whereas
a model ModelsIn modeling projects. The schema also cap-
tures the amount of money that each celebrity makes for
the projects in which they participate. Modeling projects
are SponsoredBy sponsors, where a sponsor can be either
a person or a company. Each film project must be Pro-
ducedBy a studio. Studios, on the other hand, can produce
many film projects. The schema also shows that a critic
Critiques film projects, recording the rating and comments
associated with each critique.

THE RELATIONAL DATA MODEL

Unlike the ER model, which is a DBMS-independent
model, the relational model is associated with rela-
tional database management systems, one of the most
widely used database software systems currently used for
database implementations. Generally, a database imple-
mentation begins by describing the application using a
conceptual tool such as an ER diagram. The conceptual
model is then mapped to the relational model to support
the actual implementation of the database. This section de-
scribes the fundamental concepts of the relational model as
a DBMS implementation model. Basic concepts associated
with mapping conceptual schemas to relational schemas
are also presented, together with other issues related to
relational schema design.

Fundamental Concepts of the Relational Model

The relational model is known for its simplicity because
the relation, otherwise known as a table, is the fundamen-
tal modeling concept. A table is a two-dimensional struc-
ture consisting of rows and columns. Rows in a relation
are referred to as tuples, whereas columns are referred to



14 Database Models

Figure 14. A category definition in the EER model, where the Sponsor entity inherits from heterogeneous entities with no common root.

as attributes. Each attribute can contain a value that is
associated with a specific domain. Figure 2 has already
been presented as an example of three relations associ-
ated with the relational schema shown in Fig. 1. In Fig.
2, the MOVIE-STAR relation is illustrated as a table con-
taining three columns that represent the STAR-ID, NAME,
and BDATE attributes of a movie star. Each row in the ta-
ble is a tuple containing specific values for each attribute.
The type of each attribute, as specified in Fig. 1, defines
a domain. For example, the domain of STAR-ID is the do-
main of strings of length 9. The domain of BDATE, on the
other hand, is a system-defined DATE type. The definition
of each relation in Fig. 1 is a relation scheme, also known
as the intension of the relation. The actual relation is the
set of tuples that define the relation instance, also known
as the extension of the relation.

More formally, the intension of a relation is R(A1, A2,
. . . , An), where R is the name of the relation and each Ai

is an attribute defined over a domain D. The domain D of
an attribute Ai is denoted dom(Ai). The degree of a relation
is the number of attributes defined in the intension of the
relation. A relation r of the intensional definition R(A1, A2,
. . . ,An), denoted as r(R), is the set of n-tuples r = t1, t2, . . . , tn,
where an n-tuple is an ordered list of values t = <v1, v2, . . . ,
vn>. Each vi is either a null value or a value from dom(Ai).
A relation can also be viewed as a subset of the Cartesian
product of dom(Ai), for all Ai that define the relation:

r(R) � (dom(A1) X dom(A2) X . . . X dom(An))

Note that as a relation is a set, the tuples of a relation do
not have any specific order.

Several types of constraints are associated with the defi-
nition of relational database schemas: domain constraints,
key constraints, entity integrity constraints, and referential
integrity constraints. Domain constraints are those that
appear in a schema definition such as the one in Fig. 1,
constraining the type of an attribute to be a value from
a specified domain. Key constraints are those constraints
that define unique identifiers for the tuples in a relation.
By definition, the tuples of a relation must be distinct be-
cause a relation is a set. Hence, some attribute or set of
attributes must serve as the key of each relation. Any set
of attributes that can be used as a key of a relation is re-
ferred to as a superkey. In Fig. 2, for example, STAR-ID,
NAME, and BDATE together can be used as a superkey
to uniquely identify tuples in the MOVIE-STAR relation.
Such a key is also referred to as a composite key because it
is composed of more than one attribute.

A key of a relation is a superkey where removing any at-
tribute from the set of attributes that compose the key will
no longer form a superkey of the relation. A key is therefore
a minimal superkey. STAR-ID is a key of the MOVIE-STAR
relation, assuming that a person’s social security number
is used as the value for STAR-ID. Note that a relation can
have more than one key. In this case, each key is referred to
as a candidate key. One candidate key, however, is typically
selected to be used as the primary key (i.e., the key that will
generally be used to identify tuples in the relation). Pri-



Database Models 15

Figure 15. An EER schema illustrating the use of ISA hierarchies and a category in relationships with other entities.

mary keys are always identified by underlining the names
of the attributes forming the primary key. Associated with
the key constraint is the entity integrity constraint, which
states that no primary key value can be null.

