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and the electrical conductivity � can be written as

σ = σ0e−W /kBT (1)

where W is the activation energy of the conduction process,
kB is Boltzmann’s constant (1.38062 � 10�23 J/K), and T is the
absolute temperature. In general, Eq. (1) is valid for crystal-
line and amorphous dielectrics, as well as partially crystalline
dielectrics such as polymers.

Materials, whether in the solid, liquid, or gaseous states,
may be electrically nonlinear, anisotropic, inhomogeneous,
and dispersive both with respect to frequency and tempera-
ture. Dissipation results from loss mechanisms that can differ
in different types of materials. Because of all these complicat-
ing factors, both measurement technique and accuracy for
evaluation of dielectric properties are requisite for physical
understanding. Dielectric-loss-angle measurements reflect
the different loss mechanisms occurring in a material placed
in an electric field. This article addresses various measure-
ment techniques for dielectric loss angle and permittivity
evaluation of materials and is organized as follows:

• Electromagnetic characteristics of materials (constitutive
equations, anisotropy, polar versus nonpolar materials,
free charge versus bound charge, complex refractive in-
dex, polarization mechanisms, dispersion and relaxation
processes)

• Permittivity and dielectric-loss-angle measurements
(low-frequency complex impedance, free-space measure-
ments for solids, liquids and gases, waveguide transmis-
sion and reflection techniques, resonance methods, andLOSS-ANGLE MEASUREMENT
anisotropic material measurements)

Dielectrics, in the most general sense, may be considered as
the broad class of nonmetals from the standpoint of their in- ELECTROMAGNETIC CHARACTERISTICS OF MATERIALS
teraction with electric and magnetic fields. Hence gases, liq-
uids, and solids can all be included, both with respect to their Physical Concepts Governing Electromagnetic Behavior
ability to store electric and magnetic field energy, as well as

Any material is electromagnetically characterized by its per-the accompanying dissipative processes occurring in the ma-
mittivity � (F/m), magnetic permeability � (H/m), and electri-terial when placed in an electric or magnetic field. How these
cal conductivity � (S/m). Maxwell’s equations, together withphenomena can be described macroscopically and interpreted
the constitutive equations relating field quantities in terms offrom the standpoint of molecular theory, how they can be ac-
material properties, completely govern electromagnetic wavecurately measured, and what the properties of various mate-
propagation and behavior in that medium.rials are provides the groundwork for their use in the rapidly

The constitutive equations for a linear, homogeneous, andgrowing microelectronic applications that shape much of our
isotropic medium may be expressed in the frequency domainworld today.
asIn a more narrow sense, dielectric materials may be classi-

fied from basic principles of the energy-band model as electri-
cal insulators. The energy-band model forms the basis for de-
velopment of all components in solid-state electronics. This
model shows that the possible energies of electrons in a crys-

BBB = µHHH

JJJ = σEEE

DDD = εEEE
(2)

tal are grouped in a certain number of allowed energy bands
separated from one another by forbidden energy bands. The where the magnetic induction B (Wb/m2) is related to the

magnetic field H (A/m) by the magnetic permeability, the cur-position of the Fermi energy, or energy of the topmost filled
electron level in the sequence of allowed and forbidden bands, rent density J (A/m2) is related to the electric field E (V/m)

by the conductivity, and the dielectric displacement field Dpermits a unified treatment of metals, semiconductors, and
insulators. According to the energy-band model, matter be- (C/m2) is related to the electric field by the permittivity. Any

deviation from linearity is usually included by making �, �,comes dielectric (a poor conductor of electricity) when the con-
duction band and the valence band are separated by an en- or � field dependent. For anisotropic media, �, �, or � is a

second-rank tensor as opposed to just a scalar function of fre-ergy gap higher than 5 eV. At normal temperatures only a
small number of electrons have sufficient thermal energy nec- quency or simply a constant. For inhomogeneous media, �, �,

or � is a function of spatial coordinates. Material dielectricsessary to make a transition to the conduction band. When
temperature increases, the transition probability increases that are linear, isotropic, and homogeneous when placed in
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an electric field at one frequency may not be isotropic or ho- electric field. A polar material, on the other hand, possesses
permanent polarization, even in the absence of an electricmogeneous when placed in an electric field at another fre-

quency or under different temperature or pressure conditions. field, due to its molecular structure. Polar materials have per-
manent dipole moments at the microscopic or molecular level.Similarly, dielectrics that behave linearly when placed in

weak electric fields may not be linear in strong fields (or at A common polar molecule is the water molecule whose equiv-
alent dipole moment results from a 104� angle between thehigh temperatures).
two OH� anions; this can be contrasted with the CO2 mole-
cule, in which the individual moments of each CO pair cancel,Anisotropy
yielding a zero permanent moment.

When a dielectric is placed in an electric field E, the material In general, any distribution of charge may be described in
becomes polarized, and the dielectric displacement field is of- terms of its multipole moments (1). The relevance of this dis-
ten written cussion to dielectric material properties is that the existence

of permanent dipole moments on the molecular level givesDDD = ε0EEE + PPP (3)
rise to a type of polarization mechanism when an electric field
is applied that is frequency-dependent. Without an applied

where P is defined as the electric polarization of the material electric field in the case of the water molecule, the individual
(dipole moment per unit volume), and is related to the electric molecular dipole moments point in random directions, so that
field as macroscopically their vector sum vanishes. In the presence of

the applied electric field E, though, there is a pronounced ten-PPP = ε0χEEE (4)
dency of the dipoles to line up in the direction of E, creating
an orientational polarization whose magnitude can be com-the proportionality constant � is called the electric suscep-
puted and measured (2).tibility, and the factor �0 (free-space permittivity equal to

Ferroelectric materials are those in which there is sponta-8.854 � 10�12 F/m) is included in Eq. (3) to make � dimen-
neous alignment of electric dipole moments at the molecularsionless. Then Eq. (2) becomes
level. This occurs in ferroelectric materials at the Curie tem-
perature. The permittivity of a ferroelectric material is field-DDD = ε0(1 + χ)EEE (5)
strength dependent, which allows ferroelectric materials to be
used in a variety of nonlinear devices, such as piezoelectricor
transducers, voltage-controlled oscillators, varactors, tunable
filters, and phase shifters.DDD = ε0εrEEE (6)

Complex Material Constituent Propertieswhere �r � 1 � � is called the complex permittivity of the
medium relative to a vacuum. The presence of a dielectric al- The solution of Maxwell’s equations yields all of the quanti-
ways affects the ratio of D to E by a factor of �r. For linear ties that describe the propagation of electromagnetic waves in
materials the dipole moment induced in a dielectric by an ex- terms of the propagation constant � � jk, where k is the com-
ternal field E is directly proportional to E. As long as the elec- plex wavenumber defined by
tric properties of the dielectric are independent of direction of
the applied electric field, it is isotropic; that is, P and E are k2 = ωµ(ωε − jσ ) (8)
collinear. For an anisotropic material, however, the polariza-
tion (or charge separation) obtained when an electric field is

for exp(�j�t) time dependence for angular frequency � andapplied along one coordinate axis will be different from that
time t.produced by the same field applied along a different coordi-

