
FREQUENCY STABILITY

Stable and spectrally pure signal generators have been
widely employed in various fields of science and technol-
ogy such as physics, high precision frequency standards,
fundamental metrology, telecommunication systems, space
missions, radars, and broadcasting. In addition to the in-
herent fluctuations in the output signal, almost all signal
generators are influenced to some extent by their envi-
ronment, such as changes in ambient temperature, sup-
ply voltage, magnetic field, barometric pressure, humidity,
and mechanical vibration. These perturbations manifest
themselves as noise in frequency or phase of the output
signals and become the limiting factor in various applica-
tions. Therefore, it is of fundamental importance to charac-
terize the frequency fluctuations in the output signal using
a common measure as well as to reduce these fluctuations
to an acceptable level.

Extensive research efforts have been devoted to the
establishment of a general and common measure of fre-
quency stability in the past 50 years. Tremendous progress
has been achieved since 1955 through the development of
high precision frequency standards, such as cesium and
rubidium clocks, hydrogen masers, and quartz crystal os-
cillators. In the early 1960s the needs were clearly recog-
nized for common parameters characterizing the frequency
stability and for related measurement techniques. These
parameters were required for at least two main purposes:
The first purpose is to allow for meaningful comparisons be-
tween similar devices developed by different laboratories
or between different devices in a given application; and the
second one is to access application performance in terms of
the measured oscillator frequency stability.

In 1964 a special symposium on frequency stability was
organized by the National Aeronautics and Space Admin-
istration (NASA) and the Institute of Electrical and Elec-
tronics Engineers (IEEE) as an attempt to improve the sit-
uation (1). After this symposium, a Subcommittee on Fre-
quency Stability was formed as a part of theTechnical Com-
mittee on Frequency and Time of the IEEE Professional
Group on Instrumentation and Measurement. In 1966 sev-
eral members of this subcommittee contributed an original
paper to a special issue of the Proceedings of the IEEE (2).
In 1970 a report on the characterization of frequency sta-
bility was issued by the subcommittee mentioned above
(3). In 1988, IEEE updated the standard on frequency sta-
bility and published IEEE Std 1139-1988, Standard Defi-
nitions of Physical Quantities for Fundamental Frequency
and Time Metrology. In 1999 this standard was revised
and published as IEEE Std 1139-1999, Standard Defini-
tions of Physical Quantities for Fundamental Frequency
and Time Metrology — Random Instabilities. The recom-
mended measures of instabilities in frequency generators
have been widely accepted among frequency and time users
throughout the world.

In this article, definition and estimation procedure will
be presented on the measure of frequency stability com-
monly employed. For more extensive and complete discus-
sion, refer the IEEE Standards, text book and reviews on
this subject (4, 5).

BACKGROUND AND DEFINITION

Consider a sinusoidal signal generator whose instanta-
neous output voltage u(t) may be written as

where U0 and n0 are the nominal values of the ampli-
tude and frequency, respectively. Throughout this article
the Greek letter ν is used to stand for the signal frequency,
while the Latin symbol f is used to denote the Fourier fre-
quency in the representation of spectral densities. The pa-
rameter ε(t) and φ(t) in Eq. (1) represent the deviations
from the nominal amplitude and phase, respectively. The
instantaneous frequency ν(t) of the sinusoidal voltage is
then expressed as the sum of a constant value ν0 and vari-
able term νv(t):

Since we are dealing with stable oscillators, it is assumed
that the magnitude of these fluctuations are much smaller
than the nominal values; that is,

and

for substantially all time t. Oscillators with large frequency
deviation are a subject of frequency modulation theory
which is not treated in this article. Various types of oscilla-
tors are used in scientific and engineering fields, and their
nominal frequencies cover a wide range of the spectrum—
that is, from several hertz to several hundred terahertz
(lightwave). For a general discussion of oscillators having
a wide range of frequencies, it is useful to introduce nor-
malization. Frequency instability of an oscillator is defined
in terms of the instantaneous, normalized frequency devi-
ation, y(t), as follows:

Time deviation, defined in terms of phase deviation φ(t), is
expressed by the time integral of y(t):

and

The parameter x(t) has the dimension of time and is propor-
tional to instantaneous phase. This quantity was originally
named as “phase-time” (Phasenzeit) by Becker (6).

