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FREQUENCY STANDARDS, CHARACTERIZATION

In this article we describe the characterization of frequency
standards following the general definitions accepted by the
IEEE, the International Telecommunication Union-Radio-
communications (ITU-R), and International Radio Consulta-
tive Committee (CCIR) (1–3). In using the term ‘‘frequency
standard’’ we imply that changes in the frequency �� of the
device are small compared to its nominal frequency �0 and
that therefore the frequency would be about the same if we
were to remeasure it. This permits us to treat the variations
in fractional frequency ��/�0 as small compared to 1, and this
greatly simplifies the mathematics of the characterization.
We describe what is meant by accuracy and frequency stabil-
ity of a frequency standard. The variations in frequency
(which define the frequency stability) can be classified into
two basic types, random and systematic. To characterize the
random variations in frequency the systematic effects must
be removed from the data. Special statistical techniques other
than the standard variance must then be used to quantify the
random variations in frequency, because some of the noise
processes are not stationary. By this we mean that the mean
of the frequency noise changes slowly with time. As part of
the statistical treatment we describe how to determine the
confidence intervals for the estimates of the various types of
random frequency noise.

ACCURACY

Frequency standards generate a periodic voltage signal,
whose ideal frequency is defined as a specific number of oscil-
lations per second. The second is the agreed unit of time,
based on the energy difference between two energy levels of
the unperturbed cesium atom (4), and it is this definition that
allows the specification of accuracy of a frequency standard.
Generally there will be offsets or biases in the actual fre-
quency of a standard when compared to the ideal or defined
value (according to the definition of the second) due to system-
atic and random effects (5–7). The accuracy of a frequency
standard, more recently described as an uncertainty, is a
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measure of the confidence relative to a physical model of the
standard and the evaluation process. To evaluate the accu-
racy of a frequency standard, a list of known sources of fre-
quency offsets is made, and the offset or bias due to each
source and its uncertainty are carefully measured or com-
puted. The uncertainty is a proper summation of the esti-
mates of various systematic offsets and random noise (8). For
example, a frequency standard with an output frequency of
10 MHz and an uncertainty of 10�8 has an frequency error of
� � 0.1 Hz.
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Figure 2. Output voltage of a noisy signal.Figure 1 shows the output voltage signal of an ideal frequency
standard as a function of time. The maximum value V0 is the
nominal amplitude of the signal. The time required for the lyzer. Although the maximum power occurs at the frequency
signal to repeat itself is the period T of the signal. The nomi- of oscillation, other peaks are observed at frequencies of 2�0,
nal frequency �0 of the signal is the reciprocal of the period, 3�0, . . ., n�0, where n is a positive integer. These frequencies
1/T. This voltage signal can be represented mathematically are called harmonics of the fundamental frequency �0; 2�0 is
by a sine function, the second harmonic, 3�0 is the third harmonic, and so on.

The power at these harmonic frequencies will depend on thev(t) = V0 sin θ = V0 sin(2πν0t) (1)
design of the source. The spectrum around the fundamental
frequency displays power sidebands at frequencies above thewhere the argument � � 2��0t of the sine function is the nomi-
carrier (upper sideband) and at frequencies below the carriernal phase of the signal. The time derivative of the phase � is
(lower sideband). These power sidebands are the result of2��0 and is called the nominal angular frequency �0. In the
phase fluctuations and amplitude fluctuations in the signal.frequency domain, this ideal signal is represented by a delta
While the power spectrum gives an idea of the total noise offunction located at the frequency of oscillation. Since this sig-
a signal, it does not give information about the relative mag-nal is ideal, there are no known sources that cause frequency
nitude of its phase instabilities and amplitude instabilities.shifts, and thus its frequency is totally accurate and its uncer-
Furthermore, at frequencies close to �0 it is difficult to sepa-tainty is 0. Furthermore, its frequency, phase, and amplitude
rate the noise power from the power of the fundamental fre-are constant; therefore the signal is also stable in frequency,
quency. Therefore, special measurement techniques arephase, and amplitude.
needed to measure phase instabilities and amplitude instabil-In real situations, the output signal of an oscillator
ities in sources.(source) or frequency standard has noise. Such a noisy signal