In general, the constituent electrical properties may benate axis. Quantitatively, this can be expressed by writing
written as complex quantities; that is, for exp(�j�t) time de-
pendencePPP = ε0χ · EEE (7)

where � � �xii � �y jj � �z kk and �x,�y,�z are the principal
components of the electric susceptibility tensor expressed in
dyadic form. For isotropic materials �x � �y � �z, and Eq. (7)

ε = ε ′ − jε ′′ = (ε ′
r − jε ′′

r )ε0 = εrε0

σ = σ ′ + jσ ′′

µ = µ′ − jµ′′ = (µ′
r − jµ′′

r )µ0 = µrµ0

(9)

reduces to Eq. (4). Equation (7) shows that P and E are not
collinear when �x � �y � �z or when �x � �y � �z or when where �0 is the free-space permeability equal to 4� � 10�7 H/
�x � �y � �z (for two- or three-dimensional anisotropy), so that m. Each component of �, �, or � (which for anisotropic materi-
the electric susceptibility tensor may, in general, be viewed als are tensor matrices) is, in general, a complex quantity.
as an operation that takes a vector E and converts it into a The imaginary part of the propagation constant contains all
new vector P that is not collinear with E. necessary information about energy loss in a material me-

dium during wave propagation. If magnetic properties are ig-
Polar versus Nonpolar Materials nored, we may consider only the complex form of � and � in

Eq. (8):Dielectric materials may also be divided into one of two cate-
gories: polar and nonpolar. A nonpolar material (such as inert
or rare gases) is simply one that contains no (equivalent) di-
poles (or separation of charge) when the material is not in an

ωε − jσ = ω(ε ′ − jε ′′) − j(σ ′ + jσ ′′) = (σ ′′ + ωε ′) − j(σ ′ + ωε ′′)
(10)



608 LOSS-ANGLE MEASUREMENT

Here ��� � �� may be considered an effective permittivity and permittivity is independent of frequency, the relationship in
the time domain is simply expressed by�� � ��� as an effective conductivity. The term �� � j�� physi-

cally represents carrier transport due to Ohmic and Faraday
diffusion mechanisms, whereas �� � j�� represents dielectric DDD(rrr, t) = εEEE(rrr, t) (17)
relaxation mechanisms. From Eq. (10), the loss tangent is
simply defined as However, if the permittivity is a function of frequency, the

temporal relationship is a Fourier transform of the product of
�(�) and E(�) and is therefore given by the convolution inte-tan δ = tan

�
ψ + π

2

�
≡ σ ′ + ωε ′′

σ ′′ + ωε ′ (11)
gral

where � is the phase between E and J. If there are no dielec-
tric losses, �� � 0. Similarly, if there are no Faraday losses, DDD(rrr, t) =

∫ t

−∞
h(t − τ )EEE(rrr, τ ) dτ (18)

�� � 0; hence

wheretan δ = σ ′

ωε ′ (12)

which describes losses physically due to Ohmic conductivity. h(t) = 1
2π

∫ ∞

−∞
ε(ω)e jωt dω (19)

Distinction between Ohmic Conductivity (�	) and Dielectric
Loss Factor (
�) or between Faraday Diffusion Transport (��)

EEE(rrr, t) = 1
2π

∫ ∞

−∞
EEE(rrr, ω)e jωt dω (20)

and In-Phase Polarization Phenomena (
	)

The medium whose permittivity is a function of frequencyIt is often stated that it is artificial to make distinctions be-
�(�) is called dielectrically dispersive. Although, strictlytween Ohmic carrier transport phenomena and dielectric loss
speaking, all media are dispersive, a medium can often becharacteristics of a material when that material is placed in
treated as nondispersive within a frequency range used for aa time-varying electric field. Actual dielectric measurements
particular problem.are indifferent to the underlying physical processes. To the

If a medium is linear but varies with time, the relationshipextent, however, that physical and chemical processes are un-
between D and E cannot be expressed as the convolution inte-derstood, distinctions can be made and materials designed to
gral, Eq. (18). The general relationship should then be givenhave certain electromagnetic characteristics.
byThe lack of distinction between two loss mechanisms from

only measurement data can be seen by inspection of Eq. (11).
Another way to see the relation between conductivity and the
imaginary part of the permittivity is to write Ampere’s law,

DDD(rrr, t) =
∫ t

−∞
h(t, t − τ )EEE(rrr, τ ) dτ (21)

Substitution of Eq. (20) into Eq. (21) yields∇∇∇ × HHH = JJJ + ∂DDD
∂t

(13)

where J is the conduction current in a material medium due DDD(rrr, t) = 1
2π

∫ ∞

−∞
ε(t, ω)EEE(rrr, ω)e jωt dω (22)

to an applied electric field. For sinusoidal fields, Eq. (13) can
be rewritten as

where �(t, �) is the time-varying permittivity given by

ε(t, ω) =
∫ ∞

0
h(t, τ )e jωτ dτ (23)

Time-varying media will not be discussed in this article.

∇∇∇ × HHH = σEEE + ε
∂EEE
∂t

= (σ + jωε0εr)EEE

= jω
[
ε ′

r − j
�

ε ′′
r + σ

ε0ω

�]
ε0EEE

(14)

Hence, without other physical information, a conductivity � Complex Refractive Index
is equivalent to an imaginary part of � given by

For a nonabsorbing medium the refractive index is defined as
c/u, where c � 1/��0�0 is the velocity of propagation in free
space and u is the phase velocity in the material (c/���r��r ).

ε ′′
r = σ

ωε0
(15)

For a dielectrically lossy medium a complex refractive index
so an equivalent form of Eq. (12) is n � j� is defined such that

tan δ = ε ′′

ε ′ = (loss current)
(charging current)

(16) n − jκ = c
u

= ck
ω

(24)

Time-Domain Dielectric Constitutive Equation so that

The permittivity � in Eq. (2) is defined for a time-harmonic
electromagnetic phasor field at a certain frequency �. If the n2 − κ2 = ε ′

rµ
′
r (25)
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and

2nκ = σµ′
r

ε0ω
(26)

where � is the absorption loss index. The absorption coefficient
� is related to the absorption loss index by � � 2��/c. For a
nonmagnetic material, Eqs. (25) and (26) may be solved for
the refractive index and absorption loss index,

n = 1√
2

[�
(ε ′

r)
2 + (ε ′′

r )2 + ε ′
r

]1/2
(27)
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Figure 1. Dielectric dispersion for various types of polarization.and

absorption. Figure 1 illustrates the dispersion of � (and �)κ = 1√
2

[�
(ε ′

r)
2 + (ε ′′

r )2 − ε ′
r

]1/2
(28)

that may be observed in materials in the frequency range
103 Hz to 1015 Hz. At the highest frequencies, the polarizing

For small dissipation, where tan � � �, n � ���r , and � � species in a material are the electrons. Electronic polarization
����r /2 � ��r /(2���r ). occurs when an applied electric field causes a net displace-

ment of the electron cloud of an atom with respect to its nu-
Quality Factor of Dielectric cleus. At frequencies below about 1013 Hz, there is also a con-

tribution from atomic polarization. Atomic polarization occursThe quality factor Q of a dielectric at frequency f is defined
in structures (molecules, solutions) in which atoms do notas the inverse of the loss tangent,
share electrons equally and electric fields displace the elec-
tron clouds preferentially towards the stronger binding
atoms. It also occurs when charged atoms are displaced with
respect to each other. Dipolar polarization, that is, the orien-
tation of polar molecules (molecules with asymmetric charge
distributions), occurs at frequencies below about 1010 Hz.