From the definition of y(t) given by Eq. (5), it is natural
to assume that y(t) should have a zero mean over the time of
observation, whereas this will not be the case for x(t). How-
ever, most actual oscillators exhibit frequency drift with
time as well as random variations. In performing a series
of measurements over a long period of time, it is always
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possible to subtract the drift and the initial offset from the
data.

There are two aspects in the analysis of measured re-
sults of y(t), namely, time-domain analysis and frequency-
domain analysis.

FREQUENCY DOMAIN

The behavior of frequency deviation y(t) in the frequency
domain is described by its power spectral density Sy(f),
which is defined as the Fourier transform of the autocorre-
lation function Ry(τ) given by

From the Wiener–Khintchine theorem, the power spectral
density is obtained from the autocorrelation function as

and inversely

The power spectral density represents the fluctuation
power of the frequency deviation y(t) contained in a unit
bandwidth as a function of Fourier frequency. Its dimen-
sion is Hz−1, since y(t) and Ry(τ) are dimensionless.

The relations between the power spectral densities of
various quantities are shown below.

Absolute frequency deviation: δν = ν(t) − ν0[Hz]

Phase: φ(t) [radian]

Time: x(t) =
∫

t
0 y(t) dt [s]

Angular frequency: ω = ²φ = dφ/dt [radian/s]

The above relations are very useful for converting mea-
sured data and for translating formula between various
measures.

TIME DOMAIN

The measure of frequency stability in the time domain is
based on the sample variance of the fractional frequency
deviation. In actual measurements it is difficult to obtain
the instantaneous sample of the frequency deviation y(t).
The results of frequency measurement are always in the

form of sampled data of ȳ.
k of y(t) averaged over a finite

time interval τ, which is given by

where tk+1 = tk +T,k = 0,1,2, . . . ,T represents the repetition
interval for measurements of duration τ, and t0 is arbitrary.
The dead time between measurements is given by T − τ.
Figure 1 shows the measurement process for the sampled
data ȳk.

The measure of frequency stability in the time domain
is then defined in analogy to the sample variance by the
relation

where 〈〉 denotes the infinite time average. The quantity
in Eq. (16) is called the Allan variance (7) and is dimen-
sionless. The square root of the Allan variance σy(N,T,τ) is
called the Allan deviation.

In many situations it is not correct to assume that the
variance (16) converges to a meaningful limit as N → ∞. In
practice one cannot let N approach infinity, and it is known
that some actual noise processes contain substantial frac-
tions of the total noise power in the extremely low Fourier
frequency range. Therefore it is important to specify par-
ticular N and T in order to improve the comparability of
data.

The recommended definition of frequency stability is
choosing N = 2 and T = τ, which means no dead time be-
tween measurements. Expressing 〈σ2

y(N = 2, T = τ, τ)〉 as
σ2

y(τ), the Allan variance may be written as

In a practical situation, the true time average is not real-
izable and the estimate of σ2

y(τ) should be obtained from
a finite number of samples. It has been shown that when
σ2

y(τ) is estimated from the ensemble average of σ2
y(2, τ, τ),

the average converges with increasing the number of data
even for noise processes that do not converge for 〈σ2

y(N,
τ, τ)〉 as N → ∞. Therefore, σ2

y(τ) has greater utility than
〈σ2

y(∞, τ, τ)〉 even though both involve an assumption of
an infinite average. A widely used formula for estimating
σ2

y(τ) experimentally is

where m represents the number of samples. Another ad-
vantage of the Allan variance with N = 2 and T = τ is
the simplicity of computation from the measured data as
shown by Eq. (18). In any case one should specify the num-
ber of samples used for estimation in order to avoid ambi-
guity and to allow for meaningful comparisons.
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Figure 1. Measurement process for the calculation of sample
variances. Here T and τ represent the repetition interval and
duration of the measurement, respectively.

TRANSLATIONS BETWEEN MEASURES (FREQUENCY
DOMAIN TO TIME DOMAIN)

The relation between the Allan variance and the power
spectral density Sy(f) was derived by Cutler and co-workers
(3) and is expressed as

where

and

The parameter r represents the ratio of the time interval
between successive measurements to the duration of the
averaging periods. Equation (19) allows one to estimate
the time-domain stability 〈σ2

y(N, T, τ)〉 from the frequency
domain stability Sy(f). Two assumptions were made in de-
riving Eq. (19). The first one is that Ry(t1 − t2) = 〈y(t1)y(t2)〉
exists; that is, y(t) is stationary in the covariance sense.
The second assumption is that

exists. To satisfy the second assumption it is sufficient to
assume that Sy(f) is finite in the frequency interval fl < f <

fh and zero outside this interval; that is, there are lower and
higher cutoff frequencies in the device and the measuring
equipment. This condition is always satisfied in practical
situations.