Referring again to Fig. 2, we can see that the rela-
tion ACTS-IN is composed of three attributes: STAR-ID,
FILM-ID, and INCOME. The key of the relation is the
composite key composed of STAR-ID and FILM-ID. The
domains of STAR-ID and FILM-ID in the ACTS-IN rela-
tion are the same as the domains of STAR-ID and FILM-
ID in the MOVIE-STAR and FILM-PROJECT relations,
respectively. Furthermore, the STAR-ID and FILM-ID at-
tributes in ACTS-IN represent the same concept as they

do in STAR and FILM-PROJECT. The referential integrity
constraint defines that values such as those for STAR-ID
and FILM-ID in the ACTS-IN relation must refer to tuples
that already exist in MOVIE-STAR and FILM-PROJECT.
In other words, the MOVIE-STAR and FILM-PROJECT re-
lations serve as the source for defining valid MOVIE-STAR
and FILM-PROJECT tuples. Any other relation that needs
to refer to a MOVIE-STAR or a FILM-PROJECT must re-
fer to a valid value from one of these relations.

Attributes such as those in ACTS-IN that refer to val-
ues from another relation are referred to as foreign keys.
In general, the value of a foreign key can be null, unless
the foreign key is also serving as a candidate key as in



16 Database Models

the ACTS-IN relation. Foreign keys are used to represent
relationships between objects.

Mapping From Conceptual Models to the Relational
Model

One way of generating a relational schema is to first de-
velop a conceptual model using an entity-relationship ap-
proach. The conceptual schema can then be mapped to a
relational schema. This section describes the fundamental
concepts of mapping from ER and EER schemas to rela-
tional schemas. Enforcement of constraints from a concep-
tual schema in a relational design is also addressed.

Basic ER Mapping Concepts. To illustrate mapping pro-
cedures for the ER model, Fig. 16 presents a relational
schema that was generated from the ER diagram in Fig.
6. Figure 17 presents an example of a database instance of
the schema in Fig. 16.

As illustrated in Fig. 16, entities are mapped to rela-
tions by establishing a relation for every entity that ex-
ists in an ER diagram. All of the simple attributes (i.e.,
non-multivalued attributes) of the entity are included as
attributes in the relation. A composite attribute is repre-
sented in terms of its components because of the restric-
tion that attributes must be atomic. The key of the en-
tity is identified as the key of the relation. In Fig. 16, for
example, relations are generated for the movie star, film
project, and studio entities. The MOVIE-STAR relation in-
cludes the STAR-ID, FIRST, INITIAL, LAST, and BDATE
attributes. Notice that the Name attribute from the ER
schema is represented in terms of its subcomponents in the
MOVIE-STAR relation. The Age attribute is not included
as an attribute in the relation because Age is defined to
be a derived attribute. Weak entity types, such as shooting
schedule, are mapped in a similar manner except that the
key of a weak entity is formed by combining the primary
key of the identifying owner with the partial key of the
weak entity. As a result, FILM-ID and SCENE-NUM form
a composite primary key for the SHOOTING-SCHEDULE
relation.

To map 1:1 binary relationships, first find the relations
of the entity types involved in the relationship from the
ER diagram. One relation will be identified for receiving
the key of the other relation as a foreign key, which thus
establishesa relationship between the two entities. In Fig.
6, the only 1:1 relationship is the IsMarriedTo recursive re-
lationship between movie stars. In this case, the MOVIE-
STAR relation includes the IS-MARRIED-TO attribute to
store the key of another tuple in the MOVIE-STAR re-
lation, which thus identifies the wife or husband of the
star, who also happens to be a movie star. STAR-ID and
IS-MARRIED-TO should be defined as the same domains.
IS-MARRIED-TO is a foreign key that must contain valid
values that appear in the STAR-ID column of the relation.

