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TRELLIS-CODED MODULATION

Any communication in nature suffers from impairments such
as noise, which corrupts the data transmitted from the trans-
mitter to the receiver. In this article, we consider the princi-
ples behind trellis-coded modulation (TCM), which is an es-
tablished method to combat the aforementioned impairments.
TCM is one of the main components of the modern modulator-
demodulator (modem) systems for data transmission over
telephone lines.

HISTORICAL REMARKS

Trellis diagrams (or state transition diagrams) were origi-
nally introduced in communications by Forney (1) to describe
maximum likelihood sequence detection of convolutional
codes. They were employed to soft decode convolutional codes
using a dynamic programming algorithm (also known as the
Viterbi algorithm).

The concept of trellis was later extended by Bahl et al. (2)
to linear block codes where they were used as a natural
framework to implement the maximum a posteriori probabil-
ity (MAP) algorithm. Later, Forney unveiled the trellis struc-
ture of Euclidean Codes and Lattices.

Trellis-coded modulation is perhaps the most frequently
applied branch of trellis theory. Such an implementation com-
bines channel coding and modulation for transmission over
band-limited channels. Specifically, trellis-coded modulation
integrates the trellis of convolutional codes with M-ary linear
modulation schemes such as, for example, M-phase-shift key-
ing. Generally, modulation schemes containing larger Euclid-
ean distances between their signal sets provide more ro-
bustness against noise over Gaussian channels. On the other
hand, traditionally channel codes were designed so that dis-
tinct codewords have large Hamming distances (3). These two
criteria are not equivalent unless 2-amplitude modulation or
4-phase-shift keying (4-PSK) modulation is used. Combining
channel coding and modulation makes it possible to use a dis-
tance measure in coding which is equivalent to Euclidean dis-
tance in modulation. When the noise is additive white
Gaussian, trellis-coded modulation provides 3–6 dB improve-
ments over uncoded modulation schemes for the same band-
width efficiency. Although Massey had proposed the idea of
combining channel coding and modulation in 1974 (4), the
first trellis-coded modulation scheme was introduced by Un-
gerboeck and Csjaka in 1976 (5,6).

OVERVIEW

Figure 1 shows a block diagram of a communication system
in which binary data are transmitted over a noisy channel.
Since the signal transmitted over the physical channel is a
continuous electrical waveform, the modulation scheme con-
verts its binary (discrete) input to continuous signals which
are suitable for transmission over band-limited channels. If
the effects of noise on the transmitted signal can be modeled
by adding uncorrelated Gaussian noise samples, the channel
is called an additive Gaussian noise channel. The ratio of the
transmitted power to the noise power, signal-to-noise ratio
(SNR), is an important parameter which affects the perfor-
mance of the modulation scheme. For a given SNR and band-
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given rate and bandwidth, trellis-coded modulation uses a re-
dundant signal set at the modulator and a maximum likeli-
hood soft decoder at the demodulator. In trellis-coded modula-
tion, the necessary redundancy of coding comes from
expanding the signal sets not bandwidth expansion, as will
be discussed in the next section. Designing a good coded mod-
ulation scheme is possible by maximizing the free Euclidean
distance for the code. In fact, Ungerboeck and Csjaka’s point
of departure from traditional coding is that the free distance
of a trellis-coded modulation can be significantly more than
that of the corresponding uncoded modulation scheme.

A trellis (state-transition diagram) can be used to describe
trellis-coded modulation. This trellis is similar to that of con-
volutional codes. However, the trellis branches in trellis-coded
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modulation consist of modulation signals instead of binary
Figure 1. Block diagram of a communication system. codes. Since the invention of trellis-coded modulation, it has

been used in many practical applications. The use of trellis-
coded modulation in modulator–demodulators (modems) for

width, there is a theoretical limit for the maximum bit rate data transmission over telephone lines has resulted in tre-
which can be reliably transferred over a continuous channel mendous increased in the bit rate. International Telegraph
(Shannon capacity) (7). If the bit rate is less than the Shan- and Telephone Consultative Committee (CCITT) and its suc-
non capacity, the objective of a modulation scheme is to mini- cessor International Telecommunication Union (ITU) have
mize the bit error rate for a given SNR and a given band- widely utilized trellis-coded modulation in high-speed mo-
width. dems for data transmission over telephone lines (8–10).

