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ELECTRON MICROSCOPES

In 1873, it was proven by Ernst Abbe that the resolving power
of a light microscope will always be limited by the wavelength
of the light, which is of the order of 1 �m, so that there could
be no hope to visualize much smaller objects such as atomic
scale structures. (In the 1980s, near-field optical scanning
techniques were developed that can bring the resolution
down by two orders of magnitude.) Fifty years later, a new
impulse was given to the problem by the hypothesis of Louis
De Broglie about the wave nature of particles so that other
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particles could also serve as ‘‘light.’’ In 1931 Ernst Ruska de-
veloped the first transmission microscope TEM that uses elec-
trons instead of photons. In 1986 Ernst Ruska was awarded
the Nobel Prize for his pioneering work. Electrons are the
best candidates since they can easily be generated by a
heated filament or extracted from a point by an electric field
and they are easily deflected by electric and magnetic fields.
When accelerated to, say, 100 keV, their wavelength is much
smaller (3 pm � 3 � 10�12 m) than that of visible light. They
can also be detected on a photoplate, a fluorescent screen, or
an electronic camera. On the other hand, they can only propa-
gate in vacuum and they can only penetrate through very
thin objects (�103 nm), so that vacuum and specimen prepa-
ration techniques are crucial.

In past decades, electron microscopy has matured to an
indispensable tool for materials and biomedical research. Nu-
merous are the Nobel Prizes for research work in which elec-
tron microscopy revealed crucial evidence. Despite the very
small wavelength of the electrons, it has only recently been
possible to visualize individual atoms. The reason for this is
that magnetic lenses inevitably suffer from aberrations that,
contrary to glass lenses in a light microscope, cannot easily be
corrected. Recently the problem of compensating the spherical
aberration has become solved on the research level.

When individual atoms, the building blocks of nature, can
be revealed, electron microscopy enters into a new era. In-
deed, then it becomes possible to determine the atomic struc-
ture of matter quantitatively and accurately, even for objects
for which only limited prior knowledge is available. Although
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the goal is not yet achieved, the progress is very encouraging.

Figure 1. Comparison between an electron microscope (right) and aIn the future, as materials science evolves into materials de-
light microscope (left). All the components of the light microscopesign, and mesostructures into nanostructures, the role of elec-
have their analog in the electron microscope. The acceleration elec-tron microscopy will become even more important.
trons have a wave character and act as light.In recent years we have also seen the development of re-

lated techniques such as scanning transmission electron mi-
croscopy (STEM), electron holography, ptychography, and
add-on techniques that use complementary information such electron source and the glass lenses by magnetic (or electric)
as X-ray analysis (EDX), and energy filtering. There is now a lenses. The focusing of the lenses can be varied by changing
growing tendency to incorporate all these techniques into one the lens currents so that the setting of the microscope (focus-
versatile instrument under full computer control, where they ing, magnification, etc.) can easily be altered. The condenser
are all considered as different ways to obtain complementary lens shapes the electron flow into a parallel beam. The speci-
information, mainly of chemical nature. men is a very thin object mounted in a holder that, through

The development of scanning electron microscopy (SEM) an airlock system, can be brought into the electron beam.
has taken place parallel to that of TEM. The first SEM was Holders exist with a variety of degrees of freedom (transla-
constructed by Manfred von Ardenne in the 1930s. The SEM tion, rotation, tilt, temperature, stress). The objective lens
is conceptually simpler than the TEM. With the aid of mag- produces an enlarged and rotated image, which in its turn,
netic lenses, the electron beam is focused into a small point through a system of intermediate and projector lenses, is fur-
that is scanned over the surface of the object. The backscat- ther magnified and projected onto a fluorescent screen, a pho-
tered electrons, or other secondary signals, can then be de- toplate, or an electronic camera.
tected and synchronously displayed on a cathode-ray-tube Another mode of operation is not to image the object but
(CRT) screen. The SEM is relatively easy to use and does not

to image the focal plane of the objective lens. In this way onerequire extensive specimen preparation and is also less ex-
can observe the electron-diffraction pattern directly onto thepensive than the TEM. On the other hand, it can only be used
fluorescent screen.to study the surface area and, because of the beam spread in

The resolving power of the electron microscope is mainlythe object, its resolution is rather limited and quantitative
determined by the quality of the objective lens. With moderninterpretation of the images is more difficult.
instruments, a resolution of about 0.15 nm can be reached.

In modern electron microscopes the microscope is operated
TRANSMISSION ELECTRON MICROSCOPY under computer control and the alignment can be done auto-

matically. The visual electron source, which is a thermal fil-
The Instrument ament, is increasingly replaced by a field-emission source,

from which the electrons are extracted by an electric field andA transmission electron microscope is very similar to a light
microscope (Fig. 1) in which the light bulb is replaced by an which yields a much higher brightness.
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Image Formation

Intuitive Description. The imaging process in the electron
microscope can be sketched in a very simple way as follows
(Fig. 2). The object is illuminated by a plane wave. Due to the
interaction of the electrons with the atoms of the object, the
electron wave is modulated by the structure of the object. By
propagating this object exit wave through the electron micro-
scope to the image plane this electron wave is blurred, that
is, each point of the wave is spread into the so-called point-
spread function or impulse response function. The wave as
well as the point-spread function is a complex valued function
with an amplitude and a phase component. Finally, however,
in the image plane only the intensity is recorded so that the
phase information is lost. Full recording of this phase infor-
mation can be done using holographic techniques (discussed
later).

Wave Optical Description. As in the light microscope, the
formation of the image must be described by wave optics (Fig.
3). The electron wave is diffracted by the object, and each
diffracted beam is focused by the objective lens into one point
in the focal plane. The electron wave in the focal plane can be
considered as the Fourier transform of the exit wave of the
object. The high spatial frequencies (small details) correspond
to beams far from the optical axis and the small spatial fre-
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quencies (large details) are located close to the optical axis.
Figure 3. Wave optical representation of the image formation by theIn case the object is periodical, such as is the case of a perfect
objective lens in a transmission electron microscope. The correspond-crystal, the Fourier transform is discrete, that is, the diffrac-
ing mathematical operations are indicated [see text with R � (x, y)tion pattern in the back focal plane consists of discrete spots.
and G � (u, v)].

These are the different diffracted beams. In case the object is
aperiodic, the image in the focal plane shows diffuse inten-
sity. In the second step of the imaging process, the points in
the focal plane act again as sources of waves, which interfere process is wave optically considered as a sequence of two Fou-
in the image plane. The image wave found in the image plane rier transforms, the first one leading from the object plane to
is the reverse Fourier transform of the wave found in the focal the back focal plane of the objective lens, and the second one
plane; therefore, under ideal imaging conditions with no im- from the focal plane to the image plane. In practice, however,
aging aberrations or apertures, the image wave should be the objective lens has intrinsic aberrations. The most impor-
identical to the object exit wave. In short, the whole imaging tant ones are the spherical aberration and the defocus. As a

consequence, the Fourier components of the electron wave in
Fourier space suffer from hampering phase shifts arising
from these aberrations that are more important for the high
spatial frequencies and that blur the image.

Usually the Fourier components, falsified by more than a
tolerable threshold, are masked out to minimize the blurring
effect. On the other hand, one has to find a compromise be-
cause, for high-resolution imaging, as many Fourier compo-
nents as possible should be admitted to the image. In a sense,
one can then consider the image wave as a truncated Fourier
reconstruction of the object exit wave with only a limited
number of Fourier components, which may be falsified by the
aberrative phase shift. The image formed by interference of
the residual waves cannot be interpreted easily.

The resolution, in a sense the smallest detail present in
the image, is then determined by the highest spatial fre-
quency that is allowed to contribute to the image formation.
One distinguishes between the point resolution, which is the
highest spatial frequency that contributes without extrat| |(R) (R)Φ 2

Impulsive response
function t(R)

Image

Object Φ(R)

phase shift and which gives rise to directly interpretable de-
tails, and the information limit, which is the highest spatialFigure 2. Schematical representation of the imaging process. The
frequency in the image formation but with a phase shift thatelectron wave is modulated by the object and then blurred by the

electron microscope. complicates a direct interpretation of the details.
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Figure 4. Different imaging modes. (a)
Bright-field imaging: only the transmitted
beam contributes to the image. (b) Dark
field: only one diffracted beam contributes
to the image. (c) High-resolution imaging:
the image is formed by interference of
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(a) (b) (c) many diffracted beams.

For special investigations of crystalline objects, it is useful A(g) describes the effect of the beam-selecting aperture and
the damping caused by incoherent effects (such as fluctua-to include only one diffracted beam for imaging (Fig. 4). If the

central beam is used, one obtains a so-called bright field im- tions in voltage and lens currents). �(g) is the phase shift,
given byage (BF); if only a diffracted beam is included, a so-called

dark field image results. In these cases, since there is no in-
terference between diffracted beams, the image contrast can χ(ggg) = π

2
(Csλ

3g4 + 2ελg2) (3)
more easily be interpreted in terms of the number of electrons
scattered in the corresponding particular direction. However, with Cs the spherical aberration constant of the objective lens,
high resolution cannot be obtained with these techniques. 	 the focus distance, and 
 the electron wavelength. The wave

In any case, for the interpretation of the images, it is function at the image plane is now given by the inverse Fou-
equally important to understand the interaction between the rier transform
electrons and the object.