In general, 1:1 relations can exist between two separate
relations as shown by the ER diagram in Fig. 18. In this ex-
ample, a studio is managed by one manager and a manager
can manage only one studio. In this mapping, the key of
the MANAGER relation is included as a foreign key in the
STUDIO relation.As an alternative mapping, the key of the

STUDIO relation could have been included in the MAN-
AGER relation. The mapping shown in Fig. 18 is better,
however, because the ER diagram states that every studio
must have a manager. If one entity in the relationship has
total participation, then the corresponding relation should
be chosen as the relation to receive the foreign key.

There are two alternative mappings for binary 1:N re-
lationships exist. One mapping approach is illustrated in
the FILM-PROJECT relation of Fig. 16 in which the key
of the relation from the “1” side of the relationship is in-
cluded in the relation from the “N” side of the relationship.
In this case, a film project is produced by one studio; a stu-
dio produces many film projects. The SID from STUDIO
is included as a foreign key in FILM-PROJECT to capture
the relationship. Notice that the DATE attribute of the re-
lationship is also included.

The alternative mapping approach for 1:N relationships
is to create a separate relation to represent the relation-
ship. The relation should include the keys of the relations
for each entity involved as well as any attributes of the re-
lationship. The key of the relation from the “N” side of the
relationship is used as the key of the new relation. Using
this approach, the FILM-PROJECT and STUDIO relations
in Fig. 16 can be replaced with the following relations:

FILM-PROJECT: FILM-ID, TITLE

STUDIO: SID, SNAME

PRODUCED-BY: FILM-ID, SID, DATE

For M:N binary relationships, the only option is to create
a separate relation to represent the relationship. The new
relation includes the primary keys of the relations that rep-
resent the entity types involved as well as any attributes
of the relationship. The primary keys of each relation are
combined to create the key for the new relation. Figure 16
uses the ACTS-IN relation to represent the M:N relation-
ship between movie stars and film projects shown in the
ER diagram of Fig. 6. The composite key of the relation is
the concatenation of STAR-ID and FILM-ID.

Multi-valued attributes such as the PhoneNumber at-
tribute of the studio entity in Fig. 6 are mapped in a man-
ner similar to M:N relationships. As illustrated in Fig. 16,
the new relation STUDIO-PHONE is created. The primary
key of the relation is the composite key formed through the
concatenation of the SID primary key of STUDIO and the
PHONE-NUMBER attribute. If a studio has three differ-
ent phone numbers, there will be three different tuples in
the relation to record each phone number. Figure 17 shows
that Hollywood Studios has three phone numbers, whereas
Star Studios has two phone numbers.

The final mapping feature to consider for basic ER con-
cepts involves N-ary relationships. N-ary relationships are
generally mapped in the same manner as M:N relation-
ships. Create a relation to represent the relationship and
include the primary keys of the entities involved. The pri-
mary key of the new relation is the composite key formed
by all primary keys. If any entity has a “1” as a cardinality
for participation in the relationship, then the key of such
an entity can be used as the primary key for the N-ary
relationship.



Database Models 17

Figure 16. Relational schema generated from the ER schema in Fig. 6.

Figure 17. Tables illustrating the extension of the relational schema in Fig. 16.

Advanced Mapping Concepts for Enhanced Entity-
Relationship Schemas. Mapping procedures for the EER
model are the same as for the ER model with the addi-
tion of new procedures for mapping ISA hierarchies and
categories to relations.

Three different approaches for mapping ISA hierarchies
are illustrated in Fig. 19 using the ISA hierarchy from Fig.

12. The most straightforward approach is to create a sep-
arate relation for each entity in the hierarchy as shown in
mapping 1. Each relation must include the key of the re-
lation from the top of the hierarchy. Mapping 2 illustrates
that a separate relation is created for the entities at the
bottom of the hierarchy only, where each relation includes
the attributes of the entity at the bottom of the hierarchy



18 Database Models

Figure 18. An example of a 1:1 mapping for the Manages relationships.

Figure 19. Three different mapping techniques for mapping an ISA-hierarchy in an EER diagram to a relational schema.

and the attributes of all superclasses. This approach pro-
duces duplicate representation of inherited attributes. In
the case of disjoint classes as in Fig. 12, the duplication
does not cause a problem because an entity is either a film
project or a modeling project, but not both. This approach
would not be as useful if film project and modeling project
were overlapping. Also, no explicit representation exists of
the entities in the project class with this approach. The fi-
nal mapping approach is mapping 3 in which all attributes
of the hierarchy are flattened into one relation. Additional
Boolean-valued attributes, represented by the IS-FILM-
PROJECT and IS-MODELING-PROJECT attributes, are
added to the relation to indicate the subclasses in which
the objects participate. This approach is useful for overlap-
ping subclasses but will waste storage space for disjoint
subclasses. In general, a relational mapping for a complex
ISA hierarchy can involve any combination of the above
techniques.