The combination of modulation, continuous channel, and
demodulation can be considered as a discrete channel. Be-

TRELLISES AS FINITE-STATE MACHINEScause of the hard-decision at the demodulator, the input and
output of the discrete channel are binary. The effects of noise

Much of the existing literature (11–13) uses set partitioningin the physical channel translates into bit errors in the dis-
and trellis structure of convolutional codes to describe trellis-crete channel. The job of channel coding is to correct errors
coded modulation. This may be attributed to the fact that thisby adding some redundancy to the bit stream. In other words,
approach was taken by Ungerboeck and Csjaka in their semi-error correcting codes systematically add new bits to the bit
nal paper where the foundation of coded modulation was laid.stream such that the decoder can correct some of the bit er-
In this exposition, the goal is to present the results with therors by using the structure of the redundancy. Of course, the
required background kept as small as possible. In this light,adding redundancy reduces the effective bit rate per trans-
we pursue a different line of thought and approach the topicmission bandwidth.
using finite-state machines.Before the seminal work of Ungerboeck and Csjaka, chan-

nel codes and modulation schemes were designed separately.
Error correcting codes were designed to have codewords with Finite-State Machines
large Hamming distance from each other. Modulation

A finite-state machine can be thought of as a three-tupleschemes utilize signal sets with maximum Euclidean dis-
M � (S , T , L ), where S , T , and L , respectively are referredtance. Since Hamming distance and Euclidean distance are
to as the set of states, the set of transitions, and the definingnot equivalent for most modulation schemes, designing modu-
alphabet of M . Each element of the set T is a transition (si,lation and coding scheme separately results in about 2 dB loss
se, l) with si, se � S and l � L . Such a transition is said toin SNR. In contrast, trellis-coded modulation is designed to
start in si, end in se, and is labelled with l. All transitionsmaximize Euclidean distance between the channel signal sets
starting from the same state, si, and ending at the sameby combining channel codes and modulation (Fig. 2). For a
state, se, are called parallel transitions. For each state s, the
number of transitions starting (respectively ending) in s is
called the out-degree (respectively the in-degree) of s.

The finite-state machine M is said to be regular if the in-
degrees and out-degrees of all the states of S are the same.
The machine M is binary if it is regular and if the out-de-
grees and in-degrees of elements of S as well as the number
of states of S are powers of 2. In this article, we are only
interested in binary machines.

The Trellis of a Binary Finite-State Machine

Every finite-state machine M has a trellis diagram T(M )
which is a graphical way to represent the evolution path of
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M . Let M denote a binary finite-state machine having 2n

states. A trellis diagram T(M ) of M is defined as a labelledFigure 2. Using trellis-coded modulation to combine channel coding
and modulation. directed graph having levels 0, 1, 2, 3, . . . . Each level of M
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merous other cases. A good general reference for trellis codes
is (14).

Trellis Codes for the Gaussian Channel

The design criterion (albeit an approximate one) for the
Gaussian channel is well established in the literature. In gen-
eral a code C is expected to perform well over a Gaussian
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channel if the codewords are as far from each other (in termsFigure 3. A four-state finite-state machine and the corresponding
of Euclidean distance) as possible. The computation of Euclid-trellis. Graphical equivalence between trellises and finite state ma-
ean distance of two codewords of a code is not that difficultchines is clearly visible.
and hence this criterion is tractable for design. To remove any
ambiguity, we mathematically define the distance between
two paths of T(M ) with the same starting and ending states.

has 2n states labelled 0, 1, . . ., 2n � 1 corresponding to, re- Without loss of generality, let us assume that the two paths
spectively, s0, s1, . . ., s2n

�1 elements of S . There is an edge emerge at time t � 0 and remerge at time t � t�. Suppose
labelled with l between state i of level k and j of level k � 1 that the branches are labelled c1

t and c2
t , t � 0, 1, . . ., t�, for

if and only if (si, sj, l) � T where i, j � 1, 2, . . ., 2n, k � 1, 2, the first and second path, respectively. Then, the distance be-
. . . and l � L . tween the two paths is defined by �t�

t�0 �c1
t � c2

t �2.Figure 3 shows an example of a finite-state machine M For the design of a trellis code M , the minimum of dis-
containing four states and the corresponding trellis diagram tances between any two paths of T(M ) that emerge from
T � T(M ). In Fig. 3, we only show the transitions between some state at some time and remerge at another state of the
different states (not the labels). One can use different labels trellis at a later time dominates the performance of the code.
on the transitions to construct different codes. This is the sub- This quantity is called the free distance of the trellis code.
ject of the next section. It is clear that given a trellis diagram Thus trellis codes that are useful for Gaussian channel must
T as defined, one can construct a finite-state machine M such have large free distances.
that T � T(M ) and vice versa. However, in pursuing such a design, we should take the

bandwidth requirements into account. Fixing the symbol du-
Trellis Codes ration (time to transmit a constellation symbols), the dimen-

sionality of the signal constellation directly relates to theA trellis code is the trellis of a binary finite-state machine
bandwidth requirement for the channel. This is a fundamen-where the alphabet L comes from a signal constellation hav-
tal result known as the Landau–Pollak–Slepian Theoreming unit average energy (we use unit average energy for all
(15,16). The consequence of this result is that a comparisonsignal constellations in this article). Practical signal modula-
between the free distances of two trellis codes is justified onlytion includes but is not restricted to the 4-PSK, 8-PSK, and
if they use signal constellations of same dimensionality.16-quadrature amplitude (16-QAM) constellations. In this

light, we only consider these signal constellations here.
Let M denote a trellis code with 2n states such that the in- An Ungerboek–Csjaka Idea

degree and out-degree of each state is 2R. Let T(M ) denote
Suppose that we would like to design a trellis code for thethe trellis of M and assume that at time zero the machine is
transmission of R bits per channel use. One way of transmis-at state zero. The trellis code M can be used to encode R bits
sion is using a trellis code M that has one state and use aof information at each time instance. At each time t � 0, 1, 2,
signal constellation S C having 2R elements. The 2R edges be-. . . a block of R bits of data denoted by B(t) arrives at the
tween the state of level t with that of t � 1 in T(M ) are la-encoder. Depending on the 2R possible values of this block of
belled with the different signal constellation symbols. Thisdata and the state si(t) of the machine at time t, a transition
trellis code is called the uncoded signal constellation S C . Thebeginning in that state such as (si(t), se(t � 1), l(t)) is chosen.
uncoded binary phase-shift keying (BPSK) constellation isThe trellis code then moves to the state se(t � 1) and outputs
given in Fig. 4. Clearly the free distance of the uncoded signall(t) the label of the transition. Thus, B(0)B(1)B(2) . . . is
constellation S C is the minimum distance between the pointsmapped to the codeword l(0)l(1)l(2) . . . . We let C(M ) denote
of S C .the set of all possible output sequences and also refer to it as

One way of obtaining larger free distances is to use a sig-the code of M when there is no ambiguity.
nal constellation having more than 2R elements for transmis-The alert reader notices that such an encoder may be com-
sion of R bits per channel use. In practice, it is good to doublepletely useless. Indeed, if all the transitions are labelled with
the constellation size while designing over the Gaussian chan-the same signal constellation symbol, all bit sequences will be
nels. As the dimensionality of the signal constellation is fixedmapped to the same codeword. Thus, it is important to design
and the number of signals in the constellation is doubled, wethe trellis code so that such a scenario is avoided.
can expect a reduction in minimum distance of the new con-The assignment of labels to transition in particular is what
stellation.determines the performance of a code over a transmission me-

dia. Thus, a performance criterion is needed before designing
a trellis code for real applications. In most of the situations,
an exact performance criterion is intractable for design and
a tractable approximate criterion is used instead. Tractable
approximate design criteria are known for the Gaussian chan- Figure 4. An uncoded BPSK constellation. Each point represents a

signal to be transmitted over the channel.nel, rapidly fading channel, slowly fading channel, and nu-
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As an example to transmit 1 bit per channel use we will
use a 4-PSK (Fig. 5) instead of BPSK constellation. The mini-
mum distance of the 4-PSK constellation is �2 while the min-
imum distance of the BPSK constellation is 2 (both have unit
average energy). Thus, there is a loss in minimum distance
by doubling the size of constellation. A Trellis code on 4-PSK
alphabet can only be useful as compared to the uncoded case
if it can compensate this loss by having a larger free distance
than 2.

Ungerboeck and Csjaka demonstrated that there exist trel-
lis codes that can outperform the uncoded signal constella-
tions. They also proposed mapping by set partitioning as the
machinery to construct these trellis codes.

