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SIGNAL DETECTION THEORY

In remote sensing and communications, we are often required
to decide whether a particular signal is present—or to distin-
guish among several possible signals—on the basis of noisy
observations. For example, a radar transmits a known elec-
tromagnetic signal pulse into space and detects the presence
of targets (e.g., airplanes or missiles) by the echoes which
they reflect. In digital communications, a transmitter sends
data symbols to a distant receiver by representing each sym-
bol by a distinct signal. In automatic speech recognition, an
electrical microphone signal is processed in order to extract a
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sequence of phonemes, the elementary sounds that make up scribes an observation Y. For simplicity, consider the problem
of deciding between two models, ‘‘target present’’ or ‘‘targetspoken language. Similar problems arise in sonar, image pro-

cessing, medical signal processing, automatic target recogni- absent.’’ Suppose the probability density function (pdf) of Y is
given by p1(y) when the target is present and by p0(y) whention, radio astronomy, seismology, and many other applica-

tions. the target is absent. The problem of deciding whether Y is
best modeled by p0(y) or p1(y) can be expressed as a choiceIn each of these applications, the signal received is typi-

cally distorted and corrupted by spurious interference, which between two hypotheses:
complicates the task of deciding whether the desired signal is
present. In particular, the received signal in radar and com-
munication systems inevitably contains random fluctuations,

H0 : Y has pdf p0(y) (target absent)

H1 : Y has pdf p1(y) (target present)
(1)

or noise, due to the thermal motion of electrons in the receiver
and ions in the atmosphere, atmospheric disturbances, elec- where H0 is often called the null hypothesis and H1 is the al-
tromagnetic clutter, and other sources. This noise component ternative hypothesis. A detector (or decision rule or hypothesis
is inherently unpredictable; the best we can do is to describe test) is a procedure for deciding which hypothesis is true on
it statistically in terms of probability distributions. In some the basis of the observation Y. More precisely, a detector is a
situations, the desired signal may also be distorted in unpre- function that assigns to each possible observation Y � y a
dictable ways—by unknown time delays, constructive and de- decision d(y) � H0 or H1. There are two possible ways for the
structive interference of multiple signal reflections, and other detector to make an error: It may conclude that a target is
channel impairments—and may be best modeled as a ran- present when there is none (a false alarm), or it may decide
dom process. that no target is present when in fact there is one (a miss).

The task of the receiver is to decide whether the desired The performance of a detector d can therefore be measured
signal is present in an observation corrupted by random noise by two quantities, the probability of false alarm PF(d) and the
and other distortions. The mathematical framework for deal- probability of a miss PM(d). Ideally, we would like to make
ing with such problems comes from the field of hypothesis test- both error measures as small as possible; however, these are
ing, a branch of the theory of statistical inference. In engi- usually conflicting objectives in the sense that reducing one
neering circles, this is also called detection theory because of often increases the other. In order to determine which detec-
its early application to radar problems. Detection theory pro- tor is best for a particular application, we must strike a bal-
vides the basis for the design of receivers in communication ance between PF(d) and PM(d) which reflects the relative im-
and radar applications, algorithms for identifying edges and portance of these two types of errors.
other features in images, algorithms for parsing an electrical Several methods can be used to weigh the relative impor-
speech signal into words, and many other applications. tance of PF(d) and PM(d). If the prior probabilities of the

In addition to deciding whether a signal is present, we of- hypotheses are known, say � � Pr�H0� � 1 � Pr�H1�, it is
ten want to estimate real-valued parameters associated with natural to seek a minimum-probability-of-error detector—that
the signal, such as amplitude, frequency, phase, or relative is, one that minimizes the average error probability:
time delay. For example, once a target has been detected, a
radar will typically attempt to determine its range by esti- πPF(d) + (1 − π)PM(d)