A noisy signal can be mathematically represented byis illustrated in Fig. 2. In this example we have depicted a
case where the noise power is much less than the signal ν(t) = [V0 + ε(t)] sin[2πν0t + φ(t)] (2)
power. Frequency instability is the result of fluctuations in
the period of the signal. Amplitude instability is the result of where �(t) represents amplitude fluctuations (amplitude devi-
fluctuations in the peak values of the voltage. Phase instabil- ation from the nominal amplitude V0) and �(t) represents
ity is the result of fluctuations in the zero crossings. Since the phase fluctuations (phase deviation from the nominal phase
period (and thus the frequency) of the signal is related to its 2��0t) (1). The instantaneous frequency of this signal is de-
phase, frequency instability and phase instability are di- fined as
rectly related.

Figure 3 shows the power spectrum of a noisy signal (power
as a function of frequency) as measured by a spectrum ana-

ν(t) = 1
2π

d
dt

(phase) = ν0 + 1
2π

d
dt

φ(t) (3)
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Figure 3. Power spectrum of a noisy signal.
Figure 1. Ideal output voltage of a frequency standard.
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Frequency fluctuations refer to the deviation �(t) � �0 of the Frequency-Domain Characterization
instantaneous frequency from the nominal frequency. Frac- Phase fluctuations in the frequency domain, or phase modula-
tional frequency fluctuations, denoted as y(t), refer to fre- tion (PM) noise, are characterized by the power spectral den-
quency fluctuations normalized to �0; that is, sity (PSD) of the phase fluctuations, given by (13)

y(t) = ν(t) − ν0

ν0
= 1

2πν0

d
dt

φ(t) (4) Sφ ( f ) = F [Rφ (τ )] =
∫ ∞

−∞
Rφ (τ )e− jωτ dτ (6)

Equation (4) indicates that there is a direct relation between where F [ ] is the Fourier transformation and R �() is the
phase fluctuations and fractional frequency fluctuations. autocorrelation function of the phase fluctuations given by
Therefore, if a signal exhibits a certain amount of phase fluc-
tuation, it also exhibits frequency fluctuation given by Eq. (4). Rφ (τ ) = 〈φ(τ )φ(t − τ )〉 (7)
The time deviation x(t) of a signal is the integral of y(t) from
0 to t. Thus one can write

A more practical definition of PSD[�(t)] is

y(t) = d
dt

x(t) (5)
Sφ ( f ) = PSD[φ(t)] = [φ( f )]2 1

BW
(8)

The frequency stability of a frequency standard is affected
where [�( f )]2 is the mean squared phase deviation at an offsetby random noise processes and by systematic, deterministic
frequency f from the frequency �0 (called the carrier in thischanges. Systematic effects often dominate the frequency sta-
context), and BW is the bandwidth of the measurement sys-

bility in nonlaboratory environments. The sensitivity of the tem (1,13–15). The offset frequency f is also called the Fou-
standard to temperature, humidity, atmospheric pressure, rier frequency. The units for S�( f ) are rad2/Hz. Equation (8)
magnetic field, and radiation may play a role (9–11). Gener- is defined for 0 � f � �; nevertheless it includes fluctuations
ally, frequency (and thus phase) stability is divided into three from the upper and lower sidebands and thus is a double-
regions: short-term, medium-term, and long-term stability. sideband measure.
(Though the term frequency stability is used throughout most The PM noise measure recommended by the IEEE
of the literature, the term actually refers to instabilities in (1,14,15) is L ( f ), defined as
the frequency.)