At frequencies below about 105 Hz, there are various types
of charge polarization that may be collectively referred to as

Q = 1
tan δ

= ε ′

ε ′′ = ωε ′E2
0

ωε ′′E2
0

= 2π f
1
2 ε ′E2

0
1
2 σE2

0

= 2π
(average energy stored per half cycle)

(energy dissipated per half cycle)

(29)

Maxwell–Wagner mechanisms (3,4). One of these, interfacial
(space-charge) polarization, occurs when migrating charge

The quality factor Q is used as a descriptive characteristic of carriers are trapped or impeded in their motion by local chem-
any dielectric material. ical or electric potentials, causing local accumulations of

charge and a macroscopic field distortion. Another low-fre-
quency mechanism that can occur is due to mixtures of mate-Polarization Mechanisms Intrinsic to Materials. A pulse or

‘‘signal’’ of any specified initial form can be constructed by rials having differing electrical properties (such as conducting
spheres embedded in a dielectric). Several different equationssuperposition of harmonic wave trains of infinite length and

duration. The velocities with which the constant-phase sur- are available to describe the resultant properties for various
geometries of the embedded conductor (5–7). The commonfaces of these component waves are propagated depend on the

propagation constant or on the parameters �, �, and �. If the cause of these effects is the distributions of charge that occur
at conductor–dielectric boundaries and the resultant actionmedium is nonconducting and the quantities � and � are inde-

pendent of the frequency of the applied field, the phase veloc- under applied electric fields that can yield very large low-fre-
quency dielectric constants.ity is constant and the signal is propagated without distor-

tion. The presence of a loss mechanism, however, yields a Still another dispersion mechanism for dielectric behavior
at low frequencies, which is often distinguished from Max-functional relation between the frequency and phase velocity,

as well as between frequency and attenuation. Hence in a well–Wagner effects, is that which occurs in colloidal suspen-
sions. Maxwell–Wagner effects occur when the charge aroundlossy or absorptive medium the harmonic components suffer

relative displacements in phase in the direction of propaga- conducting particles in a dielectric medium is a thin coating
that is much smaller than the particle dimensions; the chargetion, and the signal arrives at a distant point in a modified

form. The signal is dispersed and attenuated, and a medium responds to an applied electric field independent of the charge
on nearby particles. In colloidal suspensions, on the otherin which the phase velocity is a function of frequency f (or in

which the complex dielectric constant � is a function of fre- hand, the charge layer is on the same order of thickness or
larger than the particle dimensions; hence it is affected by thequency) is said to be electrically dispersive.

The quantity ��( f; x, y, z) is a measure of the polarization charge distributions of adjacent particles. Colloidal polariza-
tion responses result in far higher low-frequency dielectricof the material. There can be a number of different polarizing

mechanisms, each having a characteristic relaxation fre- constants than those resulting from typical Maxwell–Wagner
mechanisms, with dielectric constants on the order of 105 notquency and dielectric dispersion centered around this relax-

ation frequency. At the relaxation frequency there is maximal uncommon.
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Dispersion and Relaxation Processes in Materials. Polarization Debye Relaxation
occurring in material media as a result of electromagnetic

Materials having single relaxation time constants are called
wave propagation is physically damped by either resonance

Debye materials. The complex permittivity in a Debye mate-
or relaxation. Resonance is the state of a harmonic oscillator

rial is given by (8–10)
that is driven at its preferred frequency. Relaxation, on the
other hand, is the state of a critically damped or overdamped
oscillator. The characteristics of �� and �� for these two dif- ε ′ − jε ′′ = ε∞ + εs − ε∞

1 + ω2τ 2
− j

(εs − ε∞)ωτ

1 + ω2τ 2
(32)

fering types of dispersion and absorption processes are shown
in Fig. 2. where � is the relaxation time, �s is the relative dielectric con-

At microwave frequencies, dipolar or orientation polariza- stant at zero frequency (�dc � �s�0) and �� is the relative dielec-
tion phenomena principally occur. In this case, the frequency tric permittivity at infinite frequency. In general, apart from
is sufficiently low so that the rotation of polar molecules has liquid dielectrics, single relaxations are seldom observed.
time to take place. At a frequency of � � 1/�, �� decreases Multiple relaxations or distributions of relaxations are in-
because the individual dipoles can no longer keep in step with stead found.
the applied field. The relaxation time � represents the time
required for the dipoles to revert to a random distribution. Generalized Relaxation Distributions
This is a diffusion process that is represented by Fig. 2(a).

A generalized expression for material media in which multi-Atomic and electronic polarization processes take place in the
ple relaxations are found may be written as (11)infrared and optical portion of the spectrum (1 THz and

above) and lead to the resonance-type dispersion and absorp-
tion phenomenon represented by Fig. 2(b). A given medium
may display any or all of these characteristic polarization

ε ′ − jε ′′ = ε∞ + (εs − ε∞)

∫ ∞

0

D(τ )(1 − jωτ )

1 + ω2τ 2 dτ (33)

phenomena, depending on its composition and molecular or
where D(�) is the time-constant distribution function, normal-atomic structure.
ized such thatRelaxation processes are those observed in dielectric mate-

rials at microwave frequencies and below. Relaxation models
are based on the general equation of charge motion,

∫ ∞

0
D(τ ) dτ = 1 (34)

q̈ + (µσ )−1q̇ + (µε)−1q = 0 (30)
One of the most commonly observed simple relaxation distri-
butions in lossy media is the Cole–Cole distribution. In the

where q is the charge and the overdot represents differentia- Cole–Cole distribution Eq. (33) reduces to
tion with respect to time. Another relaxation model is based
on the diffusion of charged ions whose concentration is spa-
tially variable. In this case ε ′ − jε ′′ = ε∞ + εs − ε∞

1 + ( jωτ )1−m
(35)

where 0 � m � 1. The loss tangent for the Cole–Cole distribu-
tion is

∂2

∂x2
Q(t;x, y, z) + ∂2

∂y2
Q(t; x, y, z) + ∂2

∂z2
Q(t; x, y, z)

= ∂2 Q(t; x, y, z)

∂t2 + 1
K

∂

∂t
Q(t;x, y, z) + η

K
Q(t; x, y, z) (31)

where Q, the concentration of charged ions, is a function of
spatial coordinates and time. K(t) is the diffusion coefficient
and � is a constant. In the latter model, spatial derivatives

tan δ = ε ′′

ε ′

=
θ(ωτ )1−m sin

[
(1 − m)

π

2

]

1 + θ + (2 + θ )(ωτ )1−m cos
[
(1 − m)

π

2

]
+ (ωτ )2(1−m)

(36)

must be taken in determining diffusion relaxation, which, in
terms of electrical circuit analogs, lead to generalized distrib- where 
 � (�s � ��)/��. The m � 0 case corresponds to a Debye
uted impedances (as opposed to lumped impedances) and non- material (single relaxation). The m � 1 case corresponds to

an infinitely broad continuous distribution (one having no re-linear behavior.