mating the round-trip propagation delay of the pulse echo.
Such detectors are appropriate in digital communication re-Problems of this type are the province of estimation theory, a
ceivers where the hypotheses represent the possible transmit-field of statistical inference closely related to detection theory.
ted data symbols and where the goal is to minimize the aver-In essence, detection theory deals with the problem of decid-
age number of errors that occur in a series of transmissions.ing among a finite number of alternatives, whereas estima-
More generally, when the two kinds of errors are not equallytion theory seeks to approximate real-valued signal param-
serious, we can assign a cost Cij to choosing hypothesis Hieters.
when Hj is actually true (i, j � 0, 1). A detector that mini-This article provides an overview of the basic principles
mizes the average cost (or risk) is called a Bayes detector. Itand selected results of signal detection theory. The subject
sometimes happens that the prior probabilities of H0 and H1of estimation theory is treated elsewhere in this volume (see
are not known, in which case the Bayes and minimum-proba-ESTIMATION THEORY). A more complete and detailed treatment
bility-of-error detectors cannot be applied. In this case, it of-of both topics can be found in Refs. 1 and 2. In the next sec-
ten makes sense to choose a detector that minimizes the aver-tion, we introduce some fundamental concepts that underlie
age cost for the worst prior probability—for example, one thatthe design of optimal detection procedures. In succeeding sec-
minimizestions, we apply these concepts to the problem of detecting sig-

nals in additive Gaussian noise. Finally, we close with a dis-
cussion of selected advanced topics in detection theory. max

0≤π≤1
πPF(d) + (1 − π)PM(d) = max{PF(d), PM(d)}

The resulting detector is called a minimax detector. Finally,
BASIC PRINCIPLES

in other circumstances it may be difficult to assign costs or
prior probabilities. In radar, for example, what is the prior

Simple Hypotheses
probability of an incoming missile, and what numerical cost
is incurred by failing to detect it? In situations like this, itThe design of optimal receivers in radar and communications

is based on principles from the theory of statistical hypothesis seems inappropriate to weigh the relative importance of false
alarms and misses in terms of numerical costs. An alternativetesting. The fundamental problem of hypothesis testing is to

decide which of several possible statistical models best de- approach is to seek a detector that makes the probability of
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a miss as small as possible for a given probability of false minimizes PM(d��) for each � over all detectors with a given
false-alarm probability, max� PF(d��) � �. A detector with thisalarm:
property is said to be uniformly most powerful. When a uni-
formly most powerful detector does not exist, it is natural tominimize PM(d) subject to PF(d) ≤ α

use an estimate �̂ of the unknown parameter derived from the
A detector of this type is called a Neyman–Pearson detector. observation Y � y. The most commonly used estimates are

Remarkably, all of the optimal detectors mentioned above maximum likelihood estimates, which are defined as the value
take the same general form. Each involves computing a likeli- of � that maximizes the conditional probability density of the
hood ratio from the received observation observation:

pi(y|θ̂i ) = max
θ

pi(y|θ ), i = 0, 1	(y) = p1(y)

p0(y)
(2)

Substituting the maximum likelihood estimates �̂0 and �̂1 into
and comparing it with a threshold �. When Y is observed, the the likelihood ratio, we obtain the generalized likelihood ratio
detectors choose H1 if �(Y) � � and choose H0 if �(Y) � �. This (GLR):
detector can be expressed concisely as

	G(y) = maxθ p1(y|θ )

maxθ p0(y|θ )	(Y )
H1
�
H0

τ (3)

Detectors based on the GLR take the same form as the likeli-
hood ratio detector [Eq. (3)], with �G(y) substituted for �(y).When �(Y) � �, minimax and Neyman–Pearson detectors

may involve a random decision, such as choosing H0 or H1
Multiple Hypotheses and Observationsbased on the toss of a biased coin. The minimum-probability-

of-error, Bayes, minimax, and Neyman–Pearson detectors Each of the detectors described above extends in a straightfor-
mentioned earlier differ only in their choice of threshold � and ward way to a sequence of observations Y � (Y1, . . ., Yn). In
behavior on the boundary �(Y) � �. this case, the hypotheses become