MAPPING BY SET-PARTITIONING

{A0, A1, A2, A3}
{A0, A2}    {A1, A3}

{A0}  {A1}  {A2}  {A3}

Let S C be a signal set. Let S C 1 � S C such that �S C � the
Figure 6. Set partitioning for 4-PSK constellation. The partitioningnumber of elements of S C be a multiple of �S C 1�. A parti-
increases the minimum distance in each level.tioning of S C based on S C 1 is a collection �1 of disjoint sub-

sets of S C such that �1 contains S C 1 and �X��1
X � S C . Ele-

ments of �1 are called the cosets of S C 1 in S C . The concept
(where j � ��1) are used to represent the 4-PSK, 8-PSK,of partitioning can be extended to the nested chains of subsets
and 16-QAM constellations throughout this article.of S C .

As can be seen from Fig. 8, the minimum distances of theSpecifically, consider a decreasing chain of subsets of a sig-
partitions in the 16-QAM case increase by a factor of �2 fornal constellation S C
each level. By choosing appropriate signals from each parti-
tion level as the labels of transitions of a finite-state machine,S C = S C0 ⊇ S C1 ⊇ S C2 ⊇ . . . ⊇ S CJ
we could achieve very high free distances. This is the heart of
Ungerboeck–Csjaka design and is called mapping by set parti-such that �S C i� is a multiple of �S C i�1� for i � 0, 1, . . ., J �
tioning.1. Such a decreasing chain induces partitioning in each level.

The general heuristic rules established for design by Un-First, S C is partitioned into a set �1 of cosets of S C 1 in S C

gerboeck–Csjaka arewhich in particular contains S C 1. Each element of �1 con-
tains �S C 1� elements of S C . In a similar way, S C 1 can be

• Parallel transitions (those starting from and ending inpartitioned into cosets of S C 2 in S C 1 and the other elements
the same states) are assigned to signal points with maxi-of �1 can be partitioned into sets of cardinality �S C 2�. The re-
mum Euclidean distance.sult is �2, the collection of all the cosets of S C 2 in S C which

in particular includes S C 2. The process is then repeated for • The signal points should occur with the same frequency.
J times and all the cosets of S C i in S C j for 1 � j � i � J are • Transitions originating from and merging into any state
derived. In this article, we are only interested in partitions are assigned from elements of different cosets.
based on binary chains corresponding to the case when
�S C i�, i � 1, 2, . . ., J, are powers of two.

The central theme of the Ungerboeck–Csjaka paper (5) is
that given a binary set partitioning based on a decreasing
chain of subsets of S C as described, the minimum distance of
cosets of S C i in S C is a nondecreasing function of i. Indeed,
if the partitioning is done in a clever way, the distances can
substantially increase. Examples of such a set partitioning for
the 4-PSK, 8-PSK, and 16-QAM are given in Figs. 6, 7, and
8, respectively. The notations

Ak = cos(2πk/4) + sin(2πk/4)j,k = 0,1, 2, 3

Bk = cos(2πk/8) + sin(2πk/8)j,k = 0,1, 2, . . ., 7

Qk1 ,k2
= ((2k1 − 3) + (2k2 − 3)j)/

√
10,

k1 = 0, 1, 2, 3,k2 = 0,1, 2, 3

{B0, B1, B2, B3, B4, B5, B6, B7}
{B1, B3, B5, B7}   {B0, B2, B4, B6}

{B3, B7}  {B1, B7}    {B4, B6}   {B0, B4}
{B7}  {B3}  {B1}  {B5}  {B2}  {B6}  {B0}  {B4}

 
  

Figure 7. Set partitioning for 8-PSK constellation. The partitioningFigure 5. An uncoded 4-PSK constellation. Each point represents a
signal to be transmitted over the channel. increases the minimum distance in each level.
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Figure 8. Set partitioning for 16-QAM con-
stellation. The partitioning increases the mini-
mum distance in each level.

