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rowband signals normally encountered in radar and nar-
rowband active sonar systems, this is well approximated by a
shift in the scattered waveform’s center or carrier frequency
proportional to the carrier frequency and the closing radial
velocity between the target and scatterer (1). For wideband
signals encountered in impulse radar and wideband sonar
systems, this approximation is not accurate, and the Doppler
effect must be modeled explicitly as a contraction or dilation
of the time axis of the received signal.

One of the chief functions of a radar or sonar system is to
distinguish, resolve, or separate the scattered returns from
targets in the illuminated environment. This can be done by
resolving the scatterers in delay, Doppler, or both delay and
Doppler. In many problems of practical importance, resolu-
tion in delay or Doppler alone is not sufficient to achieve the
desired resolution requirements for the pulse-echo measure-
ment system. In these cases, joint delay-Doppler resolution is
essential. The resolution capabilities of any pulse-echo system
are a strong function of the shape of the transmitted wave-
forms employed by the system.

In the course of early radar development, radar systems
were designed to measure the delay—and hence range—to
the target, or they were designed to measure the Doppler fre-
quency shift—and hence radial velocity—of the target with
respect to the radar. The waveforms used for range measure-
ment systems consisted of very narrow pulses for which the
time delay between transmission and reception could easily
be measured; these systems are referred to as pulsed radar
systems. The waveforms used in the pulsed delay measure-
ment radars were narrow pulses, with the ability to resolve
closely spaced targets determined by the narrowness of the
the pulses. If the returns from two pulses overlapped because
two targets were too close to each other in range, the targets
could not be resolved. So from a range resolution point of
view, narrow pulses were considered very desirable. However,
because the ability to detect small targets at a distance de-

INFORMATION THEORY OF RADAR pends on the total energy in a pulse, it is not generally possi-
ble to make the pulses arbitrarily narrow and still achieveAND SONAR WAVEFORMS
the necessary pulse energy without requiring unrealistic in-
stantaneous power from the transmitter.Radar and active sonar systems extract information about an

environment by illuminating it with electromagnetic or acous- As radar systems theory and development progressed, it
became clear that it was not pulse width per se that deter-tic radiation. The illuminating field is scattered by objects in

the environment, and the scattered field is collected by a re- mined the delay resolution characteristics of a radar wave-
form, but rather the bandwidth of the transmitted radar sig-ceiver, which processes it to determine the presence, posi-

tions, velocities, and scattering characteristics of these ob- nal. As a result, waveforms of longer duration—but
appropriately modulated to achieve the necessary bandwidthjects. These active pulse-echo systems provide us with tools

for observing environments not easily perceived using our to meet the desired delay resolution requirements—could be
employed, which would allow for both sufficient energy tosenses alone. The key idea in any pulse-echo measurement

system is to transmit a pulse or waveform and listen for the meet detection requirements and sufficient bandwidth to
meet delay resolution requirements. The first detailed studiesecho. Information about the scattering objects is extracted by

comparing the transmitted pulse or waveform with the re- of waveforms with these properties were conducted by Wood-
ward and Davies (2).ceived waveform scattered by the object. Many characteris-

tics, including the delay between transmission and reception,
the amplitude of the echo, and changes in the shape of the
transmitted waveform, are useful in providing information MATCHED FILTER PROCESSING
about the scattering objects.

Two primary attributes characterizing the echo return in Radar systems typically process scattered target returns for
detection by filtering of the received signal with a bank ofa pulse-echo system are the round-trip propagation delay and

the change in the received waveform resulting from the Dopp- matched filters matched to various time delayed and Doppler
shifted versions of the transmitted signal. It is well knownler effect. The Doppler effect induces a compression or dila-

tion in time for the scattered signal as a result of radial target that a matched filter—or the corresponding correlation re-
ceiver—provides the maximum signal-to-noise ratio of all lin-motion toward or away from the pulse-echo sensor. For nar-
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ear time-invariant receiver filters when the signal is being more, if �(�, �) describes a continuous scattering density, the
response of the matched filter h�,�(t) to this scattering densitydetected in additive white noise. Of course, if the filter is mis-

matched in delay or Doppler, the response, and hence signal- is
to-noise ratio, of the output will no longer be maximum. While
this suboptimality of mismatched filters can in some cases be
detrimental (e.g., where processing constraints only allow for

OT (τ , ν) =
∫ ∞

−∞

∫ ∞

−∞
µ(t, v)e− jφ(t)χs(τ − t, ν − v) dt dv

a small number of Doppler filters), it provides the basis for
target resolution in matched filter radar. We will now see how Here, �(�) � ej2�f0� is the carrier phase shift caused by the
this gives rise to the notion of the ambiguity function—a key propagation delay �. If we define �(�, �) � �(�, �)e	j2�f0�, this
tool in radar resolution and accuracy assessment. becomes

Let s(t) be the baseband analytic signal transmitted by the
radar system. After being demodulated down to baseband, the
received signal due to a scatterer with round-trip delay �0 and OT (τ , φ) =

∫ ∞

−∞

∫ ∞

−∞
γ (t, v)χs(τ − t, ν − v) dt dv

Doppler frequency shift �0 is

which is the two-dimensional convolution of �(�, �) with
r(t) = s(t − τ0)e j2πν0 t e jφ

�s(�, �), and can be thought of as the image of �(�, �) obtained
using an imaging aperture with point-spread function �(�, �)

where ej� is the phase shift in the received carrier due to the (3, Chap. 4), as shown in Fig 1.
propagation delay �0; hence, � � 2�f 0�0. If we process this sig-
nal with a matched filter

THE AMBIGUITY FUNCTION
hτ ,ν (t) = s∗(T − t + τ )e− j2πν(T−t)

As we have seen, the ambiguity function plays a significant
matched to the signal role in determining the delay-Doppler resolution of a radar

system. The ambiguity function was originally introduced by
Woodward (2), and several related but functionally equivalentq(t) = s(t − τ )e j2πνt

forms have been used since that time. Two common forms
and designed to maximize the signal output at time T, the currently used are the asymmetric ambiguity function and the
matched filter output at time T is given by symmetric ambiguity function, and they are defined as follows.