Composite Hypotheses

Thus far we have assumed that the probability distribution

H0 : YYY has pdf p0(y1, . . ., yn) (target absent)

H1 : YYY has pdf p1(y1, . . ., yn) (target present)
of Y is known perfectly under both hypotheses. It is very com-

Again, the minimum-probability-of-error, Bayes, minimax,mon, however, for a signal to depend on parameters that are
and Neyman–Pearson detectors are of the form shown in Eq.not known precisely at the detector. In radar, for example,
(3), where the likelihood ratio issince the distance to the target is not known at the outset, the

radar pulse will experience an unknown propagation delay as
it travels to the target and back. In digital communications,
the phase of the carrier signal is often unknown to the re-

	(y1, . . ., yn) = p1(y1, . . ., yn )

p0(y1, . . ., yn )

ceiver. In such situations, the hypothesis ‘‘target present’’ cor-
The generalized likelihood ratio detector also extends in anresponds to a collection of possible probability distributions,
analogous way.rather than one. A hypothesis of this type is called a compos-

We have so far considered only detection problems involv-ite hypothesis, in contrast to a simple hypothesis in which Y is
ing two hypotheses. In some situations there may be moredescribed by a single pdf.
than two possible models for the observed data. For example,Let � denote an unknown parameter associated with the
digital communication systems often use nonbinary signalingobservation, and let p0(y��) and p1(y��) denote the conditional
techniques in which one of M possible symbols is transmittedprobability densities of Y given � under H0 and H1, respec-
to the receiver in each unit of time. The receiver then has Mtively. In some cases, it may be appropriate to model � as a
hypotheses from which to choose, one corresponding to eachrandom variable with known probability densities q0(�) and
possible transmitted symbol. The hypothesis-testing problemq1(�) under hypothesis H0 and H1, respectively. In such cases,
can then be expressed asthe composite hypothesis testing problem is equivalent to a

simple hypothesis testing problem with probability densities
Hi : Y has pdf pi(y), i = 0, . . ., M − 1

In such situations, we are usually interested in finding a min-p0(y) =
∫

θ

p0(y|θ )q0(θ ) dθ, p1(y) =
∫

θ

p1(y|θ )q1(θ ) dθ (4)

imum-probability-of-error detector for some given prior proba-
bilities �i � Pr�Hi�, i � 0, . . ., M � 1. The average probabilityand the optimal detectors are again of the form shown in Eq.
of error for a detector d is given by(3). If � is a random variable with unknown probability densi-

ties under H0 and H1, we can follow a minimax-type approach
and look for the detector that minimizes the worst-case aver-
age cost over all probability densities q0(�) and q1(�).

M−1∑
i=0

Pr{d(Y ) 	= Hi|Hi is true}πi (5)

When � cannot be modeled as a random variable, the situa-
tion is more complex. Occasionally, there exists a detector This error probability is minimized by the maximum a posteri-

ori probability (MAP) detector, which chooses the hypothesisthat is simultaneously optimal for all �, in the sense that it
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that is most probable given the observation Y � y. Mathemat- It is easy to verify that �(y) is a monotonically increasing
function of the test statisticically, the MAP detector takes the form

d(y) = Hi that maximizes q(Hi|y) (6) n∑
i=1

yisi − 1
2

n∑
i=1

s2
i (9)

where

Thus, the likelihood ratio detector [Eq. (3)] can be expressed
in the equivalent formq(Hi|y) = pi(y)πi

p(y)
, p(y) =

∑
i

pi(y)πi

is the conditional probability of hypothesis Hi given the obser-
vation Y � y. In digital communications, the possible trans-

n∑
i=1

YiSi

H1
�
H0

τ ′ (10)

mitted symbols are often equally likely (�i � 1/M, i � 1, . . .,
M � 1), in which case the MAP detector reduces to the maxi- where the quadratic term in Eq. (9) has been merged with the
mum likelihood (ML) detector threshold �. The optimal receiver thus consists of correlating

the received sequence against the desired signal and compar-
d(y) = Hi, where i maximizes pi(y) (7) ing the result to a threshold. A receiver of this type is called

a correlation receiver.
It is easy to check that the MAP and ML detectors reduce to This receiver extends in a natural way to continuous-time
likelihood ratio detectors when M � 2. detection. The correlation receiver extends in a natural way