ψim(RRR) = F−1
RRR T(ggg)φ(ggg) (4)

Mathematical Formulation
Transfer Function. By interaction with the object, the object and the image intensity by

exit wave �(R) is modulated both in amplitude and phase.
Hence �(R) is complex. R is the position vector in the object Iim(RRR) = ‖ψim(RRR)‖2 (5)
exit plane. According to Fraunhofer’s diffraction theory the
diffracted wave in the direction given by the reciprocal vector Equation (4) is called the coherent approximation; it is valid
g (or spatial frequency) is given by the Fourier transform of for thin objects. In general, the expressions are more compli-
the object function, that is, cated. One then has to consider the image as an incoherent

superposition of images that are slightly different, due to
φ(ggg) = Fgψ(RRR) (1) fluctuations in the conditions of the electron microscope. For

a more general description we refer the reader to Ref. 1.
The wave in the back focal plane of the objective lens is then The total image formation process is illustrated in Fig. 2.
the Fourier transform of the object wave. If one directly im- Impulse Response Function. As intuitively described earlier
ages the focal plane, one can see the diffraction pattern, given the image transfer can also be described in real space as a
by ��(g)�2. If the object is periodic, such as a crystal, the dif- blurring effect, and as also follows from Eq. (4) using the con-
fraction pattern will consist of sharp spots. A continuous ob- volution theorem,
ject will give rise to a continuous diffraction pattern. The sec-
ond stage of the imaging process is described by an inverse 
(RRR) = ψ(RRR) ∗ t(RRR) (6)
Fourier transform that reconstructs the object function �(R)
(usually enlarged) in the image plane (Fig. 3). The intensity where �(R) is the object wave in real space and t(R) is the
in the image plane is then given by ��(R)�2. Fourier transform of the transfer function. For an hypotheti-

In practice, by inserting an aperture in the focal plane of cal ideal pointlike object, the object wave �im(R) would be a �
the objective lens, it is possible to obtain an image in which function or ‘‘impulse’’ [�(R) � �(R)] so that 
im(R) � t(R), that
only selected beams contribute. On passing through the objec- is, the microscope would reveal t(R), which therefore is called
tive lens, each electron beam g undergoes a phase shift and impulse response function. If the transfer function would be
an amplitude reduction (damping). Hence the transfer func- constant (i.e., perfectly flat) in the whole spatial frequency
tion takes the form range, the impulse response function would be a � function so

that �im(R) � �(R), that is, the wave function in the image
T(ggg) = A(ggg) exp[−iχ(ggg)]D(ggg) (2) plane represents exactly the wave function of the object. In a
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sense the microscope is perfect. However, in practice the
transfer function cannot be made constant as is shown in Fig.
5. The impulse response function is still peaked as shown in
Fig. 6.

Hence, as follows from Eq. (6), the object wave �(R) is
smeared out (blurred) over the width of the peak. This width
can then be considered as a measure for the resolution in the
sense as originally defined by Rayleigh. The width of this
peak is the inverse of the width of the constant plateau of the
transfer function in Fig. 5. From another point of view one
can argue that if all the spatial frequencies have the same
phase shift, the information is transferred forward and keeps
a point to point relation to the object.

However, the information beyond this plateau is still con-
tributing to the image but with a wrong phase. It is scattered
outside the peak of the impulse response function and it is
thus redistributed over a larger area in the image plane.

Phase-Contrast Microscopy. In an ideal microscope, the im-
age wave function would exactly represent the object wave
function and the image of a pure phase object function would
show no contrast. This can be compared with imaging a glass
plate with variable thickness in an ideal light microscope.
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Figure 6. Impulse response function (imaginary part) corresponding
to the transfer function of Fig. 5.

If the phases of the diffracted beam (Fourier components)
are shifted over �/2 with respect to the central beam the im-
age contrast would directly reveal the phase of the object. In
light microscopy, phase contrast can be obtained by inserting
an annular quarter-wavelength plate in the focal plane of the
objective lens.

In electron microscopy, phase-contrast imaging can be
achieved by making the transfer function as constant as pos-
sible. From Eq. (3) it is clear that phase shifts occur due to
spherical aberration and defocus. However, the effect of
spherical aberration, which, in a sense, makes the objective
lens too strong for the most inclined beams, can be compen-
sated somewhat by slightly underfocussing the lens.

The focus setting is called the optimum focus or Scherzer
focus and its value can be calculated as

ε = −1.2C1/2
s λ1/2 (7)

The transfer function for this situation is depicted in Fig.
5. The phase shift �(g) is nearly equal to ��/2 with respect
to the central beam for a large range of spatial coordinates,
up to the value

|ggg| = 1.5C−1/4
s λ−3/4 (8)

The image then reveals directly the phase of the object. Now
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phase is proportional to the electrostatic potential of theFigure 5. Transfer function (imaginary part) of a 300 keV electron

microscope at optimum defocus. atoms projected along the viewing direction. Hence, if the ob-
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ject would be very thin, optimum focus imaging would directly
reveal atom columns as dark dots and empty spaces as light
areas. However, this argument only holds for spatial frequen-
cies that are within the range given by Eq. (8). Furthermore
the thickness up to which an object can be considered as a
weak phase object is very small (e.g., 1 nm) and is rarely met
in practice.

Resolution. One has to distinguish between point resolu-
tion (or structural resolution) as the finest detail that can be
interpreted in terms of the structure and the information
limit, which is the finest detail that can be resolved by the
instrument, irrespective of a possible interpretation.

The point resolution can be obtained from the inverse of
the maximal spatial frequency equation (8) as

ρs = 0.65C1/4
s λ3/4 (9)

The point resolution is also equal to the ‘‘width’’ of the im-
pulse response function (Fig. 6). The information beyond �s is
transferred with a nonconstant phase and, as a consequence,
is redistributed over a larger image area.

The information limit �I can be defined as the finest detail
that can be resolved by the instrument. This limit is mainly
determined by incoherent effects (fluctuations on the energy
of the electrons and on the lens currents, divergences of the
illuminating beams). The information limit is usually smaller
than the point resolution. Typical values are 
 � 2 pm (300
keV), Cs � 1 mm, �s � 0.2 nm, �I � 0.13 nm. The point resolu-
tion can be improved by reducing the incoherent effects (e.g.,
energy and current fluctuations), for instance, by using a field
emission source and a stable voltage supply.

The Specimen

Specimens for high-resolution electron microscopy are pre-
pared using the same techniques as for usual transmission
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electron microscopy, that is, ion beam milling, chemical and
electrolytical thinning, cleavage, crushing, and so on. The Figure 7. Formation of the diffraction pattern. The simultaneously

excited electron beams can be used for image formation.only requirements are that the specimen should be suffi-
ciently thin, that is, less than about 10 nm. Furthermore, the
specimen should be sufficiently clean and free of contamina-
tion. Depending on the type of specimen one can use different
thinning methods such as ion beam milling, electrochemical
etching, crushing, and dimpling.

For details of specimen preparation we refer the reader to
Ref. 2.

Crystalline specimens are oriented with a zone axis paral-
lel to the incident beam so that all the diffracted beams of
that zone are excited simultaneously and maximal informa-
tion is present in the image. This is shown in Fig. 7. In this
situation, the electrons propagate parallel to a zone axis, that
is, parallel to the atom rows, which makes a possible interpre-
tation of the images in terms of the projected structure mean-
ingful. As an example, Fig. 8 shows a drawing of a model of a
dislocation viewed along a zone axis.

It is also possible, using an aperture placed in the focal
plane of the objective lens, to select a particular set of beams
so that the images contain specific information. If the central
beam is not included, these images are called dark-field
images.

After finding a suitably thin part with the proper orienta-
tion, one has to adjust the focus. When the specimen is very Figure 8. Structure model of a crystal containing a dislocation

viewed along the atomic columns.thin, the zero focus corresponds to minimal contrast.
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In practice, one takes a series of images at gradually differ-
ent focus settings, recorded approximately around the opti-
mum defocus. This is called a through-focus series. When
dealing with a specimen that is unstable in the electron beam,
the specimen can be completely destroyed within a period of
seconds. Here a minimal exposure technique has to be used.

Electron Diffraction

Diffraction Mode. When the focal length of the intermedi-
ate lens is increased, by weakening its excitation, so as to
make the back focal plane of the objective lens coincide with
the object plane of the projector lens, a magnified image of
the diffraction pattern is projected on the screen. Neither

k0 kH

BH

H

Hθ

O

C

specimen orientation nor selected area are hereby changed;
Figure 10. Ewald construction of diffracted wave. A diffracted wavethe diffraction pattern is thus representative of the selected
is formed if Ewald’s sphere (� plane) intersects a reciprocal-latticearea. It should be noted that the area selected in the diffrac-
node H. k0 is the wave vector of the incident wave, kH is the wave

tion mode is much larger than the field of view for imaging. vector of diffracted wave, and BH is the reciprocal-lattice vector be-
longing to node H.

