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by rational use of the observations and by experimental
design.
For the description of observations, use is made of a math-

ematical model. This is a mathematical expression intended
to describe the observations fully. It will be supposed
throughout this article that the mathematical model is para-
metric, and that the parameters are the quantities to be mea-
sured. For example, the parametric model may be a sinusoi-
dal function of time with unknown amplitude, frequency, and
phase. Then, these three quantities are the parameters of this
model. Yet the model of the observations is incomplete with-
out including errors. If there is reason to assume that the
errors in the observations are nonsystematic and additive,
they are taken into consideration by adding a term represent-
ing them to the expression for the sinusoidal function. Then,
the resulting sum is the mathematical model of the observa-
tions. It is supposed to fully describe the observations. Non-
systematic errors may loosely be defined as errors that vary
if the experiment is repeated under the same conditions and
are equal to zero if averaged over many experiments. They
are modeled as stochastic variables with an expectation equal
to zero. The term expectation is the abstract mathematical
term for the mean value. It will be used throughout to avoid
confusion with averages, such as time averages, which are
measurements. If, in the example, the errors are stochastic
variables, so are the observations. Since each observation is
equal to the sum of the sinusoidal function and the stochastic
error, the expectation of an observation is the value of the
function at the time instant concerned. Therefore, the expec-
tation or, equivalently, the function value represents the hy-
pothetical errorless observation.
Since the observations are stochastic variables, they are

described by probability density functions. These define for
discrete stochastic variables, such as counting results, the
probability of occurrence of a particular discrete outcome. For
continuous stochastic variables, the probability density func-
tion defines the probability of occurrence of an observation
within a particular range of values. The probability density
function also determines the expectation of the observations.
Since this expectation is equal to the function value, the prob-
ability density function of the observations depends on the
parameters of the function, and thus, the measurement prob-
lem has become a statistical parameter estimation problem.
This observation has important consequences. It implies that
for measurement, use can be made of the extensive theory
and methods of statistics. It will be seen that this offers a
number of exceptional advantages. A description of these ad-
vantages requires some familiarity with a number of notions
from statistics. Therefore, these will first be introduced. Ref-
erences 1–4 are useful general texts on statistics.
In statistics, the function of the observations with which a

parameter is estimated is called an estimator. Using the same
observations, for a particular parameter, different estimators
can be defined. Since the observations are stochastic vari-
ables, so is the estimator. Therefore, the estimator has a prob-
ability density function, an expectation, and a standard devia-MEASUREMENT ERRORS
tion. If the expectation of the estimator is equal to the
hypothetical true value of the parameter to be estimated, theIn applied science and engineering, it is agreed that all obser-

vations contain errors. This article discusses how these errors estimator is called unbiased. Otherwise, it is biased. The devi-
ation of the true value from the expectation is called bias.are described today. It also discusses how this description is

used to compute the effect of the errors upon the measure- Bias is the systematic error. It is, therefore, equivalent to
the concept accuracy. There are two essentially differentment result, and how this effect is reduced or even minimized
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sources of bias. In the first place, the expectation of the obser- method of estimation. With any set of observations, consid-
ered as stochastic variables, a Fisher information matrix withvations may be different from the function model assumed. In

the above mentioned sinusoidal example, a trend may be respect to the unknown parameters is associated. The inverse
of the Fisher information matrix is called the Cramér Raopresent in addition to the sinusoid, while the model assumed

and fitted to the observations consists of the sinusoidal func- lower bound. It can be shown that the diagonal elements of
the covariance matrix of any unbiased vector estimator, thetion only. This will, of course, always result in a systematic

deviation of the estimated parameters, even in the hypotheti- variances of the elements, cannot be smaller than the corre-
sponding diagonal elements of the Cramér Rao lower bound.cal complete absence of nonsystematic errors. The remedy is

to include the trend in the model fitted. The inclusion of the Therefore, any unbiased estimator is at best as precise as a
hypothetical estimator of the same parameters having thetrend has the effect that two additional parameters, the slope

and the intercept of the trend, have to be estimated. It will Cramér Rao lower bound as its covariance matrix. Thus, the
Cramér Rao lower bound is a standard to which the precisionbe discussed later that there are various reasons to keep in

measurement the number of parameters to be estimated as of an unbiased estimator may be compared. This is the reason
why the ratio of a diagonal element of the Cramér Rao lowersmall as possible. Therefore, classical measurement measures

to avoid errors such as trends, day-and-night cycles, and bound to the variance of an estimator is called the efficiency
of the estimator. Cramér Rao theory also extends to functionsbackground are always preferable to including these contribu-

tions in the model. The second source of bias is of a completely of the estimated parameters. For example, suppose that the
height, width, and location of a Gaussian pulse or spectraldifferent nature. It is produced by and is characteristic of the

estimator, itself. It may, therefore, also occur if the assumed peak are estimated, but that the quantities to be measured
ultimately are the location and the area. Then, the Cramérmodel of the observations and that of the expectations are the

same. Two estimators of the same parameters from the same Rao lower bound for the height, width, and location combined
with the expression for the area in terms of the width andobservations may have different bias. If the bias vanishes as

the number of observations increases, the estimator is called height may be used to compute the Cramér Rao lower bound
for the location and area. The resulting expressions exactlyasymptotically unbiased. An effective method to remove bias

of this kind is described by Stuart and Ord (4). describe the propagation of the Cramér Rao lower bound for
the original parameters to that for location and area. Thus,The standard deviation of an estimator represents preci-

sion. It is the spread of the measurement result if the experi- they show exactly the sensitivity of the Cramér Rao lower
bound for the area parameter to the various elements of thement is repeated under the same conditions. In the example

of the estimation of the parameters of the sinusoid, the ampli- Cramér Rao lower bound for the original parameters. This
means that an instrument has been found to compute thetude, frequency, and phase have to be estimated simultane-

ously. This estimator is, therefore, vector valued. A vector es- propagation of errors in the observations to errors in the pa-
rameters and, subsequently, to errors in functions of the pa-timator has a covariance matrix associated with it. The

diagonal elements of this matrix are the variances of the esti- rameters.
For the engineer and applied scientist, an important ques-mators of each of the elements of the vector of parameters.

