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MAXIMUM LIKELIHOOD IMAGING

Imaging science is a rich and vital branch of engineering in
which electromagnetic or acoustic signals are measured, pro-
cessed, analyzed, and interpreted in the form of multidimen-
sional images. Because these images often contain informa-
tion about the physical, biological, or operational properties of
remote objects, scenes, or materials, imaging science is justly
considered to be a fundamental component of that branch of
engineering and science known as remote sensing. Many sub-
jects benefit directly from advances in imaging science—these
range from astronomy and the study of very large and dis-
tance objects to microscopy and the study of very small and
nearby objects.
The photographic camera is probably the most widely

known imaging system in use today. The familiar imagery
recorded by this device usually encodes the spectral re-
flectance properties of an object or scene onto a two-dimen-
sional plane. The familiarity of this form of imagery has led
to a common definition of an image as ‘‘an optical reproduc-
tion of an object by a mirror or lens.’’ There are, however,
many other imaging systems in use and the object or scene
properties encoded in their imagery can be very different from
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those recorded by a photographic camera. Temperature varia- sured data. In some situations structural restrictions such as
these are acceptable, but in many others they are not and thetions can, for instance, be ‘‘imaged’’ with infrared sensing, ve-

locity variations can be ‘‘imaged’’ with radar, geological for- advent of faster and more sophisticated computing resources
has served to greatly lessen the need for and use of structuralmations can be ‘‘imaged’’ with sonar, and the physiological

function of the human brain can be ‘‘imaged’’ with positron constraints in imaging problems.
Many criteria can be used to quantify image quality andemission tomography (PET).

A photographic camera forms images in a manner very induce optimal signal-processing algorithms. One might ask,
for example, that the processed imagery produce the ‘‘correct’’similar to the human eye, and, because of this, photographic

images are easily interpreted by humans. The imagery re- image on average. This leads to an unbiased estimator, but
such an estimator may not exist, may not be unique, or maycorded by an infrared camera might contain many of the fea-

tures common to visible imagery; however, the phenomena result in imagery whose quality is far from adequate. By re-
quiring that the estimated image also have, in some sense,being sensed are different and some practice is required be-

fore most people can faithfully interpret raw infrared imag- the smallest deviations from the correct image this criterion
could be modified to induce the minimum variance, unbiasedery. For both of these modalities, though, the sensor data is

often displayed as an image without the need for significant estimator (MVUE), whose imagery may have desirable quali-
ties, but whose processing structure can be difficult or impos-signal processing. The data acquired by an X-ray tomograph

or synthetic aperture radio telescope, however, are not easily sible to derive and implement. The maximum-likelihood
method for estimation leads to an alternative criterioninterpreted, and substantial signal processing is required to

form an ‘‘image.’’ In these situations, the processing of raw whereby an image is selected to optimize a mathematical cost
function that is induced by the physical and statistical modelsensor data to form imagery is often referred to as image re-

construction or image synthesis (1), and the importance of sig- for the acquired data. The relative simplicity of the maxi-
mum-likelihood estimation method, along with the fact thatnal processing in these applications is great. To confirm this

importance, the 1979 Nobel prize in physiology and medicine maximum-likelihood estimates are often asymptotically unbi-
ased with minimum variance, makes this a popular andwas awarded to Alan M. Cormack and Sir Godfrey N. Houns-

field for the development and application of the signal pro- widely studied method for statistical inference. It is largely
for this reason that the development and utilization of maxi-cessing methods used for X-ray computed tomography, and

the 1974 Nobel prize in physics was awarded to Sir Martin mum-likelihood estimation methods for imaging are the focus
of this article.Ryle for the development of aperture synthesis techniques

used to form imagery with radio telescope arrays. For both of One of the most important steps in the utilization of the
maximum-likelihood method for imaging is the developmentthese modalities the resulting images are usually very differ-

ent from the visible images formed by photographic cameras, of a practical and faithful model that represents the relation-
ship between the object or scene being sensed and the dataand significant training is required for their interpretation.

