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considered below. The practical usefulness of the concepts
used is not comprehensively discussed. One can refer to the
treatises (3) and (9) for thorough motivations of these con-
cepts from the application point of view.

What follows considers only the statistical framework, that
is, it is supposed that the noisy environment, where observa-
tions are taken, is of a stochastic (random) nature. Situations
when this assumption does not hold are addressed by mini-
max estimation methods.

Depending on how much prior information about the sys-
tem to be identified is available, one may distinguish between
two cases:

1. The system can be specified up to an unknown parame-
ter of finite dimension. Then the problem is called the
parametric estimation problem. For instance, such a
problem arises when the parameters of a linear system
of bounded dimension are to be estimated.

2. However, rather often, one has to infer relationships be-
tween input and output data of a system, when very
little prior knowledge is available. In engineering prac-
tice, this problem is known as black-box modeling. Lin-
ear system of infinite dimension and general nonlinear
systems, when the input/output relation cannot be de-
fined in terms of a fixed number of parameters, provide
examples. In estimation theory, these problems are re-
ferred to as those of nonparametric estimation.

Consider now some simple examples of mathematical state-
ments of estimation problems.

Example 1. Let X1, . . ., Xn be independent random vari-
ables (or observations) with a common unknown distribution
P on the real line. One can consider several estimates (i.e.,
functions of the observations (Xi), i 
 1, . . ., n) of the mean
� 
 � xdP :

1. The empirical mean

X̃ = 1
n

nX

i=1

Xi (1)

2. The empirical median m 
 median (X1, . . ., Xn), which
is constructed as follows: Let Z1, . . ., Zn be an increas-
ing rearrangement of X1, . . ., Xn. Then m 
 Z[(n�1)/2] for
n odd and m 
 (Zn/2 � Zn/2�1)/2 for n even (here [x]
stands for the integer part of x).ESTIMATION THEORY

3. g 
 (max1�i�n(Xi) � min1�i�n(Xi))/2
It is often the case in control and communication systems that
the mathematical model describing a particular phenomenon Example 2. The (linear regression model). The variables yi,
is completely specified, except some unknown quantities. Xk

i , i 
1, . . ., n, k 
 1, . . ., d are observed, where
These quantities must be estimated. Identification, adaptive
control, learning systems, and the like, provide examples. Ex- yi = θ1X 1

i + · · · + θdX d
i + ei

act answers are often difficult, expensive, or merely impossi-
The ei are random disturbances and �1, . . ., �d should be esti-ble to obtain. However, approximate answers that are likely
mated. Let us denote Xi 
 (X1

i , . . ., Xd
i )T, � 
 (�1, . . ., �d)T.to be close to the exact answers may be fairly easily obtain-

The estimateable. Estimation theory provides a general guide for obtaining
such answers; above all, it makes mathematically precise
such phrases as ‘‘likely to be close,’’ ‘‘this estimator is optimal
(better than others),’’ and so forth.

θ̂n = arg min
θ

nX

i=1

(yi − θT Xi )
2

Though estimation theory originated from certain practical
problems, only the mathematical aspects of the subject are of � is referred to as the least squares estimate.

J. Webster (ed.), Wiley Encyclopedia of Electrical and Electronics Engineering. Copyright # 1999 John Wiley & Sons, Inc.



162 ESTIMATION THEORY

Example 3. Let f (x) be an unknown signal, observed at the �̂0 � �0, for some fixed �0 (independent of observations). Evi-
dently, the estimator �̂* possessing the propertypoints, Xi 
 i/n, i 
1, . . ., n with additive noise:

yi = f (Xi) + ei, i = 1, . . ., n (2) Eq(θ̂∗(X ) − θ ) ≤ Eq(θ̂ (X ) − θ ), for any θ ∈ �

This problem is referred to as nonparametric regression. Sup-
for any estimate �̂ may be considered as optimal. The troublepose that f is square-integrable and periodic on [0,1]. Then
is that such estimators do not exist (indeed, any ‘‘reasonable’’one can develop f into Fourier series
estimator cannot stand the comparison with the ‘‘fixed’’ esti-
mator �̂0 at �0). Generally, in this method of comparing the
quality of estimators, many estimators prove to be incompara-f (x) =