The asymmetric ambiguity function of a signal s(t) is defined
as

χs(τ , ν) =
∫ ∞

−∞
s(t)s∗(t − τ )e j2πνt dt (2)

and the symmetric ambiguity function of s(t) is defined as

�s(τ , ν) =
∫ ∞

−∞
s(t + τ/2)s∗(t − τ/2)e− j2πνt dt (3)

OT (τ , ν) =
∫ ∞

−∞
r(t)hτ ,ν (T − t) dt

=
∫ ∞

−∞
s(t − τ0)e j2πν0 t e jφ s∗(t − τ )e− j2πνt dt

= e jφ
∫ ∞

−∞
s(u)e j2πν0 (u+τ0 )s∗(u− (τ −τ0 ))e− j2πν(u+τ0 ) du

= e jφe− j2π (ν−ν0 )τ0

∫ ∞

−∞
s(u)s∗(u− (τ −τ0))e− j2π (ν−ν0 )udu

= e jφe− j2π (ν−ν0 )τ0 χs(τ − τ0, ν − ν0)

The notation ‘‘�’’ denotes complex conjugation. The asymmet-
where �s(�, �) is the ambiguity function of s(t), defined as ric ambiguity function is the form typically used by radar en-

gineers and most closely related to the form introduced by
Woodward (2). The symmetric ambiguity function is more
widely used in signal theory because its symmetry is mathe-

χs(τ , ν) =
∫ ∞

−∞
s(t)s∗(t − τ )e j2πνt dt

matically convenient and it is consistent with the general the-
ory of time–frequency distributions (4).For narrowband signals, ��0 � 1 and �0�0 � 1 for all �, �0,

The asymmetric ambiguity function �s(�, �) and the sym-and �0 of interest, however, f 0�0 � 1. Hence, we can write
metric ambiguity function �s(�, �) are related by

OT (τ , ν) = e− jφχs(τ − τ0, ν − ν0) (1)
�s(τ , ν) = e jπνtχs(τ , −ν)

Because h�,�(t) is a linear time-invariant filter, if we have N
scatterers with scattering strengths �1, . . ., �N, delays �1, and
. . ., �N, and Doppler shifts �1, . . ., �N, the response of h�,�(t)
to the collection of scatterers is χs(τ , ν) = e jπνt�s(τ , −ν)

so knowledge of one form implies knowledge of the other. In
practice, the ambiguity surface As(�, �), given by the modulus

OT (τ , ν) =
N∑

i=1

µie
− jφi χs(τ − τi, ν − νi )

of the symmetric ambiguity function,
where �i is the carrier phase shift in the return from the ith
scatterer resulting from the propagation delay �i. Further- As(τ , ν) = |�s(τ , ν)| = |χs(τ , −ν)|
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Figure 1. Imaging interpretation of
a delay-Doppler pulse-echo system. A
waveform s(t) with ambiguity function
�(�, �) gives rise to a delay-Doppler image
O T(�, �) that is the convolution of the ideal
image �(�, �) with the point-spread func-
tion �(�, �).
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is usually sufficient to characterize a waveform’s delay-Dopp- These figures illustrate the very different delay-Doppler
resolution characteristics provided by these signals when theyler resolution characteristics, as it gives the magnitude of the

matched filter response for a delay-Doppler mismatch of (�, �). are processed using a matched filter.
The shape or properties of the main lobe of the ambiguityFigures 2 and 3 show ambiguity surfaces of a simple pulse

surface ��s(�, �)� centered about the origin determine the abil-
ity of the corresponding waveform to resolve two scatterers
close together in both delay and Doppler. The ambiguity sur-

s1(t) =
{

1, for |t| < 1/2

0, elsewhere
face squared ��s(�, �)�2 close to the origin can be expanded as
a two-dimensional Taylor series about (�, �) � (0, 0). Fromand a linear FM ‘‘chirp’’
this it follows that the ambiguity surface itself may be ap-
proximated by (8, pp. 21–22)

s2(t) =
{

e jπαt2
, for |t| < 1/2

0, elsewhere |�s(τ , ν)| ≈ �(0, 0)[1 − 2π2T2
Gν2 − 4πρTGBGτν − −2π2B2

Gτ 2]
(4)

(with � � 8), respectively. The ambiguity function of s1(t) is

where
�s1

(τ , ν) =
{

(1 − |τ |)sinc[ν(1 − |τ |)], for |τ | ≤ 1

0, elsewhere BG =
�

f 2 − f 2

The ambiguity function of s2(t) is is the Gabor bandwidth of the signal,

TG =
�

t2 − t 2�s2
(τ , ν) =

{
(1 − |τ |)sinc[(ν − ατ )(1 − |τ |)], for |τ | ≤ 1

0, elsewhere

is the Gabor timewidth of the signal, the frequency and time
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Figure 3. Symmetric ambiguity function �2(�, �) of a linear FM chirpFigure 2. Symmetric ambiguity function �1(�, �) of a rectangular
pulse of duration 1. of duration 1.
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While the uncertainty ellipse provides a rough means of
determining the resolution performance of a waveform for re-
solving closely spaced targets in isolation from other interfer-
ing scatterers, it is not sufficient to completely characterize a
waveform’s measurement characteristics. Target returns with
delay-Doppler coordinates falling in the sidelobes of the ambi-
guity function can have a significant effect on a radar’s mea-
surement and resolution capabilities. For this reason, in order
to effectively design radar waveforms for specific measure-
ment tasks, it is important to have a thorough understanding
of the properties of ambiguity functions.