Imagery formed by photographic cameras, and similar in- recorded by the sensor. This modeling step usually requires a
solid understanding of the physical and statistical character-struments such as telescopes and microscopes, can also be dif-

ficult to interpret in their raw form. Focusing errors, for ex- istics of electromagnetic- or acoustic-wave propagation, along
with an appreciation for the statistical characteristics of theample, can make imagery appear blurred and distorted, as

can significant flaws in the optical instrumentation. In these data acquired by real-world sensors. For these reasons, a
strong background in the fields of Fourier optics (10,11), sta-situations, a type of signal processing known as image resto-

ration (2,3) can be used to remove the distortions and restore tistical optics (12–14), basic probability and random-process
theory (15,16), and estimation theory (5–9) is essential forfidelity to the imagery. Processing such as this received na-

tional attention after the discovery of the Hubble Space Tele- one wishing to apply maximum-likelihood methods to the
field of imaging science.scope aberrated primary mirror in 1990, and one of the most

successful and widely used algorithms for restoring resolution Statistical inference problems such as those encountered
in imaging applications are frequently classified as ill-posedto Hubble imagery was based on the maximum-likelihood es-

timation method (4). The motivation for and derivation of this problems (17). An image-recovery or -restoration problem is
ill posed if it is not well posed, and a problem is well posed inimage-restoration algorithm will be discussed in great detail

later in this article. the classical sense of Hadamard if the problem has a unique
solution and the solution varies continuously with the data.When signal processing is required for the formation or

improvement of imagery, the imaging problem can usually be Abstract formulations of image recovery and restoration prob-
lems on infinite-dimensional measurement and parameterposed as one of statistical inference. A large number of esti-

mation-theoretic methods are available for solving statistical- spaces are almost always ill posed, and their ill-posed nature
is usually due to the discontinuity of the solution. Problemsinference problems (5–9), and the method to be used for a

particular application depends largely on three factors: (1) the that are formulated on finite-dimensional spaces are fre-
quently well-posed in the classical sense—they have a uniquestructure imposed on the processing; (2) the quantitative cri-

teria used to define image quality; and (3) the physical and solution and the solution is continuous in the data. These
problems, however, are often ill conditioned or badly behavedstatistical information available about the data collection

process. and are frequently classified as ill posed even though they are
technically well posed.Structure can be imposed on processing schemes for a vari-

ety of reasons, but the most common is the need for fast and For problems that are ill posed or practically ill posed, the
original problem’s solution is often replaced by the solution toinexpensive processing. The most common structure imposed

for this reason is linear processing, whereby imagery is a well-posed (or well-behaved) problem. This process is re-
ferred to as regularization and the basic idea is to change theformed or improved through linear combinations of the mea-
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problem in a manner such that the solution is still meaning- Coherence is an important concept in imaging that is used
to describe properties of waveforms, sensors, and processingful but no longer badly behaved (18). The consequence for im-

aging problems is that we do not seek to form a ‘‘perfect’’ im- algorithms. Roughly speaking, coherence of a waveform refers
to the degree to which a deterministic relationship exists be-age, but instead settle for a more stable—but inherently

biased—image. Many methods are available for regularizing tween the complex envelope phase �(x, y, z; t) at different time
instances or spatial locations. Temporal coherence at timemaximum-likelihood estimation problems, and these include:

penalty methods, whereby the mathematical optimization delay � quantifies the relationship between �(x, y, z; t) and
�(x, y, z; t � �), whereas the spatial coherence at spatial shiftproblem is modified to include a term that penalizes un-

wanted behavior in the object parameters (19); sieve methods, (�x, �y, �z) quantifies the relationship between �(x, y, z; t) and
�(x � �x, y � �y, z � �z; t). A coherent sensor is one thatwhereby the allowable class of object parameters is reduced

in some manner to exclude those with unwanted characteris- records information about the complex-envelope phase of a
waveform, and a coherent signal-processing algorithm is onetics (20); and stopping methods, whereby the numerical algo-

rithms used to solve a particular optimization problem are that processes this information. Waveforms that are coherent
only over vanishingly small time delays are called temporallyprematurely terminated before convergence and before the

object estimate has obtained the unwanted features that are incoherent; waveforms that are coherent only over vanish-
ingly small spatial shifts are called spatially incoherent. Sen-characteristic of the unconstrained solution obtained at con-

vergence (21). Penalty methods can be mathematically, but sors and algorithms that neither record nor process phase in-
formation are called incoherent.not always philosophically, equivalent to the maximum a pos-

teriori (MAP) method, whereby an a priori statistical model Many phenomena in nature are difficult, if not impossible
within our current understanding, to model in a deterministicfor the object is incorporated into the estimation procedure.