The results presented in this section form the basis for the to continuous-time detection problems. A proof of this exten-
design of optimal receivers for a wide variety of communica- sion is nontrivial and requires generalizing the likelihood ra-
tions and remote sensing problems. In the following sections, tio to continuous-time observations (see Chapter 6 of Ref. 1
we apply these results to the problem of detecting signals in for details). Consider the signal detection problem
noise. In the process, we obtain several of the most important
and widely used receivers in communications and radar as
particular instances of the likelihood ratio detector [Eq. (3)].

H0 : Y (t) = N(t), 0 ≤ t < T

H1 : Y (t) = s(t) + N(t), 0 ≤ t < T

DETECTION OF KNOWN SIGNALS IN NOISE where s(t) is a known deterministic signal and N(t) is a con-
tinuous-time white Gaussian noise process with two-sided

We now consider the problem of detecting the presence or ab- power spectral density N0/2 (see KALMAN FILTERS AND OBSERV-
sence of a discrete-time signal observed in noise. A detector ERS). The likelihood ratio is again a monotonically increasing
for this purpose is also called a receiver in the terminology of function of a correlation statistic
radar and communications. We assume for now that both the
signal and the noise statistics are known precisely at the re-
ceiver, in which case the detection problem can be expressed

∫ T

0
y(t)s(t)dt − 1

2

∫ T

0
s2(t) dt (11)

as a choice between the simple hypotheses:

Merging the second term with the threshold, we again find
that the likelihood ratio detector is a correlation receiver,

H0 : Yi = Ni, i = 1, . . ., n

H1 : Yi = si + Ni, i = 1, . . ., n which is illustrated in Fig. 1.
The correlation in Fig. 1 can also be expressed as a filter-where si, i � 1, . . ., n is a deterministic signal and Ni, i � 1,

ing operation:. . ., n is a white Gaussian noise sequence—that is, a se-
quence of independent and identically distributed (i.i.d.)
Gaussian random variables with mean zero and variance

∫ T

0
y(t)s(t) dt =

∫ ∞

−∞
h(T − t)y(t) dt

�2 � 0. Thus, the probability densities of Y � (Y1, . . ., Yn)
under both hypotheses are multivariate Gaussian where

where h(t) � s(T � t), 0 � t � T. Here h(t) can be regarded
as the impulse response of a linear time-invariant filter. The
frequency response of this filter is given by the Fourier trans-p1(yyy) = 1

(2πσ 2)n/2
exp

{
− 1

2σ 2

n∑
i=1

(yi − si)
2

}
(8)

form of h(t):

and p0(y) is given by the same formula, with the si’s set to H( f ) = S∗( f )e−2π j f T

zero.
From the previous section, we know that each of the opti-

mal detectors (minimum probability of error, Bayes, minimax,
Neyman–Pearson) reduces to a likelihood ratio detector [Eq.
(3)]. From Eq. (8), the likelihood ratio for this problem takes
the form

Threshold∫ (·) dt
T

0

Y(t)

s(t)

Figure 1. Correlation receiver.

	(yyy) = exp

{
− 1

2σ 2

n∑
i=1

[(yi − si )
2 − y2

i ]

}
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is often unrealistic in practice. Unknown path losses, Doppler
shifts, and propagation delays can lead to uncertainty about
the amplitude, phase, frequency, and delay of the signal.