In the limit of N → ∞, Eq. (19) reduces to

In the special case of N = 2, Eq. (19) is written by

By comparing Eqs. (23) and (24), it can be seen that the
convergence on the lower limit is better for N = 2 because

of the additional factor of sin2 ru. For the Allan variance
with N = 2 and T = τ, the translation is expressed as

TRANSLATIONS BETWEEN MEASURES (TIME DOMAIN
TO FREQUENCY DOMAIN)

For general 〈σ2
y(N,T, τ)〉 no simple prescription is available

for translation into the frequency domain. For this reason,
Sy(f) is preferred as a general measure of frequency sta-
bility, especially for theoretical work. For specific types of
noise process discussed below, the Allan variance σ2

y(τ) can
be translated into the power spectral density Sy(f).

OSCILLATOR NOISE MODEL

The types of noise observed on the output signal of ac-
tual oscillators can be suitably represented by the spectral
density Sy(f). It has been known empirically that a simple
power-law model of the form

can cover all actually known types of oscillators in the limit
of drift elimination. In the above equation, hα (α = −2, −1,
0, 1, 2) is a constant. It is assumed that the measuring
system has an ideally sharp upper cutoff frequency fh. The
individual terms have been identified by common names
given in Table 1. Figure 2 shows the power spectral density
Sy(f) for five noise processes in Eq. (27). It can be seen that
each noise process is clearly distinguishable from the slope.

It is easy to show the relationship between Sy(f) defined
above and σ2

y(τ) by using the translation of Eq. (26). For
every term of the form hαfα(α = −2, −1, 0, 1, 2) we have

where u = πfτ. This relation may be expressed as
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Table 1. Common Names of Various Noise Terms

Random walk y 2 1
Flicker y 1 0
White y
Random walk x 0 1
Flicker x 1 2
White x 2 2
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Figure 2. Power spectral density Sy(f) for five noise terms in
Eq. (27). A sharp upper cutoff frequency of fh = 20 Hz is as-
sumed. (a) Random walk frequency noise, (b) flicker frequency
noise, (c) white frequency noise, (d) flicker phase noise, (e) white
phase noise. h−2 = h−1 = h0 = h1 = h2 = 10−24.

For α < 1 and 2πτfh > 1, Kα is independent of fh and τ and
becomes a constant due to the very rapid convergence of
the integral. For α = 1 and 2, the value of integral depends
on fh as well as on τ. The relations for general N and r are
shown in Table 2. Figure 3 shows the dependence of σy(τ)
on averaging time τ for five noise processes in the limit of
2πτfh > 1. It can be seen that the noise processes with α =
0, −1, −2 are clearly distinguished from the slope of σy(τ).
However, the slope of σy(τ) is almost the same for α = 1 and α

= 2. As a consequence, the Allan variance σy(τ) is not useful
for distinguishing flicker and white noise processes. For
both types of noise, the dominant contribution to σy(τ) is
frequency fluctuations at f = fh even for long measurement
time. Therefore the determination of σy(τ) for some types
of noise is dependent on the noise bandwidth and on the
type of low-pass filter used in the measurement.

The power expansion law of Eq. (27) has some physi-
cal meaning. Any practical oscillator contains a frequency-
determining element (resonant circuit, quartz crystal res-
onator, atomic resonator, optical resonator) and a feedback
loop. Any sources of noise have influences on the frequency
or on the phase of the generated signal. Therefore, it is also
useful to treat the noise in terms of phase fluctuations. Us-
ing Eq. (13) to transform Eq. (27) we can define the power

spectral density of the time deviation

The various types of noise characterized by α terms in Eqs.
(27) and (32) usually dominate over some frequency range;
in most cases, not all five terms are significant. The indi-
vidual terms have been identified by common names given
in Table 1.

The types of noise commonly observed in oscillators are
as follows:

1. Additive Noise Thermal noise in amplifier is simply
added to the signal. This type of noise appears as
phase noise and is usually white with high cutoff fre-
quency.