Short-term frequency stability refers to the random, nonsys-
tematic fluctuations that are related to the signal-to-noise ra- L ( f ) ≡ Sφ ( f )

2
(9)

tio of the device. In quartz crystal resonators this refers to
the region dominated by white phase noise, where the time

At Fourier frequencies far from the carrier frequency, wherebetween observed frequencies (sample time) is less than a sec-
the integrated PM noise from � to f (the Fourier frequency)ond. In atomic frequency standards the short-term stability
is less than 0.1 rad2, L ( f ) is equal to the single-sidebandalso includes white frequency noise and extends to sampling
phase noise. The units for L ( f ) are decibels below the carriertimes of several minutes.
in a 1 Hz bandwidth (dBc/Hz).Medium-term frequency stability refers to the region where

Frequency fluctuations in the frequency domain, or fre-flicker noise dominates. The sampling time characteristic of
quency modulation (FM) noise, are characterized by the powerthis region is a function of the type of frequency standard.
spectral density of the fractional frequency fluctuations, given

Short-term and medium-term frequency stability can be char- by
acterized either in the frequency domain or in the time do-
main, after known systematic effects have been removed. Fre-
quency-domain characterization and measurements are Sy( f ) = PSD[y(t)] = [y( f )]2 1

BW
(10)

generally used when the sample time of interest is less than
a second. For sampling times longer than a second, time-do-

where y( f )2 represents the mean squared fractional frequencymain measurements are used to characterize frequency sta-
deviation at an offset (Fourier) frequency f from the carrierbility.
(1,13–15). Sy( f ) is defined for Fourier frequencies 0 � f � �,Long-term frequency stability includes random-walk fre-
and its units are inverse hertz.quency-noise processes in addition to systematic, determinis-

The conversion between Sy( f ) and S�( f ) can be obtainedtic changes in frequency observed when the sampling time
from Eq. (4). Applying the Fourier transformation to bothis long. The long-term, systematic frequency change is called
sides of Eq. (4), squaring, and dividing by the measurement

frequency drift (2,12). Drift includes frequency changes due to bandwidth results in
changes in the components of the source in addition to those
due to external parameters such as temperature, humidity,
pressure, magnetic field, and radiation (9–11). Frequency
aging, on the other hand, refers to the long-term systematic

Sy( f ) =
�

1
2πν0

�2

(2π f )2Sφ ( f ) =
�

f
ν0

�2

Sφ( f ) (11)

frequency change due to changes in the components of the
source, independent of parameters external to the source Amplitude fluctuations in the frequency domain, or ampli-

tude modulation (AM) noise, are characterized by the power(2,12).
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resents white phase noise. Similarly, the PM noise can be
modeled by

Sφ ( f ) =
0∑

β=−4

kβ f β = k−4 f −4 + k−3 f −3

+ k−2 f −2 + k−1 f −1 + k0 f 0 (14)

where k�4 f�4 represents the random-walk frequency noise,
k�3 f�3 represents flicker frequency noise, k�2 f�2 represents
white frequency noise, k�1 f�1 represents flicker phase noise,
and k0 f 0 represents white phase noise. Notice that S�( f ) and
Sy( f ) have different slopes for a specific type of noise, as im-
plied by Eq. (11). Equation (11) can be used to obtain the con-
version between the S�( f ) and Sy( f ) coefficients, yielding

kβ = ν2
o hα for β = α − 2 (15)

Figure 4 shows the common noise types characteristic of
the PM noise and the FM noise of a source (1,14–17). Usually
a source exhibits two or three of the noise types shown in the
plots (17).

The AM noise of a source can typically be modeled by the
sum of three different power laws or noise types:

Sa( f ) =
0∑

α=−2

hα f α = h−2 f −2 + h−1 f −1 + h0 f 0 (16)

where h�2 f�2 represents random-walk amplitude noise, h�1 f�1

represents flicker noise, and h0 f 0 represents white amplitude
noise (18). Figure 5 shows the common noise types character-
istic of the AM noise of a source.

Upper and lower PM sidebands are always equal and 100%
correlated. Likewise the upper and lower AM sidebands are
always equal and 100% correlated. This is true even when the
RF spectrum is not symmetric about the carrier (18a). The
phase between AM and PM noise varies randomly with time
for broadband additive noise (18a).