�Q0,3 , Q2,1 , Q0,1 , Q2,3 , Q1,2 , Q3,0 , Q1,0 , Q3,2 , Q0,0 , Q2,2 , Q0,2 , Q2,0 , Q1,1 , Q3,3 , Q1,3 , Q3,1�

" '
�Q0,3 , Q2,1 , Q0,1 , Q2,3 , Q1,2 , Q3,0 , Q1,0 , Q3,2� �Q0,0 , Q2,2 , Q0,2 , Q2,0 , Q1,1 , Q3,3 , Q1,3 , Q3,1�

" ' " '
�Q0,3 , Q2,1 , Q0,1 , Q2,3� �Q1,2 , Q3,0 , Q1,0 , Q3,2� �Q0,0 , Q2,2 , Q0,2 , Q2,0� �Q1,1 , Q3,3 , Q1,3 , Q3,1�

" ' " ' " ' " '
�Q0,3 , Q2,1� �Q0,1 , Q2,3� �Q1,2 , Q3,0� �Q1,0 , Q3,2� �Q0,0 , Q2,2� �Q0,2 , Q2,0� �Q1,1 , Q3,3� �Q1,3 , Q3,1�

" ' " ' " ' " ' " ' " ' " ' " '
�Q0,3� �Q2,1� �Q0,1� �Q2,3� �Q1,2� �Q3,0� �Q1,0� �Q3,2� �Q0,0� �Q2,2� �Q0,2� �Q2,0� �Q1,1� �Q3,3� �Q1,3� �Q3,1�

These rules follow the intuition that good codes should have To understand the implementation of the decoder, we first
symmetry and large free distances. Examples of 4-PSK, define the constraint length � (C) of a trellis code C(M ) to be
8-PSK, and 16-QAM codes are given in Tables 1–5. the minimum t such that there exists two paths of time length

From these tables, it is clear that by increasing the num- t starting at the same state and remerging at another state.
ber of states in the trellis, the free distance (and hence the Practically, we choose a multiple of � (C) depending on the
performance) can be improved. However, we will see that this decoding delay allowed in the application and refer to it as
has a penalty in terms of decoding complexity. the decoding depth �(C). We then proceed to execute the finite

Let us now consider an example. Consider the set parti- decoding depth Viterbi algorithm. At each stage of the algo-
tioning of the 8-PSK and the four-state trellis code given in rithm, for every possible state s of the encoder, a survivor
Table 3 based on the previous partitioning. As can be seen path Pt(s) of length �(C) and an accumulated metric mt(s) is
from the table, the labels of the transitions originating from preserved. We denote the possible states of the encoder by si,
each state of the trellis belong to the same coset while those i � 0, 1, . . ., 2n � 1, and the received signal at time t by rt.
of distinct states belong to different cosets. The design has We always follow the convention that the encoder is in the
a lot of symmetries as it is expected that good codes should zero state at time zero.
demonstrate a lot of symmetries. It can be easily shown that The decoder starts by setting m0(s0) � 0 and m0(si) � � for
free distance of the previous trellis code is �2 times the mini- all i � 1, 2, . . ., 2n � 1. In practice, one can choose a large
mum distance of a 4-PSK constellation. This translates into number instead of �. Further, at the beginning of the decod-
3-dB asymptotic gain (in SNR). In general the asymptotic ing process, the decoder sets the survivor paths Pt(si), i � 0,
gain of a trellis code with rate R bits per channel use (2R�1 1, 2, . . ., 2n � 1, to be the void string. In other words, at the
elements in the constellation) over an uncoded constellation beginning of the decoding nothing is saved as the survivor
with the same rate is defined by 10 log d2

free/d2
min where dfree is paths of each state.

the minimum free distance of the code and dmin is the mini- The decoder then starts decoding by computing the branch
mum distance between the uncoded constellation elements. metrics of each branch at time t � 0, 1, 2, 3, . . . . Suppose

Figures 9 and 10 give information about the coding gain that a branch at time t is labelled with ct, then the metric of
versus the number of states of best 8-PSK and 16-QAM trellis this branch is �rt � ct�2. The decoder computes for each state
codes known for transmission of 2 and 3 bits/channel use, re- si, the sum of the accumulated metric mt(sj) and the branch
spectively. metric of any state sj with any branch starting at state sj at

time t and ending in state si at time t � 1. The decoder then
computes the minimum of all these possible sums and setsDECODING TRELLIS CODES: THE DYNAMIC
mt�1(sj) to be this minimum. If this minimum is given by thePROGRAMMING ALGORITHM
state i at time t and some branch bt, the survivor path
Pt�1(sj) is given by the path Pt(si) continued by the branch bt.Decoding trellis codes is usually done through the dynamic
This process is then repeated at each time.programming algorithm also known as the Viterbi algorithm.