The off-diagonal elements represent the covariances of the es- tion is how to make the influence of errors in the observations
upon the measurement result as small as possible. This istimators of different elements. Bias and standard deviation

are statistical key properties of estimators for practical mea- equivalent to the question of how to find the method that pro-
duces the most precise measurement result from the availablesurement purposes. They demonstrate the practical feasibil-

ity, clarity, and generality of the model based statistical pa- observations. For calibration purposes, precision itself may be
the ultimate purpose. In other applications, precision is oftenrameter estimation approach to the treatment of errors in

observations. In addition to these desirable properties, model pursued not for its own sake but to make the conclusions
drawn from the measurement result more reliable. The extentbased parameter estimation has a number of advantages

which will now be discussed. to which it is possible to find an efficient estimation method
depends on the available a priori knowledge of the probabilityIt has been mentioned earlier that for the measurement

of the parameters of the same model from the same set of density function of the observations. As has been discussed
earlier, this probability density function is parametric in theobservations, use may be made of different estimators. These

estimators will generally have different standard deviations, hypothetical exact values of the unknown parameters. This
dependence of the probability density function of the observa-that is, have different precision. The question may, therefore,

be asked which estimator is most precise? Or put somewhat tions on the parameters may be used to derive a so-called
maximum likelihood estimator of the parameters. First, thedifferently, what precision is attainable if any estimator may

be used? The answer to this question may be given using the numerical values of the available observations are substituted
for the corresponding independent variables of the probabilityconcept of Fisher information. The Fisher information with

respect to the model parameters is computed from the proba- density function. Next, the true values of the parameters are
considered to be variables. The function thus obtained isbility density function of the observations. If the model has

one parameter, the quantity computed is called the Fisher called the likelihood function of the parameters. Finally, the
likelihood function is maximized with respect to the parame-information amount. If more than one parameter is mea-

sured, such as in the sinusoidal example, it assumes the form ters. The values of the parameters at the maximum are the
maximum likelihood estimates of the parameters. This proce-of a matrix, the Fisher information matrix. This is a symmet-

rical matrix of the same order as the number of parameters. dure shows the first advantage of the maximum likelihood
estimator: it is easily found. In addition, the maximum likeli-The elements of the Fisher information matrix are dependent

on the probability density of the observations and on the hood estimator has a number of favorable statistical proper-
ties. The most important of these is that under general condi-model of the expectations. They are independent of any
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tions, it attains asymptotically the Cramér Rao lower bound. Example 1. The multiexponential model. Multiexponen-
tial observations are observations with expectationsThis means that for a large number of observations, it is most

precise. The elements of the Cramér Rao lower bound depend
yn(γ ) = α1 exp(−β1xn) + . . . + αL exp(−βLxn ) (1)on experimental variables. For example, in the estimation of

the parameters of the sinusoid and those of the Gaussian
with n � 1, . . ., N where N is the number of observations,pulse, these are the number of observations and their loca-
and the 2L  1 vector � is defined as (�1 . . . �L �1 . . . �L)T,tion. If experimental variables such as these may to a certain
where the amplitudes �� and the decay constants �� are theextent be freely chosen, this freedom may be used to minimize
parameters to be measured, and the superscript T denotesthe Cramér Rao lower bound and, thus, the asymptotic vari-
transposition. The measurement points xn, n � 1, . . ., N areance. This manipulation of the covariance matrix using exper-
supposed known. If, different from Eq. (1), there is a linearimental variables is called experimental design. From a prac-
trend in the observations, this deterministic contribution hastical point of view, experimental design may be very
to included in the model of the expectations of the observa-attractive since it may lead to a more precise measurement
tionsresult with the same effort or even less. For practical mea-

surement, the invariance property of maximum likelihood es- yn(η) = α1 exp(−β1xn) + . . . + αL exp(−βLxn) + λxn + µ
timators is also important: functions of maximum likelihood
estimators are maximum likelihood estimators themselves. where � � (�1 . . . �L �1 . . . �L � �)T. In this expression, �
Generally, maximizing the likelihood function with respect to and � are the slope and the intercept of the trend, respec-
the parameters is a nonlinear optimization problem which tively. These parameters have to be estimated along with the
can only be solved using an iterative numerical optimization parameters �� and ��. This means that the number of parame-
method. For a long time, this has been a serious impediment ters to be estimated has increased by two. It will be shown
to the application of maximum likelihood, but today, excellent below that this is not only disadvantageous from a computa-
optimization methods and software are available which make tional point of view, but it also unfavorably influences the pre-
the method accessible to any user. cision with which the �� and �� can be measured. Therefore,
If the observations are normally distributed, the maximum it is worthwhile to keep the number of parameters as small

likelihood estimator of the parameters can be shown to be as possible. As a consequence, changing the experimental con-
the weighted least squares estimator with the inverse of the ditions to remove the trend is always preferable to including
covariance matrix of the observations as weighting matrix. If it in the model of the expectations. On the other hand, if
the observations are linear in all parameters to be estimated, trends cannot be avoided, they have to be included since oth-
the least squares estimator is a relatively simple closed form erwise, the model of the expectations is wrong. Then, values

for the amplitudes and decay constants are found systemati-expression linear in the observations. In addition, if the obser-
cally deviating from the �� and ��, even in the hypotheticalvations are not normally distributed, the weighted least
case that nonsystematic errors in the observations are absent.squares method with the inverse covariance matrix as

weighting matrix still has the smallest variance among all
estimators that are both linear in the observations and unbi- THE DISTRIBUTION OF THE OBSERVATIONS
ased. If the observations are nonlinear in one or more of the
parameters to be estimated, the least squares estimator is, as The mathematical model of the observations is completed by
a rule, no longer a closed form and has to be evaluated using a description of how the observations are distributed about
an iterative numerical method. However, effective, special- their expectations. This is done in the form of the joint proba-
ized, and reliable numerical methods and software are avail- bility density function of the observations. If w � (w1 . . .
able that make the use of nonlinear least squares straightfor- wN)T is the vector of the N available observations, their proba-
wardly. As a result, least squares has become a major tool in bility density function may be described as p(w). Then, the
the handling of observations subject to error in general and expectation E[w] � (E[w1] . . . E[wN])T is defined as
not only of normally distributed observations.

E[w] =
∫

. . .

∫
wp(w)dw (2)

EXPECTATIONS OF OBSERVATIONS
where dw � dw1dw2 . . . dwN, and the integrations are car-
ried out over all possible values of w. Then,The reduction or minimization of the effect of errors in the

observations upon the measurement result requires a mathe- E[w] = y(θ ) (3)
matical model of the observations. In this article, additive
nonsystematic errors in the observations will be modeled as where y(�) � [y1(�) . . . yN(�)]T, and yn(�) is the function para-
stochastic variables with an expectation equal to zero. This metric in the unknown parameters � defining the errorless
implies that the observations are also stochastic variables, observations such as the exponential model described by Eq.
and that the expectations of the observations are the hypo- (1). For engineering and applied science, two probability den-
thetical exact or errorless observations. Thus, these expecta- sity functions are particularly important. These are the nor-
tions constitute the model underlying the observations. It will mal probability density function and the Poisson probability
be assumed throughout that this model is a parametric func- density function.
tion, and that parameters of this model are the quantities
to be measured, or that the quantity to be measured can be Example 2. The normal probability density function.