Geometry of the Diffraction Pattern. The diffraction condi-
tions can be formulated in two different ways: either empha-
sizing direct space or reciprocal space. In direct space the

that of Bragg’s law. Geometrically it expresses the conditiondiffraction conditions are known as Bragg’s law (3). Atten-
that a sphere with radius �k� � 1/
 and center C in �k0tion is focused on sets of parallel lattice planes with inter-
(Ewald’s sphere) must pass through a point H of the recipro-planar spacing dH, where H represents the three Miller indi-
cal lattice for diffraction to occur. The scattered wave direc-ces of the considered family of lattice planes. ‘‘Reflection’’ will
tion is then obtained by joining the center of Ewald’s sphereoccur for certain ‘‘glancing’’ angles �H satisfying Bragg’s law;
with the excited reciprocal-lattice point H (Figs. 7 and 10).2dH sin �H � n
, where 
 is the wavelength of the radiation

In electron microscopy the specimen has to be a thin foilused and n is an integer. This relation expresses the condition
since electrons are strongly ‘‘absorbed’’ in solids. This causesthat the difference in path length between waves scattered by
an anisotropic relaxation of the Bragg condition along the foiltwo successive lattice planes is an integer number of wave-
normal. Diffraction now occurs also for conditions deviatinglengths (Fig. 9). For 100 kV electrons 
 � 0.004 nm and hence
somewhat from the exact Bragg angles. This is representedthe Bragg angles are very small, of the order of a few degrees
in reciprocal space as a change of the sharp spots into infi-at most.
nitely thin rods, called ‘‘relrods’’ perpendicular to the foil sur-In terms of reciprocal space the Ewald diffraction condition
faces. These relrods have an intensity profile represented in(4) can be formulated as kH � k0 � BH, where k0 is the wave
Fig. 11 according to the kinematical theory of electron diffrac-vector of the incident wave and kH that of the scattered wave
tion (see the Appendix).and BH is a reciprocal-lattice vector BH � h1b1 � h2b2 � h3b3.

Since the radius of Ewald’s sphere (1/
) is large as com-The bj are the base vectors of the reciprocal lattice, defined in
pared to the mesh size of the reciprocal lattice (1/dH), theterms of the base vectors ai of the direct lattice by the rela-
sphere can be approximated by a plane. The diffraction pat-tions ai � bj � �ij (Kronecker �) (i, j � 1, 2, 3). The Ewald condi-
tern can thus be considered as the projection of an unde-tion expresses the conservation of energy and linear momen-
formed planar section of the reciprocal lattice.tum on elastic scattering; its physical content is the same as

The distance sH by which Ewald’s sphere misses the recip-
rocal-lattice node H is called the excitation error. It is a vector
parallel to the foil normal that connects the reciprocal-lattice

2/t

Intensity

SH

k – k0 = k0

kH

dHdH

HθHθ

Hθ

 k0

sin

Figure 9. ‘‘Reflection’’ of electron waves by successive lattice planes Figure 11. Intensity profile along a ‘‘relrod’’ for a foil with thick-
ness t.leading to the Bragg condition.
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Figure 12. Illustration of the diffraction geome-
try in reciprocal space, defining the excitation

1
λ k0 k0kH

BH

kH

SH

C

O

H

H

(a) (b) error sH. (a) sH � 0. (b) sH � 0.

node and the intersection point with Ewald’s sphere. It is by the direct beam only one scattered beam is strong. The selec-
convention called positive when pointing in the sense of the tor aperture allows us to select either the direct beam or the
propagating electrons, that is, when the node is inside intense scattered beam. The selected diffraction spot is then
Ewald’s sphere. In Fig. 12(b), sH is negative. highly magnified by the lenses. The image obtained in this

way is a highly magnified map of the intensity distribution in
Convergent Beam Electron Diffraction. By converging the in- the corresponding diffraction spot. If the direct beam is mag-

cident beam into a cone, the diffraction spots become disks nified this is called a bright-field image [Fig. 13(a)]; if the dif-
with a fine structure of intensity variations. This way of dif- fracted beam is selected, the image is a dark-field image [Fig.
fraction is highly sensitive to small changes in the crystal 13(b)]. Since the electrons propagate within a narrow column
structure. It can be used very efficiently to determine the by diffracting back and forth, such columns can be considered
space group symmetry of a crystal, to measure very accu- as picture elements forming the image (Fig. 14). This is the
rately the unit cell dimensions, thermal expansion coeffi- so-called column approximation (6,7).
cients, local strain, and crystal potentials. For more detail, we The amplitude of either the scattered or the transmitted
refer to Ref. 5. beam emerging in a point on the exit surface of the foil is the

sum of the contributions of all volume elements along a col-
Imaging umn parallel to the incident beam. This amplitude depends

on the variation of the excitation error sH along the column,Diffraction-Contrast Imaging
which itself depends on the local orientation of the diffractingPrinciples. Diffraction-contrast images are preferably ob-
planes. In a perfect foil s is constant and it is the same alongtained under two-beam conditions since this allows an easier

interpretation. The specimen is oriented such that apart from all the columns; the image is an area of uniform intensity. If

Figure 13. Ray paths for the (a) bright-field mode and (b)

Condenser lens

Objective lensSpecimen

Aperture

Bright-field image Dark-field image

Back focal plane

 Image plane

Projector lens

Plane of
observation

(a) (b) dark-field mode.
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ture in the bright-field image, whereas in the dark-field image
the nature of the two edge fringes is the same.

From the nature of the first and last fringes one can con-
clude, for instance, whether a stacking fault in a face-cen-
tered cubic crystal is either intrinsic (i.e., of the type . . .
abcababc. . .) (8) or extrinsic (i.e., of the type . . .
abcabacabc. . .). Figure 16, right refers to a domain bound-
ary whereas Fig. 19, left is due to a stacking fault.

Dislocation Contrast (9,10). The contrast produced at dislo-
cation lines can be understood by noting that the reflecting
lattice planes in the regions on two opposite sides of the dislo-
cation line are tilted in the opposite sense. Hence the Bragg
condition for reflection is differently affected on the two sides
of the line. On one side, the diffracted intensity may be en-
hanced because the Bragg condition is better satisfied (s is
smaller), whereas it is decreased on the other side because s is
larger, leading to a black–white line contrast shown schemati-
cally in Fig. 17 for the case of an edge dislocation. In this sche-

Hθ

nθ

Hθ

k0k0

Z0 t

kH

kH

∆

(a) (b)
matic representation the line thickness is proportional to the lo-

Figure 14. Repeated reflection of electron waves in a column of crys- cal beam intensity. In bright-field images dislocation lines are
tal. According to the (a) kinematical theory and (b) dynamical theory. thus imaged as dark lines, slightly displaced from the actual po-

sition of the dislocation line towards the ‘‘image side.’’
This model implies that imaging in reflections associateda strain pattern is present in the foil s will vary differently

with families of lattice planes that are not deformed by thealong different columns and as a result an image is formed.
presence of the dislocation will not produce a visible line im-Diffraction-contrast images are thus very sensitive to strain
age; the image is then said to be extinct (Fig. 18). The extinc-patterns but they do not reveal the crystal structure.
tion condition can to a good approximation be formulated asExamples
H � b � 0, where b is the Burgers vector of the dislocation. IfInterface Contrast. Interfaces situated in planes inclined
extinction occurs for two different sets of lattice planes withwith respect to the foil surfaces divide the foil into two wedge-
normals H1 and H2, the direction of the Burgers vector b isshaped parts. These two parts are related by a translation
parallel to H1 � H2.if the interface is a stacking fault or an antiphase boundary

Images of dislocations can be simulated accurately by nu-with R � R0; they differ in orientation, that is, in s when the
merically solving the equations that describe the dynamicalinterface is a domain boundary (Fig. 15).
scattering of the electrons in the object (see the Appendix).In both cases sets of parallel fringes are formed, which are

Fast computer programs (10) have been developed to calcu-parallel to the closest intersection line of the interface and the
late such images for various strain fields and various diffrac-surface. Their intensity profiles are different, however. Planar
tion conditions. An example of the agreement between the ob-interfaces parallel to the foil surfaces only cause a brightness
served and the computed image that can be achieved is showndifference in the faulted area.
in Fig. 19 after Ref. 10.In Fig. 16 the two types of fringes are compared. The most

Weak-Beam Images (11). The width of the bright peak thatimportant feature is the nature, bright (B) or dark (D), of the
images a dislocation in the dark-field imaging mode decreasesedge fringes (i.e., the first and the last fringe). Bright-field
with increasing s. This effect is exploited systematically in thefringe patterns produced at stacking faults have edge fringes
weak-beam method, which allows one to image the disloca-of the same nature, whereas in the dark -field fringe pattern
tions as very fine bright lines on a dark background, using athe edge fringes have opposite nature. The reverse is true for

domain boundary fringes; the edge fringes are of opposite na- reflection that is only weakly excited, that is, for which s is

Figure 15. Displacement fields of planar inter-
faces: (a) stacking fault and (b) domain boundary.
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Figure 16. Comparison of fringe pattern
characteristics due to a stacking fault
(left) and to a domain boundary (right).
The abbreviations F, L, B, and D denote
first fringe, last fringe, bright, and dark,
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Figure 17. Image formation at an edge dislocation
according to the kinematical approximation. The
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of the beams. IT is the intensity of the transmitted

BF DF

IT IS

O

C

H sH

s

k0

eZE1 E E2

beam and IS of the scattered beam.



662 ELECTRON MICROSCOPES

Figure 18. Three images of the same area made under two-beam
conditions using three different diffraction vectors H1 � 020, H2 �

110, H3 � 210. Note the extinctions.

large. Unfortunately the contrast is weak and long exposure
times are required (Fig. 20).

High-Resolution Imaging
Figure 20. Weak beam image of dislocations in RuSe2.Images of Thin Objects. A very thin object acts as a phase

object, in which the phase is proportional to the projected po-

tential along the electron path. The reason is that, in an elec-
trostatic potential, the electron changes speed, which results
in a phase shift. Then the exit wave of the object can be writ-
ten as

ψ(RRR) ≈ 1 + iσVp(RRR) (10)

Vp(R) is the projected potential of the object.
In the phase-contrast mode [Appendix A1, Eq. (18)], the

phase shift of �/2 changes i into �1 so that the image inten-
sity is

I(RRR) ≈ 1 − 2σVp(RRR) (11)

The image contrast of a thin object is proportional to its elec-
trostatic potential Vp(R) projected along the direction of inci-
dence.