A category such as the one in Fig. 14 is mapped by creat-
ing the relation SPONSOR to represent the category and
defining the SPONSOR-ID attribute as an identifier for
tuples in the SPONSOR relation. The SPONSOR-ID at-
tribute must also be added to the PERSON and COMPANY
relations as a foreign key. An example of the mapping is
shown in Fig. 20.

Enforcing Constraints of the Conceptual Schema. As con-
ceptual modeling techniques such as the EER model pro-
vide a more expressive way to describe applications than
that provided by a relational schema, the semantics of
the original schema are often lost in the translation pro-
cess. The application developer for the relational imple-
mentation must therefore be aware of the semantics of

the conceptual schema so that the appropriate constraints
can be enforced in the code that accesses the relational
database. Constraints from a conceptual schema that di-
rectly translate to relational schemas are key constraints,
some domain constraints, and referential integrity con-
straints. Other constraints such as total participation
constraints, total specialization constraints, disjoint con-
straints, predicate-defined subclasses, and the semantics
of weak entities and categories must be implemented by
the relational database developer in the application code
that access the database to enforce the semantics of the
conceptual schema.

OBJECT-BASED MODELS

The previous sections have presented the fundamental con-
cepts associated with conceptual data models and rela-
tional database modeling techniques. Database technol-
ogy, however, has continually adapted to the needs of more
complex, data-centric applications. This continual evolu-
tion, and sometimes revolution, in database systems has
resulted in the development of database models that have
incorporated object-oriented concepts into the modeling
and implementation framework. This section provides an
overview of object-based data models, including the object-
oriented data model and the object-relational data model.
Most data modeling concepts described in this section are
associated with specific types of database management sys-
tems that are described in other articles that appear in this
volume. Readers should refer to the appropriate articles for
more in-depth coverage.



Database Models 19

Figure 20. Mapping from a category in the EER model to a relational schema.

The Object-Oriented Data Model

Object-oriented database management systems were de-
veloped as an alternative to relational database systems
for the support of applications that required the storage
of large objects, the definition of user-defined data types,
and the representation of complex relationships between
objects (37). Database technology was traditionally applied
to business-oriented applications that were well suited to
the table representation provided by relational database
systems. As the use of database technology expanded to
applications such as software engineering environments,
mechanical and electrical engineering design, cartography,
manufacturing, and medical applications, to name a few,
researchers began to look for more sophisticated ways to
model and store the data needed by such applications. Nor-
malized relational tables were deemed to be an inadequate
modeling and storage approach.

In the development of OODBMSs, researchers were also
in search of a solution to the impedance mismatch problem
associated with relational database systems. Impedance
mismatch refers to the data structure differences that ex-
ist between database systems and programming languages
such as C and C++. In particular, the access of data from
a relational database application requires that data be re-
trieved from relations, the primary data structure of re-
lational database systems, and transformed into the ap-
propriate data structures of the language used to access
the database. In the opposite direction, data from program-
ming language data structures must be transformed into
relations for storage in a relational database. In short, re-
lational databases and programming languages view data
in different ways. OODBMSs provide a tighter integration
between programming languages and database concepts,
which thus eliminates the impedance mismatch problem
and enhances database technology with a computationally
complete programming language.

Unlike the relational model, commercial OODBMSs be-
gan to appear on the market before any formal, standard-
ized object-oriented model had been defined. Documents
such as the Object-Oriented Database System Manifesto
(30) have helped to shape general agreement about what
constitutes an object-oriented data model. Efforts such as
that of the Object Data Management Group (ODMG) (28)
have defined a de facto standard among OODBMS vendors
in cooperation with the Object Management Group (OMG)
standard for interoperability (34). The purpose of the stan-
dard is to promote software portability so that applications
can easily run on different OODBMS products. The stan-
dard includes:

1. An Object Model based on the object model of the
OMG standard.

2. The Object Definition Language (ODL) for the speci-
fication of object schemas.

3. The Object Query Language (OQL), which is an
object-oriented extension of SQL for querying object
databases, and

4. The language bindings for C++, Smalltalk, and Java,
defining language-specific issues for the implemen-
tation of portable, object-oriented database applica-
tions.