The observations w1, . . ., wN are said to be normally distrib-computed from these parameters.
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uted if their probability density function is described by function. The probability density function thus obtained is
parametric in the parameters of the expectations, that is, of
the hypothetical errorless observations. This is the form of
the probability density function that will be used hereafter

p(w) = 1
(2π)N/2(detW )1/2

exp
[
−1
2

(w −E[w])TW−1(w −E[w])
]

for two purposes. First, it will be used for the computation of
where the N  N matrix W is the covariance matrix of the the highest attainable precision with which the parameters
observations defined by its (i, j)-the element cov(wi, wj) and can be measured from the available observations. It will also
det W and W�1 are the determinant and the inverse of W, be used to find the most precise method to estimate the pa-
respectively. This probability density function and many oth- rameters from the observations.
ers are discussed in Ref. 3. Equation (3) defines the functional
dependence of the normal probability density function on the
parameters of the function modelling the expectations. For ATTAINABLE MEASUREMENT PRECISION IN THE
what follows, the logarithm of p(w) as a function of the pa- PRESENCE OF MEASUREMENT ERRORS
rameters � is needed. After substituting y(�) for E[w], it is
described by Suppose that a number of N observations w1, . . ., wN is avail-

able and that the expectations of the observations are de-
scribed by the multiexponential model defined by Eq. (1). If−N

2
ln(2π) − 1

2
ln(detW ) − 1

2
[w − y(θ )]TW−1[w − y(θ )] (4)

this model is fitted to the observations with respect to its pa-
rameters, the amplitudes, and the decay constants, one could

Notice that both first terms of this expression are indepen- choose the sum of the squares of the deviations of the model
dent of the parameter vector �, while the last term is a qua- from the observations as a criterion of goodness of fit. Then,
dratic form in the elements wn � yn(�) of w � y(�). Observa- this criterion could be minimized with respect to the parame-
tions in practice are often, but not always, normally ters, and the parameter values for which the criterion would
distributed. One of the reasons is that if the nonsystematic be minimum would be the solution. This is the well-known
errors are the sum of a number of nonsystematic errors from ordinary least squares solution. Alternatively, one could have
independent sources, their distribution tends to normal as de- chosen the values of the parameters for which the sum of the
scribed by the central limit theorem discussed in Ref. 2. absolute values of the deviations would be minimum. This is

the least absolute values or least moduli solution. Then, if the
Example 3. The Poisson probability density function. experiment could be repeated sufficiently often, the experi-
This probability density function concerns counting statistics. menter could compare the results of both methods and could
It is described in Ref. 3. Examples of Poisson distributed sto- decide which of both would be most precise. Seeing that the
chastic variables are radioactive particle counts and pixel val- one method is more precise than the other, the experimenter
ues in electron microscopes. The number of counts is Poisson might wonder what the highest attainable precision from
distributed if the probability that it is equal to wn is given by these observations is with any method. It has been found that

under general conditions, this question may be answered us-
ing the concept Fisher information. For a discussion of Fisherp(wn) = exp(−λn)

λwn
n

wn!
(5)

information, see Ref. 4. For the computation of the Fisher in-
formation, the probability density function of the observa-

Simple calculations show that E[wn] � �n, and that the stan- tions p(w;�) is used. This is done as follows. First, the loga-
dard deviation of wn is equal to ��n. If w1, . . ., wN are inde- rithm of p(w;�) is taken. For the normal probability density
pendent, as is often assumed in applications, their joint prob- function and for the Poisson probability density function, the
ability density function is equal to the product the result of this operation is described by Eqs. (4) and (7), respec-
probabilities described by Eq. (5) tively. Next, the gradient vector of ln p(w;�) with respect to

the elements of � is calculated. It is defined as
p(w) =

∏
n

p(wn) (6)

with n � 1, . . ., N. Since E[w] � � with � � (�1 . . . �N)T
∂ ln p(w; θ )

∂θ

and �n � yn(�), the logarithm of the probability density func-
tion defined by Eq. (6) may be written If � is a K  1 vector, so is the gradient vector. Its k-th ele-

ment is � ln p(w;�)/��k. Next, the K  K matrix∑
n

−yn(θ ) + wn ln[yn(θ )]− ln(wn!) (7)
∂ ln p

∂θ

∂ ln p
∂θT

(8)
Notice that the last term in this expression is independent of
the parameter vector �.

is computed where, for simplicity, the arguments of p(w;�)
have been left out, and � ln p/��T is the transpose of � lnFrom Example 2 and Example 3, the general approach to
p/��. The K  K Fisher information matrix is defined as theestablishing the dependence of the probability density func-
expectation of Eq. (8)tion of the observations on the parameters, that is, the quan-

tities to be measured, is now clear. First, the expectation of
the observations wn is computed. Then, the result is substi-
tuted for the relevant quantities in the probability density

M = E
[

∂ ln p
∂θ

∂ ln p
∂θT

]
=

∫
. . .

∫
∂ ln p

∂θ

∂ ln p
∂θT p dw
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It is not difficult to show that M may alternatively be written t(w), must be larger than or be equal to the corresponding
diagonal elements of M�1. Consequently, the latter diagonal
elements are a lower bound on the variances of the elements
of the estimator t(w). The matrix M�1 is called the Cramér

M = −E
[

∂2 ln p
∂θ ∂θT

]
(9)

Rao lower bound. For normally distributed observations and
for Poisson distributed observations, the Cramér Rao lowerIn this expression, �2ln p/�� ��T is the Hessian matrix of ln p
bound may be computed by inverting the Fisher informationdefined by its (q, r)-th element �2ln p/��q ��r.
matrix defined by Eq. (10) with appropriate matrix W, respec-
tively. Notice that the main ingredients are simply the deriva-Example 4. The Fisher information matrix for normally
tives of the model yn(�) with respect to the parameters in eachdistributed observations. If the observations are normally
measurement point. These are quantities that are usuallydistributed, the logarithm of the probability density function
easy to compute.as a function of the parameters is described by Eq. (4). Then,
The Cramér Rao lower bound would be of theoretical valueelementary computations making use of the fact that E[wn �

only if there would not exist estimators attaining it. Later inyn(�)] � 0 yield
this article, estimators will be introduced that do so, at least
asymptotically. Therefore, the Cramér Rao lower bound may
be used as a standard to which the precision of any estimatorM = ∂yT