Building-Block Structures. It often happens that a family of
crystal structures exists, of which all members consist of a
stacking of the simple building blocks but with a different
stacking sequence. This is, for instance, the case in mixed-
layer compounds, polytypes, and periodical twins, but also pe-
riodic interfaces such as antiphase boundaries and crystallo-
graphic shear planes can be considered as mixed-layer sys-
tems. If the blocks are larger than the resolution of the
microscope, each block will show its characteristic contrast.
In this way, stacking of the blocks can be directly ‘‘read’’ from
the image. The relation between image and structure is called
the image code.

An example is shown in Fig. 21 for the case of the binary
alloy Au4Mn in which Au or Mn atoms are located on two
sublattices of a single fcc lattice. In this image the Mn atoms
are visualized as bright dots. The Au atoms are not visible.
This kind of image can be interpreted unambiguously.Figure 19. Comparison of observed (left) and computer simulated

Interpretation using Image Simulation. In most cases, how-(right) images of dislocations. Note the excellent correspondence
(after Ref. 9). ever, the image cannot easily be decoded in terms of the object
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Figure 21. Dark-field superlattice image of Au4Mn. Orientation and
translation variants are revealed. (Courtesy of G. Van Tendeloo.)

Figure 23. Comparison of experimental images (upper parts) and
computer simulated images (lower parts) for Ti2Nb10O29 as a function
of defocus. (Courtesy S. Iijima.)structure, making interpretation difficult, especially at very

high resolution, where the image contrast can vary drastically
with the focus distance. As a typical and historical example,
structure images obtained by Iijima for the complex oxide ber of unknown parameters (specimen thickness, exact focus,
Ti2Nb10O25 with a point resolution of approximately 0.35 nm beam convergence, etc.). Furthermore, the comparison is of-
are shown in Fig. 22 (upper parts). The structure as repro- ten done visually. As a consequence, the technique can only
duced schematically in Fig. 23 consists of a stacking of corner- be used if the number of plausible models is very limited.
or face-sharing NbO6 octahedra with the titanium atoms in Holographic Reconstruction Methods. Due to the complexity
tetrahedral positions. High-resolution images are taken at of the imaging process, the information about the structure of
different focus values, causing the contrast to change drasti- the object is scrambled in the image. The structural informa-
cally. The best resemblance with the X-ray structure can be tion can be extracted directly from the images using holo-
obtained near the optimum Scherzer defocus, which is �90 graphic reconstruction methods. These methods aim at undo-
nm in this particular case. However, the interpretation of ing the image process, that is, going back from image to
such high-resolution images never appears to be trivial. The object. Such a procedure consists of three steps. First one has
only solution remains in the comparison of the experimental to reconstruct the electron wave in the image plane. Then one
images with those calculated for various trial structures. The has to reconstruct the exit wave at the object and from this
results of such a calculation using the model of Fig. 23 are one has to deduce the projected structure of the object. In a
also shown in Fig. 22 (lower parts) and show a close resem- recorded image, which shows only intensities, the phase infor-
blance with the experimental images. Image simulation, how- mation is lost. Hence, the reconstruction of the whole image
ever, is a very tedious technique that has to deal with a num- wave is a typical phase problem that can only be solved using

holographic methods. Basically two methods are workable.
One method is off-axis holography (12). Here the electron
beam is split in two waves by means of a biprism, which es-
sentially is an electrostatically charged wire. One wave
crosses the object so as to produce an enlarged image. The
other wave (reference wave) passes by the object through the
vacuum and interferes with the image wave in the image
plane. In this way the high-resolution image is modulated by
the interference fringes. From the position of the fringes one
can then determine the phase of the electron wave. The other
method is the focus variation method (1). The image wave is
calculated by computer processing a series of images taken at
different focus settings. Figure 24 shows an experimentally
reconstructed exit wave for YBa2Cu4O8. From this the struc-
ture of the object can be deduced.

Quantitative Structure Determination. Ideally quantitative
extraction of information should be done as follows. One has
a model for the object, for the electron object interaction, forFigure 22. Schematic representation of the unit cell of Ti2Nb10O29

the microscope transfer and for the detection, that is, all theconsisting of corner-sharing NbO6 octahedra with Ti atoms in tetrahe-
dral sites. ingredients needed to perform a computer simulation of the
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with X-ray crystallography). For each set of parameters of the
model, one can calculate this goodness of fit, so as to yield a
fitness function in parameter space.

In principle, the search for the best parameter set is then
reduced to the search for optimal fitness in parameter space.
This search can only be done in an iterative way as given in
the schematic in Fig. 25. First one has a starting model, that
is, a starting value for the object and imaging parameters
�an�. From these one can calculate the experimental images.
This is a classical image simulation. (Note that the experi-

Figure 24. Experimentally reconstructed exit wave for YBa2Cu48.
Top, reconstructed phase; center: structure model; bottom: experi-
mental image.

experiment. The object model that describes the interaction
with electrons consists of the assembly of the electrostatic po-
tentials of the constituting atoms. Also the imaging process
is characterized by a number of parameters such as defocus,
spherical aberration, and voltage. These parameters can ei-
ther be known a priori with sufficient accuracy or not, in
which case they have to be determined from the experiment.
The model parameters can be estimated from the fit between
the theoretical images and the experimental images. What
one really wants is not only the best estimate for the model
parameters but also their standard deviation (error bars), a
criterion for the goodness of fit, and a suggestion for the best
experimental setting. This requires a correct statistical analy-
sis of the experimental data. The goodness of the fit between
model and experiment has to be evaluated using a criterion
such as likelihood, mean square difference, or R factor (as

Figure 26. HREM image (a) and phase of the experimentally recon-

p({ni}/{ax})

{ni}{ax}

Model
space

Experimental
data

New estimate

Simulation

Direct
methods

structed exit wave (b) of an Mg/Si precipitate in an Al matrix. (Cour-
tesy H. Zandbergen (14).Figure 25. Scheme for the refinement procedure.
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Figure 27. Structure model with MSLS from the fitting procedure Figure 28. Schematic illustration of the basic mapping principle of
described in the text. [Courtesy H. Zandbergen (14).] the scanning electron microscope. [Courtesy D. Joy (19).]

mental data can also be a series of images and/or diffraction SCANNING ELECTRON MICROSCOPY
patterns.) From the mismatch between experimental and sim-
ulated images one can obtain a new estimate for the model The SEM is a mapping, rather than an imaging device (Fig.

28) and so is a member of the same class of instruments asparameters (for instance, using a gradient method), which
can then be used for the next iteration. This procedure is re- the facsimile machine, the scanning probe microscope, and

the confocal optical microscope (19). The sample is probed bypeated until the optimal fitness (i.e., optimal match) is
reached. a beam of electrons scanned across the surface. Radiations

from the specimen stimulated by the incident beam are de-The refinement procedure needs a good starting model to
guarantee convergence. Such a model can be derived from ho- tected, amplified, and used to modulate the brightness of a

second beam of electrons scanned, synchronously with thelographic reconstruction. The refinement can also be done us-
ing experimental electron diffraction patterns. first beam, across a cathode-ray-tube display. If the area

scanned on the display tube is A � A and the correspondingAn application of such refinement is shown in Figs. 26 and
27. Figure 26 (left) shows an HREM image of a Mg/Si precipi- area scanned on the sample is B � B, then the linear magni-

fication M � A/B. The magnification is therefore geometric intate in an Al matrix (13). Figure 26 (right) shows the phase
of the exit wave, which is reconstructed experimentally using origin and may be changed by varying the area scanned on

the sample. The arrangement makes it possible for a widethe focus variation method. From this an approximate struc-
ture model can be deduced. From different precipitates and range of magnifications to be obtained and allows rapid

changes of magnification since no alterations to the electron-different zones, electron diffraction patterns could be ob-
tained, which were used simultaneously for a final fitting. optical system are required. There is no rotation between ob-

ject and image planes, and once the instrument has been fo-For each diffraction pattern the crystal thickness as well
as the local orientation was also treated as a fittable parame- cused on a given area the focus need not be changed when

the magnification is varied. To a first approximation the sizeter. An overview of the results is shown in Table 1. The ob-
tained R factors are of the order of 5%, which is well below of the finest detail visible in the image will be set by the size

of the probe scanning the specimen. Multiple detectors can bethe R factors using kinematical refinement that do not ac-
count for the dynamical electron scattering. Figure 27 shows used to collect several signals simultaneously that can then

be displayed individually or combined in perfect register withthe structure obtained after refinement. Details of this study
have been published by Zandbergen et al. (14). each other. It is this probability in particular that makes the

Table 1. Results of Structure Refinement Using Electron Diffraction Data

Number of
Crystal Misorientation R Value (%)

Observed Thickness
Zone Reflections (nm) h k l MSLS Kinematic

[010] 50 6.7(5) 8.3 0 �2.3 3.0 3.7
[010] 56 15.9(6) 2.6 0 �1.8 4.1 8.3
[010] 43 16.1(8) �1.7 0 0.3 0.7 12.4
[010] 50 17.2(6) �5.0 0 �1.0 1.4 21.6
[010] 54 22.2(7) �5.9 0 2.5 5.3 37.3
[001] 72 3.7(3) �3.9 4.5 0 4.1 4.5
[001] 52 4.9(6) 3.6 �1.9 0 6.8 9.3
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Figure 29. Basic components of the scan-
ning electron microscope. [Courtesy D. Joy
(19).]
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SEM so useful a tool since multiple views of a sample, in dif- aperture without any constriction of the scanned area. The
ferent imaging modes, can be collected and compared in a sin- scan pattern, produced on the specimen, is usually square in
gle pass of the beam. shape and is made up of 1000 horizontal lines, each con-