Similar to concepts that have already been presented
for conceptual data models, the object model of the ODMG
standard views the world in terms of objects. More com-
plex objects are constructed from simpler objects by using
constructors such as tuples, sets, lists, bags, and arrays.
Constructors can be applied to any type of object, even
those objects associated with user-defined types. Objects
are assumed to have object identifiers (OIDs). An OID is
a system-generated, internal identifier that is used to rep-
resent the existence of an object. No two objects can have
the same OID. Furthermore, OIDs are used to establish
relationships between objects rather than using external
key values as in the relational model. Literals are printable
values that do not have OIDs.

In the ODMG standard, an object is an instance of a
specific class. The term “class” is used in different ways in
different OODBMS products. In some systems, a class is
used to refer to a type as in the traditional programming
language interpretation of a type. In this case, the type de-
fines the structure and behavior of the object, but it is the
user’s responsibility to manage objects within variables of
that type. In other systems, a class is viewed in the tradi-
tional database sense. In this case, a class not only defines
the structure and behavior of objects, but also provides an
automatic collection of all instances of the type. In ODMG
terminology, this collection is referred to as an extent. This
view of a class as the database extension is better suited to
the support of object-oriented query languages. The ODMG
standard allows a class to be defined with or without an ex-
tent.

ODL is used to specify class definitions, where in addi-
tion to specifying a possible extent for a class, each class
also defines the state of an object in terms of properties.
Each property can either be an attribute that describe an
object or a relationship with other objects. Classes are
also used to define the operations that can be performed
on objects. As with the conceptual models described ear-
lier in this article, classes can be organized into super-
class/subclass hierarchies, where a subclass inherits the
properties and operations defined for its superclasses. A
class corresponds to the notion of an abstract data type,
which defines an interface that is visible to users of the
type and defines an implementation that is only visible to
database designers. The definition of operations on objects
is a significant departure from the modeling approaches
presented earlier in this article. The object-oriented model
therefore emphasizes the structure and behavior of data,



20 Database Models

whereas traditional database modeling approaches em-
phasize structural features only.

As an example, consider the studio class, the project
class, the film project class, and the ProducedBy relation-
ship in Fig. 15. The corresponding ODL class definitions
are shown in Fig. 21. Each class specifies a class name and
the name of an extent that will be used as the collection
of all instances of the class. As a film project is a subclass
of project, the film project class is also defined to extend a
project. As a result, every film project object will inherit
properties and operations defined at the project level. Fur-
thermore, each instance of film project is also considered
to be an instance of project.

Attribute specifications define the state of each class.
For example, a project has a projectID, a type (film project
or modeling project), and a location; a film project has a
title; and a studio has a studioID, a studioName, and a set
of phoneNumbers. An attribute can also be identified as a
key of a class, where a key has the same meaning as in the
relational model. Even though the object-oriented model
uses internal object identifiers for each object instance, the
use of keys is still an important application design feature.

In addition to attribute definitions, film project and stu-
dio have inverse relationships that define the producedBy
1:N relationship. As a studio is related to many film
projects, the relationship in studio is defined as a set of
film project objects. In the opposite direction, a film project
defines the relationship to contain only one studio object.
Notice that the date on the ProducedBy relationship is in-
cluded in the list of attributes for film project. This rep-
resentation is consistent with the 1:N mapping procedure
described for the relational model (i.e., the object on the 1
side and any attributes of the relationship are included in
the definition of the object on the N side of the relationship).
Furthermore, each relationship definition is specified to be
the inverse of the other. In the ODMG model, the specifica-
tion of an inverse on a relationship definition is required. In
many OODBMS implementations, inverse definitions are
automatically maintained. As a result, assigning a studio
to a film project will automatically invoke the inverse rela-
tionship assignment of a film project to the set of projects
produced by a studio.

The film project class in Fig. 21 also provides an example
of the assignStudio operation to assign a studio, together
with an assignment date to a film project. In general, op-
erations can be defined to create and delete objects, to as-
sign values to attributes and relationships, or to perform
application-specific functions and enforce application con-
straints.