ThresholdY(t) H(f)
Sampling
at t = T When signal parameters are unknown, the detection problem

Figure 2. Matched filter receiver. involves composite hypotheses. As discussed earlier, detection
procedures for composite-hypothesis testing depend on
whether the unknown parameter is modeled as random or

where S*( f) is the complex conjugate of the Fourier transform deterministic. In this section, we consider only the example of
of s(t). The correlation receiver can therefore be implemented an unknown random parameter.
in the form of a filter sampled at time t � T, as illustrated in Many radar and communication problems involve detec-
Fig. 2. tion of a sinusoidal signal with an unknown phase. The phase

Since the amplitude of the filter H( f) matches the signal is typically modeled as a random variable �, uniformly dis-
spectrum S( f), this form of the detector is called a matched- tributed on [0, 2�). For example, consider the discrete-time
filter receiver. The matched filter has the property that it max- binary detection problem:
imizes the signal-to-noise ratio (the ratio of signal power to
noise power) at the input to the threshold operation (see Ref.
2).

H0 : Yi = Ni, i = 1, · · ·, n

H1 : Yi = A cos(ωiTs + �) + Ni, i = 1, . . ., n
The receiver in Fig. 1 is optimal for deciding whether a

known signal is present or absent in white Gaussian noise. where A is a known constant, Ts is the sampling interval, �
Very similar correlation structures appear in receivers for is a frequency such that n�Ts is an integer multiple of 2�,
deciding among several possible signals. For a detection prob- and Ni is a discrete-time white Gaussian noise sequence
lem involving M possible signals, the minimum-probability- which is independent of �. The likelihood ratio for this detec-
of-error detector will compare the outputs of a bank of M tion problem is given by Eqs. (3) and (4). Given � � �, the
correlation branches, one for each possible signal. For exam- conditional probability density of Y under H1 is
ple, consider the problem of deciding between two equally
likely (�0 � �1 � ��) signals in white Gaussian noise:

p1(yyy|θ ) = 1
(2πσ 2)n/2

exp

{
− 1

2σ 2

n∑
i=1

[yi − A cos(ωiTs + θ )]2

}
H0 : Y (t) = s0(t) + N(t), 0 ≤ t < T

H1 : Y (t) = s1(t) + N(t), 0 ≤ t < T
and the unconditional pdf is given by

The receiver that minimizes the average probability of error
[Eq. (5)] in this case is the maximum likelihood detector. p1(yyy) = 1

2π

∫ 2π

0
p1(yyy|θ ) dθ

When Y(t) � y(t) is received, the ML detector chooses the hy-
pothesis Hi such that s(t) � si(t) maximizes the correlation

After some manipulation, the likelihood ratio reduces tostatistic [Eq. (11)]. Thus, the optimal receiver consists of a
correlation receiver with a branch for each possible transmit-
ted signal, as illustrated in Fig. 3 [where Ei is the energy of
si(t)].

	(yyy) = p1(yyy)

p0(yyy)
= exp

{
−A2n

4σ 2

}
I0

�Aq
σ 2

�

As in the case of one signal, the correlation receiver in Fig.
where3 can be implemented in the alternative form of a bank of

matched filters, each sampled at t � T.

DETECTION OF SIGNALS WITH UNKNOWN PARAMETERS
q2 =

[
n∑

i=1

yi cos(ωiTs)

]2

+
[

n∑
i=1

yi sin(ωiTs)

]2

(12)

andIn the preceding section, we assumed that the desired signal
is known precisely at the receiver. However, this assumption

I0(x) = 1
2π

∫ 2π

0
exp{x cos θ} dθ

is a modified Bessel function of the first kind. Since I0(x) is
symmetric in x and monotonically increasing for x 	 0, the
likelihood ratio is an increasing function of the quadrature
statistic [Eq. (12)], and the likelihood ratio detector [Eq. (3)]
can be expressed in the alternate form:

q2
H1
�
H0

τ ′

This detector is called a quadrature receiver. It consists of cor-

∫ (·) dt
T

0

∫ (·) dt
T

0

s1(t)

s0(t)

–E1/2

–E0/2
Y(t) Choose

largest

relating the received signal with two phase-shifted versions
of the desired signal, cos(�iTs) and sin(�iTs). The two correla-Figure 3. Correlation receiver for binary signals.