Random-walk
frequency (f –4)

Random-walk
frequency (f –2)

Flicker
frequency (f –3)

Flicker
frequency (f –1)

White
frequency (f –2)

White
frequency (f 0)

Flicker phase (f –1)

Flicker
phase (f 1)

White phase (f 0)

White
phase (f 2)

lo
g

  
 (

f)

log (f)

log f

lo
g

 S
y 

(f
)

Figure 4. PM and FM noise characteristics of a source. Time-Domain Characterization

In the time domain, the fractional frequency stability of a sig-
nal is usually characterized by the Allan variance, a type of

spectral density of the fractional amplitude fluctuations, two-sample frequency variance given by (1,13–15)
given by

σ 2
y (τ ) = 1

2 〈(yi+1 − yi)〉 (17)

Sa( f ) = PSD
[

ε(t)
V0

]
=
�

ε( f )

V0

�2 1
BW

(12)

where �( f )2 represents the mean squared amplitude deviation
at an offset frequency f from the carrier (1). Sa( f ) is defined
for Fourier frequencies 0 � f � �, and its units are inverse
hertz.

In free-running sources, the FM noise is usually modeled
by the sum of five different power laws or noise types as

Sy( f ) =
2∑

α=−2

hα f α = h−2 f −2 + h−1 f −1 + h0 f 0 + h1 f 1 + h2 f 2

(13)

where h�2 f�2 represents random-walk frequency noise, h�1 f�1
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represents flicker frequency noise, h0 f 0 represents white fre-
quency noise, h1 f 1 represents flicker phase noise, and h2 f 2 rep- Figure 5. AM noise characteristics of a source.
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where yi is the average fractional frequency of interval i given
by

yi = 1
τ

∫ ti+τ

ti

y(t) dt = 1
τ

[x(ti + τ ) − x(ti)] = 1
τ

(xi+1 − xi ) (18)

In practical situations only a finite number of fractional fre-
quency samples are available, and the Allan variance is ap-
proximated by

σ 2
y (τ ) ≈ 1

2(M − 1)

M−1∑
i=1

(yi+1 − yi)
2 (19)

where M � N � 1 is the number of frequency samples (N is
the number of time samples) (1,14,15). The Allan variance
can also be expressed in terms of time samples using yi �
(xi�1 � xi)/:

σ 2
y (τ ) ≈ 1

2(N − 2)τ 2

N−2∑
i=1

(xi+2 − 2xi+1 + xi )
2 (20)

The square root of the Allan variance is called the Allan devi-
ation, �y().

When time samples are taken every 0 seconds, the Allan
variance can be computed for several sampling times  � n0

where n 	 0. For n 	 1, overlapped samples can be used to
compute �2

y as shown in Fig. 6, providing better confidence
intervals (1,19). An expression for the fully overlapped Allan
variance can be derived using Fig. 6 and Eq. (19). For  �
n0 Eq. (19) becomes

σ 2
y (τ ) ≈ 1

2(M − 2n)

M−2n∑
i=1

(yi+n − yi )
2 (21)
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which can also be expressed in terms of time-domain data by
substituting yi for (xi�n � xi)/n0: Figure 7. �2

y() and Mod �2
y() for the five noise types.

where p�2
�2 represents white phase and flicker phase noise,σ 2

y (τ ) ≈ 1
2(N − 2n)τ 2

N−2n∑
i=1

(xi+2n − 2xi+n + xi )
2 (22)

p�1
�1 represents white frequency noise, p0

0 represents flicker
frequency noise, and p1

1 represents random walk frequency
Figure 7(a) shows a log–log plot of the Allan variance as a noise.

function of the sampling time  for a source that exhibits all When the dominant noise type in the short term is flicker
five common noise types. The slopes of the white PM noise PM or white PM, the modified Allan variance can be used to
and the flicker PM noise are the same; therefore these two improve the estimate of the underlying frequency stability of
noise types cannot be separated using this plot. The Allan the sources (1,14,20). Here a new series �xi� is created by aver-
variance can often be modeled by the sum of four different aging n adjacent phase (time) measurements of duration 0.
power laws: The average fractional frequencies are computed from the

�xi�, as illustrated in Fig. 8. For N time samples and  � n0,
the resulting modified Allan variance isσ 2

y (τ ) =
1∑

µ=−2

pµτµ = p−2τ
−2 + p−1τ

−1 + p0τ
0 + p1τ

1 (23)

Mod σ 2
y (τ ) ≈ 1

2(N − 3n + 1)

N−3n+1∑
i=1

(y′
i+n − y′

i )
2 (24)

Equation (24) can also be expressed in terms of the initial
time-domain data �xk�:

x1

x2
x3

x4

x5

y1

y2

y3
xi + 2 – xiyi = 2 0τ

 0τ

Figure 6. Computation of �yi� for the overlapped Allan variance and
n � 2.