Properties of Ambiguity Functions

τ

ν

sb(t)

sa(t)

Figure 4. Uncertainty ellipses corresponding to sa(t) � e	�t2

and In order to gain a thorough understanding of the delay-Dopp-
sb(t) � e	�t2

ej��t2

. ler resolution characteristics of various signals under
matched filter processing, it is necessary to understand the
general properties of ambiguity functions. With this in mind,

moments of the signal s(t) are we now consider the properties of ambiguity functions. Proofs
of these properties may be found in Refs. 5 (Chap. 9), 6
(Chaps. 5–7), 7 (Chap. 4), 8, and 9 (Chap. 10).f n = 1

Es

∫ ∞

−∞
f n|S( f )|2 d f

Property 1. The energy in the signal s(t) is given by
and

Es = �s(0, 0) =
∫ ∞

−∞
|s(t)|2 dt

tn = 1
Es

∫ ∞

−∞
tn|s(t)|2 dt

Property 2 (Volume).
respectively, and the skew parameter � is ∫ ∞

−∞

∫ ∞

−∞
|�s(τ , ν)|2 dτ dν = |�s(0, 0)|2 = E2

s
ρ = 1

TB
Re

{
j

2πEs

∫ ∞

−∞
tṡ(t)s∗(t) dt − t f

}

Property 3. The time autocorrelation function �s(�) of the
where ṡ(t) is the derivative of s(t). signal s(t) is given by

The shape of the main lobe about the origin of the ambigu-
ity function can be determined by intersecting a plane paral-
lel to the (�, �) plane with the main lobe near the peak value. φs(τ ) = �s(τ , 0) =

∫ ∞

−∞
s(t + τ/2)s∗(t − τ/2) dt

Using the approximation of Eq. (4) and setting it equal to the
constant ambiguity surface height �0 specified by the inter-

Property 4. The energy spectrum of the signal s(t) is givensecting plane, we have
by

�(0, 0)[1 − 2π2T2
Gν2 − 4πρTGBGτν − 2π2B2

Gτ 2] = γ0

�s(0, ν) =
∫ ∞

−∞
|s(t)|2e− j2πνt dt

which we can rewrite as

Property 5. The symmetric ambiguity function of the sig-B2
Gτ 2 + 2ρBGTGτν + T2

Gν2 = C (5)
nal s(t) can be written as

where C is a positive constant. This is the equation of an el-
lipse in � and �, and this ellipse is known as the uncertainty
ellipse of the waveform s(t). The uncertainty ellipse describes

�s(τ , ν) =
∫ ∞

−∞
S( f + ν/2)S∗( f − ν/2)e j2π f τ d f

the shape of the main lobe of ��s(�, �)� in the region around its
wherepeak and hence provides a concise description of the capabil-

ity of s(t) to resolve closely spaced targets concentrated in the
main lobe region. The value of C itself is not critical, since the
shape of the uncertainty ellipse is what is of primary interest.

S( f ) =
∫ ∞

−∞
s(t)e− j2π f t dt

Figure 4 shows the uncertainty ellipses of a Gaussian pulse
is the Fourier transform of s(t).

Property 6. If s(0) � 0, s(t) can be recovered from �s(�, �)sa(t) = e−βt2

using the relationship
and a linear FM chirp modulated Gaussian pulse

sb(t) = e−βt2
e jπαt2 s(t) = 1

s∗(0)

∫ ∞

−∞
�s(t, ν) jπνt dt
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where 2 of the ambiguity function. Property 1 states that the height
of ��s(�, �)�2 at the origin is ��s(0, 0)�2 � E2

s. Property 2 states
that the total volume under ��s(�, �)�2 is E2

s. So if we try to
construct a thumbtack-like ��s(�, �)�2 approximating an ideal

|s(0)|2 =
∫ ∞

−∞
�s(0, ν) dν

delta function, we run into the problem that as the height
��s(0, 0)� increases, so does the volume under ��s(�, �)�2. ThisProperty 7 (Time Shift). Let s�(t) � s(t 	 �). Then
means that for a signal with a given energy, if we try to push
the volume of the ambiguity function down in one region of�s′ (τ , ν) = e− j2πν��s(τ , ν)

the delay-Doppler plane, it must pop up somewhere else. So
there are limitations on just how well any waveform can doProperty 8 (Frequency Shift). Let s�(t) � s(t)ej2�ft. Then
in terms of overall delay-Doppler ambiguity performance. In
fact, the radar waveform design problem corresponds to de-�s′ (τ , ν) = e j2π f τ �s(τ , ν)

signing waveforms that distribute the ambiguity volume in
the (�, �) plane in a way appropriate for the delay-DopplerProperty 9 (Symmetry). �s(�, �) � �*s (	�, 	�).
measurement problem at hand. We now investigate some ofProperty 10 (Maximum). The largest magnitude of the am-
these techniques.biguity function is always at the origin:

The Wideband Ambiguity Function|�s(τ , ν)| ≤ �s(0, 0) = Es

In the situation that the waveforms being considered are notThis follows directly from the Schwarz inequality.
narrowband or the target velocity is not small compared with

Property 11 (Time Scaling). Let s�(t) � s(at), where a � 0. the velocity of wave propagation, the Doppler effect cannot be
Then modeled accurately as a frequency shift. In this case, it must

be modeled as a contraction or dilation of the time axis. When
this is the case, the ambiguity functions �s(�, �) and �s(�, �)�s′ (τ , ν) = 1

|a|�s(aτ, ν/a)

defined in Eqs. (2) and (3) can no longer be used to model the
output response of the delay and Doppler (velocity) mis-