2. Perturbing Noise Thermal and shot noise acting
within the feedback loop appears as white frequency
noise (random walk in phase).

3. Modulating Noise This type of noise is caused
by random variations of reactive parameters such
as semiconductor junction capacitors, frequency-
determining parameters of resonators, and so on.
These fluctuations are either inherent in the devices
or due to environmental effect. Flicker x and y usu-
ally belong to this class.
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Table 2. Stability Measure Conversion Chart

Time Domain (Allan Variances)Frequency Domain
2
y(N, T , , fh)(Power Spectral 2

y( )
Densities) [N 2, r []1 r 1] 2

y(N, T, , fh)

White x
h2

N k(r 1)
N(2 )2

2fh

2Sy(f ) h2 f 2

h2
3fh

(2 )2 2 h2
N 1
N(2 )2

2fh

2Sx(f ) h2/(2 )2
k(r 1) 1, r 1

2 fh 1 0, otherwise

Flicker x h1
2(N 1)
N 2(2 )2

3
2

ln(2 fh ) h1
2

(2 )2

3
2

ln(2 fh )
1

N(N 1)Sy(f ) h1 f
Sx(f ) h1/(2 )2f h1

9
2

3 ln(2 fh ) ln 2

(2 )2 2 ln N
N2 1

N 1

n 1
(N n) ln

n2r2

n2r2 1
, r 12 fh 1, 2 fhT 1

h0
1
2

1, r 1White y (random walk x)
h0

1
2

1 h0
1
2

1Sy(f ) h0

h0
1
6

r(N 1) 1, Nr 1Sx(f ) h0/(2 )2 f 2

Flicker y
h 1

1
N(N 1)

N 1

n 1
(n n) [ 2(nr)2 ln(nr)

h 1
N ln N
N 1

h 1 2 ln 2Sy(f )
h 1

f
(nr 1)2 ln(nr 1) (nr 1)2 ln nr 1 ]

Sx(f ) h 1/(2 )2 f 3

Random walk y

h 2
(2 )2

6
h 2

(2 )2

12
hN 2

(2 )2

12
[r(N 1) 1], r 1Sy(f )

h 2

f 2

Sx(f ) h 2/(2 )2 f 4
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Figure 3. Square root of the Allan variance σy(τ) for five noise
processes in Eq. (27) in the limit of 2πτfh > 1, where fh represents
the sharp upper cutoff frequency. (a) Random walk frequency
noise Sy(f) = h−2f−2, (b) flicker frequency noise Sy(f) = h−1f−1,
(c) white frequency noise Sy(f) = h0, (d) flicker phase noise Sy(f) =
h1f− with fh = 20 Hz, (e) white phase noise Sy(f) = h2f2− with fh =
20 Hz. h−2 = h−1 = h0 = h1 = h2 = 10−24.

MODIFIED ALLAN VARIANCE

To improve the relatively poor discrimination of the Allan
variance σy(τ) against flicker (α = 1) and flicker (α = 2) phase
noise, the modified Allan variance was introduced in 1981.
The definition is based on (a) the algorithm developed by
Snyder (8) for increasing the resolution of frequency meters
and (b) the detailed consideration of Allan and Barnes (9).

It consists in dividing a time interval τ into n cycles of
period τ0 such that

As depicted in Fig. 4, for a given observation time interval
of duration 2τ, there are n overlapping time intervals of

duration τ. Allan and Barnes introduced the modified Allan
variance such that

It can be seen from the above equation that the calculation
of each statistical sample involved in the definition of Mod
σ2

y(τ) requires a signal observation of duration 3τ.
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Figure 4. Measurement process for the calculation of the modi-
fied Allan variance.
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Figure 5. Dependence of the ratio R(n) on n for (a) flicker and (b)
white phase noise processes under the condition 2πτfh > 1.

For n = 1, the Allan variance and the modified one are
equal.

The power spectral density Sy(f) is translated into the mod-
ified Allan variance Mod σ2

y(τ) by the following relation:

The analytical expressions of the modified Allan variance
for each noise term in Eq. (27) can be directly calculated
by the above equation. These relations are summarized in
Table 3 in the limit of 2πτfh > 1 (10).