Figure 29 shows the basic components of a SEM. These taining 1000 individual scanned points or pixels. The final im-
can be divided into two main categories: the electron-optical age frame thus contains 106 pixels, although for special activi-
and detector systems and the scanning processing and display ties such as focusing or alignment frames containing only 256
systems. The electron-optical components are often described � 256 pixels may be used.
as being the ‘‘column’’ of the instrument while the other items Increasingly the detector output is passed through an ana-
are the ‘‘console’’ of the machine. The source of electrons is log-to-digital convertor (ADC) and then handled digitally
the gun, which produces electrons either by thermal emission, rather than as an analog video signal. This permits images to
from tungsten or lanthanum hexaboride cathodes, or from a be stored, enhanced, combined, and analyzed using either an
field-emission source. These electrons are then accelerated to internal or an external computer. While the majority of the
an energy in the range from 500 eV to 30 keV. The beam of images are still recorded onto photographic film, digital im-
electrons leaving the gun is then focused onto the specimen ages can be stored directly to magnetic or magneto-optic
by one or more condenser lenses. Although either electrostatic disks, and hard-copy output of the images can then be ob-
or electromagnetic lenses could be employed all modern SEMs tained using laser or dye sublimation printers. Typically scan
use electromagnetic lenses. Typically, the final objective lens repetition rates ranging from 15 or 20 frames/s (‘‘TV rate’’) to
has been of the pinhole design with the sample sitting outside one frame in 30 s to 60 s (‘‘photographic rate’’) are provided.
the field of the lens since this arrangement gives good physi- In addition individual pixels or arrays of pixels within an im-
cal access to the specimen. However, in this arrangement the age field may be accessed if required.
specimen is 10 mm to 20 mm away from the lens, which must In the case of the SEM the attainable resolution is deter-
therefore be of long focal length and correspondingly high ab- mined by a number of factors, including the diameter of the
erration coefficients. In modern, high-performance instru- electron-beam probe that can be generated, the current Ib con-
ments it is now common to use an immersion lens (15), in tained in that probe, the magnification of the image, and the
which the sample sits inside the lens at the center of the lens type of imaging mode that is being used. Over most of the
field, or a ‘‘snorkel’’ lens (16) in which the magnetic field ex- operating energy range (5 keV to 30 keV) of the SEM, the
tends outside of the lens to envelop the sample. Although the probe size and beam current are related by an expression of
immersion lens gives very good performance and, by making the form (17)
the sample part of the lens structure, ensures mechanical sta-
bility, the amount of access to the specimen is limited. The
snorkel lens, on the other hand, combines both good electron- d = C1/4

s λ3/4
�

1 + Ib

βλ2

�3/8

(12)
optical characteristics with excellent access for detectors and
stage mechanisms.

where 
 is the wavelength of the electrons (
 � 1.226E�1/2
0 nm,The coils that scan the beam are usually incorporated

where E0 is the incident electron energy in eV), � is thewithin the objective lens. A double-scan arrangement is often
brightness of the electron gun in A � cm�2 � sr�1, and Cs is theemployed in which one sets of coils scans the beam through
spherical aberration coefficient of the objective lens.some angle � from the axis of the microscope while a second

Finally, if the gun brightness is further increased to 108set scans the beam through an angle 2� in the opposite direc-
A � cm�2 � sr�1 by using a field-emission source (18), then thetion. In this way all scanned beams pass through a single

point on the optic axis allowing for the placement of a defining factor is close to unity for both modes of operation considered.
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For a modern SEM Cs is typically a few millimeters; thus
minimum probe sizes of 1 nm or 2 nm are available. At low
beam energies (below 5 keV) additional effects including the
energy spread of electrons in the beam must also be consid-
ered, but the general conclusions discussed previously re-
main correct.

Modes of Operation

Secondary-Electron Imaging. Secondary electrons (SE) are
those electrons emitted by the specimen, under irradiation by
the beam, which have energies between 0 eV and 50 eV. Be-
cause of their low energy the SE only travel relatively short
distances in the specimen (3 mm to 10 mm) and thus they
emerge from a shallow ‘‘escape’’ region beneath the surface.
There are two cases in which an SE can be generated and
subsequently escape from the specimen: first, when an inci-

Figure 31. High-resolution image of magnetic disk media surface
dent electron passes downward through the escape depth, and recorded at 30 keV in a JEOL JSM 890 field-emission SEM. [Courtesy
second as a backscattered electron leaves the specimen and D. Joy (19).]
again passes through the escape region. Secondary electrons
produced in the first type of event are designated SE1, and
because they are generated at the point where the incident

with energies between 50 eV and the incident beam energybeam enters the specimen, it is these that carry high-resolu-
E0. Because the yield of BSE varies with the atomic numbertion information. The other secondary electrons are called
of the specimen the contrast of the images is related to theSE2, and these come from a region the size of which is of the
atomic number of the object.order of the incident beam range in the sample.

Secondary-electron imaging is the most common mode of
operation of the SEM. The reason for this is that secondary Other Imaging Modes. With a SEM it is possible to measure
electrons are easy to collect and they carry information about the current through the object as induced by the imaging elec-
the surface topography of the specimen. Information about tron beam [electron-beam-induced current (EBIC)]. This sig-
surface chemistry and magnetic and electric fields may also nal gives information about the electron-hole pair carriers in
be obtainable on suitable specimens. SE images can usually a semiconductor such as those at p–u junctions. In cathode
be interpreted readily without specialized knowledge and luminescence, one detects the fluorescence radiation that is
they yield a spatial resolution of 1 nm or better. Examples of due to irradiation by the incident beam. This is a very sensi-
typical SE images are shown in Figs. 30 and 31. The light tive technique that gives information about the impurities in
and shadow effects together with the very large depth of focus semiconductors.
enhance the 3D aspects of the surface structure. For more information we refer the reader to Ref. 19.

Another imaging mode is voltage constrast, which is illus-
trated in Fig. 32. Here large regions of uniform bright and

SCANNING TRANSMISSION ELECTRON MICROSCOPYdark contrast correspond to regions that have a negative and
positive voltage with respect to ground.

In principle a STEM can be considered as a SEM in which
the object is transparent for the high energy electrons and inBackscattered Electrons. Backscattered electrons (BSE) are

defined as being those electrons emitted from the specimen which the detector is placed behind the object. As in a STEM,

Figure 30. Secondary-electron images of radiolarium. Recorded in
Hitachi S-4500 field emission SEM at 5 keV beam energy. Magnifica-
tion: 800�. [Courtesy D. Joy (19).] Figure 32. Voltage contrast from an integrated circuit. Recorded at

5 keV in a Hitachi S-800 field-emission SEM. [Courtesy D. Joy (19).]
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a fine electron probe, formed by using a strong objective elec- CTEM electron source. The STEM gun is placed in the detec-
tor plane of the CTEM, and the scanning system effectivelytron lens to demagnify a small source, is scanned over the

specimen in a two-dimensional raster [Fig. 33(a)]. The elec- translates the STEM source to cover the CTEM recording
plate. When one uses a detector with a hole to eliminate thetron probe is necessarily convergent: the convergence angle

is, ideally, inversely proportional to the minimum probe size unscattered electron beam, the imaging is effectively incoher-
ent so that the image contrast can be interpreted directly inthat determines the microscope resolution. On any plane after

the specimen, a convergent beam electron-diffraction pattern terms of the atomic number of the constituting atoms. This
imaging mode is therefore called Z contrast imaging (20). Fig-is formed. Some part of this diffraction pattern is collected in

a detector, creating a signal, which is displayed on a cathode- ure 34 shows a STEM image of a tilt boundary in silicon in
which the local atomic configuration can be seen directly inray-tube screen to form the image using a raster scan

matched to that which deflects the incident electron beam the images.
The strength of STEM as compared to TEM is that a vari-(20,21).

Dark-field images, obtained with an annular detector in a ety of signals may be obtained in addition to the bright-field
or dark-field signals derived from the elastic scattering ofSTEM instrument, showed the first clear electron microscopy

images of individual heavy atoms (22). From that time, STEM electrons in the specimen. STEM instruments are visually
fitted with an energy-loss spectrometer. Energy filtered im-has developed as an important alternative to conventional,

fixed-beam transmission electron microscopy (CTEM), with ages reveal compositional information. For more information
we refer to Refs. 20 and 24.special advantages for many purposes.

The use of a field emission gun (FEG) for high-resolution
STEM is necessary to provide sufficient signal strength for

APPENDIX A. ELECTRON-DIFFRACTION THEORIESviewing or recording images in a convenient time period. Be-
cause the FEG source has a brightness that is a factor of 104

Phase Object Approximationor 103 greater than that of a W hairpin filament, the total
current in the electron beam is greater when beam diameters We will now follow a classical approach. The nonrelativistic
of less than about 10 nm are produced. The current in a beam expression for the wavelength of an electron accelerated by
of 1 nm diameter is typically about 1 nA. As suggested by Fig. an electrostatic potential E is given by
33(b), the essential components of a STEM imaging system
are the same as those for a CTEM instrument, with the elec-
trons traveling in the opposite direction. In this diagram con-

λ = h√
2meE

(A.1)

densor and projector lenses have been omitted, and only the
essential objective lens, which determines the imaging char- with h the Planck constant, m the electron mass and e the

electron charge.acteristics, is included. The STEM detector replaces the
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Figure 33. (a) Diagram of the essential com-
ponents of a STEM instrument. (b) Diagram
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Under this assumption the specimen acts as a pure phase
object with transmission function

ψ(x, y) = exp[iσVp(x, y)] (A.5)

In case the object is very thin, one has

ψ(x, y) ≈ 1 + iσVp(x, y) (A.6)

This is the weak-phase approximation.
The effect of all processes prohibiting the electrons from

contributing to the image contrast, including the use of a fi-
nite aperture, can in a first approximation be represented by
a projected absorption function in the exponent of Eq. (A.5) so
that

ψ(x, y) = exp[iσVp(x, y) − µ(x, y)] (A.7)

or

ψ(RRR) = exp[iσVp(RRR) − mu(RRR)] (A.8)

with R � (x, y) the vector in the plane perpendicular to z.