Figure 2. Two differing types of dispersion
and absorption processes occuring in dielec-
trics as a function of frequency: (a) relaxation
and (b) resonance.
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surement data have been described in Ref. 11, as well as the
use of an inverse power law of the distribution function for
predicting expected changes in the dielectric loss tangent
from measured changes in permittivity at two selected fre-
quencies.

Effect of Temperature Changes

A classical statistical thermodynamic model using a double
potential well was used (11) to describe the dispersive dielec-
tric behavior for a bistable dielectric as a function of tempera-

ω

ω

∞

τ

∞

′′ ′′

′ ′

0
–1

τ 0
–1

s s

(a) (b)

m  /2π

ture and frequency in terms of the dipolar polarizability �D �
Figure 3. �� versus �� plots for (a) Debye and (b) Cole–Cole mate-

Np2
E/kBT, the activation energy U, and the high-frequency (op-rials.

tical) permittivity at temperature T, where N is the total
number of bistable dipoles in the material having dipole mo-
ment pE. The results are

laxation). In the latter case the imaginary part of the complex
permittivity disappears, and the real part becomes frequency
independent. ε ′(ω, T ) = ε∞(T ) + αD

1 + ω2τ 2 (39)

The Cole–Cole distribution corresponds to a symmetric
distribution of relaxation times of width m. Whereas a Debye and
material yields a plot of �� (��) that is a semicircle whose cen-
ter lies on the �� � 0 axis, a Cole–Cole �� (��) plot is a semicir-
cle whose center lies below the horizontal �� � 0 axis, on a

tan δ(ω, T ) = αDωτ

αD + ε∞(T )(1 + ω2τ 2)
(40)

line drawn from (�� � ��, �� � 0) that makes an angle of
where � � e�U/kBT/2A and A is a constant that may or may notm�/2 with the horizontal axis. This is shown in Fig. 3. In
depend on temperature describing the number of dipolesaddition to the Cole–Cole expression, there are other empiri-
within the dielectric jumping per unit time from one potentialcal relations commonly used to describe a non-Debye re-
energy state to a higher state. Equations (39) and (40) aresponse. These are the Cole–Davidson (12), the combined
limited to dielectric materials for which interaction betweenCole–Cole, and the Williams–Watkins (13) expressions. A
individual dipoles can be neglected and for conditions incharacteristic feature of all these empirical relations, besides
which pEE � kBT (nonsuperconducting states).being based on Eq. (30), is that at frequencies away from the

Langevin considered the electrostatic case of interacting(dominant) relaxation frequency, they reduce to expressions
molecules from a Maxwell–Boltzmann statistical ensembleshowing a power-law dependence (14) on frequency for both
average of the angular alignment with an applied electric�� and ��.
field E of point dipoles having equal dipole moments in ther-
mal equilibrium at temperature T. He derived the well-knownGeneralized Relation between Permittivity
Langevin function shown in Fig. 4,and Dielectric Loss Index

A generalized relation between �� and �� for linear dielectric 〈cos θ〉 = coth y − 1/y (41)
materials possessing an arbitrary number of relaxation times
may be derived by regarding the permittivity as a system where 
 is the angle between field and dipole and y is
function characterizing the electrical properties of a material pEE/(kBT). The ensemble average �cos 
� increases with in-
with the applied electric field as input and the displacement creasing y; for high values of E/T, the orienting action of the
field as output. In the time domain the material permittivity electric field dominates over the disorienting action of the
is simply the transient (causal) system response, which can temperature. Implicit in the derivation of the Langevin func-
always be decomposed into the sum of an even and odd func- tion are the assumptions that the molecules are point dipoles
tion whose Fourier transforms yield the (real) permittivity that have isotropic polarizability, that ergodicity holds, and
and (imaginary) dielectric loss index. The real permittivity
and dielectric loss index are then related by the following
Hilbert transforms, also known as the Kramers–Krönig
relations,

ε ′′(ω) = 1
π

P
∫ ∞

−∞

ε ′(v)

ω − v
dv (37)

and

ε ′(ω) = ε∞ − 1
π

P
∫ ∞

−∞

ε ′′(v)

ω − v
dv (38)

θ
〈c

o
s 

  
〉 

1

0 1 2 3 4 5
pEE/(kBT)

where P denotes the Cauchy principal value. The application
and limitations of Eqs. (37) and (38) for band-limited mea- Figure 4. Behavior of Langevin function versus pEE/kBT.
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that the system obeys the classical Maxwell–Boltzmann sta- magnetic wave propagating in the specimen or from the
measured impedance Zs � ��0�r,s/�0�r,s of the specimen. Thetistics.

Additional discussion on relaxation models is to be found accuracy of free-space measurements depends on the appro-
priate choice of a theoretical model best representing the ex-in the classical texts of Von Hippel (15) and Böttcher (16).

The use of these physical relaxation models provides insight perimental measurement system and the accuracy of the
measurement system.into what dispersive permittivity and dielectric loss tangents

might be expected both as a function of temperature and fre-
quency. However, their applicability and validity must be ex- Solid Dielectric Specimens. For a normally incident trans-
amined by accurate measurements. verse electromagnetic (TEM) wave on the specimen sur-

rounded by air (see Fig. 5) the transmission and reflection
coefficients, T0 and R0, are given byPERMITTIVITY AND DIELECTRIC-LOSS-ANGLE

MEASUREMENTS
T0 = 4γsγ0

(γ0 + γs)2e−γsh − (γ0 − γs)2eγsh
(45)

Low-Frequency Complex Impedance Measurements

The use of a plane-parallel capacitor having a vacuum capaci-
tance C0 � �0S/h, where S and h are, respectively, the surface