∞X

k=0

ckφk(x)

ble. Estimators can be compared by their behavior at ‘‘worst’’
points: an estimator �̂* of � is called minimax estimator rela-

where, for instance, 0(x) 
 0, 2l�1(x) 
 �2sin(2�lx), and tive to the quadratic loss function q( � ) if
2l(x) 
 �2cos(2�lx) for l 
 1, 2, . . .. Then one can compute
the empirical coefficients

sup
θ∈�

Eq(θ̂∗(X ) − θ ) = inf
θ̂

sup
θ∈�

Eq(θ̂ (X ) − θ )

where the lower bound is taken over all estimators �̂ of �.
ĉk = 1

n

nX

k=1

yiφk(Xi) (3)

In the Bayesian formulation of the problem the unknown
parameter is considered to represent values of the randomand construct an estimate f̂n of f by substituting the estimates
variables with prior distribution Q on �. In this case, the bestof the coefficients in the Fourier sum of the length M:
estimator �̂* relative to the quadratic loss is defined by the
relation

f̂n(x) =
MX

k=1

ĉkφk(x) (4)

Examples 1 and 2 above are simple parametric estimation
problems. Example 3 is a nonparametric problem. Typically,

Eq(θ̂∗(X ) − θ ) =
Z

�

Eq(θ̂∗(X ) − θ )Q(dθ )

= inf
θ̂

Z
�

Eq(θ̂ (X ) − θ )Q(dθ )

one chooses the order M of the Fourier approximation as a
function of total number of observations n. This way, the

and the lower bound is taken over all estimators �̂.problem of function estimation can be seen as that of para-
As a rule, it is assumed that in parametric estimationmetric estimation, though the number of parameters to be es-

problems the elements of the parametric family �P �: � � ��timated is not bounded beforehand and can be large.
possess the density p(x, �). If the density is sufficientlyThe basic ideas of estimation theory will now be illus-
smooth function of � and the Fisher information matrixtrated, using parametric estimation examples. Later, it shall

be seen how they can be applied in the nonparametric esti-
mation.

I(θ ) =
Z

dp
dθ

(x, θ )

�dp
dθ

(x, θ )

�T dx
p(x, θ )

BASIC CONCEPTS
exists. In this case, the estimation problem is said to be regu-
lar, and the accuracy of estimation can be bounded from be-Note the abstract statement of the estimation problem. It is
low by the Cramér-Rao inequality: if � � R, then for any esti-assumed an observation of X is a random element, whose un-
mator �̂,known distribution belongs to a given family of distributions

P. The family can always be parametrized and written in the
form �P �: � � ��. Here the form of dependence on the parame-
ter and the set � are assumed to be known. The problem of
estimation of an unknown parameter � or of the value g(�) of E|θ̂ − θ |2 ≥

�
1 +

�db
dθ

�
(θ )

�2

I(θ )
+ b2(θ ) (5)

a function g at the point � consists of constructing a function
�̂(X) from the observations, which gives a sufficiently good ap- where b(�) 
 E�̂ � � is the bias of the estimate �̂. An analo-
proximation of � (or of g(�)). gous inequality holds in the case of multidimensional parame-

A commonly accepted approach to comparing estimators, ter �. Note that if the estimate � is unbiased, that is, E�̂ 
 �,
resulting from A. Wald’s contributions, is as follows: consider then
a quadratic loss function q(�̂(X) � �) (or, more generally, a
nonnegative function w(�̂(X), �)), and given two estimators

E|θ̂ − θ |2 ≥ I−1(θ )�̂1(X) and �̂1(X), the estimator for which the expected loss
(risk) Eq(�̂i(X) � �), i 
 1, 2 is the smallest is called the better,
with respect to the quadratic loss function q (or to w). Moreover, the latter inequality typically holds asymptotically,

even for biased estimators when I(�) 
 I does not depend onObviously, such a method of comparison is not without its
defects. For instance, the estimator that is good for one value �. It can be easily verified that for independent observations

X1, . . ., Xn with common regular distribution P�, if I(�) is theof the parameter � may be completely useless for other values.
The simplest example of this kind is given by the ‘‘estimator’’ Fisher information on one observation, then the Fisher infor-
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mation on the whole sample In(�) 
nI(�), and the Cramér– on. As a consequence, for a long time there have been at-
tempts to develop a general procedure of constructing esti-Rao inequality takes the form
mates which are not necessarily optimal for a given finite
amount of data, but which approach optimality asymptoti-
cally (when the sample size increases or the signal-to-noise
ratio goes to zero).E|θ̂ − θ |2 ≥