Mod σ 2
y (τ )

≈ 1
2τ 2n2(N − 3n + 1)

N−3n+1∑
j=1

[
n+ j−1∑

i= j

(xi+2n − 2xi+n + xi )

]2

(25)
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asymptotically reaches 3.37/(1.04 � 3 ln �h. In this case and
for n 	 10, the slope of Mod �2

y() is approximately �1. Figure
9 also shows that Mod �2

y() is considerably smaller than
�2

y() for white PM and flicker PM noise. Not only does Mod
�2

y() provide a different slope for white PM noise and flicker
PM noise, allowing the separation of the two noise processes
(see Fig. 7b); it can also speed the stability measurements. If
a system is limited by white and flicker PM noise at short
average times, using Mod �2

y() reduces the measurement time
x1

x2
x3

x4

x2 x4

x5

x3

x1

xi + 3 – xiy′i = 3 0τ

 0τ

xi + 2 + xi +1 + xixi =

required to observe white FM, flicker FM, and random-walk
Figure 8. Computation of �xi� and �yi� for the Modified Allan variance FM at longer averaging times, in comparison with that re-
and n = 3. quired when using �2

y() (15).
At long averaging times when the ratio N0/(2n0) is close

to 1, the Allan variance has a bias related to its insensitivity
where to odd noise processes in the phase (time) fluctuations (odd

with respect to the midpoint). In these situations an extension
of the Allan variance that removes this bias can be used toy′

i = xi+n − xi

τ
(26)

characterize the frequency stability of a source. This vari-
ance, �2

y,TOTAL(), is obtained by extending the �xi� in both direc-
and tions and then computing the Allan variance from the new

�x
i � sequence (21–23). Figure 10 illustrates this extension of
�xi�: on the left side the extension is the inverted mirror image
of �xi� with respect to x1; on the right side it is the inverted
mirror image of �xi� with respect to xN. How far this extension

xi =

n−1∑
k=0

xi+k

n
(27)

depends on the maximum value nm of n. For N time data
Here xi is the phase (time) averaged over n adjacent measure- points, nm is the integer part of (N � 1)/2. The far-left data
ments of duration 0. Thus Mod �y() is proportional to the point is x
2�nm

� 2x1 � xnm
; the far-right data point is x
N�nm�1 �

second difference of the phase averaged over a time n0. 2xN � xN�nm�1. Thus �2
y,TOTAL() is given by

Viewed from the frequency domain, Mod �y() is proportional
to the first difference of the frequency averaged over n adja-
cent samples. The square root of the modified Allan variance

σ̂ 2
y,TOTAL(τ ) = 1

2(N − 2)

N−1∑
i=2

(y′
i − y′

i−n)2 (28)

is called the modified Allan deviation Mod �y().
Figure 9 shows the ratio R(n) � [Mod �2

y()]/�2
y() as a func- Equation (28) can be expressed in terms of �x
i � using y
i �

tion of n for all five types of noise processes (15). For random- (x
i�n
� x
i )/ as

walk FM, flicker FM, and white FM the ratio is constant for
n � 5. Therefore, Mod �2

y() and �2
y() have the same slope for

these noise types. For white PM noise (� � 2), the slope is
σ̂ 2

y,TOTAL(τ ) = 1
2τ 2(N − 2)

N−1∑
i=2

(x′
i−n − 2x′

i + x′
i+n)2 (29)

�1/n; therefore the slope of Mod �2
y() is equal to the slope of

�2
y() divided by . Finally, for flicker PM noise the ratio For a detailed description of �2

y,TOTAL() see Refs. 21–23.