∂θ
W−1 ∂y

∂θT
(10)

may be compared. Notice that the Cramér Rao lower bound
is not related to a particular estimation method. It dependsIn this expression, the N  K matrix �y/��T is the Jacobian
on the statistical properties of the observations, the measure-matrix of y(�) with respect to �. Its (n, k)-th element is equal
ment points, and in most cases, the hypothetical true valuesto �yn(�)/��k. Therefore, for the multiexponential model, the
of the parameters. This dependence on the true values looks,elements of the Jacobian matrix are of the form exp(���xn) or
at first sight, as a serious impediment to the practical use of��� xn exp(���xn) with � � 1, . . ., L.
the bound. However, the expressions for the bound provide
the means to compute numerical values for it using nominalExample 5. The Fisher information matrix for indepen-
values of the parameters. This provides the experimenterdent Poisson distributed observations. If the observations
with quantitative insight in what precision may be achievedare independent and Poisson distributed, the logarithm of the
from the available observations, an insight that without theprobability density function of the observations as a function
bound would be absent. Thus, using the bound, the experi-of the parameters is described by Eq. (7). This expression may
menter gets a detailed insight in the sensitivity of the preci-be used to show that here, the information matrix is also de-
sion to the values of the parameters. The experimenter alsoscribed by Eq. (10), but with W � diag(y1 . . . yN), where yn

gets impression if the experimental design, that is, the values� yn(�).
and the number of the measurement points xn, is adequate for
the purposes concerned. This means an impression if the pre-The importance of the Fisher information matrix is that
cision is sufficient to make conclusions possible. If not, therefrom it the Cramér Rao lower bound may be computed. This
is no other choice than to change the experimental design. Ifis a lower bound on the variance of all unbiased estimators of
this is not possible, it is to be concluded that the observationsparameters or of functions of parameters. An estimator t is
are not suitable for the purposes of the measurement pro-said to be unbiased for the parameter � if its bias, defined as
cedure.
In many applications, some of the quantities to be mea-E[t]− θ

sured are functions of the parameters and not the individual
parameters. A simple example is the following.is equal to the null vector. Otherwise, it is biased. In mea-

surement terminology: if the model of the expectations of the
observations is correctly specified and the estimator used is Example 6. Measurement of peak area and location.
unbiased for the parameters, the measurement result has no Suppose that a number of error corrupted observations w1,
systematic error. . . ., wN has been made on a spectral peak described by
Next, suppose that t(w) is any unbiased estimator of the

vector of parameters � from the observations w. Then the
Cramér Rao inequality states that α exp

[
−1
2

(
x − β

γ

)2]
(12)

cov[t(w), t(w)] ≥ M−1 (11)

where the parameters �, �, and � are the peak height, loca-In this expression, cov[t(w), t(w)] is the covariance matrix of
tion, and half-width, respectively. Suppose that only the peakthe estimator t(w). That is, the (p,q)-th element of this matrix
location and the peak area are of interest. Then these areis defined as the covariance of the p-th element tp(w) and the described by � and (2�)1/2��, respectively.q-th element tq(w). Therefore, the diagonal elements are the

variances of t1(w), . . ., tK(w), respectively. Ineq. (11) ex-
Fortunately, the Cramér Rao lower bound of functions ofpresses that the difference of the matrix cov[t(w), t(w)] and

the parameters follows relatively easily from the Cramér Raothe matrix M�1 is positive semidefinite. A property of positive
lower bound for the parameters. Let r � [r1(w) . . . rL(w)]T besemidefinite matrices is that their diagonal elements cannot
an unbiased estimator of the vector function �(�) � [�1(�) . . .be negative. Therefore, the diagonal elements of cov(t(w),

t(w)), that is, the variances of the elements of the estimator �L(�)]T, that is, E[r] � �(�). Furthermore, let M be the informa-
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tion matrix for �. Then it can be shown that to show that, typically, the first K diagonal elements of M�1

are monotonously increasing with the number of parameters
in excess of K.cov[r(w), r(w)] ≥ ∂ρ

∂θT
M−1 ∂ρT

∂θ

where ��/��T is the L  K Jacobian matrix with (p, q)-th ele- PRECISELY MEASURING FROM
ment ��p/��q. Therefore, the Cramér Rao lower bound for un- ERROR CORRUPTED OBSERVATIONS
biased estimation of � is described by

The a priori knowledge of the experimenter about the obser-
vations and the extent to which this a priori knowledge is∂ρ

∂θT
M−1 ∂ρT

∂θ
(13)

used may considerably influence the precision and accuracy
of the measurement result. This concerns both systematic and

with M�1 the Cramér Rao lower bound for �, �, and �. nonsystematic errors in the observations. Systematic errors
in the observations are deviations of the assumed parametric

Example 7. The Cramér Rao lower bound for peak area model of the expectations from the true model of the expecta-
and location. The vector �(�) for Example 6 is described by tions. Even in the absence of nonsystematic errors, discrep-
�(�) � [� (2�)1/2��]T. Then, the Jacobian matrix of �(�) with ancy between both models produces systematic errors, that is,
respect to (� � �)T is defined as inaccuracy in the measurement result. Since no model fitted

will be perfect, there will always be a certain amount of sys-
tematic error. Nonsystematic errors are described by their
distribution about the expectations of the observations. This

∂ρ

∂θT
=

(
0 1 0

(2π)1/2γ 0 (2π)1/2α

)
distribution is not always known, but if it is, this knowledge
may contribute substantially to the reducing of the nonsys-where � � �(�). The Cramér Rao lower bound for unbiased
tematic error in the measurement result, that is, in the pa-estimation of � is then computed from Eq. (13).
rameters estimates.
Suppose that observations w1, . . . wN, are available andThe premultiplication and postmultiplication of M�1 in Eq.

that their probability density function f (�1, . . ., �N;�) is(13) describe what is conventionally called error propagation.
known where � is the vector of unknown parameters and �1,To see how this works, suppose that � � [�1(�) �2(�)]T, � �
. . ., �N are the independent variables corresponding to the(�1 �2)T, and let the Cramér Rao lower bound for � be
observations w1, . . ., wN, respectively. Assume that w1, . . .,
wN are substituted for �1, . . ., �N in f (�1, . . ., �N;�), respec-
tively, and that the fixed true parameters � are replaced by
the vector of corresponding variables t. Then, the resulting