It is useful for comparing the Allan variance with the
modified one to define the ratio R(n) as

Figure 5 depicts the variation of the ratio R(n) with n, for
flicker and white phase noise processes. It can be seen that
for a large value of n, flicker and white phase noise pro-
cesses have different dependencies. This property can be
used to distinguish these two types of noise processes.

For application to time transfer systems, such as the
global positioning system (GPS), σ2

x (τ) is often used, which
is defined as

σ2
x (τ) = τ2

3
Mod σ2

y (τ) (38)

This measure is useful when flicker and white phase noise
are domunant.

EXAMPLE OF THE ALLAN VARIANCE

Sinusoidal Frequency Modulation

Consider a frequency-modulated (FM) signal with the mod-
ulation frequency of fm and maximum frequency deviation
of 
ν0. The instantaneous, normalized frequency deviation
y(t) is given by

y(t) = 
ν0

ν0
sin(2π fmt). (39)

The power spectral density for this signal is expressed as

Sy( f ) = 1
2

(

ν0

ν0
)2δ( f − fm), (40)

where δ is the Dirac delta function. Substitution of Eq. (40)
into Eq. (26) and (36) yields

σ2
y (τ) = (


ν0

ν0
)2 sin4(π fmτ)

(π fmτ)2
, (41)

and

Mod σ2
y (τ) = (


ν0

ν0
)2 sin6(π fmnτ0)

n2(π fmnτ0)2sin2(π fmτ0)
, (42)

respectively. The effect of sinusoidal FM in both cases is
0 when τ equals the modulation period Tm = f−1

m or one
of its multiples, since the modulating signal is completely
averaged away. The largest value of Mod σy(τ) occurs when
τ is Tm/2 or one of its odd multiples. Mod σy(τ) falls n times
faster than σy(τ) for sinusoidal FM.

Linear Frequency Drift

When linear frequency drift exists (i.e., y(t) = dt), no
tractable model exists for the power spectral density Sy(f).
Direct calculation in the time domain using Eqs. (17) and
(34) yields

σy(τ) = d√
2

τ (43)

and

Mod σy(τ) = d√
2

τ, (44)

respectively. Thus linear frequency drift yields τ+1 law for
both σy(τ) and Mod σy(τ).

OTHER MEASURES OF FREQUENCY STABILITY

A number of other measures have been proposed and
used during the past 35 years. Each measure has some
advantages and limitations compared with the well-
established power spectral density and the Allan variance.



Frequency Stability 7

Table 3. Conversion Chart for the Modified Allan Variance

)secnairaVnallA(niamoDemiTniamoDycneuqerF
doM)seitisneDlartcepSrewoP( 2

y( )

White x
Sy(f ) h2 f 2 h2

3fh

8 n 2
Sx(f ) h2/(2 )2

2 fh 1

Flicker x
Sy(f ) h1 f

h1
1

4 2n2 2 3n ln(2 fh )
n 1

k 1
(n k) 4 ln

n2

k2 1 ln
4n2

k2 1Sx(f ) h1/(2 )2f
2 fh 1, 2 fhT 1

White y (random walk x)
h0

n2 1
4n2 2Sy(f ) h0

Sx(f ) h0/(2 )2 f 2

h 1
2 ln 2

n2

4n2 3n 1
n2

1
n2 ln 2

n 1

k 1
(n k)

n
2

[(k 2n) ln(k 2n)
Flicker y

(k 2n) ln(2n k)]
1
2

(k n)(k 2n) ln(k n)
1
2

(k n)(k 2n) ln k nSy(f )
h 1

f
Sx(f ) h 1/(2 )2 f 3

3k2 ln k k (n 2k) ln k
n
2

(n 2k) ln k
n
2

Random walk y

Sy(f )
h 2

f 2 h 2
2 2

3
33
40

1
8n2

1
20n4

Sx(f ) h 2/(2 )2 f 4

The Hadamard variance (11) has been developed for high-
resolution spectral analysis of y(t) from measurements of
ȳk. The high-pass variance (12) has been proposed through
the transfer function approach and is defined by

σ2(τ) =
∫ ∞

0

Sy( f )|H( f )|2df. (45)

It was shown that the Allan variance can be estimated by
high-pass filtering the demodulated phase noise without
using counting technique. A band-pass variance (12) has
also been proposed to distinguish white and flicker phase
noise processes. A filtered Allan variance (13) has been
used to separate various noise processes.
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