Kinematical Theory

As follows from Eq. (1) a diffraction pattern can be calculated
from the Fourier transforms of the exit wave �(R). However,
even for a simple approximation such as Eq. (A.8) the Fourier
transform is not expressed in a simple analytical form. In or-Figure 34. � � 9,�221�(100) symmetric tilt boundary in silicon
der to derive a simpler, albeit approximated, expression forviewed along the [110] direction showing its five- and seven-mem-
the diffraction pattern it is more convenient to describe thebered ring structure. ADF � annular dark field; EELS � electron

energy loss spectroscopy. [Courtesy S. Pennycook (21).] diffraction process directly in Fourier space.
According to the kinematical diffraction theory electrons

are scattered in the specimen only and moreover the incident
During the motion through an object with local potential beam is not depleted by scattering. Each atom (scattering cen-

V(x, y, z) the wavelength will vary with the position of the ter) thus sees the same incident beam amplitude. This ap-
electron as proximation is excellent in neutron diffraction, justified in X-

ray diffraction, but it is poor in electron diffraction because
the atomic scattering cross sections for electrons are rela-
tively much larger than those for the other forms of radiation.

λ1(x, y, z) = h
p

2me[E + V (x, y, z)]
(A.2)

The kinematical approximation is therefore only applicable to
For thin phase objects and large accelerating potentials the very thin crystals (a few nanometers for most materials) or
assumption can be made that the electron keeps traveling for very large deviations from the exact Bragg condition
along the z direction so that by propagation through a slice (large s). It allows one to compute the amplitude of the dif-
dz the electron suffers a phase shift. fracted beam only since the incident beam remains unde-

pleted. Qualitative conclusions from the kinematical theory
are nevertheless usually in agreement with the observations.

A crystal is made up of identical unit cells, regularly ar-
ranged at the basic lattice nodepoints given by

AAALLL = l1aaa1 + l2aaa2 + l3aaa3 (A.9)

dφ (x, y, z) = 2π
dz
λ1

− 2π
dz
λ

= 2π
dz
λ

�p
E + V (x, y, z)√

E
− 1

�

� σV (x, y, z) dz

(where lj is an integer). In each unit cell, a number N of atomswith
is found at the relative positions �k (k � 1, . . . , N). Mathe-
matically speaking, the whole crystal is made up by convolu-σ = π/λE (A.3)
tion of one unit cell with the basic crystal lattice. Atom posi-
tions are thus rj � AL � �k and they depend on four indicesTherefore the total phase shift is given by
l1, l2, l3, and k.

Let k0 represent the wave vector of the incident wave andφ(x, y) = σ
∫

V (x, y, z) dz = σVp(x, y) (A.4)
k that of the diffracted wave; then at large distance, i.e., in
the Fraunhofer approximation, the phase difference betweenwhere Vp(x, y) represents the potential of the specimen pro-

jected along the z direction. a wave diffracted by an atom at the origin and an atom at rj
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Equation (A.15) is in fact a triple sum over the indices L(l1,
l2, l3). If s is written as a vector in terms of the reciprocal-
space base vectors bj:

sss = s1bbb1 + s2bbb2 + s3bbb3 (A.17)

one has

sss · AAALLL = l1s1 + l2s2 + l3s3 (A.18)

The triple sum can be expressed as the product of three single
sums of geometrical progressions. Calling N1, N2, and N3 the
numbers of unit cells along the three lattice directions a1, a2,
and a3, one obtains, neglecting an irrelevant phase factor

k0

k

B A

C

O

rj

OC – AB =(k – k0)• rj

Figure 35. Illustrating the path difference OC � AB between waves
diffracted by an atom at the origin and an atom at rj.

is given by 2�(k � k0) � rj and the scattered amplitude A(k)

AHHH = FH

N1−1∑
l1=0

N2−1∑
l2=0

N3−1∑
l3=0

exp[2πi(l1s1 + l2s2 + l3s3)]

= FH
sinπs1N1

sinπs1

sinπs2N2

sinπs2

sinπs3N3

sinπs3

(A.19)

along the direction of k (Fig. 35)
This is the well-known von Laue interference function (10)
(Fig. 36), which describes the dependence of the scattered am-
plitude on the deviation parameter s. The sine functions in

A(kkk) =
∑

j

f j exp[2πi(kkk − kkk0) · rrr j] (A.10)

the denominators can be approximated by their arguments,
This amplitude will exhibit maxima if all exponents are inte- since these are always small. We further note that for large
ger multiples of 2�i; maxima will thus occur if (k � k0) � rL � N one has sin(�Ns)/N�s � �(s) with �(s) � 0 for s � 0 and
integer, which implies that k � k0 must be a reciprocal-lattice �(s) � 1 for s � 0. We can then write, neglecting irrelevant
vector phase factors,

kkk − kkk0 = BBBHHH ≡ h1bbb1 + h2bbb2 + h3bbb3 (A.11) AHHH = FHHHδ(s1)δ(s2)δ(s3)(
/Va) (A.20)

(where hj are integers and bi are base vectors). This is Ewald’s where � is the volume of the crystal and Va the volume of the
condition as discussed in the section on electron diffraction. unit cell (� � N1N2N3a1a2a3; Va � a1a2a3). For a parallelopiped-

However, A(k) will also be different from zero if the diffrac- shaped crystal block one often introduces the components of
tion condition is not exactly satisfied, that is, if Ewald’s s along the three mutually perpendicular edges of the block
sphere misses closely a reciprocal-lattice node by a vector s, with unit vectors ex, ey, and ez:
called the excitation error. This vector is parallel to the foil
normal and connects the reciprocal-lattice node with the in- sss = sxeeex + syeeey + szeeez (A.21)
tersection point with Ewald’s sphere; by convention s is posi-

One can then rewrite Eq. (A.19) in terms of sx, sy, and sz astive when the reciprocal-lattice node is inside Ewald’s sphere
and negative when outside (Fig. 7). One can now set

AHHH = FHHH
sinπsxN1a1

sinπsxa1

sinπsyN2a2

sinπsya2

sinπszN3a3

sinπsza3
(A.22)

kkk − kkk0 = BBBH + sss (A.12)

and

AHHH =
∑

j

f j exp[2πi(BBBHHH + sss) · rrr j ] (A.13)

and with rj � AL � �k.

AHHH =
∑

L

∑
k

fk exp[2πi(BBBHHH + sss) · (AAALLL + ρρρk)] (A.14)

Neglecting s � �k as compared to the other terms and noting
that BH � AL is always an integer, this can be written as

AHHH = FH

∑
L

exp(2πis · ALLL) (A.15)

where the structure factor FH is defined as
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Figure 36. von Laue interference function describing the dependence
of the scattered intensity on the excitation error sx.

FH =
∑

k

fk exp[2πi(BBBHHH · ρρρk)] (A.16)
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transform of the lattice function yields delta functions at the
reciprocal nodepoints, which describe the directions of the dif-
fracted beams. The amplitudes of these beams are then given
by the Fourier transforms of the potential of one unit cell,
i.e., the structure factors [e.g., Eq. (A.20)]. The conservation
of energy also requires that the wavevectors of the diffracted
beams should all have constant length, or, that the reciprocal
nodes should lie on a sphere, the Ewald sphere. In case the
object is a thin crystal slab, it can be described as the product
of an infinite crystal with a slab function that is equal to 1
inside the slab and 0 elsewhere. In that case, the diffraction
pattern is given by the convolution product of the diffraction
pattern of the infinite crystal with the Fourier transform of
the slab function. Then each reciprocal node is smeared along

I0

1/t0O

S

Is 

a line perpendicular to the slab, with a factor given by a sinc
Figure 37. Rocking curve for a foil with thickness t0 according to the function of the form in Eq. (A.26).
kinematical theory.

Note that if the Ewald sphere would be flat, the diffracted
wave can be derived from the Fourier transform of Eq. (A.8)
provided the phase is weak. This means that, apart from the

Hereby use was made of the relations valid for a parallelo- Ewald sphere, the weak phase object theory and the kinemat-
piped ical theory are equivalent.