R0 = (γ 2
0 − γ 2

s )e−γsh − (γ 2
0 − γ 2

s )eγsh

(γ0 + γs)2e−γsh − (γ0 − γs)2eγsh (46)

area of the electrode plates and separation of the plates, is
where 	0 � j2�/�0 and 	s � j2���r,s�r,s/�0. Equations (45) andcommonly used for low-frequency dielectric measurements. If
(46) may be solved for the complex permittivity and perme-a low-frequency voltage V � V0ej�t is applied to this capacitor,
ability of a magnetic plane-parallel plate. If the specimen isa charge Q � C0V appears on the electrodes that is in phase
nonmagnetic, the transmission coefficient may be solved forwith the applied voltage. The nondissipative displacement
�r. A common reflection technique for complex permittivitycurrent in the external circuit is then given by
evaluation is to place a conducting plate (short) behind the
specimen and measure the reflection coefficient. In this case,I = Q̇ = jωC0V (42)

which is 90� out of phase with the applied voltage. If the vol-
ume between the electrodes is filled with a lossless, nonpolar

R0|short = (γ0 − γs)e−γsh − (γ0 + γs)eγsh

(γ0 + γs)e−γsh − (γ0 − γs)eγsh
(47)

insulating material, the capacitor has a capacitance C �
��rC0. In this case the new displacement current is Generally, complex permittivity evaluations are more accu-

rate in reflection (one-port scattering parameter) measure-
ments when the specimen is surrounded by air, whereas per-Idiel = Q̇diel = jωCV = ε ′

r I (43)
meability evaluations are most accurate from reflection
measurements when the specimen is backed by a shortingThe capacitance is larger than the vacuum capacitance, but
plane.remains 90� out of phase with respect to the applied voltage.

For lossy dielectric materials, the current is not 90� out of
phase with the voltage since there is a small conduction GV Liquid, Gas, or Plasma Specimens. The preceding free-space
due to charge motion in phase with the applied voltage. If the experimental setup is used mainly for measuring solid dielec-
charges are free, the conductance G is independent of fre- tric specimens that have plane-parallel plate geometries. For
quency. However, if the charges are bound, G is frequency liquids, gases, or plasmas that must be held in containers
dependent, and the dipole relaxation phenomena previously whose walls are transparent to probing electromagnetic
described become relevant. In general, waves, the (two-dimensional) analysis becomes somewhat

more complicated (see Fig. 6). In this case the amplitude re-
I = ( jωC + G)V (44)

where G � �S/h (if G is the conductance due to free charges)
and C � ��rS/h. Whenever dissipation is not exclusively due to
free charges, but is also due to bound charges, the conductiv-
ity is itself a complex frequency-dependent quantity and a
distinction cannot be made between Ohmic conductivity and
dielectric loss factor or between Faradaic diffusion transport
and in-phase polarization.

Free-Space Measurement

Free-space measurements of the complex permittivity and
complex permeability usually involve placing a plate speci-
men orthogonal to the axis between the transmitting and re-

��
��
��

E0

k0

0γ sγ 0γ

Einc = E0 

Etrans = T0E0 

Erefl = R0E0 
H0

Dielectric
specimen

h

r,s,   r,s  µ

ceiving antennas. A plane electromagnetic wave is passed
through the specimen. The complex permittivity or perme- Figure 5. Reflection and transmission coefficients for an electromag-
ability can then be evaluated from measurements of the prop- netic plane wave normally incident on an infinite dielectric plate

specimen.agation constant 	s � jks � j���0�0�r,s�r,s of the plane electro-
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Figure 6. Free-space model for measur-
ing liquids, gases, or plasmas in transpar-���

���
���E0

k0

0γ wγ wγsγ 0γ
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Etrans = T0E0 

Erefl = R0E0 
H0 Dielectric

specimen

Container
wall

hd d

r,s

ent container.

flection and transmission coefficients are given by (17), problems of measurement uncertainty in complex permittiv-
ity determination introduced by potential air gaps between
the sample and the coaxial line center conductor. Details of
two-port, reference-plane invariant scattering parameter rela-
tions that can be used for determining permittivity and per-
meability are given elsewhere (37). One set of equations for
dielectric and magnetic measurements of a single sample, in
terms of two-port scattering parameters that can be taken
with an automatic network analyzer, is

R0 =

m
�

Zs + Zw

Zs − Zw
+ e2γwd Zw + Z0

Zw − Z0

�

+ n
�

1 + e2γwd Zs + Zw

Zs − Zw

Zw + Z0

Zw − Z0

�
e2γsh

m
�

Zs + Zw

Zs − Zw

Zw + Z0

Zw − Z0
+ e2γwd

�

+ n
�

Zw + Z0

Zw − Z0
+ e2γwd Zs + Zw

Zs − Zw

�
e2γsh

(48)

S11S22 − S21S12 = exp
�−2γ0(Lair − L)

� R2 − T2

1 − R2T2 (52)

and
and

(S12 + S21)/2 = exp[−γ0(Lair − L)]
T(1 − R2)

1 − R2T2 (53)

where

R = µγ0 − µ0γ

µγ0 + µ0γ
(54)

T = exp(−γ L) (55)

T0 =
{

cosh(γsh)

[
cosh2

(γwd) + sinh2
(γwd)

−1
2

�
Z0

Zw
+ Zw

Z0

�
sinh(2γwd)

]

+ 1
2

sinh(γsh)

[� Zs

Zw
+ Zw

Zs

�
sinh(2γwd)

−
�

Zs

Z0
+ Z0

Zs

�
cosh2

(γwd)

−
�

Z2
w

Z0Zs
+ Z0Zs

Z2
w

�
sinh2

(γwd)

]}−1

(49)

γ0 =
s�2π

λc

�2

−
�

ω

clab

�2

(56)

where

γ =
s�2π

λc

�2

− ω2µrεr

c2
vac

(57)
m =

�Z0

Zs
+ 1

�
cosh(γwd) −

� Z0

Zw
+ Zw

Zs

�
sinh(γwd) (50)

cvac and clab are the speed of light in vacuum and laboratory, �
is the angular frequency, �c is the cutoff transmission-linen =

�Z0

Zs
− 1

�
cosh(γwd) −

� Z0

Zw
− Zw

Zs

�
sinh(γwd) (51)

wavelength, �r and �r are the specimen relative complex per-
mittivity and permeability relative to vacuum, and Lair and Land Z0 is the free-space impedance, Zw � Z0/��r,w � 	0Z0/	w is
are air-line and specimen lengths. Equations (52) and (53)the container wall impedance, and Zs � Z0/��r,s�r,s � 	0Z0/	s
may be solved either explicitly or implicitly as a system ofis the impedance of the medium under test.
nonlinear scattering equations at each frequency or by using
a nonlinear regression model over the entire frequency range.Waveguide Transmission-Line Methods
The total attenuation loss �TEM of a sample under test for

The use of waveguide transmission and reflection techniques TEM mode structure in a coaxial transmission line is given
for evaluating complex permittivity and complex permeability by
has a long history, and the literature describing various tech-
niques is extensive (18–37). Transmission-line techniques,
usually made in rectangular or coaxial waveguides, are the
simplest of the relatively accurate ways of measuring perme-
ability and permittivity. Coaxial lines are broadband in the
TEM dominant mode and therefore are attractive for spectral
characterization of lossy magnetic materials, despite the