274 SIGNAL DETECTION THEORY

where S � (S1, . . ., Sn) is a zero-mean Gaussian random se-
quence with known covariance E�SST� � �, Ni is discrete-time
white Gaussian noise, E� � � denotes the expectation, and T
denotes transpose. Note that Y is a zero-mean Gaussian vec-
tor under hypotheses H0 and H1, with respective covariances
� 2I and � 2I � �. The likelihood ratio is then

	(yyy) = |III + σ −2|−1/2 exp
{
−1

2
yyyT (σ 2III + )−1yyy + 1

2
yyyT (σ 2III)−1 yyy

}

Since this is a monotonically increasing function of the test

∫ (·) dt
T

0

(·)2

(·)2∫ (·) dt
T

0

cos(  t)

Y(t)
Compare

to
threshold

ω

sin(  t)ω

statistic yTQy, where
Figure 4. Quadrature receiver.

Q = III − (III + σ −2)−1 = (σ 2III + )−1 (13)

the likelihood ratio detector [Eq. (3)] can be expressed astions are then squared, summed, and compared to a
threshold.

This detector extends in a straightforward way to the de-
tection of continuous-time sinusoidal signals with random

YYY T QYYY
H1
�
H0

τ ′

phase. Consider the detection problem

This detector is called a quadratic receiver. In the particular
case when the desired signal is also a white noise process (i.e.,
� � �2I), the quadratic receiver statistic yTQy is proportional

H0 : Y (t) = N(t), 0 ≤ t < T

H1 : Y (t) = A cos(ωt + �) + N(t), 0 ≤ t < T
to �y�2 and the likelihood ratio detector reduces to

where � is a random phase uniformly distributed on [0, 2�),
A is a constant, � is an integer multiple of 2�/T, and N(t) is
white Gaussian noise. The likelihood ratio detector reduces to ‖YYY‖2

H1
�
H0

τ ′′

a threshold test involving the quadrature statistic:

Since �y�2 is proportional to the average energy in the se-
quence y, this detector is called an energy detector or radi-
ometer.

[∫ T

0
y(t) cos(ωt) dt

]2

+
[∫ T

0
y(t) sin(ωt) dt

]2

In continuous time, the likelihood ratio detector takes a
more complex but analogous form. Consider the problem ofThe resulting continuous-time quadrature receiver is illus-
deciding among the hypothesestrated in Fig. 4.

DETECTION OF RANDOM SIGNALS
H0 : Y (t) = N(t), 0 ≤ t < T

H1 : Y (t) = S(t) + N(t), 0 ≤ t < T

So far we have assumed the receiver knows the desired signal
where S(t) is a zero-mean Gaussian noise process with autoco-exactly, with the possible exception of specific parameters
variance functionsuch as amplitude, phase, or frequency. However, sometimes

the received signal may be so distorted by the channel that it
C(t, u) = E{S(t)S(u)}must be modeled by a more complex type of random process.

In certain situations, for example, the transmitted signal
and N(t) is a white Gaussian noise process with one-sidedpropagates to the receiver by many different paths due to sig-
power spectral density N0/2. The likelihood ratio detector fornal reflection and scattering. In such cases, the received sig-
this problem can also be expressed in terms of a quadraticnal consists of many weak replicas of the original signal,
statisticcalled multipath signals, with different amplitudes and rela-

tive time delays. The superposition of these multipath signals
can resemble a Gaussian random process statistically. Typical
examples include channels that use ionospheric reflection or

∫ T

0

∫ T

0
Q(t, u)Y (t)Y (u)dt du

tropospheric scattering as a primary mode of propagation,
and land mobile radio, where scattering and reflection by where Q(t, u) is the solution to the integral equation
nearby ground structures can produce a similar effect.