Property 12 (Quadratic Phase Shift). Let s�(t) � s(t)ej��t2
. matched matched filter. In this case, the wideband ambiguity

Then function must be used (10–13). Several slightly different but
mathematically equivalent forms of the wideband ambiguity�s′ (τ , ν) = �s(τ , ν − ατ )
function have been introduced. One commonly used form (13)
isProperty 13 (Self-transform). ��s(�, �)�2 is its own Fourier

transform in the sense that
�s(τ , γ ) =p|γ |

∫ ∞

−∞
s(t)s∗(γ (t − τ )) dt (6)∫ ∞

−∞

∫ ∞

−∞
|�s(τ , ν)|2e− j2π f τ e j2π tν dτ dν = |�s(t, f )|2

where � is the scale factor arising from the contraction or dila-
tion of the time axis as a result of the Doppler effect. Specifi-Property 14 (Wigner Distribution). The two-dimensional in-
cally,verse Fourier transform of the ambiguity function �s(�,

�) of a signal s(t) is its Wigner distribution Ws(t, f ):
γ = 1 − v/c

1 + v/c∫ ∞

−∞

∫ ∞

−∞
�s(τ , ν)e j2π f τ e j2π tν dτ dν = Ws(t, f )

where v is the radial velocity of the target with respect to the
sensor (motion away from the sensor positive), and c is the

where the Wigner distribution of s(t) is defined as (4,8) velocity of wave propagation in the medium. While the theory
of wideband ambiguity functions is not as well developed as
for the case of narrowband ambiguity functions, a significantWs(t, f ) =

∫ ∞

−∞
s(t + τ/2)s∗(t − τ/2)e j2pi f τ dτ

amount of work has been done in this area. See Ref. 13 for a
readable survey of current results. We will focus primarily

These properties of the ambiguity function have immediate on the narrowband ambiguity function throughout the rest of
implications for the design of radar waveforms. From the im- this article.
aging analogy of delay-Doppler measurement, where the am-
biguity function plays the role of the imaging aperture, it is

RADAR WAVEFORM DESIGNclear that an ideal ambiguity function would behave much
like a pinhole aperture—a two-dimensional Dirac delta func-

The problem of designing radar waveforms with good delay-tion centered at the origin of the delay-Doppler plane. Such
Doppler resolution has received considerable attention (14–an ambiguity function would yield a radar system giving a
24). Waveforms developed for this purpose have generallyresponse of unity if the return had the assumed delay and
fallen into three broad categories:Doppler, but a response of zero if it did not. Such a system

would in fact have perfect delay-Doppler resolution proper-
ties. Unfortunately, such an ambiguity function does not ex- 1. Phase and frequency modulation of individual radar

pulsesist. This can be seen by considering Property 1 and Property
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2. Pulse train waveforms

3. Coded waveforms

We will now investigate these techniques and consider how
each can be used to improve radar delay-Doppler resolution
characteristics and shape the ambiguity functions of radar
waveforms in desirable ways.

Phase and Frequency Modulation of Radar Pulses

The fundamental observation that led to the development of
phase and frequency modulation of radar pulses was that it
is not the duration of a pulse, but rather its bandwidth, that

τ
–1 –0.5 0.5

1

= 4α

= 0

( ;  )ατφ

α

= 16α

1

determines its range resolution characteristics. Early range
measurement systems used short duration pulses to make Figure 5. Time correlation �(�, �) � �s(�, 0) for linear FM chirp
range measurements, and narrow pulses were used to obtain pulses of duration 1 and modulation indices � of 0, 4, and 16.
good range resolution, but this put a severe limitation on the
detection range of these systems, because detection perfor-

shown in Fig. 5, we see that, although pulse durations aremance is a function of the total energy in the transmitted
equivalent (in this case we take T � 1), there is a significantpulse, and with the peak power limitations present in most
difference in range resolution. With increasing �, we alsoreal radar systems, the only way to increase total energy is
have increasing bandwidth. Looking at the ambiguity func-to increase the pulse duration. However, if the pulse used is
tion of the linear FM chirp shown in Fig. 3, and comparingsimply gating a constant frequency sinusoidal carrier, in-
the ambiguity function of the simple rectangular pulse in Fig.creasing the duration decreases the bandwidth of the trans-
2, it is clear that the broadening of the pulse bandwidth hasmitted signal. This observation led to the conjecture that per-
brought about increased delay resolution–however, not with-haps it is large bandwidth instead of short pulse duration
out cost.that leads to good range resolution. This conjecture was in

From Property 12, the quadratic phase shift property, wefact shown to be true (14). We now investigate this using am-
see that the matched filter will not only have a large responsebiguity functions.
to the signal with the desired delay � and Doppler �, but alsoThe ambiguity function of the simple rectangular pulse
to any signal with delay � � �� and Doppler � � ��, where
�� 	 � �� � 0. This locus of peak response for the chirp is
oriented along the line of slope � in the (�, �) plane. So when
matched filtering for a chirp with some desired delay ands1(t) =

{
1, for |t| ≤ T

0, elswhere
Doppler shift imposed on it, we are never certain if a large
response is the result of a scatterer at the desired delay and
Doppler, or a scatterer with a delay-Doppler offset lying nearof duration T is
the locus of maximal delay-Doppler response. While for a sin-
gle scatterer the actual delay and Doppler can be determined
by processing with a sufficiently dense band of matched filters
in delay and Doppler, scatterers lying along this maximal re-