αTEM = Re(γ )

= Re
�

j
ω

cvac

√
(ε ′

r − jε ′′
r )(µ′

r − jµ′′
r )

=
√

2ω

2cvac

�
ε ′

rµ
′
r[(1 + tan2 δe)

1/2(1 + tan2 δm)1/2

+ tan δe tan δm − 1]

(58)
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where tan �e � ��r /��r and tan �m � ��r /��r . One disadvantage of quency exist only for simple rectangular, cylindrical, or spher-
ical resonant structure geometries and when any permittivitymicrowave measurements of the complex permittivity in

waveguide is that specimens have very small tolerances in inhomogeneity in the measurement fixture varies in only one
of the principal coordinate directions. Resonant fixtures com-properly machined dimensions. If the specimen does not fill

the entire cross section of the waveguide perfectly, corrections monly used in practice for cylindrically shaped disk or rod
specimens are shown in Fig. 7. An eigenvalue relationship,must be made for air gaps. For high-permittivity samples in

either rectangular or coaxial transmission lines, air gaps can derived from Maxwell’s equations and application of bound-
ary conditions for the particular fixture of interest, alwayslead to dielectric depolarization, which yields severe underes-

timates of actual specimen permittivity. exists for a specific mode family that gives a transcendental
equation relating permittivity, resonant frequency, and sam-
ple or fixture dimensions,Thin Film Specimens

Techniques useful for the evaluation of the dielectric properties F( fr, ε
′
r, dimensions) = 0 (61)

of thin film structures are important for various applications,
such as dynamic random access memory (DRAM) cells and

The permittivity is a numerical root of Eq. (61) for a given f rhigh-frequency bypass on-chip capacitors for monolithic micro-
and sample and fixture dimensions. Although there is morewave integrated circuits (MMICs). The dielectric properties of
than one (mathematical) root to the eigenvalue equation, it isthin film structures, commonly 8 nm to 100 nm thick, on semi-
usually possible to pick the correct root, since many roots areconductor substrates often differ appreciably from their bulk
nonphysical or the permittivity is approximately known. It iscounterparts. For example, the real permittivities of thin films
also possible, in principle, to obtain a unique solution by us-are usually smaller and dielectric losses significantly larger
ing two independent measurements with different mode fieldthan those of corresponding bulk materials. These differences
configurations or by using two samples having different di-may be due to nonuniform strain arising from film-substrate
mensions. The resonant fixtures shown in Fig. 7 may be prac-lattice mismatches, film compositional inhomogeneities, film
tically used, when properly dimensioned, for complex per-conductivity, or other structural imperfections.
mittivity evaluations of low- and medium-loss materials overAbove 1 GHz, little is known about thin film capacitive
the frequency range 1 GHz to 50 GHz.characteristics. At these frequencies measurements become

Several resonant fixtures of practical use possess geome-more difficult as a result of stray admittance effects around
tries for which analytical solutions are not available. Thesethe thin film deposited structure. One technique outlined in
fixtures may be analyzed with numerical mode-matching,(38–40) is based on an equivalent circuit model of the capaci-
Rayleigh–Ritz, or finite-element methods. All these tech-tive on-chip test structure. The equivalent circuit is expressed
niques allow accuracy improvements by incorporating moreby lumped elements of intrinsic capacitor admittance Yc, and
terms in field expansions or by mesh refinement. Mode-parallel and series parasitic admittance Yp and Ys. The mea-
matching (44,45) is one of the most accurate methods for com-sured thin film test structure has an admittance Yt which is
putation of resonant frequencies of axially symmetric reso-corrected for Yp and Ys to obtain the intrinsic admittance of
nant fixtures. In radial mode-matching, a resonant structurethe thin film Yc. The parasitic admittances Yp and Ys are eval-
is first subdivided into cylindrical regions having dielectricuated by measuring the open- and short-test circuit device
inhomogeneity only along the axial direction. The electromag-admittances, Yopen and Yshort. These admittances may be deter-
netic field components are then separately expanded into se-mined with microwave probe station scattering parameter re-
ries modal expansions in each region. Boundary conditionsflection coefficient (S11) measurements. The intrinsic admit-
that are applied at the interfaces between adjacent regionstance is calculated from
yield a system of matrix equations (with respect to the field
expansion coefficients) that have nonzero solutions only whenYc = (Yt − Yopen)(Yshort − Yopen)/(Yshort − Yt) = G + jωC (59)
the determinant vanishes. The resonant frequencies are the
values that make the determinant of the square matrixwhere G and C are the conductance and capacitance of the
vanish.intrinsic thin-film capacitor determined by the real and imag-

inary part of Yc.
The dielectric loss tangent is given by

tan δ = G/(ωC) (60)

Resonance Methods

Resonant methods employing either closed and open cavities
or dielectric resonators provide the highest measurement ac-
curacy for evaluating complex permittivity and dielectric-loss
tangent of low-loss materials at microwave frequencies (41–
43). Generally, the (real) permittivity is calculated from the

Metal cavity

Cylindrical dielectric samples

Metal cavity

(a)

(c)

(b)

Metal plate

�� �
�

�
�

measured resonant frequency of one of the dominant modes
of the resonant measurement system and the dimensions of Figure 7. Typical cylindrical cavities and dielectric rod resonators
the resonant structure. As long as specimen losses are low, used for complex permittivity measurements for which closed-form
they do not affect resonant frequencies. Exact relations be- solutions are available: (a) TE01p mode cavity, (b) TM010 mode cavity,

(c) TE011 mode dielectric resonator.tween permittivity, sample dimensions, and resonant fre-
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Generally, measurement uncertainties for (real) permittiv- where Wed is the electric energy stored in the dielectric sup-
port. The geometric factor is defined byity depend on

• Presence of air gaps between the specimen and conduct-
ing parts of the resonant structure that cause depolariza-

G = ω
∫

V µ0HHH · HHH∗ dv∫
S HHHt · HHH∗

t dS
(65)

tion [some structures are not sensitive to air gaps, such
as those in Figs. 7(a) and 7(c)] where Ht is the magnetic field tangential to any conducting

shield having surface area S.• Computational inaccuracies
For highest accuracy in dielectric-loss tangent measure-• Uncertainties from physical dimensions of specimen and