C =
(

c11 c12
c12 c22

)

function f (w1, . . ., wN;t) of t is called the likelihood function
Then, the diagonal elements of the Cramér Rao lower bound of the parameters t, given the observations w1, . . ., wN. The
for �1 and �2 are equal to maximum likelihood estimate of the parameters � is defined

as the value t̃ of t that maximizes the likelihood function.
The maximum likelihood estimator has a number of very

favorable properties. In the first place, its definition shows

(
∂ρi

∂θ1

)2
c11 + 2

(
∂ρi

∂θ1

)(
∂ρi

∂θ2

)
c12 +

(
∂ρi

∂θ2

)2
c22

that it is simple to find from the known probability density
with i � 1, 2, respectively. This expression shows how the function of the observations. Furthermore, it can be shown to
variances c11 and c22 and the covariance c12 of a hypothetical converge under general conditions in a statistically well-de-
estimator that attains the Cramér Rao lower bound for � fined way to the true values of the parameters as the number
propagate to the variances of a hypothetical estimator of �1 of observations increases. Moreover, under general condi-
and �2 that also attains the Cramér Rao lower bound. Similar tions, the covariance matrix of the maximum likelihood esti-
error propagation schemes are proposed in the literature for mator approaches asymptotically the Cramér Rao lower
covariance matrices of functions of estimators in general, for bound. Then, the maximum likelihood estimator is asymptoti-
example in reference 5. These schemes are approximations cally most precise. Also, a function of a maximum likelihood
using the linear Taylor polynomial instead of the nonlinear estimator is the maximum likelihood estimator of the func-
functions. Equation (13), on the other hand, is exact. tion. This is called the invariance property of maximum like-
Next, suppose that M is the information matrix for the es- lihood.

timation of � � (�1 . . . �K)T, and that an additional parame- Two of these properties are asymptotic; they apply to an
ter �K�1 is to be estimated. For example, �K�1 may be a con- infinite number of observations. If they also apply to a finite
stant term added to the spectroscopic line model described by or even small number of observations can often only be as-
Eq. (12) to model a constant background contribution. Then, sessed by estimating from artificial, simulated observations.
M has to be augmented with one row and one column corre- These simulations may reveal that maximum likelihood esti-
sponding to �K�1. If the augmented information matrix is in- mation applied to small numbers of observations may lead to
verted, all first K diagonal elements can be shown to be larger bias, that is, systematic error in the measurement result.
than or equal to the corresponding diagonal elements of M�1. This kind of bias, or the major part of it, is usually inversely
Equality occurs only if the nondiagonal elements of the (K� proportional to the number of observations and may be re-

moved as follows. Let t̃N be the biased maximum likelihood1)-th row and (K�1)-th column of the augmented information
matrix happen to be equal to zero. Generally, it is not difficult estimate of � obtained from w1, . . ., wN, and let tN�1 be the
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average of the N different maximum likelihood estimates where � is a positive definite weighting matrix to be chosen
by the experimenter.computed from the N different sets of N � 1 observations ob-

tained by omitting one observation from the set w1, . . ., wN.
Linear Least SquaresThen, it may be shown that

First, as an important special case, models linear in the un-Nt̃N − (N − 1)tN−1 known parameters � are considered. Then

is an estimator of � which may only be biased to order 1/N2. E[w] = y(θ ) = Xθ
This is the so-called Quenouille correction, today called jack-
knife. A favorable property of this correction is that it hardly with X a known N  K matrix, that is,
affects the variance of the estimator.

yn(θ ) = xn1θ1 + . . . + xnKθK

Example 8. Maximum likelihood estimation of peak
Notice thatheight, width and location from Poisson distributed ob-

servations. Suppose that observations w1, . . ., wN are avail-
xn = (xn1 . . . xnK )Table made on the spectral peak of Example 6, and that these

observations are independent and Poisson distributed. Then
is the vector independent variable corresponding to the n-thit follows from Example 3 that the likelihood function of the
observation wn.parameters is described by

Example 10. Straight line fitting. If the observations wn

are made on a straight line y � �x � � at the points x11, . . .,

∑
n

−yn(t) + wn ln[yn(t)]− ln(wn!) (14)

xN1, then X and � are described by
with

yn(t) = a exp

[
−1
2

(
xn − b

c

)2]



x11 1
. .

. .

xN1 1


 and θ = (α β)T

where t � (a b c)T. To obtain the maximum likelihood estimate
respectively.of �, �, and �, Eq. (14) must be maximized with respect to t.

This is a nonlinear optimization problem which has to be
The least squares solution t̂� for � issolved numerically. If the peak area is computed from the

maximum likelihood estimates ã and c̃ as (2�)1/2ãc̃ this is, by t̂� = (XT�X )−1XT�w (17)
the invariance property, a maximum likelihood estimate as
well. It is observed that this solution is a linear combination of the

observations. As a result, the propagation of the errors in the
Example 9. Maximum likelihood estimation from obser- observations to the measurement result is perfectly clear.
vations disturbed by normally distributed errors. If the Furthermore, since E[w] � X�, E[t̂�] � � and, hence, t̂� is anerrors and, therefore, the observations are normally distrib- unbiased estimator of �. Notice that t̂� has these propertiesuted, Eq. (4) shows that the likelihood function of the parame- for any distribution of the observations w. It is easily shown
ters is described by that the covariance matrix cov(t̂�, t̂�) is equal to

(XT�X )−1XT�W�X (XT�X )−1 (18)−N
2
ln(2π) − 1

2
ln(detW ) − 1

2
[w − y(t)]TW−1[w − y(t)] (15)

The conclusion from this expression is that this covariance
Since both first terms of this expression do not depend on the matrix and, therefore, the variances of t̂� depend on the choicevector of parameters t, maximizing Eq. (15) is equivalent to of �. The question is then which � minimizes the covariance
minimizing described by Eq. (18). The answer has been found to be � �

W�1. For this choice,
[w − y(t)]TW−1[w − y(t)]

cov(t̂�, t̂�) ≥ cov(t̂W −1 , t̂W −1 )
with respect to t. This shows that with normally distributed
observations, maximum likelihood estimation is equivalent to As a consequence, the variances of the elements of t̂� for any
a weighted least squares measurement with W�1 as choice of � are never smaller than those of the corresponding
weighting matrix. elements of t̂W�1. The estimator t̂W�1 is called the best linear

unbiased estimator. Equation (17) shows that it is described
Least squares estimation is also often used if the distribu- by

tion of the observations is not known or is known to be not
normal. Then, the general expression for the least squares t̂W −1 = (XTW−1X )−1XTW−1w
criterion is