Figure 9. Ratio of the modified Allan
variance to the Allan variance, R(n) �

[Mod �2
y()]/�2

y(), as a function of n (15).
 � n0.
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Figure 10. Extension of �xi� for � 2
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CONVERSION BETWEEN TIME-DOMAIN MEASURES

Table 2. Empirical Equations for the Number of Degrees of
Freedom When Computing Confidence Intervals for the
Overlapped Allan Variance (16)

Noise Type � No. of Degrees of Freedom

White phase �2
(N � 1)(N � 2n)

2(N � n)

Flicker phase �1 exp �ln �N � 1
2n  ln �(2n � 1)(N � 1)

4 	1/2

White frequency 0 �3(N � 1)
2n

�
2(N � 2)

N  4n2

4n2 � 5

Flicker frequency �1
2(N � 2)2

2.3N � 4.9
for n � 1

5N 2

4n(N � 3n)
for n � 2

Random-walk �2 N � 2
n

(N � 1)2 � 3n(N � 1) � 4n2

(N � 3)2frequency
AND FREQUENCY-DOMAIN MEASURES

Expressions have also been derived for a single-pole filterFrequency-domain data S�( f ) can be converted to time-do-
(15,25,26). These expressions, along with those in Table 1,main data �2

y() using the relation (1,24)
constitute the boundaries for � 2

y() and Mod � 2
y(), given a spe-

cific PSD of phase fluctuations (15). For this reason it is im-
portant to specify the filter frequency response, including theσ 2

y (τ ) = 2
(πν0τ )2

∫ fh

0
Sφ ( f ) sin4

(π f τ ) d f (30)

high cutoff frequency, when specifying the Allan and modified
Allan variances of a source.Equation (30) is derived by expressing both S�( f ) and �2

y() in
Generally, conversion from � 2

y() or Mod � 2
y() to the fre-terms of the autocorrelation function R �() of the random

quency domain is not possible, unless specific informationprocess �(t) and then combining the two expressions to cancel
about the noise characteristics is known. Greenhall demon-

R �() (13). Similarly,
strated that several different spectral densities of random
processes can have the same Allan variance (27). However, in
the case where the spectral density follows the noise model inσ 2

y (τ ) = 2
(πτ )2

∫ fh

0
Sy( f )

sin4
(π f τ )

f 2 d f (31)
Eqs. (13)–(14), a one-to-one correspondence between S�( f )
and � 2

y() and Mod � 2
y() is found, except that for white PM

Expressions for Mod �2
y() (15,24), obtained using a similar and flicker PM noise � 2

y() exhibits the same slope, corre-
procedure, are sponding to �2. Often, uniqueness fails more generally. Some

sources have internal phase-locked loops, and their noise
spectra deviates from the model in Eqs. (13)–(14) (28); others
exhibit 60 Hz and other peaks that will affect � 2

y() (16,29).
Mod σ 2

y (τ ) = 2
n4(πν0τ0)2

∫ fh

0

Sφ ( f ) sin6
(πτ f )

sin2
(πτ0 f )

d f (32)

Generally, multivariance analysis should be used to obtain
frequency-domain coefficients for each type of noise from
time-domain data (30).

Mod σ 2
y (τ ) = 2

n4(πτ0)2

∫ fh

0

Sy( f ) sin6
(πτ f )

f 2 sin2
(πτ0 f )

d f (33)

CONFIDENCE INTERVALS FOR �2
y(�) AND Mod �2

y(�)The inclusion of fh as the upper limit of the integral as-
sumes that the term inside the integral is multiplied or ‘‘fil-

The Allan variance is defined as the first difference of averagetered’’ by an infinitely sharp low-pass filter with cutoff fre-
fractional frequencies, averaged over an infinite time. Sincequency fh. Table 1 shows the results of Eqs. (31) and (33) for
only a finite number M of frequency samples can be taken,the five types of noise for 2�fh � 1 (1,14–16,24). The results
we can only estimate the Allan variance and deviation, andwill depend on the type of filter assumed. While an infinitely
the confidence of this estimate depends on the number ofsharp filter was assumed in Eqs. (30)–(33), actual measure-
samples.ment systems have different filter response.