In this section, we consider the problem of detecting sig-
nals that are described by random processes. We again begin C(t, u) =

∫ T

0
Q(t, ξ )C(ξ, u) dξ + N0

2
Q(t, u), 0 ≤ t, u < T

by considering a discrete-time detection problem:

This equation is a continuous-time analog of Eq. (13), as can
be seen by writing Eq. (13) in the alternative form � � Q� �
� 2Q.

H0 : Yi = Ni, i = 1, . . ., n

H1 : Yi = Si + Ni, i = 1, . . ., n
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ADVANCED TOPICS While the receivers presented in this article can be used in
the presence of non-Gaussian noise, they are not optimal for

Detection in Colored Gaussian Noise this purpose and may perform poorly in comparison to the
likelihood ratio detector [Eq. (3)] based on the actual non-

In the preceding sections, we assumed white Gaussian noise
Gaussian noise statistics. In contrast to the simple linear cor-

models for both the discrete and continuous-time detection
relation operations that arise in Gaussian detection problems,

problems. When the noise is Gaussian but not white, we can
optimal detectors for non-Gaussian noise often involve more

transform the detection problem into an equivalent problem
complicated nonlinear operations. A thorough treatment of

involving white noise. For example, suppose we are interested
detection methods for i.i.d. non-Gaussian noise can be found

in detecting a known signal s � (s1, . . ., sn), Kassam (3). A recent survey of detection techniques for de-
pendent non-Gaussian noise sequences is given in Poor and
Thomas (4).

H0 : YYY = NNN

H1 : YYY = sss + NNN
Nonparametric Detection

where N is a zero-mean Gaussian noise vector with positive-
Throughout this article, we have assumed the receiver knowsdefinite covariance matrix �N. Using the Cholesky decomposi-
the probability density of the observation under each hypoth-tion (see p. 84 of Ref. 1), the noise covariance can be written
esis, with the possible exception of a real-valued parameter �.in the form
Under this assumption, the detection problem is a choice be-
tween composite hypotheses that each represents a collectionN = CCT

of possible densities, say

where C is an n � n nonsingular lower-triangular matrix. �0 = {p0(y|θ ) : θ ∈ �0}, �1 = {p1(y|θ ) : θ ∈ �1}
Since C is invertible, it is intuitive that no information is lost
by taking the observation to be Y � C�1Y instead of Y. The This is called a parametric model, because the set of possible
detection problem can then be expressed as probability distributions under both hypotheses can be in-

dexed by a finite number of real parameters.
In practice, however, precise models for the signal and the

underlying noise statistics are frequently not available. In

H0 : Y ′Y ′Y ′ = N ′N ′N ′

H1 : Y ′Y ′Y ′ = s′s′s′ + N ′N ′N ′

such cases, it is desirable to find detectors that perform well
for a large class of possible probability densities. When thewhere s � C�1s and N � C�1N. It is easy to verify that N is
probability classes �0 and �1 are so broad that a parametrica white Gaussian noise vector with covariance �N� � I; thus,
model cannot describe them, the model is said to be nonpara-the likelihood ratio detector is the correlation receiver [Eq.
metric. In general, nonparametric detection methods may be(10)]. Here, the overall approach is to prewhiten the original
classified as robust or simply nonparametric depending on thedetection problem, by transforming it to an equivalent prob-
breadth of the underlying probability classes �0 and �1.lem involving white noise. After prewhitening, the detection

In robust detection, the probability densities of the observa-problem can be solved by the methods described in the previ-
tion are known approximately under each hypothesis and theous sections.
aim is to design detectors that perform well for small devia-A similar prewhitening procedure can be performed for
tions from these densities. Usually, the probability classescontinuous-time detection problems. Let N(t) be a zero-mean
�0 and �1 consist of small nonparametric neighborhoods ofcolored Gaussian noise process with known autocovariance
the nominal probability densities. One widely studied modelfunction R(t, u) � E�N(t)N(u)�. Under mild conditions on R(t,
for these neighborhoods is the 
-contamination classu), there is a whitening filter h(t, u) with the property that