�1(τ , ν) =
{

(T − |τ |)sinc[ν(T − |τ |)], for |t| ≤ T

0, elswhere
sponse locus are hard to resolve if they are too close in delay
and Doppler. From the point of view of detection, however,

and the ambiguity function of the linear FM ‘‘chirp’’ pulse there is a benefit to this ‘‘Doppler tolerance’’ of the chirp
waveform. It is not necessary to have a bank of Doppler filters
as densely located in Doppler frequency in order to detect the
presence of targets (25, Chap. 9).s2(t) =

{
e jπαt2

, for |t| ≤ T

0, elswhere
Coherent Pulse Train Waveforms

Another way to increase the delay-Doppler resolution andof the same duration is
ambiguity characteristics of radar waveforms is through the
use of pulse trains—waveforms synthesized by repeating a
simple pulse shape over and over. An extension of this basic
idea involves constructing the pulse train as a sequence of

�2(τ , ν) =
{

(T − |τ |)sinc[(ν − ατ )(T − |τ |)], for |t| ≤ T

0, elswhere
shorter waveforms—not all the same—from a prescribed set
of waveforms (26). Most modern radar systems employ pulse

[Note that �2(�, �) is easily obtained from �1(�, �) using Prop- trains instead of single pulses for a number of reasons. Re-
erty 12 of the ambiguity function.] If we compare the time gardless of whether the pulse train returns are processed
autocorrelation functions �1(�) � �1(�, 0) and �2(�) � �2(�, 0) coherently (keeping track of the phase reference from pulse-

to-pulse and using it to construct a matched filter) or nonco-for various values of the linear FM modulation index � as
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herently (simply summing the pulse-to-pulse amplitude of the
matched filter output without reference to phase), a pulse
train increases receiver output signal-to-noise ratio, and
hence increases detection range [e.g., see Ref. 25 (Chaps. 6
and 8)]. Furthermore, when processed coherently in a pulse-
Doppler processor, flexible, high-resolution delay-Doppler pro-
cessing is possible. In discussing pulse trains, we will focus
on coherent pulse-Doppler waveforms, as pulse-Doppler radar
systems have become the dominant form of radar for both sur-
veillance and synthetic aperture radar (SAR) applications.

A pulse train is constructed by repeating a single pulse
p(t) regularly at uniform intervals Tr; Tr is called the pulse
repetition interval (PRI). The frequency f r � 1/Tr is called the
pulse repetition frequency (PRF) of the pulse train. Typically,
the duration �p of the pulse v(t) is much less than Tr. A uni-
form pulse train s(t) made up of N repeated pulses and having
PRI Tr can be written as
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Figure 7. The ambiguity function for a uniform pulse train of rectan-
x(t) =

N−1∑
n=0

p(t − nTr)

gular pulses.
A typical example of such a pulse train in which the pulse
p(t) repeated is a simple rectangular pulse is shown in Fig. 6.
Centering this pulse train about the origin of the time axis,

lobes’’ centered at (�, �) pairs given bywe can write it as

(τ , ν) = (nTr, k/Tr)s(t) =
N−1∑
n=0

p(t − nTr + (N − 1)Tr/2) (7)

where n is any integer with �n� 
 N 	 1, and k is any integer.
The symmetric ambiguity function of this pulse train is (6,8) From the behavior of the Dirichlet function

�s(τ , ν) =
N−1∑

n=−(N−1)

[
sinπνTr (N − |n|)

sinπνTr

]
· �p(τ − nTr, ν) (8)

[
sinπνTr (N − |n|)

sinπνTr

]

where �p(�, �) is the ambiguity function of the elementary weighting the delayed copies of �p(�, �) in Eq. (8), it is clear
pulse p(t) used to construct the pulse train. that the peak amplitudes of these grating lobes fall off as we

In order to gain an understanding for the behavior of the move farther away from the main lobe (n � 0 and k � 0).
ambiguity function of the pulse train, consider the special
case of a uniform pulse train of N � 5 rectangular pulses,
each of length �p � 1 with a PRI of Tr � 5. The plot of this
ambiguity function is shown in Fig. 7. A similar plot in which
p(t) is a linear FM chirp of the form

p(t) =
{

e jπαt2
, for |t| ≤ 1

0, elsewhere

and � � 8 is shown in Fig. 8. From the form of Eq. (8), we see
that the ambiguity function of the pulse train has ‘‘grating

���� t

. . .

τp
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2Tr

(N–1)Tr

s(t)
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0.5
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4

Figure 6. Uniform pulse train waveform s(t) constructed by re-
peating a basic pulse shape p(t) N times with a pulse repetition inter- Figure 8. The ambiguity function for a uniform pulse train of linear

FM chirp pulses.val of Tr.
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however, this approach is only successful in sparse target en-
vironments. When there are many targets in proximity in
both delay and Doppler, sorting out the ambiguity becomes
unwieldy. Another disadvantage of these low PRF pulse trains
is that they have lower duty cycles for a given pulse width,
resulting in a significant decrease in average transmitted
power (and hence detection range) for a given elemental pulse
width �p and peak power constraint.

At the other extreme, if one makes Tr very small, the ef-
fects of Doppler ambiguity can be minimized. In fact, if 1/Tr

is greater than the maximum Doppler frequency shift we ex-
pect to encounter, there is no Doppler ambiguity. However,
there will most likely be severe range ambiguities if such high
PRF pulse trains are used.