The decoder starts outputting decision bits after time t �The Viterbi algorithm is in some sense an infinite algorithm
�(C), where �(C) denotes the decoding depth. At each timethat decides on the path taken by the encoder. This was
t � �(C), the decoder looks at the survivor path of the stateproved to be optimum for sequence estimation by Forney.
with the lowest accumulated metric. The decoder outputs theHowever, in practice one has to implement a finite version of
sequence of bits corresponding to the branch of path at timethe algorithm. Naturally, only practice is of interest here.
t � �(C). In this way, a decoding delay of �(C) must be tol-
erated.

MULTIDIMENSIONAL TRELLIS CODES

The trellis codes constructed in the previous section use an
element of a two-dimensional constellation for labels. It is nei-
ther necessary to have a two-dimensional constellation nor
only one symbol of the constellation per label of transitions.
This gives rise to multidimensional trellis codes or M-TCM
codes.

Table 1. A 4-State 4-PSK Trellis Code

se � 0 se � 1 se � 2 se � 3

si � 0 A0 A2

si � 1 A1 A3

si � 2 A2 A0

si � 3 A3 A1

Note: The states si and se are, respectively, the beginning and ending states.
The corresponding transition label is given in the table. Blank entries represent
transitions that are not allowed.
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Table 2. An 8-State 4-PSK Trellis Code

se � 0 se � 1 se � 2 se � 3 se � 4 se � 5 se � 6 se � 7

si � 0 A0 A2

si � 1 A1 A3

si � 2 A2 A0

si � 3 A3 A1

si � 4 A0 A2

si � 5 A1 A3

si � 6 A2 A0

si � 7 A3 A1

Note: The states si and se are, respectively, the beginning and ending states. The corresponding
transition label is given in the table. Blank entries represent transitions that are not allowed.

Table 3. A 4-State 8-PSK Trellis Code

se � 0 se � 1 se � 2 se � 3

si � 0 B0 , B4 B2 , B6

si � 1 B1 , B5 B3 , B7

si � 2 B2 , B6 B0 , B4

si � 3 B3 , B7 B1 , B5

Note: The states si and se are, respectively, the beginning and ending states.
The corresponding possible transition labels are given in the table. Blank en-
tries represent transitions that are not allowed.

Table 4. An 8-State 8-PSK Trellis Code

se � 0 se � 1 se � 2 se � 3 se � 4 se � 5 se � 6 se � 7

si � 0 B0 B4 B2 B6

si � 1 B1 B5 B3 B7

si � 2 B4 B0 B6 B2

si � 3 B5 B1 B7 B3

si � 4 B2 B6 B0 B4

si � 5 B3 B7 B1 B5

si � 6 B6 B2 B4 B0

si � 7 B7 B3 B5 B1

Note: The states si and se are, respectively, the beginning and ending states. The corresponding
possible transition labels are given in the table. Blank entries represent transitions that are
not allowed.

Table 5. A 4-State 16-QAM Trellis Code

se � 0 se � 1 se � 2 se � 3

si � 0 Q1,3 , Q3,3 , Q1,1 , Q3,1 Q0,0 , Q0,2 , Q2,0 , Q2,2

si � 1 Q0,1 , Q0,3 , Q2,1 , Q2,3 Q1,0 , Q1,2 , Q3,0 , Q3,2

si � 2 Q0,0 , Q0,2 , Q2,0 , Q2,2 Q1,3 , Q3,3 , Q1,1 , Q3,1

si � 3 Q1,0 , Q1,2 , Q3,0 , Q3,2 Q0,1 , Q0,3 , Q2,1 , Q2,3

Note: The states si and se are, respectively, the beginning and ending states. The corresponding possible transition labels are given in the table. Blank entries
represent transitions that are not allowed.
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achieve higher coding gains but have other implementation
problems including the design of slicer and increased decod-
ing complexity.

Trellis ideas were also applied to quantization giving rise
to trellis-coded quantization which can be used to quantize
various sources (19,20).

In general, we believe that a fruitful area of research may
be the study of implementation issues of trellis codes over
channels with ISI and non-Gaussian channels in the presence
of various impairments due to practical situations. There is a
well-established body of literature on this topic (21,22) but we
believe that there is a lot more to be done.
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Figure 9. Asymptotic coding gain of coded 8-PSK over uncoded 4-
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