�i = {p(y) : p(y) = (1− ∈)pi(y)+ ∈ h(y)}, i = 0, 1

where pi(y) is the nominal probability density under hypothe-
N ′(t) =

∫ T

0
h(t, u)N(u)du, 0 ≤ t < T

sis Hi, 0 � 
 � 1 is small enough so that �0 and �1 do not
is a white Gaussian noise process with unit power spectral overlap, and h(y) is an arbitrary probability density. In robust
density. This filter can be used to transform a detection prob- detection, the performance of a detector d is typically mea-
lem involving N(t) into an equivalent problem involving white sured by worst-case performance over all probability densities
Gaussian noise. in �0 and �1. Optimal detectors are those that yield the best

worst-case performance. For 
-contamination models, the op-
timal robust detector consists of a likelihood ratio detector forDetection in Non-Gaussian Noise
the nominal probability densities that includes some type of

We have thus far focused exclusively on Gaussian noise mod- soft-limiting operation. For example, a robust form of the cor-
els. Gaussian processes can accurately model many important relation receiver (appropriate for small deviations from the
noise sources encountered in practice, such as electrical noise Gaussian noise model) is obtained by replacing Yisi with
due to thermal agitation of electrons in the receiver electron- g(Yisi) in Eq. (10), where g is a soft-limiter of the form
ics, radio emissions from the motion of ions in the atmo-
sphere, and cosmic background radiation. However, other
sources of noise are not well described by Gaussian distribu-
tions, such as impulsive noise due to atmospheric distur-
bances or radar clutter.

g(x) =




b if x > b
x if a < x < b
a if x < a
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An extensive survey of the robust detection literature prior to and by Srinath, Rajasekaran, and Viswanathan (2). Further
information on the applications of detection theory in commu-1985 can be found in Kassam and Poor (5).

The term nonparametric detection is usually reserved for nications and radar is contained in the books by Proakis (7)
and by Nathanson (8).situations in which very little is known about the probability

distribution of the underlying noise, except perhaps that it is Current research in signal detection and its applications is
published in a wide variety of journals. Perhaps chief amongsymmetric and possesses a probability density. In such situa-

tions, the aim is to develop detectors that provide a guaran- these are the IEEE Transactions on Information Theory, IEEE
Transactions on Signal Processing, and the IEEE Transactionsteed false-alarm probability over very wide classes of noise

distributions. The simplest nonparametric detector is the sign on Communications.
detector, which counts the number of positive observations in
a sequence and compares it to a threshold. It can be shown
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North Carolina State Universitybetween the two hypotheses

H0 : Yi is i.i.d. with pdf p0(y), i = 1, 2, . . .

H1 : Yi is i.i.d. with pdf p1(y), i = 1, 2, . . .

using the smallest average number of observations necessary
to achieve a probability of false alarm PF and probability of
miss PM. The SPRT involves testing the accumulated data
after each observation time j � 1, 2, . . .. The test statistic at
time j consists of the likelihood ratio of all observations up to
that time, that is,

	 j (y1, . . ., yj ) =
∏ j

i=1 p1(yi)∏ j
i=1 p0(yi)

At time j, we calculate �j(Y1, . . ., Yj) and compare it to two
thresholds, �0 and �1. If �j 	 �1 we decide in favor of H1, if
�j � �0 we decide in favor of H1, otherwise we take another
observation and repeat the test. The thresholds �0 and �1 are
chosen to provide the desired false-alarm and miss probabili-
ties. The SPRT minimizes the average number of observa-
tions under both H0 and H1, subject to constraints on PF and
PM.

FURTHER READING

A more complete and detailed treatment of most of the topics
covered in this article can be found in the books by Poor (1)