ments, the first term on the right-hand side of Eq. (62) mustresonant structure
dominate, or the last three terms on the right-hand side of
Eq. (62) should be minimized and well-characterized. Evalua-Air gaps limit the measurement accuracy of high-permittivity
tion of conductor losses and those due to dielectric materialssolid materials when the electromagnetic field structure in
other than the sample under test within the measurementthe measurement system has an electric field component nor-
system (such as dielectric supports) often requires the rigor-mal to the sample surface. In these cases, a discontinuity in
ous use of numerical computation methods. The surface resis-the normal electric field leads to depolarization. When the ap-
tance of metal shields must also be well-characterized at theplied electric field is continuous across a specimen boundary,
measurement frequency and temperature of interest. If ansuch as with cylindrical samples in TE0np or quasi-TE0np
open resonator is used, radiation losses must be considered.(TE0��) mode resonant fixtures (45,46), high measurement ac-
For most resonant measurement fixtures used in practice, un-curacies are generally achieved. In the latter case, air gaps
certainties in dielectric-loss-tangent evaluations are limiteddo not play a significant role. The depolarizing effects of air
by conductor losses. Conductor losses decrease as the surfacegaps can be mitigated by metallization of the sample surface
resistance becomes small and as the geometric factor in-contacting the fixture conductors. This added procedure im-
creases. One common procedure to minimize conductor lossesproves real permittivity measurement accuracy, but can sub-
is to situate the dielectric specimen in a position away fromstantially degrade measurement accuracy of the dielectric
the conductor walls as shown in Fig. 8 (47–52). Usually quasi-loss factor. When the depolarizing effects of air gaps are ei-
TE011 modes of this structure (often called TE01� modes) arether not important or have been mitigated, and the numerical
used for dielectric-loss-tangent measurements. For this mode,method used for field analysis is sufficiently accurate, real
geometric factors approach a maximum when dimensions ofpermittivity measurement uncertainty depends only on the
the metal shield increase. The optimal value of the geometricuncertainties associated with the physical dimensions of the
factor (optimal positioning of the specimen relative to metalsample under test and the measurement system.
shielding) depends on sample permittivity. If the distance ofEvaluation of the dielectric loss index or dielectric loss tan-
the metal shield from the specimen becomes greater than thegent is always based on the expression
optimum value, the electric energy filling factor of the sample
decreases rapidly, and the field distribution becomes essen-Q−1

u = pes tan δs + ped tan δd + Rs/G + Q−1
r (62)

tially the same as in an empty TE011 cavity. With optimal
shield dimensions and a metal surface resistance equal to 30Equation (62) is valid for any resonant system containing iso-
m� (that of copper at 10 GHz and 297 K), the Q factor due totropic dielectric materials. It defines the unloaded Q factor of
conductor losses can be large (2 � 105 for a sample having athe resonant system, Qu, in terms of the sample partial elec-
relative real permittivity equal to 30). Sample dielectric lossestric energy filling factor pes and sample dielectric loss tangent
should be at least 10% of the overall losses in Eq. (62) fortan �s, the electric energy filling factors of the dielectric sup-
accurate dielectric loss measurements. Hence the lower boundports ped having relative real permittivity ��d and loss tangent
on the dielectric-loss-tangent measurement is about 5 � 10�7tan �d inside the resonant measurement system, the surface
(for sample permittivities greater than or equal to 30) whenresistance Rs of any conducting shields, the geometrical factor
using a TE01� mode dielectric resonator with optimal shieldingG of the resonant system, and any radiation Q factor Qr of the
conditions. For this resolution, the geometric factor must bemeasurement fixture. The sample electric energy filling factor
accurately known. Another way to minimize conductor lossesis defined as
is to employ high-temperature superconductors as the
shielding material (53–55); however, this can only be done at
cryogenic temperatures.pes = Wes

Wet
=

∫
Vs

ε ′
r,sE · E∗ dv∫

V ε ′
r(v)E · E∗ dv

(63)

where Wes is the electric energy stored in the sample, Wet is
the total electric energy stored in the resonant measurement
fixture, ��r,s is the relative real permittivity of the sample,
��r (v) is the relative spatially dependent permittivity in the
resonant structure, and the asterisk denotes complex conju-
gate. The electric energy filling factor for the dielectric sup-
port is given by
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Figure 8. TE01� mode dielectric resonator measurement fixture.
ped = Wed

Wet
=

∫
Vs

ε ′
r,dE · E∗ dv∫

V ε ′
r(v)E · E∗ dv

(64)
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Figure 9. Whispering-gallery mode resonant structure.
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gent measurements is to use higher-order hybrid modes hav-
ing high azimuthal mode numbers. These hybrid modes, Figure 11. Doubly reentrant cavity.
called whispering-gallery modes, are excited in cylindrical
specimens (56) as shown in Fig. 9. Conductor losses decrease At frequencies above 50 GHz, the dimensions of the reso-
very rapidly with increasing azimuthal mode numbers for nant structures become impractically small. At these frequen-
whispering-gallery modes. Therefore they can be used for cies, a typical method (see Fig. 12) for complex permittivity
high-resolution dielectric-loss-tangent measurements of ul- measurements is the semiconfocal Fabry–Perot type resona-
tralow-loss materials. In addition, this method can be used tor (56), although for very-low-loss materials, the whispering-
for measurements of low-dielectric-loss materials up to fre- gallery mode technique could also be used (57). Free-space
quencies of 100 GHz. transmission and reflection techniques previously described

The most commonly used dielectric materials in the elec- can also be used to characterize materials from 50 GHz to
tronics industry are those used for printed wiring board sub- visible-light frequencies.
strates. Typically these dielectric materials exhibit losses in
the range, 10�4 � tan � � 10�2. Because printed wiring board Complex Permittivity Measurements of Anisotropic Materi-
substrates are relatively thin dielectric sheets, the resonant als. Many materials, including some single crystals, exhibit
measurement techniques described previously are not appli- dielectric anisotropy. For dielectrically anisotropic materials
cable. For these samples the most convenient measurement the complex permittivity is not independent of direction. The
technique is the split (tuned) dielectric post resonator illus- general (diagonalized) form of the electric susceptibility ten-

sor is given in Eq. (7).trated in Fig. 10. This nondestructive method can be used
Anisotropy is usually related to the internal structure ofpractically at all frequencies from 1 GHz to 10 GHz.

the material. It can also be enforced by external factors, suchWhen measurement frequencies lower than 1 GHz are of
as an external static magnetic field or mechanical stress. Forinterest, dimensions of the resonant structures described thus
anisotropic materials the relationship between the electricfar become impractically large. One of the commonly used res-
field intensity vector E and electric flux density vector Donant structures when dielectric measurements are required
takes the formin the frequency range between 100 MHz and 1 GHz is the

reentrant cavity, which is shown in Fig. 11. Advantages in
the use of the reentrant cavity are relatively small sample
size and, because of the axially directed electric field, a per-
mittivity measurement normal to the substrate laminar sur-

DDD = ε · EEE =




ε11 ε12 ε13

ε21 ε22 ε23

ε31 ε32 ε33







E1

E2

E3


 (66)

faces. However, the reentrant cavity technique is sensitive to
the presence of air gaps between the sample and the central
metal posts, so that without metallization of the top and bot-
tom surfaces of the specimen, it is only useful for measure-
ments of low- to medium-permittivity materials.
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Figure 12. Fabry–Perot semiconfocal resonator.Figure 10. Split post-dielectric resonator.
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where the complex permittivity � is a second-rank tensor. The It is preferable, but not necessary, that only one permittivity
tensor component be excited by the electric field structure inpermittivity tensor may generally be expressed as a sum of

symmetric and antisymmetric tensors the measurement fixture. However, this is not always possi-
ble, since other factors, such as sensitivity and measurement
accuracy, must also be considered.ε = ε (S) + ε (A) (67)