Among all estimators that are both linear in the observations
and unbiased, it is called best since it has smallest variance.[w − y(t)]T�[w − y(t)] (16)
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Notice that only the expectation and the covariance matrix of which is Eq. (16) with weighting matrix � � I. Notice that
generally, the solution t̂I for t minimizing the least squaresthe observations are specified, not their probability density

function. Also notice that t̂W�1 is optimal within the class of criterion defined by Eq. (21) is only the maximum likelihood
estimator if the observations are independent and identicallyestimators that are both linear in the observations and unbi-

ased. Therefore, there may be better, that is, more precise normally distributed. This means normally distributed with
covariance matrix �2 I. For other distributions, t̂I is generallyestimators among those that are not linear in the observa-

tions or are biased. not the maximum likelihood estimate since it does not max-
imize the pertinent likelihood function. As compared with lin-The covariance matrix of t̂W�1 is equal to
ear least squares, the amount of theory concerning nonlinear
least squares is limited. However, if the observations are in-(XTW−1X )−1 (19)
dependent and identically distributed, then under general
conditions, the least squares estimator t̂I is asymptoticallyIf for normally distributed observations, the maximum likeli-
normally distributed with covariance matrixhood estimator is computed, it is found to be identical to the

best linear unbiased estimator t̂W�1 and, consequently, to have
a covariance matrix equal to the one given by Eq. (19). If next,
the Cramér Rao lower bound is computed for the same obser- σ 2

(
∂yT

∂θ

∂y
∂θT

)−1
(22)

vations, it is found to coincide with Eq. (19). The conclusion
is that for normally distributed observations, the best linear

where y � y(�). This result is due to Jennrich (8). Notice thatunbiased estimator is identical with the maximum likelihood
the computation of this covariance matrix requires the pa-estimator and attains the Cramér Rao lower bound for any
rameters to be known. In practice, this is not the case, andnumber of observations.
nominal or estimated values are substituted for the exactIn measurement practice, the weighting matrix � of t̂� is
ones. Also notice that for independent and identically nor-often taken as the identity matrix. The reason may be that
mally distributed observations, Eq. (22) is equal to thethe covariance matrix W is unknown. Another reason may be
Cramér Rao lower bound. The general form of the elementsthe amount and the complexity of numerical computation in-
of the matrix (�yT/��)(�y/��T) isvolved since with � � I, the estimator simplifies to the ordi-

nary least squares estimator ∑
n

∂y(xn; θ )

∂θp

∂y(xn; θ )

∂θqt̂I = (XTX )−1XTw (20)

which is clearly easier to compute than t̂�. The corresponding This expression shows the dependence of the elements of this
matrix upon the values of the independent variable x. There-ordinary least squares criterion is described by
fore, if the experimenter has some freedom in the choice of
the measurement points, it may be used to manipulate the(w − Xt)T(w − Xt)
covariance matrix described by Eq. (22) in a desired way. This
usually concerns the diagonal elements, that is, the varianceswhich is simply the sum of the squares of the deviations
and is an example of experimental design: the manipulation
of the variances by selecting free experimental variables.wn − xn1t1 − xn2t2 + . . . − xnKtK
The gradient of the nonlinear least squares criterion with

respect to the parameter vector t is equal toNotice that t̂I is only the best linear unbiased estimator if the
covariance matrix W is equal to �2I, that is, if the observa-
tions are uncorrelated and have equal variance �2. The esti-
mator t̂I is the maximum likelihood estimator and achieves

−2
∑

n

[wn − yn(t)]
∂yn(t)

∂t
(23)

the Cramér Rao lower bound if, in addition, the observations
are normally distributed. Therefore, if these conditions are A necessary condition for a point to be a minimum is that the
not met, the use of t̂I may mean an exchange of precision for gradient is equal to the null vector. If Eq. (23) is equated to
simplicity. the null vector, this produces a set of K nonlinear equations in
Finally, it is emphasized that Eq. (20) is a formal descrip- K variables. This set must be solved by an iterative numerical

tion of the ordinary linear least squares estimator. It is not a method since, typically, it cannot be solved in closed form.
recipe for its numerical evaluation. Special numerical meth- For this problem, specialized numerical methods have been
ods have been designed taking care of the fact that the set of developed. Most frequently used are the Gauss–Newton
linear equations described by Eq. (20) may be ill-conditioned. method and the Levenberg–Marquardt method. These are de-
References 6 and 7 provide the details. scribed in references 8 and 6, respectively. Software for their

practical implementation is found in references 6 and 7.
Nonlinear Least Squares Many nonlinear models in engineering practice are linear

in some of their parameters. How this special property mayNonlinear least squares is the most frequently used method
be exploited in nonlinear least squares estimation is illus-for estimation of the parameters of nonlinear models. The cri-
trated in the following example.terion used is described by

Example 11. Least squares estimation of the parameters
of a multiexponential model. Suppose that in a least

[w − y(t)]T[w − y(t)] =
∑

n

[wn − y(xn; t)]2 (21)
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squares estimation problem, the model fitted is described by the linear transformation

yn(t) = a1 exp(−b1xn ) + . . . + aL exp(−bLxn)
[

γ�

γ ∗
�

]
= J

[
α�

β�

]
where t � (aT bT)T with linear parameters a � (a1 . . . aL)T

and nonlinear parameters b � (b1 . . . bL)T. Then Eq. (23) where
shows that at the minimum of the least squares criterion, the
derivatives with respect to the linear parameters a must sat-
isfy J =

[
1 j
1 − j

]

Therefore, the mixed real complex parameter vector

∑
n

[wn − a1 exp(−b1xn) + . . . + aL exp(−bLxn)] exp(−b�xn) = 0

with � � 1, . . ., L. This may be considered a set of L linear ζ = (η1 . . . ηK γ1 γ ∗
1 γL γ ∗

L )T

equations in L unknowns a�. The solution for these unknowns
and � are connected byis a function of the unknown nonlinear parameters b� and is

denoted as a�(b). Substitution of the a�(b) for the a� in the
least squares criterion yields ζ = BK+2Lθ (24)

where BK�2L is the (K � 2L)  (K � 2L) block diagonal matrix
∑

n

[wn − a1(b) exp(−b1xn ) + . . . + aL(b)exp(−bLxn)]2

BK+2L = diag(IK A2L)

Thus, the least squares criterion has become a function of the
with IK the identity matrix of order K and A2L the 2L  2Lnonlinear parameters b only. Minimization of it with respect
block diagonal matrixto b yields the solution b̂ for � and the solution â � a(b̂) for �.