For additional details on mapping conceptual models to
the ODMG model as well as detailed coverage of the Object
Query Language, see Reference 35.

The Object-Relational Model

In response to the development of object-oriented database
systems, the relational database community has been in-
volved with incorporating object-oriented extensions into
relational database technology, creating object-relational
database systems. Seminal work in the area of object-
relational models was described by Michael Stonebraker in

association with the Postgres data model (31), which is an
extended version of the Ingres relational database system.
Stonebraker also organized a group of relational database
researchers in the preparation of The Third Generation
Database System Manifesto (29). This document was pre-
pared in response to (30) to describe the manner in which
relational systems can be extended with features typically
associated with object-oriented database systems and still
retain the advantages of relational technology. Today, sev-
eral relational database vendors provide object-relational
features as part of their relational database products, in-
cluding Oracle and IBM’s DB2 system. The SQL standard
has also been updated to include the definition of object-
relational features. This section provides a brief overview
of object-relational modeling concepts using the SQL stan-
dard.

The SQL object-relational model provides a means to
create user-defined types (UDTs). A UDT is the same as
an abstract data type, defining the internal structure of a
data type together with operations that define the behav-
ior for access and use of the type. A UDT can be used in
one of two ways. In one approach, tables of UDTs, known
as typed tables, can be created to simulate the notion of
a class in an object-oriented model. Objects are then cre-
ated as instances of typed tables, where objects have ob-
ject identifiers. In the other approach, UDTs are used as
structured types, where the type definition is used directly
as the type of an attribute in an object table or in a tra-
ditional relational table. In this case, objects do not have
object identifiers but are stored directly inside of other ob-
jects or tuples.

Figure 22 provides an example of UDTs and their cor-
responding typed table definitions for the project, film
project, and studio classes from Fig. 15. The locationUDT
type provides an example of a structured type, defining
the city, state, and country of a project location. The lo-
cationUDT type is used as the type of the location col-
umn in the projectUDT type definition. An instance of loca-
tionUDT is a structured object, without an object identifier,
that is embedded inside of each instance of a projectUDT
type value.

In contrast, the projectUDT type is a user-defined type
that is defined specifically for the purpose of creating a
typed table. The projectUDT type defines columns for the
projectID, type, and location of a project. The type defini-
tion concludes with the statement of three clauses. The
instantiable clause defines that a constructor function is
available for the type. A type can also be specified as not
instantiable. The not instantiable clause would be used in
the case of supertype and subtype definitions, where the
type is to be instantiated at the subtype level (i.e., instan-
tiable) and not at the supertype level (i.e., not instantiable).
The second clause used in the projectUDT definition is the
not final clause. This clause defines that the type is capa-
ble of having a subtype definition. Finally, the ref is system-
generated clause indicates that, if the type is used to define
a typed table, then the database system will automatically
generate object identifiers for each object that is created as
an instance of the typed table. Other options exist for the
creation of object identifiers, where the value of the object
identifier is user defined or based on a key value.



Database Models 21

Figure 21. An Object Definition Language example for a portion of Fig. 15.

Figure 22. An object-relational schema example for a portion of Fig. 15 using language features of the SQL standard.



22 Database Models

The projectUDT type definition is followed by a table
definition for project, where project is defined to be a typed
table containing objects of type projectUDT. The project
table will have a column for every attribute defined in the
projectUDT type. The definition of the project typed table
also includes the definition of projectID to be a key for the
table. In addition, the table will have an automatically gen-
erated column for the object identifier of each row in the
table. The name projOID is used to refer to the value of the
object identifier.

Similar UDT and typed table definitions exist in Fig.
22 for the film project typed table and the studio typed ta-
ble. Notice that filmProjectUDT is defined as “under projec-
tUDT,” which defines the filmProjectUDT to be a subtype
of projectUDT. In a similar manner, the filmProject table is
defined to be “under project.” These definitions collectively
define an inheritance hierarchy, with project as the super-
class and filmProject as the subclass. Inheritance hierar-
chies in the object-relational model follow similar seman-
tics as in the object-oriented model, where classes at the
subclass level inherit attributes and operations from the
superclass level. The filmProjectUDT also illustrates the
assignStudio method specification, which indicates that
user-defined types in the object-relational model have the
same capabilities as in the object-oriented model for defin-
ing the behavior of an object.