For most radar surveillance problems involving the detec-
tion of aircraft and missiles, the size of the surveillance vol-
ume and the target velocities involved dictate that there will
be ambiguities in both delay and Doppler, and most often a
medium PRF pulse train is employed. In this case the PRF
is usually selected to meet the energy efficiency (duty-cycle)
constraints to ensure reliable detection and to make the na-
ture of the delay-Doppler ambiguities such that they are not
extreme in either the delay or Doppler dimension. In this
case, delay-Doppler ambiguities can be resolved by changing

τ

ν

1/Tr Tr

the PRF from one coherent N-pulse train to the next by
Figure 9. Locations of grating sidelobes in the ambiguity function of

changing Tr from pulse train to pulse train. This technique isa uniform pulse train.
sometimes called PRF staggering, and is effective in sparse
environments. As can be seen from Eq. (8), proper selection
of the Tr from pulse train to pulse train makes this feasible,

Figure 9 shows this grating lobe behavior for a uniform because in general, with proper selection of the PRIs Tr used,
pulse train. only the true delay-Doppler (�, �) will be a feasible solution

By observing the main lobe of the uniform pulse train, we for all Tr. An additional benefit of changing Tr from pulse
see that its delay resolution is approximately �p—the range train to pulse train is that it alleviates the ‘‘blind range’’ prob-
resolution of the elementary pulse p(t)—while the Doppler lem in monostatic radars. These radars cannot transmit and
resolution is approximately 1/NTr, a value that can be made receive simultaneously. When they transmit a pulse train, the
arbitrarily small by making N sufficiently large, limited only receiver is turned off during pulse transmission and is turned
by practical considerations in coherently processing the re- on to listen for target returns in the periods between pulses.
ceived signal. However, the ambiguities introduced through Hence target returns having delays corresponding to the time
the grating lobes at (nTr, k/Tr) can result in uncertainty in intervals of successive pulse transmissions are not seen by
the actual delay and Doppler of the target. As a result, both the radar. Changing Tr from pulse train to pulse train moves
the range and Doppler determined radial velocity of the tar- the blind ranges around, ensuring nearly uniform surveil-
get can be ambiguous. While in principle this ambiguity can lance coverage at all ranges.
be resolved in the case of a small number of targets using the
fact that the sidelobes have successively smaller amplitude as

Phase and Frequency Coded Waveformswe move away from the main lobe, this approach is not practi-
cal because of the way in which the bank of matched filters Another highly successful approach to designing waveforms
is actually implemented in a pulse-Doppler processor. Hence, with desirable ambiguity functions has been to use phase
another approach to resolving (nTr, k/Tr) ambiguity is needed. and/or frequency coding. The general form of a coded wave-
We will briefly discuss approaches that can be taken. form (with coding in both phase and frequency) is

One way to reduce the effects of the range ambiguity is to
make Tr large. This makes the delay ambiguity large, and
often the delay ambiguity (and hence unambiguous measure- s(t) =

N−1∑
n=0

pT (t − nT ) exp{ j2πdnt/T} exp{ jφn} (9)
ment range) can be made sufficiently large so that range am-
biguity is no longer a problem for ranges of interest. Of
course, this complicates the Doppler ambiguity problem, be- The coded waveform s(t) consists of a sequence of N identical
cause the pulse repetition frequency (PRF) 1/Tr is the effec- baseband pulses pT(t) of length T; these pulses pT(t 	 nT) are
tive sampling rate of the pulse-Doppler processor. A large usually referred to as the chips making up the waveform
value of Tp results in a low PRF and hence low sampling rate, s(t). Usually, the chip pulse pT(t) has the form
and there is significant aliasing of the Doppler signal. Some
systems do use this approach to deal with the ambiguity prob-
lem, using range differences (often called range rate measure-
ments) from pulse to pulse to resolve the Doppler ambiguity;

pT (t) =
{

1, for 0 ≤ t < T

0, elsewhere



188 INFORMATION THEORY OF RADAR AND SONAR WAVEFORMS

Note that each chip pulse pT(t 	 nT) is of duration T and each
successive pulse is delayed by T, so there are no empty spaces
in the resulting coded waveform s(t) of duration NT. In fact,
for the rectangular pT(t) specified above, �s(t)� � 1 for all t �
[0, NT). However, each pulse in the sequence is modulated by
an integral frequency modulating index dn and a phase �n

that can take on any real number value. To specify the modu-
lating frequency and phase patterns of a coded waveform, we
must specify a length N sequence of frequency indices �d0,
. . ., dN	1� and a length N sequence of phases ��0, . . ., �N	1�.
If dn � 0 for n � 0, . . ., N 	 1, then the coded waveform is
strictly phase modulated. If �n � 0 for n � 0, . . ., N 	 1,
then the coded waveform is strictly frequency modulated. The
asymmetric ambiguity function of s(t) as given in Eq. (9) is
given by (26) –6
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Figure 10. Ambiguity matrix of the 7-chip stepped frequency chirp
having frequency index sequence (0, 1, 2, 3, 4, 5, 6).

χs(τ , ν) =
N−1∑
n=0

N−1∑
m=0

e j(φn −φm ) e j2π (dm /T )τ e− j2πνnTχpT

�
τ − (n − m)T, ν − (dn − dm)

T

�
(10)

There are many families of coded phase and frequency The sidelobe matrix gives the heights of the major side-
modulated waveforms. We will consider a few of the most in- lobes of a frequency coded waveform. These can be shown to
teresting of these. For a more thorough treatment of coded occur at locations (�, �) � (mT, k/T), where m and k are inte-
waveforms, see Refs. 5 (Chap. 6), 6 (Chap. 8), and 7 (Chap. 8). gers. The sidelobe matrix is a table of the relative heights of