�
1 +

�db
dθ

�
(θ )

�2

nI(θ )
+ b2(θ )

For the sake of being explicit, a problem such as in Exam-
ple 2 is examined, in which � � Rd. It is to be expected that,where �̂ 
 �̂(X1, . . ., Xn).
when n � �, ‘‘good’’ estimators will get infinitely close to theReturn to Example 1. Let Xi be normal random variables
parameter being estimated. Let P� denote the distribution ofwith distribution density
observations y1, X1, . . . for a fixed parameter �. A sequence
of estimators �̂n is called a consistent sequence of estimators of
�, if �̂n � � in the probability P� for all � � �. Note that the

1√
2π

exp
�

− (x − θ )2

2σ 2

�

estimators, proposed for Examples 1 and 2 above, are con-
sistent.If �2 is known, then the estimator X̄ is an unbiased estimator

Note that the notion of the minimax estimator can be re-of �, and E(X̄ � �)2 
 �2/n. On the other hand, the Fisher
fined when the asymptotic framework is concerned. An esti-information of the normal density I(�) = ��2. Thus X̄ is in this
mator �̂n, for which the quantitysituation the best unbiased estimator of �.

If, in the same example, the distribution P possesses the
Laplace density lim sup

n→∞
sup
θ∈�

Eq(θ̂n − θ )

is minimized is referred to as the asymptotically minimax es-
1

2a
exp

�
−|x − θ |

a

�
timator in �, relative to the quadratic loss q. At first glance,
this approach seems to be excessively ‘‘cautious’’: if the num-then the Fisher information on one observation I(�) 
 a�1. In
ber n of observations n is large, a statistician can usually lo-this case E(X̄ � �)2 
 2a/n. However, the median estimator
calize the value of parameter � with sufficient reliability in am, as n grows to infinity, satisfies nE(m � �)2 � a. Therefore,
small interval around some �0. In such a situation, it wouldone can suggest that m is an asymptotically better estimator
seem unnecessary to limit oneself to the estimators that ‘‘be-of �, in this case.
have nicely’’ for values � that are far away from �0. Thus oneThe error �̂n � � of the least-squares estimator �̂ in Exam-
may consider locally asymptotic minimax estimators at aple 2, given the observations y1, X1, . . ., yn, Xn, has the covari-
given point �0, that is, estimators that become arbitrarilyance matrix
close to the asymptotically minimax estimators in a small
neighborhood of �0. However, it is fortunate that, in all inter-
esting cases, asymptotically minimax estimators in � are also
asymptotically minimax in any nonempty open subset of �.

E(θ̂n − θ )(θ̂ − θ )T = σ 2

�
nX

i=1

XiX
T
i

�−1

Detailed study of asymptotic properties of statistical estima-
tors is a subject of asymptotic theory of estimation. Refer toThis estimator is the best unbiased estimator of � if the
(7) and (10) for exact statements and thorough treatment ofdisturbances ei obey normal distribution with zero mean and
correspondent problems.variance �2.

Note that, if the Fisher information I(�) is infinite, the esti-
mation with the better rate than 1/n is possible. For instance, METHODS OF PRODUCING ESTIMATORS
if in Example 1 the distribution P is uniform over [� �1/2,
� � 1/2], then the estimate g satisfies Let p(X, �) stand for the density of the observation measure

P �. The most widely used maximum-likelihood method rec-
ommends that the estimator �̂(X) be defined as the maximumE(g − θ )2 = 1

2(n + 1)(n + 2) point of the random function p(X, �). Then �̂(X) is called the
maximum-likelihood estimator. When the parameter set � �
Rd, the maximum-likelihood estimators are to be foundASYMPTOTIC BEHAVIOR OF ESTIMATORS
among the roots of the likelihood equation