A2L = diag(J . . . J)Nonlinear least squares problems of the kind described in
Example 11 are called separable nonlinear least squares

The theory, methods, and techniques presented up to nowproblems since the linear and the nonlinear parameters are
concerned the estimation of real parameters from error cor-estimated separately. Notice that in Example 11, the number
rupted observations. Using the linear transformation de-of parameters involved in the iterative numerical minimiza-
scribed by Eq. (24), transformation of the pertinent expres-tion is reduced by a factor of two. This also means that the
sions into those for estimating a mixed real complexnumber of initial values for the procedure is reduced corre-
parameter vector is relatively easy. All that is required is ob-spondingly.
serving the mathematical rules governing linear transforma-
tion of coordinates in general. For what follows, it is impor-
tant to notice that Eq. (24) implies that �� and �� areHANDLING MEASUREMENT ERRORS IN
transformed into both �� and �*� . Also, the definition of theNONSTANDARD PROBLEMS
covariance matrix of a vector of complex stochastic variables
is needed. Let z be a vector of stochastic variables. Then, theComplex Parameter Estimation
covariance matrix of z is defined as

Many practical measurement problems concern complex val-
ued parameters or mixtures of real and complex valued pa- E[(z − E[z])(z − E[z])H]
rameters. In particular, these problems are found in measure-
ment in the frequency domain. Such complex parameter where the superscript H denotes complex conjugate transposi-
estimation problems can always be transformed into real pa- tion. The Fisher information matrix defined by Eq. (9) after
rameter estimation problems by splitting a complex parame- the transformation of parameters described by Eq. (24) is
ter into its real and imaginary part and estimating these real given by
quantities separately. This, however, leads to unnecessarily
complicated expressions for the estimator and, as a result, to
complicated numerical procedures. This is avoided by leaving M = −E

[
∂2 ln f
∂ζ ∗∂ζ T

]
quantities complex if they are complex by nature.
The most important tool in the formulation of complex pa- and the corresponding Cramér Rao lower bound on the vari-

rameter measurement from error corrupted observations is ance of unbiased estimators of � is equal to M�1. Again using
the following. Suppose that in a measurement problem there Eq. (24), the Cramér Rao lower bound for a vector of real and
are K � 2L parameters complex functions �(�) of the mixed real complex parameter

vector is found to be
θ = (η1 . . . ηK α1 β1 . . . αL βL)T

of which the �k are intrinsically real, and the �� and �� are
∂φ

∂ζ T
M−1 ∂φH

∂ζ ∗
the real and imaginary parts of the complex parameters �� �
�� � j�� with j � ��1. Then �� and its complex conjugate �*� where for brevity, the argument of �(�) has been omitted. A

further example is the weighted least squares estimator de-on the one hand and �� and �� on the other are connected by
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fined by Eq. (17). After transformation of � into � and t̂� into are equidistant, nor if they are, that the period is a known
integer multiple of the sampling interval, and an integerẑ�, respectively, it becomes
number of periods is observed. The purpose of this section is
to formulate the estimation of the parameters � as a complexẑ� = (RH�R)−1RH�w
statistical parameter estimation problem and to describe the
special conditions under which this problem simplifies to thewhere the complex N  (K � 2L) matrix R is equal to

XB�1
K�2L. If � is equal to W�1, this is the best linear unbiased standard Discrete Fourier Transform, the DFT.

estimator. Finally, suppose that the real complex (P � 2Q) 
1 vector of observations u is composed of the elements of the Example 12. Estimation of Fourier coefficients from
real (P � 2Q)  1 vector of observations w as follows Poisson distributed observations. Suppose that observa-

tions wn � 0, n � 1, . . ., N are available with expectations
described by Eq. (25) and that these observations have a Pois-u = BP+2Qw
son distribution. Then, by Eq. (14), the likelihood function of
the parameters iswith P � 2Q � N. Then, u is a vector of real and complex

observations described by ∑
n

−yn(z) + wn ln[yn(z)]− ln(wn!) (26)
(w1 . . . wP wP+1 + jwP+2 wP+1 − jwP+2 . . . wP+2Q−1 + jwP+2Q

wP+2Q−1 − jwP+2Q)T with

and yn(z) =
∑

k

ck exp( j2πkxn/d)

ẑ� = (SH�S)−1SH�u
where the elements of z � (cT d)T correspond to those of �, and

where S and � are equal to BP�2QR and B�H
P�2Q � B�1

P�2Q, respec- those of c � (c0 c1 c�1 . . . cK c�K)T correspond to those of �.
tively. The covariance matrix of the mixed real complex obser- Then, the complex gradient of Eq. (26) with respect to z is
vations is defined as E[(u � E[u])(u � E[u])H] and is, there-
fore, equal to BP�2QWBH

P�2Q. Hence, the estimator ẑ� with � �
(BP�2QWBH

P�2Q)�1 is the best linear unbiased estimator.
−

∑
n

(
1− wn

yn(z)

)
∂yn(z)

∂z
(27)

The iterative numerical optimization of likelihood func-
tions and nonlinear least squares criteria of mixed real com- Since the maximum of the likelihood function is, by definition,
plex parameters may be carried out directly with respect to a stationary point, the 2K � 2 elements of the maximum like-
the vector of mixed real complex parameters. This is dis- lihood estimate z̃ of � must satisfy the 2K � 2 nonlinear equa-
cussed in reference 9. In particular, use may be made of the tions in z obtained by equating Eq. (27) to the null vector. The
complex gradient. Specifically, the complex gradient of the numerical solution for z representing the absolute maximum
logarithm of the likelihood function ln f with respect to the of the likelihood function described by Eq. (26) is the maxi-
complex parameter vector z is defined as �ln f /�z. An impor- mum likelihood estimate of the Fourier coefficients.
tant property of this complex gradient is that the real gradi-
ent �ln f /�t is equal to the null vector if and only if the com- It follows from Eq. (25) that the expectations yn(�) of the
plex gradient is equal to the null vector. Therefore, the observations wn are described by
complex gradient may be used to find maxima of the likeli-
hood function and minima of the nonlinear least squares cri- yn(ζ ) = Xγ
terion in the same way as the real gradient.

where the n-th row of X is defined as
Nonstandard Fourier Analysis

Estimation of Fourier coefficients from error disturbed obser-
(1 exp( j2πxn/δ) exp(− j2πxn/δ) . . . exp( j2πKxn/δ)

exp(− j2πKxn/δ)vations made on periodic functions is an important problem
in dynamic system identification in general and in specialized

If the observations are normally distributed with covarianceapplications as crystal structure reconstruction. Suppose that
matrix W, then the maximum likelihood estimator of � has tothe problem is to estimate the Fourier coefficients �k, k � 0,
minimize�1, . . ., �K and, possibly, the period 	 of the real periodic

function
[w − y(z)]TW−1[w − y(z)] (28)