��s(mT, k/T)� � ��s(mT, k/T)� for integer values of m and k in
the range of interest. So, for example, the sidelobe matrix ofFrequency Coded Waveforms. Consider an N-chip frequency
a 7-chip stepped linear FM chirp having frequency index se-coded waveform with the rectangular pT(t) defined above (here
quence (0, 1, 2, 3, 4, 5, 6) is shown in Fig. 10, whereas thatwe assume �0 � � � � � �N	1 � 0):
for a 7-chip Costas waveform with frequency index sequence
(3, 6, 0, 5, 4, 1, 2) is shown in Fig. 11. Blank entries in the
sidelobe matrix correspond to zero. Clearly, there is a signifi-s(t) =

N−1∑
n=0

pT (t − nT ) exp{ j2πdnt/T} (11)
cant difference between the ambiguity matrices (and hence
ambiguity functions) of these two frequency coded waveforms,

Waveforms of this kind are sometimes referred to as fre- despite the fact that they have the same duration, same num-
quency hopping waveforms, because the frequency of the ber of chips, and same set of modulating frequencies. It is
waveform ‘‘hops’’ to a new frequency when transitioning from only the order in which the modulating frequencies are used
chip to chip. Now suppose we take the sequence of frequency that determines their ambiguity behavior.
modulation indices to be

φn = n, n = 0, . . ., N − 1

Then the resulting s(t) is a stepped frequency approximation
to a linear FM chirp. Here we have used each of the frequency
modulation indices in the set �0, . . ., N 	 1� once and only
once. In general, we can describe the order in which the indi-
ces are used to construct the waveform using a frequency in-
dex sequence of the form (d0, . . ., dN	1). So, for example, the
stepped linear FM sequence has frequency index sequence (0,
1, 2, . . ., N 	 1). There are of course N! possible frequency
coded waveforms that use each of these indices once and only
once, since there are N! permutations of the N elements or,
equivalently, N! distinct frequency index sequences. Some of
these permutations give rise to waveforms with ambiguity
functions that are very different from that of the stepped fre-
quency approximation to the linear FM chirp. For the purpose
of comparison, we consider two such waveforms, the 16-chip
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stepped linear FM waveform, and the 16-chip Costas wave-
form (20). Before we do this, we introduce the notion of the Figure 11. Ambiguity matrix of the 7-chip stepped frequency coded

Costas waveform having frequency index sequence.sidelobe matrix.
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In looking at the ambiguity matrix of the Costas waveform that the US B-2 Stealth bomber employs a high-resolution
radar system using PN sequences of this kind (30).in Fig. 11, it is apparent that from the point of view of both

There are many specialized families of phase coded wave-mainlobe delay-Doppler resolution and sidelobe delay-Dopp-
forms, most of which have the property that they have excel-ler ambiguity, the Costas waveform is nearly ideal. All of the
lent delay (range) resolution and ambiguity properties alongmain sidelobes have a height of 1, while the mainlobe has a
the � � 0 axis. Many of these waveforms also have fairly goodheight of 7. In fact, by definition, an N-chip Costas waveform
ambiguity and resolution properties off the zero-Doppler axisis a frequency coded waveform with a frequency index se-
as well. Examples of these waveforms include those generatedquence that is a permutation of the numbers 0, 1, 2, . . ., N
by Barker codes, Frank codes, and Gold Codes (see Ref. 27 for	 1 such that the mainlobe entry of the ambiguity matrix is
details on these and other related families of waveforms).N, while the maximum sidelobe entry is 1 (20). Sequences

One final family of phase codes worth mentioning are the(d0, . . ., dN	1) yielding Costas waveforms can be found for
complementary codes originally introduced by Marcel Golayarbitrary N by exhaustive search; however, this becomes a
(31) for use in optical spectroscopy, but later adapted to radarcomputationally intense task, because the number of N-chip
measurement problems as well. Complementary codes are ac-Costas sequences grows much more slowly in N, than N!, the
tually families of phase coded codewords. Golay originally in-number of N-chip frequency coded waveforms. For large N,
troduced complementary codes having two codewords of equalthis approach becomes impractical. More efficient techniques
length, with each chip taking on a value of either �1 or 	1.for constructing Costas waveforms are discussed in Refs. 21
The two codewords had the property that their delay side-and 22. One very efficient technique for constructing Costas
lobes along the zero-Doppler axis exactly negatives eachwaveforms of length N � p 	 1, where p is a prime number, is
other, while their main lobes are identical. As a result, ifthe Welch algorithm, which involves a simple iteration having
there is no Doppler offset and two measurements of the samecomputational complexity proportional to N.
target scenario can be made independently, the properly de-
layed matched filter outputs can be added, and the result is a

Phase Coded Waveforms. Consider an N-chip phase coded response in which the delay sidelobes are completely can-
waveform with the rectangular pT(t) [here we assume d0 � celed. This results in excellent ambiguity function sidelobe
� � � � dN	1 � 0 in Eq. (9)]: cancellation along the zero-Doppler axis (32). Golay’s basic

idea has been extended to nonbinary waveforms, complemen-
tary waveform sets with more than two waveforms, and non-
zero-Doppler offsets (18,19,26).

s(t) =
N−1∑
n=0

pT (t − nT ) exp{ jφn} (12)

The sequence of phases (�0, . . ., �N	1) specifies the phase CURRENT AND FUTURE DIRECTIONS
angle to be applied to each of the N chips making up the
waveform s(t). While the classical theory of radar and sonar signals is in

These waveforms are very similar to the types of wave- many ways mature, there are a number of interesting efforts
forms used in direct-sequence spread-spectrum communica- to extend the theory and practice of radar and sonar signal
tions and hence are often referred to as direct-sequence wave- design. We briefly outline a few of these.
forms. Most often, the set of phases considered is a finite set, One area that has received significant attention is the de-
such as �0, ��, �0, �/2, �, 3�/2�, or more generally �0, �/L, sign of sets of multiple radar waveforms for use together. The
2�/L, . . ., (L 	 1)�/L�, where the phases �n take on values simplest examples of these waveform sets are Golay’s comple-
from these sets, often repeating values unlike the frequency mentary sequence waveforms (31), which we have already
coded waveforms we considered in the last section. considered, as well as their extensions (18,19,26), which we