To represent relationships, an object in one typed table
can refer to an object in another typed table (or the same
typed table) through the use of an object reference (or ref).
In this way, relations are extended with the capability to
store a pointer to an object as an attribute value, rather
than storing an external key value as a foreign key. The use
of a ref simplifies the expression of relational queries be-
cause path expressions can be used to traverse object refer-
ences instead of explicitly specifying join conditions. Figure
22 illustrates the use of refs to define the producedBy rela-
tionship between the studio and filmProject typed tables.
The filmProjectUDT defines producedBy to be a ref to an
object of type studioUDT. In the inverse direction, the stu-
dioUDT defines hasFilmProjects to be a ref to a collection of
objects of type filmProjectUDT. The collection is indicated
by following the ref definition with an array specification,
which thus provides a means to define a column that con-
tains multiple values. Arrays of refs are useful for directly
defining 1:N and M:N relationships between classes in a
conceptual model such as the EER model.

As relational database systems currently hold a
greater share of the database market than object-oriented
database systems, the evolutionary approach offered by
object-relational technology has an advantage over pure
object-oriented database technology. However, more so-
phisticated object modeling tools are required that sup-
port the definition of user-defined types and operations in
the modeling process, with mapping procedures that capi-
talize on object-relational features. The work in Reference
35 provides more detailed coverage of the object-relational
features of the SQL standard and provides case studies in
Oracle.

SUMMARY

This article has presented fundamental concepts of
database modeling using conceptual models such as
the entity-relationship model and the enhanced entity-
relationship model, as well as implementation models,
such as the relational model, the object-oriented database
model, and the object-relational database model. One of
the more recent directions for data modeling has been in-
troduced as a result of the widespread use of the World
Wide Web. The Web provides individuals with access to a
multitude of information, some of which is stored in tra-
ditional database systems and some of which is stored in
the form of XML documents. XML has become a standard
on the Web for representing data together with its struc-
tural description (38). XML documents provide an excel-
lent tool for data exchange, but they are also being used
as a storage alternative to traditional database systems,
with a significant amount of research focused on querying
XML files. XMLSchema provides a way to define the struc-
ture, content, and semantics of XML documents (39), with
many of the modeling features of XMLSchema based on the
modeling concepts presented in this article. In related ef-
forts, researchers are defining languages such as RDF (40),
RDF-Schema (41), and the Web Ontology Language (OWL)
(42) to express ontologies for domain-specific vocabularies
that can be used to enhance the understanding of database
schemas and XML files. Readers should refer to the appro-
priate articles in this volume for more specific details about
developing work in this area.

BIBLIOGRAPHY

1. R., Elmasri; S. B., Navathe Fundamentals of Database Sys-
tems, 5th ed.; Benjamin Cummings: Redwood City, 2006.

2. P., Chen The Entity-Relationship Model: Toward a Unified
View of Data. ACM Trans. Database Syst. 1976, 1(1).

3. E. F., Codd A Relational Model for Large Shared Data Banks.
Commun. ACM 1970, 13(6).

4. J., Melton; A. R., Simon SQL:1999: Understanding Relational
Language Components; Morgan Kaufmann: San Francisco,
CA, 2001.

5. D., Tsichritzis; A., Klug The ANSI/X3/SPARC DBMS Frame-
work; AFIPS Press: Arlington, VA, 1978.

6. C., Bachmann; S., Williams A General Purpose Programming
System for Random Access Memories; Proc. of the Fall Joint
Computer Conference; 1964.

7. Data Description Language Journal of Development; Cana-
dian Government Publishing Centre: Ottawa, Ontario,
Canada, 1978.

8. W., McGee The Information System Management System
IMS/VS, Part I: General Structure and Operation. IBM Syst.
J. 1977, 16(2).

9. D., Chamberlin, et al., A History and Evaluation of System R.
Commun. ACM 1981, 24(10).

10. M., Stonebraker The Ingres Papers; Addison-Wesley: Reading,
MA, 1986.

11. J. M., Smith; D. C., Smith Database Abstractions: Aggregation
and Generalization. ACM Trans. Database Syst. 1977, 2(2), pp
105–133.