Equation (A.15) can also be understood intuitively in terms
s1 = sxa1, s2 = sya2, sz = sza3 (A.23)

of the column approximation along the z direction. The ampli-
tude of the wave diffracted by the volume element �zn at

Equation (A.22) is only true if N1, N2, and N3 are sufficiently level zn in the column (measured from the entrance face) is
large. However, the foils used in transmission electron mi- given by �AH � FH�zn exp(2�iszn) or in differential form
croscopy are only large in two dimensions, that is, along x
and y, the foil being only a small number N3 of unit cells thick dAH = FH exp(2πisz)dz (A.27)
along z. In such a foil one thus obtains

The amplitude at the exit face of the column is then given by
the sumAHHH = FHHH




Va
δ(sx)δ(sy)

sinπszN3a3

πsza3
(A.24)

AHHH = FHHH

∑
n

exp(2πiszn)�zn (A.28)
Introducing the specimen thickness N3a3 � t and assuming
sx, sy � 0 and calling sz � s one finds

which, if s � const, can be approximated by the integral

AH = sinπst
stH

(A.25)
AHHH = FHHH

∫ t

0
exp(2πisz)dz (A.29)

per surface area where tH � �/FH; tH is called the extinction
ordistance. This result is interpreted as meaning that the sharp

reciprocal-lattice nodes, characteristic of a large crystal, be- AHHH = (FHHH sin 2πst)/πs (A.30)
come rods in the case of a thin plate, as already mentioned
before. These rods are perpendicular to the foil plane and which is consistent with Eq. (A.26), though not identical.
have a weight profile given by sin(�st)/stH. The corresponding In the complex plane the sum equation (A.28) can be repre-
intensity is given by (Fig. 37) sented by an amplitude-phase diagram (7) (Fig. 38); it con-

sists of the vector sum of elementary vectors, all of the same
length, each representing the amplitude diffracted by a unit
cell. Successive unit cells along a column in a perfect crystal

IH = sin2
πst

(stHHH )2 (A.26)

diffract with constant phase differences,that is, the corre-
sponding vectors enclose constant angles. The diagram is ait is called the rocking curve. An intensity can be associated

with each intersection point of the Ewald sphere with this rod regular polygon that can be approximated by a circle with
radius FH/2�s. The length of the arc of the circle is equal to(called relrod), that is, with each s value, the intensity being

given by the value of the function at the intersection point. the column length. The amplitude diffracted by the column is
given by the length of the segment connecting the endpointsAnother way to interpret these results is the following: In

the Fraunhofer approximation, the diffracted wave is ex- P� and P of the arc. It is clear that the amplitude will be zero
if the column length (i.e., the foil thickness t) is an integerpressed by the Fourier transform of the electrostatic potential

of the crystal. number of complete circles long. The maximum amplitude is
equal to the diameter of the circle, that is, to FH/�s. AlongA crystal can be considered as a convolution product of two

factors: The convolution theorem then states that the dif- deformed columns the amplitude-phase diagrams become
curved (spiral shaped) since the angle between successive seg-fracted wave is given by the product of the respective Fourier

transforms of these two factors [e.g., Eq. (A.15)]. The Fourier ments is no longer constant.
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ory is applicable to ‘‘thick’’ crystals provided also absorption
is taken into account. It allows to compute the amplitudes of
the transmitted beam as well as of the diffracted beam for a
single Bragg reflection.

We will include all usual approximations in the model al-
ready from the onset. These approximations are as follows: (i)
ideal two-beam situation, (ii) no absorption, and (iii) column
approximation. Within a column along z, perpendicular to the
foil surface, we describe the interplay between the transmit-
ted beam represented by the plane wave �0(z) exp(2�ik0 � r)
and the scattered beam represented by �H(z) exp(2�ik � r)
(two-beam approximation). The complex amplitudes �0 and
�H depend on z only (column approximation). Within the slice
dz at the level z behind the interface we express that the
transmitted beam amplitude results from the interference be-
tween the twice transmitted beam with amplitude
�0(z)�0(dz) and the doubly scattered beam of which the ampli-0

P ′ P

2
t

πs2
1

dz

2
t

πsz2

tude is �H(z)��H(dz) [Fig. 39(a)]. The minus sign in �H means
Figure 38. Complex plane construction of the amplitude-phase dia- that reflection takes place from the �H side of the set of lat-
gram for a perfect foil. tice planes. We thus obtain

φ0(z + dz) = φ0(z)φ0(dz) + φHHH (z)φ−HHH(dz) (A.31)
Two-Beam Dynamical Theory for Perfect Crystals

The dynamical theory takes into account that a scattered The slice dz being arbitrarily thin the kinematical approxima-
beam can act in turn as an incident beam and be scattered tion [e.g., Eq. (A.27)] can be applied rigorously to �0(dz) (�1,
again in the interior of the crystal. The simplest case that can no beam depletion) and ��H(dz) � �i/tH exp(�2�isz)dz, where
analytically be discussed and which moreover is relevant for the factor i results from the phase change on scattering and
image formation in the diffraction contrast mode is the two- where the structure amplitude FH has been expressed in
beam case. Next to the incident beam only one beam is terms of the extinction distance tH. Note that changing
strongly excited (has small s). This scattered beam is then H � �H also changes the sign of s [Fig. 39(b)].
again an incident under the Bragg angle for the same set of Similarly the scattered beam amplitude results from the
lattice planes and can thus be scattered again. This interplay interference between (1) the transmitted beam, which is sub-
between incident and scattered beam tends to obliterate the sequently scattered in dz, and (2) the scattered beam, which
destruction between incident and scattered beam in the inte- is subsequently transmitted through dz [Fig. 39(a)]. This
rior of the crystal; it limits strongly the lateral spread of an leads to the relation
incident Bragg diffracted electron beam and justifies the col-
umn approximation used in image calculations of defects ac-
cording to the diffraction contrast mode. The dynamical the- φHHH (z + dz) = φ0(z)φHHH (dz) + φHHH (z)φ0(dz) (A.32)

Figure 39. Schematic representation of
the interfering waves during dynamical
diffraction in the two-beam case. (a)
Right: transmitted beam, left: scattered
beam. (b) Changing H � �H changes also
s � �s.
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where again �0(dz) � 1 and �H(dz) � (�i/tH)[(exp(2�isz)] dz.
The two equations (A.31) and (A.32) can be transformed into
differential equations by noting that quite generally

φ(z + dz) − φ(z) = dφ

dz
dz (A.33)

One thus obtains the following set of coupled differential
equations:

dφ0

dz
= [(πi/t−HHH ) exp(2πisz)]φH (z)

dφH

dz
= [(πi/tHHH ) exp(−2πisz)]φ0(z)

(A.34)

in centro-symmetrical crystals t�H � tH. An alternative system
is obtained by the substitution

φ0 = T, φHHH = S exp(−2πisz) (A.35)

which only changes the phase of the amplitudes but not the
resulting intensities. One obtains

���
����

�
�

IS

1/  Hσ 1/SH

z

Figure 40. Illustration of the formation of thickness extinction con-
tours.

dT
dz

= (πi/t−HHH )S

dS
dz

= 2πisS + (πi/tHHH ) T
(A.36)

contours, which are parallel to the cutting edge of the wedge
(Fig. 40). In a bent plane-parallel specimen the lines of con-

These are the Darwin-Howie-Whelan equations (10,11) of the stant s give rise to equi-inclination or bent contours (Fig. 41).
two-beam dynamical diffraction theory. It can be shown that taking absorption into account the

The solution for a perfect crystal (i.e., s is constant) is eas- shape of the rocking curve becomes asymmetric in s for the
ily obtained by the standard procedure used to solve systems
of coupled first order differential equations; one finds

T = [cos(πσHHHz) − i(sHHH/σHHH ) sin(πσHHHz)] exp(πisHHHz)

S = [(i/σHHHtHHH ) sinπσHHHz] exp(πisHHHz)
(A.37)

where

σ 2
HHH = (1 + s2

HHHt2
HHH )/t2

HHH (A.38)

The scattered intensity is thus given by the square modulus
of S

IS = SS∗ = [sin2
(πσHHHz)]/(σHHHtHHH )2 (A.39)

where S* denotes the complex conjugate of S and IT � 1 � IS

since absorption is neglected. Formula (A.39) is the homolog
of formula (A.26), found in the kinematical approximation.
Note that the depth period, which is 1/sH in the kinematical
case, now becomes 1/�H. There is no longer a divergence for
sH � 0.

Equations (A.34) describe the periodic transfer of electrons
from the transmitted beam into the scattered beam and vice
versa; this effect is called the Pendellösung effect because of
its similarity with the behavior of two coupled pendulums or
two coupled oscillating circuits.

Equations (A.37) describes the periodic depth variations of
the diffracted and transmitted intensity, as well as the varia-

O

2/t 1/t
SH

IS

t

tion as a function of the excitation error s. Equation (A.39) is
called the rocking curve. In an undeformed wedge-shaped Figure 41. Illustration of the formation of equi-inclination (bent)

contours.specimen the depth variation gives rise to thickness extinction
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whereas the transmitted beam is unaffected. The amplitude
TS of the transmitted beam for the foil containing a stacking
fault parallel to the foil plane can thus be formulated as (Fig.
42, left)

TS = T1T2 + S1S−
2 eiα (A.41)

The expressions T1, T2, S1, S2 refer to the amplitudes for per-
fect foils. The indices 1 and 2 refer to the entrance part and
the exit part, respectively; the minus sign indicates that the
excitation error is �s in the corresponding expression because
the diffraction vector is �H.

Similarly the diffracted beam amplitude can be expressed
as (Fig. 42, right)

SS = T1S2e−iα + S1T−
2 (A.42)

The meaning of Eq. (A.41) is obvious; it expresses that the
transmitted beam results from the interference between the
doubly transmitted beam and the doubly scattered beam. The
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(–)α– i S1S 2 +

factor exp(i�) takes into account the phase shift over � of the
Figure 42. Schematic representation of the interfering waves in the beam scattered by the exit part. Equation (A.42) has a similar
case of a foil containing a planar interface. Left: transmitted ampli- meaning. In Eq. (A.42) the phase shift is �� because thetude; right: scattered amplitude.

phase shifts are opposite in sign for S2 and S(�)
2 . Detailed ex-

pressions can be obtained by replacing T1, T2, S1, S2 by their
explicit expressions in Eq. (A.37).transmitted beam (Fig. 42) whereas it remains symmetric for

If the fault plane is inclined with respect to the foil plane,the scattered beam. [A similar effect occurs in x-ray difrac-
the phase change � takes place at a level z1, which now de-tion: the Bormann effect (22).] The steep slope of the transmit-
pends on position x along the foil. For instance, in Fig. 43, z1ted intensity in the vicinity of s � 0 is exploited in imaging
becomes a linear function of x. As a result TS and SS becomestrain fields due to dislocations and other defects.
quasiperiodic functions not only of z1, but also of x.