Many single crystals have extremely low dielectric loss at
low temperature (58–62). It is possible to evaluate dielectricFor the symmetric tensor, �(S)

ij � �(S)
ji and for the antisymmetric

losses in these extremely low-loss materials only by using res-tensor, �(A)
ij � ��(A)

ji . The Hermitian and anti-Hermitian parts
onant fixtures in which conductor losses are very small. Forof the permittivity tensor are
these measurements the whispering-gallery mode technique
is appropriate. Whispering-gallery modes can always be clas-
sified into modes symmetric (S) or antisymmetric (N) to a

ε ′ = 1
2

(ε + ε ∗
t ) (68)

plane of symmetry in a measurement fixture. In fact, since
for these modes the electromagnetic fields are well confinedε ′′ = 1

2
j(ε − ε ∗

t ) (69)
to the dielectric specimen, this classification can still be made
relative to the specimen’s equatorial plane even if the reso-where �*t represents the complex conjugate of the transposed
nant fixture does not have a symmetry plane. To evaluate thetensor. The Hermitian part of the permittivity tensor is asso-
principal permittivity components of a uniaxially anisotropicciated with electric energy stored in the dielectric while the
dielectric resonator, a specimen whose cylindrical axis isanti-Hermitian part represents power dissipation in the di-
along a principal direction of anisotropy is first obtained.electric. Most dielectric materials are described by a symmet-
Then two whispering-gallery mode resonances that exhibit aric tensor only and dielectric losses by the imaginary compo-
quasi-TE (H mode) and quasi-TM (E mode) field structure arenents of a symmetric tensor. For a symmetric tensor there is
identified and measured. Finally, a system of two nonlinearalways a coordinate system in which the permittivity tensor
determinant equations are solved with respect to the two un-may take the diagonalized form,
known permittivity tensor components,

F1( f (H ), ε⊥, ε‖) = 0

F2( f (E ), ε⊥, ε‖) = 0
(71)ε =




ε11 0 0
0 ε22 0
0 0 ε33


 (70)

where f (H) and f (E) are the measured resonant frequencies for
When single crystals are measured, the coordinate axes are the quasi-TE (H) and the quasi-TM (E) whispering gallery
associated with the principal axes of the crystal lattice. When modes and �� and �	 are the real parts of the permittivity ten-
two of the three components of the permittivity tensor are sor components normal and parallel to the anisotropy axis.
equal, the material is said to be uniaxially anisotropic. The eigenvalue equations represented by F1 and F2 result

The easiest approach to measuring complex permittivity of from application of variational or mode-matching methods.
anisotropic materials is to use measurement fixtures in which Once the real permittivities are evaluated from Eq. (71), di-
there is only one component of the electric field in the sample electric-loss tangents can be computed as solutions to
under test. For example, in the reentrant cavity and TM010

cylindrical cavity, there is only an axial electric field compo-
nent in the specimen. In coaxial transmission line, only a ra-
dial electric field component is present when operating in

Q−1
E = p(E )

e⊥ tan δ⊥ + p(E )
e‖ tan δ‖ + Rs/G(E )

Q−1
(H )

= p(H )
e⊥ tan δ⊥ + p(H )

e‖ tan δ‖ + Rs/G(H )
(72)

dominant TEM mode field structure and in a TE01n cavity,
there is only an azimuthal electric field component in the where tan �� and tan �	 are the dielectric-loss tangents per-

pendicular and parallel to the anisotropy axis; p(H)
e� , p(H)

e	 , p(E)
e�,specimen. If the specimen is properly oriented using one of

these measurement techniques, measurement data can be ob- p(E)
e	 are the electric energy filling factors perpendicular and

parallel to the anisotropy axis of the dielectric resonator fortained for evaluation of all tensor permittivity components.
For uniaxially anisotropic materials, a cylindrical speci- quasi-TM whispering-gallery modes (superscript E) and

quasi-TE whispering gallery modes (superscript H); and G(E)men is first oriented so that the cylinder axis is parallel to
the anisotropy axis of the material. Then a reentrant cavity and G(H) are the geometric factors for quasi-TM and quasi-TE

whispering-gallery modes.can be used to evaluate the complex permittivity parallel to
the anisotropy axis. If the sample specimen is measured in a Table 1 shows permittivity and dielectric-loss-tangent-

measurement results for single-crystal sapphire at room tem-TE01n mode cavity, the permittivity perpendicular to the an-
isotropy axis can be determined. For general (orthogonal) perature and at 4.2 K using whispering-gallery modes. The

electric energy filling factors in Table 1 show that both N1three-dimensional anisotropy, a rectangular waveguide sam-
ple may be fabricated so that the principal anisotropy axes and S2 mode families can be treated as quasi-TM and quasi-

TE modes. The geometric factor calculations demonstrateare parallel to the Cartesian axes, or three cylindrical speci-
mens can be fabricated the cylindrical axes of which are ori- that conductor losses are considerably smaller than dielectric

losses for large azimuthal mode numbers and can be ne-ented parallel to each of the different anisotropy axes. In gen-
eral, three independent measurements are required for glected in most cases. Hence the dielectric-loss tangents can

be approximated as the reciprocals of the unloaded Q factorsevaluation of the permittivity tensor. This can be accom-
plished with two or three differently oriented samples or with for quasi-TM and quasi-TE whispering-gallery modes. Per-

mittivities were evaluated accounting for thermal expansionthe use of two or three different modes using only one sample.
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Table 1. Electric energy filling factors, geometric factors and measured loss tangents using several quasi-TM (N1) and quasi-
TE (S2) modes of the sapphire resonator. Sapphire specimen, having diameter of 50.02 mm and height of 30.03 mm, in
metallic shield having 80 mm diameter and 50 mm height. Computed permittivity tensor components: 
� � 9.27 and 
	 � 11.35
at 4.2 K and 
� � 9.40 and 
	 � 11.59 at 296.5 K.

tan �

Type m pe� pe	 G(�) 4.2 K 296.5 K

N1 11 0.0470 0.9341 6.77 � 106 5.0 � 10�6

12 0.0402 0.9423 1.63 � 107 5.0 � 10�9 4.8 � 10�6

13 0.0350 0.9488 3.92 � 107 1.0 � 10�9 4.8 � 10�6

14 0.0303 0.9538 9.42 � 107 7.0 � 10�10 5.0 � 10�6

S2 10 0.9548 0.0103 6.04 � 106 5.0 � 10�9 9.0 � 10�6

11 0.9607 0.0064 1.60 � 107 4.0 � 10�9 9.0 � 10�6

12 0.9620 0.0081 4.20 � 107 2.0 � 10�9 7.0 � 10�6

13 0.9585 0.0106 1.10 � 108 9.0 � 10�10 7.0 � 10�6
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