Accepting the stochastic model in estimation problems makes
it possible to use the power of limit theorems (the law of large d

dθ
ln p(X , θ ) = 0

numbers, the central limit theorem, etc.) of probability theory,
in order to study the properties of the estimation methods. if these roots are inner points of � and p(X, �) is continuously
However, these results holds asymptotically, that is, when differentiable. In Example 1, X̄ in (1) is the maximum-likeli-
certain parameters of the problem tend to limiting values hood estimator if the distribution P is Gaussian. In Example
(e.g., when the sample size increases indefinitely, the inten- 2, if the disturbances ei have Laplace density, the maximum-
sity of the noise approaches zero, etc.). On the other hand, the likelihood estimator mn satisfies
solution of nonasymptotic problems, although an important
task in its own right, cannot be a subject of a sufficiently gen-
eral mathematical theory: the correspondent solution depends
heavily on the specific noise distribution, sample size, and so

mn = arg min
m

nX

i=1

|yi − mT Xi|
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Another approach consists to suppose that the parameter random component in the estimation error. A general ap-
proach to the problem is the following: one first chooses an� obeys a prior distribution Q on �. Then one can take a

Bayesian estimator �̂ relative to Q, although the initial formu- approximation method, that is, substitutes the function in
question by its approximation. For instance, in Example 3,lation is not Bayesian. For example, if � 
 Rd, it is possible

to estimate � by means the approximation with a Fourier sum is chosen (it is often
referred to as the projection approximation, since the func-
tion f is approximated by its projection on a final-dimensional
subspace, generated by M first functions in the Fourier basis).

R
Rd θ p(X , θ ) dθ

p(X , θ ) dθ

Then one estimates the parameters involved in this approxi-
This is a Bayesian estimator relative to the uniform prior dis- mation. This way the problem of function estimation is re-
tribution. duced to that of parametric estimation, though the number of

The basic merit of maximum-likelihood and Bayesian esti- parameters to be estimated is not fixed beforehand and can
mators is that, given certain general conditions, they are con- be large. To limit the number of parameters some smoothness
sistent, asymptotically efficient, and asymptotically normally or regularity assumptions have to be stated concerning f .
distributed. The latter means that is �̂ is an estimator, then Generally speaking, smoothness conditions require that the
the normalized error I(�)1/2(�̂ � �) converges in distribution to unknown function f belongs to a restricted class, such that,
a Gaussian random variable with zero mean, and the identity given an approximation technique, any function from the
covariance matrix. class can be ‘‘well’’ approximated, using a limited number of

The advantages of the maximum-likelihood estimators jus- parameters. The choice of the approximation method is cru-
tify the amount of computation involved in the search for the cial for the quality of estimation and heavily depends on the
maximum of the likelihood function p(X, �). However, this can prior information available about the unknown function f [re-
be a hard task. In some situations, the least-squares method fer to Ref. (8) for a more extensive discussion]. Now see how
can be used instead. In Example 1, it recommends that the the basic ideas of estimation theory can be applied to the non-
minimum point of the function parametric estimation problems.

Performance Measures for Nonparametric Estimators
nX

i=1

(Xi − θ )2

The following specific issues are important:

be used as the estimator. In this case, X̄ in Eq. (1) is the least-
1. What plays the role of Cramér-Rao bound and Fishersquares estimate. In Example 2, the least squares estimator

Information Matrix in this case? Recall that the�̂n coincides with the maximum-likelihood solution if the
Cramér-Rao bound [Eq. (5)] reveals the best perfor-noises ei are normally distributed.
mance one can expect in identifying the unknown pa-Often, the exact form of density p(X, �) of observations is
rameter � from sample data arising from some parame-unknown. However, the information that p(X, �) belongs to
terized distribution P�, � � �, where � is the domainsome convex class P is available. The robust approach estima-
over which the unknown parameter � ranges. In thetion recommends to find the density p*(X, �), which maxi-
nonparametric (as well as in the parametric) case, lowermizes the risk of the least-squares estimate on P, and then to
bounds for the best achievable performance are pro-take
vided by minimax risk functons. These lower bounds will
be introduced and associated notions of optimality willθ̂∗(X ) = arg min

θ
p∗(X , θ )

be discussed.
2. For parametric estimation problems, a quadratic lossas the estimator. The �̂* is referred to as the robust estimate.

function is typical to work with. In functional estima-Suppose, for instance, that in Example 1 the distribution P
tion, however, the choice is much wider. One can be in-satisfies �(x � �)P (dx) � �2. Then the empirical mean X̄ is
terested in the behavior of the estimate at one particu-the robust estimate. If p(x � �) is the density of P , and it is
lar point x0, or in the global behavior of the estimate.known that p( � ) is unimodal and for some a � 0 p(0) �
Different distance measures should be used in these two(2a)�1, then the median m is the robust estimator of � [for
different cases.more details, refer to (5)].