A simple method to obtain confidence intervals is to use
the chi-squared distribution function. The Allan variance has
a chi-squared distribution function given by

χ2 = df
σ̂ 2

y (τ )

σ 2
y (τ )

(34)

where df is the number of degrees of freedom (16). The Allan
variance is the sum of the squares of the first differences of
adjacent fractional frequency values. If all the first-difference
values were independent, then the number of degrees of free-
dom would be equal to the number of first difference values.
This is not the case, and thus other procedures have been
used to compute the number of degrees of freedom for �2

y()
(16). Table 2 shows analytical (empirical) equations that ap-

Table 1. Conversion Factors for � 2
y(f ) and Mod � 2

y(f )
(1, 14–16, 24)

Noise Type Sy( f ) � 2
y( f ) Mod � 2

y( f )

Random walk h�2 f �2 (2�2/3)h�2 5.42h�2
frequency

Flicker frequency h�1 f �1 (2 ln 2)h�1 0.936h�1

White frequency h0 f 0 h0/2 h0/4

Flicker phase h1 f 1 1.038 � 3 ln(�h)
4�2 h1

1
 2

3.37
4�2 h1

1
 2

White phase h2 f 2 3fh

4�2 h2
1
 2

3fh

4�2 h2
1

n 2
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Table 3. Confidence Intervals for the Nonoverlapped and Fully Overlapped �y(�) (16) and for the Fully Overlapped
Mod �y(�) (31–33)a

Confidence Interval (%)

Fullyoverlapped
Nonoverlapped �y() Fullyoverlapped �y() Mod �y()

n Noise Type � � � � � �

2 White PM 4.1 4.8 2.9 3.2 3.1 3.4
8 7.7 10.1 2.9 3.2 5.2 6.1

32 13.6 23.1 3.0 3.4 9.7 14

2 Flicker PM 3.7 4.3 2.9 3.1 3.0 3.3
8 7.1 9.0 3.6 4.0 5.7 6.8

32 12.7 20.7 5.2 6.1 11 16

2 White FM 3.6 4.0 2.8 3.0 3.0 3.2
8 6.8 8.6 4.8 5.6 5.8 7.0

32 12.5 20.1 8.8 12 11 16

2 Flicker FM 3.2 3.5 2.6 3.0 2.9 3.2
8 6.1 7.4 5.1 6.0 5.8 7.1

32 11.1 16.8 9.9 14 11 16

2 Random-walk FM 3.0 3.3 3.0 3.3 3.2 3.5
8 5.7 6.8 5.7 7.0 6.4 8.0

32 10.4 15.2 11 16 12 19

a Confidence intervals for the nonoverlapped �y() were obtained using df in Table 2 (16). The degrees of freedom used for the fully overlapped �y() were computed
using numerical methods and are approximately equal to those obtained using Table 2 (16, 19). Confidence intervals for the fully overlapped Mod �y() were
obtained from Ref. 33. N � 1025.

proximate the number of degrees of freedom for the fully over- overlap and full overlap (16,19), and for Mod �y() (31–33) for
lapped Allan variance (16). The equation depends on the noise the five noise types. In general, the confidence intervals for
type. For nonoverlapped estimates, n in Table 2 is equal to 1, the fully overlapped �y() are smaller than those for the non-
and N refers to the equivalent number of time samples for overlapped �y(). For random-walk FM noise, the confidence
 � n0 given by Int((N � 1)/n) � 1, where Int( ) refers to the intervals for the nonoverlapped and the fully overlapped
integer part. �y() are approximately the same, although Table 3 shows a

Usually a (p � 100) % confidence interval is computed, small degradation when using fully overlapped estimates.
where p is the probability that the true Allan variance or Al- This degradation is due to the approximations used in the
lan deviation is within the computed confidence interval. The analytical expressions. Table 3 also shows that the confidence
(p � 100) % confidence interval for the overlapped Allan vari- intervals for the fully overlapped Allan deviation are smaller
ance is given by than the ones for the fully overlapped modified Allan devia-

tion. Nevertheless, the modified deviation is generally smaller
than the Allan deviation, and thus the absolute confidence
intervals for the two are similar.

χ2
�1 − p

2

�
< df

σ̂ 2
y (τ )

σ 2
y (τ )

< χ2
�

p + 1 − p
2

�
(35)
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