For s � 0 the depth period is equal to tH; for s � 0 it be-Two-Beam Dynamical Theory for Faulted Crystals
comes 1/�H, where �H is given by Eq. (A.38).

Displacement Fields of Defects. In transmission electron mi-
croscopy defects are characterized by their displacement Strained Crystals. Strain fields and lattice defects are char-
fields R(r). The simplest example is the stacking fault, for acterized by their displacement fields R(r): the atom that was
which R(r) is a step function, R � 0 for z � z1, and R � R0 at r before deformation will be found at r � R(r) after defor-
for z1 � z � z0, z1 being the level of the stacking fault plane mation. A twin boundary with a small twinning vector (do-
in the foil and z0 being the foil thickness. The exit part of the main boundary) parallel to the foil plane at the level z1 (Fig.
foil is displaced over a vector R0 with respect to the entrance 15) can, for instance, be represented by the displacement field
part (Fig. 15). At the level of the interface the diffracted beam R � 0 for z � z1 and R � kz for z � z1.
undergoes a relative phase shift given by A pure screw dislocation can be described by the function

R � b(�/2�), where � is the azimuth angle measured in the
α = 2πHHH · RRR0 (A.40) plane perpendicular to b; all displacements are parallel to b.

Figure 43. Cross section of foil containing a stacking
fault in an inclined plane: illustrating the formation
of stacking-fault fringes. (a) According to the kine-
matical theory s � 0; (b) according to the dynamical
theory s � 0.
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When �x � x�� � 	�y � y�� � 	, with 	 the slice thickness, the
Fresnel approximation can be used, that is,

r =
�

(x − x′)2 + (y − y′ )2 + ε2

≈ ε

�
1 + (x − x′)2

2ε2
+ (y − y′ )2

2ε2

� (A.46)

so that

ψ(x′, y′ ) ≈exp(2πikε)

ε

×
∫

exp[iσVp(x, y)]

× exp
�

i
πk
ε

[(x − x′ )2 + (y − y′)2]
�

dx dy

(A.47)

which, apart from constant factors, can be written as a convo-
lution product:

(x, y)

(x′, y′)
r

Figure 44. Schematic representation of the propagation effect of

ψ(x, y) = ε[iσVp(x, y)]

× exp
�

iπk(x2 + y2)

ε

� (A.48)

electrons between successive slices of thickness 	.
where the convolution product of two functions is defined as
(in one dimension)

The Darwin-Howie-Whelan equations (A.36) can be
adapted to the case of a deformed crystal by the substitution f (x) ∗ g(x) = ∫

f (x′)g(x − x′) dx′ (A.49)

If the wave function at the entrance face is �(x, y, 0), instead
of a plane wave one has for the wave function at the exit face

s ⇒ seff = s + H
dR
dz

(A.43)

The Multislice Method

The two-beam dynamical treatment is insufficient for the gen-
eral situation in which high resolution images are taken with the

ψ(x, y, ε) = {ψ(x, y, 0) exp[iσVp(x, y)]}

× exp
�

iπk(x2 + y2)

ε

� (A.50)

incident beam along a zone axis where many diffracted beams
This is the Fresnel approximation in which the emergingare involved. Therefore the multislice method was developed as
spherical wavefront is approximated by a paraboloidal wave-a numerical method to compute the exit wave of an object.
front.Although the multislice formula can be derived from quan-

The propagation through the vacuum gap from one slice totum-mechanical principles, we follow a simplified version (23)
of the more intuitive original optical approach (24). A more the next is thus described by a convolution product in which
rigorous treatment is given in the next section. each point source of the previous slice contributes to the wave

Consider a plane wave, incident on a thin specimen foil function in each point of the next slice. The motion of an elec-
and nearly perpendicular to the incident beam direction z. If tron through the whole specimen can now be described by an
the specimen is sufficiently thin, we can assume the electron alternation of phase object transmissions (multiplications)
to move approximately parallel to z so that the specimen acts and vacuum propagations (convolutions). In the limit of the
a pure phase object with transmission function equation (A.5) slice thickness 	 tending to zero, this multislice expression

converges to the exact solution of the nonrelativistic Schröd-
ψ(x, y) = exp[iσVp(x, y)] (A.44)

inger equation in the forward-scattering approximation.
In the original multislice method one used the FourierA thick specimen can now be subdivided into thin slices, per-

transform of Eq. (A.50) where the real space points (x, y) arependicular to the incident beam direction. The potential of
transformed into diffracted beams g and where convolutioneach slice is projected into a plane that acts as a two-dimen-
and normal products are interchanged, that is,sional phase object. Each point (x, y) of the exit plane of the

first slice can be considered as a Huyghens source for a sec-
ondary spherical wave with amplitude �(x, y) (Fig. 44).

Now the amplitude �(x�, y�) at the point (x�, y�) of the next
slice can be found by the superposition of all spherical waves

ψ(ggg, ε) = [ψ(ggg, 0) exp(iσVggg)]

× exp
�

iπg2ε

k

� (A.51)

of the first slice, that is, by integration over x and y, yielding
where Vg are the structure factors (Fourier transforms of the
unit-cell potential).

The wave function at the exit face of the crystal can now
be obtained by successive application of Eq. (A.50) or (A.51).
This can either be done in real space [Eq. (A.50)] or in recipro-

ψ(x′, y′) =
∫

exp[iσVp(x, y)]

× exp(2πikr)
r

dx dy
(A.45)
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cal space [Eq. (A.51)]. The major part of the computing time If we now consider the depth proportional to the time, the
dynamical equation (A.55) represents the walk of an electronis required for the calculation of the convolution product,

which is proportional to N2 [N is the number of sampling in the two-dimensional projected potential of the columns.
The solution can be expanded in eigenfunctions (eigenstates)points (real space) or beams (reciprocal space)].

Since the Fourier transform of a convolution product of the Hamiltonian
yields a normal product (with calculation time proportional
to N) a large gain in speed can be obtained by alternatingly
performing the propagation in reciprocal space and the phase

ψ(RRR, z) =
∑

n
Cnφn(RRR) exp

�
−iπ

En

E
z
λ

�
(A.57)

object transmission in real space (23). In this way the comput-
ing time is devoted to the Fourier transforms and is propor- where
tional to N log2 N.

Another way of increasing the speed is in the so-called Hφnv(RRR) = Enφn(RRR) (A.58)
real-space method (24). Here the whole calculation is done in

with the Hamiltonianreal space using Eq. (A.50) but the forward scattering of the
electrons is exploited so as to calculate the convolution effect
of the propagation only in a limited number of adjacent sam- H = − �

2m
�RRR − eU (RRR) (A.59)

pling points. In this way, the calculation time is proportional
to N. This method does not require a periodic crystal and is

U(R) is the projected potential of the columnthus suitable for calculation of crystal defects.

Electron Channeling E = h2k2

2m
(A.60)

The multislice method is an efficient method to compute nu-
E is the incident electron energy, and 
 is the electron wave-merically the exit wave of an object. However it observes in-
length. For En � 0 the eigenstates are bound to the column.teresting physical aspects of dynamical electron scattering.
We now rewrite Eq. (A.57) asThe channelling theory is more approximate (1,25) (although

improvements are currently being made) but it is simple and
it gives much physical insight.

Electron Wave. Consider an isolated column of atoms, par-
allel to the electron beam. If we assume that the fast electron

ψ(RRR, z) =
∑

n

Cnφn(RRR) +
∑

n

Cnφn(RRR)

×
[
exp

�
−iπ

En

E
z
λ

�
− 1

] (A.61)

in the direction of propagation (z axis) behaves as a classical
particle with velocity v � hk/m we can consider the z axis as The coefficients Cn are determined from the boundary condi-
a time axis with tion

t = mz
kh

(A.52)
∑

n

Cnφn(RRR) = ψ(RRR, 0) (A.62)

Hence we can start from the time-dependent Schrödinger In case of plane-wave incidence one thus has
equation ∑

n

Cnφn(RRR) = 1 (A.63)
−�

i
∂ψ

∂t
(RRR, t) = Hψ(RRR, t) (A.53)

so that
with

ψ(RRR, z) = 1 +
∑

n
Cnφn(RRR)

[
exp

�
−iπ

En

E
z
λ

�
− 1

]
H = − �

2

2m
�RRR − eU (RRR, t) (A.54)

Only states will appear in the summation for whichwith U(R, t) the electrostatic crystal potential, m and k the
relativistic electron mass and wavelength, and �R the Lapla-
cian operator acting in the plane (R) perpendicular to z. |En| ≥ Eλ

z
(A.64)

Using Eq. (A.52) we then have

These are bound states with deep energy levels that are local-
ized near the column cores. In practice if the column does not

∂ψ(RRR, z)

∂z
= i

4πk
[�RRR + V (RRR, z)]ψ(RRR, z) (A.55)

consist of heavy atoms and the distance between columns is
not too close (e.g., larger than 0.1 nm) only one eigenstate willwith
appear, which can be compared to the 1s state of an atom.

We then haveV (RRR, z) = 2me
h2

U (RRR, z) (A.56)

This is the well-known high-energy equation in real space,
which can also be derived from the stationary Schrödinger
equation in the forward-scattering approximation (22).

ψ(RRR, z) = 1 + Cφ(RRR)

×
[
exp

�
−iπ

E
E0

z
λ

�
− 1

]
(A.65)
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