In order to compare different nonparametric estimators, it
NONPARAMETRIC ESTIMATION is necessary to introduce suitable figures of merit. It seems

first reasonable to build on the mean square deviation (or
Consider the problem of nonparametric estimation. To be con- mean absolute deviation) of some semi-norm of the error, it is
crete, consider Eq. (2) in Example 3 above. There are two fac- denoted by � f̂N � f �. A semi-norm is a norm, except it does
tors that limit the accuracy with which the signal f can be not satisfy the condition: � f � 
 0 implies f 
 0. The following
recovered. First, only a finite number of observation points semi-norms are commonly used: � f � 
 (� f 2(x)dx)1/2, (L2-
(Xi)n

i
1 are available. This suggests that f (x), at other points x norm), � f � 
 supx� f (x)� (uniform norm, C- or L�-norm),
than those which are observed, must be obtained from the � f � 
 � f (x0) � (absolute value at a fixed point x0). Then consider
observed points by interpolation or extrapolation. Second, as the risk function
in the case of parametric estimation, at the points of observa-
tion, Xi, i 
 1, . . ., n, f (Xi) is observed with an additive noise
ei 
 yi � f (Xi). Clearly, the observation noises ei introduce a RaN

( f̂N, f ) = E[a−1
N ‖ f̂N − f‖]2 (6)



ESTIMATION THEORY 165

where aN is a normalizing positive sequence. Letting aN de- Consider Example 3. The following result can be acknowl-
edged; refer to (7): Consider the Sobolev class Ws(L) on [0, 1],crease as fast as possible so that the risk still remains

bounded yields a notion of a convergence rate. Let F be a set which is the family of periodic functions f (x), x � [0, 1], such
thatof functions that contains the ‘‘true’’ regression function f ,

then the maximal risk raN
( f̂N) of estimator f̂N on F is defined

as follows: ∞X

j=0

(1 + j 2s)|c j |2 ≤ L2 (8)

raN
( f̂N ) = sup

f ∈F

RaN
( f̂N , f )

(here cj are the Fourier coefficients of f ). If

If the maximal risk is used as a figure of merit, the optimal
estimator f̂*N is the one for which the maximal risk is mini- ‖g‖ = � R |g(x)|2 dx

�1/2
, or ‖g‖ = |g(x0)|

mized, that is, such that
then n�s/2s�d is a lower rate of convergence for the class Ws(L)
in the semi-norm � � �.

On the other hand, one can construct an estimate f̂n [refer
raN

( f̂ ∗
N ) = min

f̂N

sup
f ∈F

RaN
( f̂N , f )

to (2)], such that uniformly, over f � Ws(L),
f̂*N is called the minimax estimator and the value

E‖ f̂n − f‖2
2 ≤ O(L, σ )n−2s/(2s+1) (9)

min
f̂N

sup
f ∈F

RaN
( f̂N, f )

Note that the condition [Eq. (8)] on f means that the function
can be ‘‘well’’ approximated by a finite Fourier sum. Indeed,

is called the minimax risk on F . Notice that this concept is due to the Parseval equality, Eq. (8) implies that if
consistent with the minimax concept used in the parametric
case.

The construction of minimax nonparametric regression es-
timators for different sets F is a difficult problem. However,

f (x) =
MX

j=1

c jφ j (x)

letting aN decrease as fast as possible so that the minimax
risk still remains bounded yields a notion of a best achievable then � f � f �2