One family of phase coded waveforms that have been ap- discussed in the last section. The basic idea is to make com-
plied to radar problems are the pseudonoise (PN) sequences plementary diverse measurements that allow for extraction of
or m-sequences commonly used in spread-spectrum communi- greater information about the target environment than can
cations (27–29). These waveforms take on values of either �1 be obtained with a single waveform. Another reason for de-
or 	1 on each chip, and hence the phases are taken from the signing sets of waveforms for use together is for use in
set �0, ��. These waveforms are useful for generating very multistatic radar and sonar systems, where there may be sev-
wide bandwidth signals by taking N large and T small. These eral transmitters and receivers in different locations. By
sequences have excellent correlation properties and are easily allowing each receiver to listen to the returns from all trans-
generated using linear and nonlinear feedback shift register mitters, it is possible to extract much more information about
circuits. Their correlation properties give rise to sharp thumb- the environment than is possible with a single—or even mul-
tack-like responses when evaluated on the zero-Doppler (� � tiple—monostatic systems. For these systems to be feasible,
0) axis. As a result, high resolution and low range ambiguity it is important that the waveforms in the set have low cross-
measurements can be made using these waveforms. These correlation, as well as envelope and spectral characteristics
waveforms have the appearance of wideband noise when ob- that allow for efficient amplification and transmission in real
served with a spectral analyzer and hence are hard to detect systems. In Refs. 33 and 34, designs for a family of waveforms
without detailed knowledge of the phase sequence (�0, �1, �2, of this type for sonar applications are considered. Another
. . ., �N	1) and have thus been used for low probability of in- novel approach to multiple waveform imaging is Bernfeld’s
tercept (LPI) ‘‘quiet radar’’ systems, where it is not desired to chirp-Doppler radar (35,36), which uses a mathematical anal-

ogy between measurement using a chirp and transmission to-give away the fact that the radar is in operation. It is rumored
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15. C. H. Wilcox, The synthesis problem for radar ambiguity functions,mography to obtain ‘‘projections’’ of a delay-Doppler scatter-
MRC Tech. Summary Rep. 157, Mathematics Research Center,ing profile. These projections are then used to form a
US Army, Univ. Wisconsin, Madison, WI, Apr. 1960.reconstruction of the delay-Doppler profile using the inverse

16. S. M. Sussman, Least-squares synthesis of radar ambiguity func-Radon transform techniques typically employed in projection
tions, IRE Trans. Inf. Theory, Apr. 1962.tomography.

17. W. L. Root, Radar resolution of closly spaced targets, IRE Trans.When making measurements using sets of waveforms, the
Mil. Electron., MIL-6 (2): 197–204, 1962.question of which waveforms from the set to transmit and in

18. C. C. Tseng and C. L. Liu, Complementary sets of sequences,what order they should be transmitted naturally arises. This
IEEE Trans. Inf. Theory, IT-18: 644–652, 1972.gives rise to the notion of adaptive waveform radar (37). In

19. R. Sivaswami, Multiphase complementary codes, IEEE Trans.Ref. 38, the problem of designing and adaptively selecting
Inf. Theory, 24: 546–552, 1978.waveforms for transmission to effect target recognition is con-

20. J. P. Costas, A study of a class of detection waveforms havingsidered. The approach used selects waveforms from a fixed
nearly ideal range-Doppler ambiguity properties, Proc. IEEE, 72:set (designed for a particular ensemble of targets to be classi-
996–1009, 1984.fied) in such a way that the Kullback–Leibler information

21. S. W. Golomb and H. Taylor, Constructions and properties of Cos-measure is maximized by each selection.
tas arrays, Proc. IEEE, 72: 1143–1163, 1984.The idea of designing radar waveforms matched to specific

22. S. W. Golomb, Algebraic constructions for Costas arrays, J. Com-target tasks has also been considered. In Ref. 39, the prob-
binatorial Theory Ser. A, 37: 13–21, 1984.lems of wideband radar waveform design for detection and

23. O. Moreno, R. A. Games, and H. Taylor, Sonar sequences frominformation extraction for targets with resonant scattering
Costas arrays and the best known sonar sequences with up toare considered. It is noted that waveforms for target detection
100 symbols, IEEE Trans. Inf. Theory, 39: 1985–1987, 1993.versus information extraction have very different characteris-

24. S. W. Golomb and O. Moreno, On Periodicity Properties of Costastics. It is shown that waveforms for target detection should
Arrays and a Conjecture on Permutation Polynomials, Proc.have as much energy as possible in the target’s largest scat-
IEEE Int. Symp. Inf. Theory, Trondheim, Norway, 1994, p. 361.

tering modes, under the energy and time–bandwidth con-
25. J. Minkoff, Signals, Noise, and Active Sensors: Radar, Sonar, Laserstraints imposed on the system, while waveforms for informa-

Radar, New York: Wiley, 1992.
tion extraction (e.g., target recognition) should have their

26. J. C. Guey and M. R. Bell, Diversity waveform sets for delay-energy distributed among the target’s scattering modes in
Doppler imaging, IEEE Trans. Inf. Theory, 44: 1504–1522, 1998.

such a way that the information about the target is max-
27. D. V. Sarwate and M. B. Pusley, Crosscorrelation properties ofimized.

pseudorandom and related sequences, Proc. IEEE, 68: 593–619,
1980.
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