Hence, if only the Fourier coefficients are unknown, their
yn(ζ ) =

∑
k

γk exp(− j2πkxn/δ) (25)

maximum likelihood estimator is
from error corrupted observations w � (w1 . . . wN)T where
the measurement points xn are known, and the vector of un- ĉW −1 = (XHW−1X )−1XHW−1w (29)
known parameters � is either equal to � � (�0 �1 ��1 . . . �K

��K)T or to (�T 	)T, where �0 and 	 are real, while the re- For observations with a distribution different from normal,
this estimator is no longer maximum likelihood but is stillmaining �k are complex and satisfy ��k � �*k since the yn(�)

are real. It will not be supposed that the measurement points best linear unbiased. If, in addition, the period is unknown,
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the estimation problem is recognized as a separable nonlinear As the difference in location decreases, the components in-
creasingly overlap and become increasingly difficult to distin-least squares problem. The model is linear in the 2K � 1 Fou-

rier coefficients and nonlinear in the period d. This means guish visually. According to Rayleigh, the components are re-
solvable if the absolute difference of �1 and �2 exceeds 0.5. Atthat, in addition to Eq. (29), one further equation must be

satisfied. This is the equation resulting from equating the de- this distance, the maximum of the one component coincides
with the first zero of the other, and the component sum hasrivative of the least squares criterion with respect to d to zero.

If, in this equation, Eq. (29) is substituted for the Fourier two maxima and a relative minimum in between. Then, the
ratio of the value at the relative minimum to that at the max-coefficients c, a scalar nonlinear equation is obtained in the

period d only. Hence, all that needs to be done is real, scalar ima may be shown to be 0.81. Later, this ratio has been gener-
alized to other component functions, and the distance corre-root finding to estimate the period 	 and substitute the esti-

mate in the closed form of Eq. (29) for the Fourier coefficients. sponding to this ratio has been called generalized Rayleigh
resolution limit.The estimates thus obtained are maximum likelihood if the

observations are normal with covariance matrix W. They are
weighted complex nonlinear least squares estimates with From this example, it is clear that this classical resolution
other error distributions. limit and comparable ones proposed later are, in fact, mea-
If the covariance matrix W is unknown, the ordinary least sures of component width. Since in definitions such as Ray-

squares estimator leigh’s, the component functions are known, and the observa-
tions are exact, today, the model could be exactly fitted
numerically to the observations with respect to the locations,ĉI = (XHX )−1XHw (30)

the result would be exact, and there would in fact be no obvi-
may be chosen, possibly combined with root finding for the ous limit to resolution. The reason why in practice unlimited
period. This is a maximum likelihood estimator only if the resolution cannot be achieved is that observations exactly de-
wn are independent and identically normally distributed scribable by two component functions do not occur. Therefore,
about their expectations. For other distributions, it is a best it is not the distance of the components, but it is the errors in
linear unbiased estimator if only the Fourier coefficients are the observations, systematic and nonsystematic, that ulti-
to be estimated, and the observations are uncorrelated with mately limit resolution. During the last decades, a number of
equal variance. In other cases, it is simply the ordinary least measurement error based resolution limits have been pro-
squares estimator. posed in the literature reviewed in Ref. 10. One of the most
A special case occurs if only the Fourier coefficients are to recent ones will now be described.

be estimated, the measurement points xn are equidistant with Suppose that a number of two-component observations
interval �, the period is a known integer multiple of �, and w � (w1 . . . wN)T has been made, and that the two-component
an integer number of periods is observed. Under these condi- model
tions, the elements of ĉI described by Eq. (30) may be shown
to be equal to the DFT a[h(x;b1) + h(x;b2)] (31)

is fitted to these observations with respect to a, b1, and b2.
Then, depending on the set of observations available, two es-

1
N

N∑
n=1

wn exp[− j2πk(n − 1)/M]

sentially different types of solutions for a, b1, and b2 may oc-
where M� is the period. Under the restrictive conditions men- cur. In the first type, the solutions for b1 and b2 are distinct.
tioned, the DFT is, therefore, the maximum likelihood estima- This implies that the two components in Eq. (31) are resolved
tor if the observations are independent and identically nor- from the observations. In the second type of solution, the solu-
mally distributed about their expectations. For other tions for b1 and b2 exactly coincide. Then, the model corre-
distributions, it is best linear unbiased if the observations are sponding to this solution is 2a h(x;b) with b1 � b2 � b. Thus,
uncorrelated and have equal variance. it is concluded that a one-component model is found as solu-

tion. This one-component solution is, of course, not found from
Measurement Errors and Resolution exact two-component observations of the same functional

family as the model fitted. However, it may result from errorLike precision and accuracy, resolution is a key notion in ap-
corrupted, two-component observations if the components se-plied science and engineering. It is used in fields as diverse
riously overlap.as radar, sonar, optics, electron optics, seismology and vari-
At first sight, exactly coinciding solutions may look highlyous forms of spectroscopy. An extensive review of resolution

improbable. However, their coincidence is not caused by mereis presented in reference 10.
chance but by a structural change of the criterion of goodnessThe most important form of resolution is two-component
of fit under the influence of the set of observations. In the N-resolution.
dimensional Euclidean space of the observations, where the
n-th coordinate axis corresponds to the n-th observation wn, aExample 13. Rayleigh two-component resolution. As dis-
set of observations is represented by a single point. If two-cussed in reference 10, Rayleigh considers observations de-
component models are fitted, this space may be divided intoscribed by
two parts. For observations in the one part, the criterion has
an absolute minimum with b1 � b2. For observations in theα{sinc2[2π(x − β1)]+ sinc2[2π(x − β2)]}
other part, only a minimum can be shown to exist with b1 �
b2. The boundary of both parts separates the sets of observa-with sinc(x) � sin(x)/x. This is a pair of sinc-square compo-

nents of equal height and located at �1 and �2, respectively. tions from which the components can be resolved from those
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from which they cannot. Therefore, it is this boundary that
constitutes the limit to resolution in terms of the observa-
tions. Of course, hypothetical, errorless two-component obser-
vations to which a two-component model of the same family
is fitted are on the side of the boundary corresponding to reso-
lution. However, nonsystematic and systematic measurement
errors may move this point to the other side of the boundary,
where resolution is impossible since the solutions coincide.
Systematic measurement errors influence the location of the
point around which sets of observations are distributed. This
point represents the expectations of the observations. The
systematic errors may move this point close to the boundary.
The kind of distribution of the nonsystematic errors defines
how the sets of observations are distributed around this point.
Therefore, the probability of resolution is determined by both
types of errors combined.
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