2 
 O(M�2s). The upper bound, Eq. (9), appears
convergence rate, similar to that of parametric estimation. rather naturally if one considers the following argument: If
More precisely, one may state the following definition: one approximates the coefficients cj by their empirical esti-

mates ĉj in Eq. (3), the quadratic error in each j is O(n�1).
Thus, if the sum, Eq. (4) of M terms of the Fourier series is1. The positive sequence aN is a lower rate of convergence
used to approximate f , the ‘‘total’’ stochastic error is order offor the set F in the semi-norm � � � if
M/n. The balance between the approximation (the bias) and
the stochastic error gives the best choice M 
 O(n1/(2s�1)) and
the quadratic error O(n�2s/(2s�1)). This simple argument can be

lim inf
N→∞

raN
( f̂ ∗

N ) = lim inf
N→∞

inf
f̂N

sup
f ∈F

E[a−1
N ‖ f̂N − f‖]2 ≥ C0

(7) used to analyze other nonparametric estimates.

for some positive C0.
MODEL SELECTION2. The positive sequence aN is called minimax rate of con-

vergence for the set F in semi-norm � � �, if it is a lower
So far the concern has been with estimation problems whenrate of convergence, and if, in addition, there exists an
the model structure has been fixed. In the case of paramet-estimator f̂*N achieving this rate, that is, such that
ric estimation, this corresponds to the fixed (a priori known)
model order; in functional estimation this corresponds to
the known functional class F , which defines the exact ap-

lim sup
N→∞

raN
( f̂ ∗

N ) < ∞
proximation order. However, rather often, this knowledge is
not accessible beforehand. This implies that one should beThe inequality [Eq. (7)] is a kind of negative statement that

says that no estimator of function f can converge to f faster able to provide methods to retrieve this information from
the data, in order to make estimation algorithms ‘‘implem-than aN. Thus, a coarser, but easier approach consists in as-

sessing the estimators by their convergence rates. In this set- entable.’’ One should distinguish between two statements of
the model (order) selection problem: the first one arisesting, by definition, optimal estimators reach the lower bound

as defined in Eq. (7) (recall that the minimax rate is not typically in the parametric setting, when one suppose that
the exact structure of the model is known up to unknownunique: it is defined to within a constant).

It holds that the larger the class of functions, the slower dimension of the parameter vector; the second one is essen-
tially nonparametric, when it is assumed that the truethe convergence rate. Generally, it can be shown that no

‘‘good’’ estimator can be constructed on too rich functional model is of infinite dimension, and the order of a finite-
dimensional approximation is to be chosen to minimize aclass which is ‘‘too rich’’ [refer to (4)]. Note, however, that con-

vergence can sometimes be proved without any smoothness prediction error (refer to the choice of the approximation
order M in Eq. (4) of Example 3). These two approachesassumption, though the convergence can be arbitrary slow,

depending on the unknown function f to be estimated. are illustrated in a simple example.
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Example 4. Consider the following problem: where

1. Let � 
 (�0, . . . �d�1)T be coefficients of a digital filter of lim inf
n

λ(n)

log log n
> 1 and

λ(n)

n
→ 0

unknown order d, that is,

gives a consistent estimate of the true dimension d in the
problem 1 of Example 4.

Another approach is proposed in (12) and (14). It consists
yi =

d−1X

k=0

θixi−k+1 + ei

to minimize, with respect to d, the total length of the incoding
of the sequence yi, Xi (MML—minimum message length, or

We assume that xi are random variables. The problem MDL—minimum description length). This code length should
is to retrieve � from the noisy observations (yi, xi), i 
 also take into account the incoding of �̂d,n. This leads to the
1, . . ., n. If one denotes Xi 
 (xi, . . ., xi�d�1)T, then the criterion (the first-order approximation)
estimation problem can be reformulated as that of the
linear regression in Example 2. If the exact order d was dn = arg min

d≤n
BIC(d,n)

known, then the least-squares estimate �̂n could be used
to recover � from the data. If d is unknown, it should be

whereestimated from the data.

2. A different problem arises when the true filter is of in-
finite order. However, all the components of the vector BIC(d, n) =

�
S2

d,n + 2σ 2
e d log(n)

n

�
� of infinite dimension cannot be estimated. In this case
one can approximate the parameter � of infinite dimen- As was shown in (13), the Bayesian approach (MAP—
sion by an estimate �̂d,n which has only finite number d maximum a posteriori probability) leads to the minimization
of nonvanishing entries: of BIC(d, n), independently of the distribution of the parame-

ter d.
θ̂n = (θ̂ (1)

n . . ., θ̂ (d)
n , 0, 0 . . .)T
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