Database Models 23

12. M., Hammer; D., McLeod Database Description with SDM:
A Semantic Data Model. ACM Trans. Database Syst. 1980,
6(3).

13. S., Abiteboul; R., Hull IFO: A Formal Semantic Database
Model. ACM Trans. Database Syst. 1987, 12(4), pp 525–
565.

14. S., Su A Semantic Association Model for Corporate and
Scientific-Statistical Databases. Inform. Sci. 1983, 29.

15. M. L., Brodie; D., Ridjanovic On the Design and Specification of
Database Transactions. In On Conceptual Modeling; Springer-
Verlag: New York, 1984.

16. J. R.,Abrial Data semantics. In Data Base Management; North
Holland: Amsterdam, 1974; pp 1–59.

17. R.,Hull;R.,King Semantic Database Modelling:Survey,Appli-
cations, and Research Issues. ACM Comput. Surv. 1987, 19(2),
pp 201–260.

18. J., Peckham; F., Maryanski Semantic Data Models. ACM Com-
put. Surv. 1988, 20(3).

19. P., Scheuermann; G., Schiffner; H., Weber Abstraction Capa-
bilities and Invariant Properties Modeling with the Entity-
Relationship Approach; Proc. of the Entity-Relationship Con-
ference; 1979.

20. C., Dos Santos; E., Neuhold; A., Furtado A Data Type Ap-
proach to the Entity-Relationship Model; Proc. of the Entity-
Relationship Conference; 1979.

21. T., Teorey; D., Yang; J., Fry A Logical Design Methodology for
Relational Databases using the Extended Entity-Relationship
Model. ACM Comput. Surv. 1986, 18(2).

22. M., Gogolla; U., Hohenstein Towards a Semantic View of an
Extended Entity-Relationship Model. Trans. Database Syst.
1991, 16(3).

23. R., Elmasri; J., Weeldreyer; A., Hevner The Category Concept:
An Extension to the Entity-Relationship Model. Int. J. Data
Knowl. Eng. 1985, 1(1).

24. H., Sibley; L., Kerschberg Data Architecture and Data Model
Considerations; Proc. of the National Computer Conference.
785–96, 1977.

25. D., Shipman The Functional Data Model and the Data Lan-
guage DAPLEX. ACM Trans. Database Syst. 1981, 6(1), pp
140–173.

26. L., Fegaras; D., Maier Towards an Effective Calculus for Object
Query Languages; ACM SIGMOD Conference; 1995, 47–58.

27. T., Leung, et al. The Aqua Data Model and Algebra; Proc. of
the Fourth International Workshop on Database Programming
Languages, 157–175, 1993.

28. R., Cattell, et al. The Object Database Standard: ODMG 3.0;
Morgan Kaufmann: San Francisco, CA, 2000.

29. M., Stonebraker, et al. Third-Generation Database System
Manifesto. ACM SIGMOD Record 1990, 19(3).

30. M., Atkinson, et al. The Object-Oriented Database System
Manifesto; First International Conference on Deductive and
Object-Oriented Databases; Elsevier: New York, 1989.

31. M., Stonebraker; L., Rowe The Design of Postgres; Proc. of the
ACM SIGMOD Conference; 1986.

32. M., Stonebraker; D., Moore Object Relational DBMSs: The
Next Great Wave; Morgan Kaufmann: San Francisco, CA,
1995.

33. J., Rumbaugh; I., Jacobson; G., Booch The Unified Modeling
Language Reference Manual; Addison-Wesley: Reading, MA,
1999.

34. Object Management Group, Home Web Site, 2007
http://www.omg.org.

35. S., Dietrich; S., Urban An Advanced Course in Database Sys-
tems: Beyond Relational Databases; Prentice Hall, Englewood
Cliffs, NJ, 2005.

36. B., Stroudstrup The C++ Programming Language, Second Edi-
tion; Addison-Wesley: Reading, MA, 1992.

37. R. G. G., Cattell Object Data Management: Object-Oriented
and Extended Relational Systems; Addison-Wesley: Menlo
Park, CA, 1994.

38. Extensible Markup Language (XML), 2007 http://www.w3.
org/XML.

39. XMLSchema, 2007 http://www/w3/org/XML/Schema.
40. Resource Description Framework (RDF), 2007 http://www/w3/

org/RDF.
41. RDF Schema, 2007 http://www.w3.org/TR/rdf-schema.
42. OWL Web Ontology Language, 2007 http://www.w3.org/TR/

owl-features.

SUSAN D. URBAN

Arizona State University