The MAP method is appealing and sound provided that a manner, and the statistical properties of acoustic and electro-
magnetic fields play a fundamental role in modeling the out-physically justified model is available for the object parame-

ters. Each of these regularization methods is effective at come of most remote sensing and imaging experiments. For
most applications an adequate description of the fields in-times, and the method used for a particular problem is often

a matter of personal taste. volved is captured through second-order averages known as
coherence functions. The most general of these is the mutual
coherence function, which is defined mathematically in terms

SCALAR FIELDS AND COHERENCE of the complex envelope for a field as

Because most imaging problems involve the processing of �12(τ ) = E[u(x1, y1, z1, t + τ )u∗(x2, y2, z2, t)] (4)
electromagnetic or acoustic fields that have been measured
after propagation from a remote object or scene, a good place The proper interpretation for the expectation in this defini-
to begin our technical discussion is with a review of scalar tion depends largely on the application, and much care must
waves and the concept of coherence. The scalar-wave theory be taken in forming this interpretation. For some applications
is widely used for two reasons: (1) acoustic wave propagation a definition involving time averages will be adequate,
is well-modeled as a scalar phenomenon; and (2) although whereas other applications will call for a definition involving
electromagnetic wave propagation is a vector phenomenon, ensemble averages.
the scalar theory is often appropriate, particularly when the The mutual coherence function is often normalized to form
dimensions of interest in a particular problem are large in the complex degree of coherence as
comparison to the electromagnetic field wavelength.
A scalar field is in general described by a function in four

dimensions s(x, y, z; t), where x, y, and z are coordinates in γ12(τ ) = �12(τ )

[�11(0)�22(0)]1/2
(5)

three-dimensional space, and t is a coordinate in time. In
many situations, the field fluctuations in time are concen- and it is tempting to define a coherent field as one for which
trated about some center frequency f 0, so that the field can be ��12(�)� � 1 for all pairs of spatial locations, (x1, y1, z1) and (x2,
conveniently expressed as y2, z2), and for all time delays, �. Such a definition is overly

restrictive and a less restrictive condition, as discussed by
s(x, y, z; t) = a(x, y, z; t) cos [2π f0 t + θ(x, y, z; t)] (1) Mandel and Wolf (22), is that

or, in complex notation, as max
τ

|γ12(τ )| = 1 (6)

s(x, y, z; t) = Re{u(x, y, z; t)e j2π f0 t} (2) for all pairs of spatial locations, (x1, y1, z1) and (x2, y2, z2). Al-
though partial degrees of coherence are possible, fields that

where are not coherent are usually called incoherent. In some situa-
tions a field is referred to as being fully incoherent over a
particular region and its mutual coherence function is mod-u(x, y, z; t) = a(x, y, z; t)e jθ (x,y,z;t) (3)
eled over this region as

is the complex envelope for the field. Properties of the field
amplitude a, phase �, or both are often linked to physical or �12(τ ) � κI(x1, y1, z1)δ3(x1 − x2, y1 − y2, z1 − z2)δ1(t − τ ) (7)
operational characteristics of a remote object or scene, and
the processing of remotely sensed data to determine these where I( � ) is the incoherent intensity for the field, 	3( � , � , � )

is the three-dimensional Dirac impulse, 	1( � ) is the one-di-properties is the main goal in most imaging applications.
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mensional Dirac impulse, and � is a constant with appro- When optical fields interact with a photodetector, the ab-
sorption of a quantum of energy—a photon—results in thepriate units. Most visible light used by the human eye to form

images is fully incoherent and fits this model. Goodman (13) release of an excited electron. This interaction is referred to
as a photoevent, and the number of photoevents occurringand Mandel and Wolf (22) provide detailed discussions of the

coherence properties of electromagnetic fields. over a particular spatial region and time interval are referred
to as photocounts. Most detectors of light record photocounts,
and although the recorded data depend directly on the image

INCOHERENT IMAGING intensity, the actual number of photocounts recorded is a fun-
damentally random quantity. The images shown in Fig. 1

Astronomical telescopes, computer assisted tomography help to illustrate this effect. Here, an image of Simeon Pois-
(CAT) scanners, PET scanners, and many forms of light mi- son (for whom the Poisson random variable is named) is
croscopes are all examples of incoherent imaging systems; the shown as it might be acquired by a detector when 1 million,
waveforms, sensors, and algorithms used in these situations 10 million, and 100 million total photocounts are recorded.
are all incoherent. The desired image for these systems is typ-
ically related to the intensity distribution of a field that is

Statistical Modeltransmitted through, reflected by, or emitted from an object
or scene of interest. For many of these modalities it is com- For many applications involving charge coupled devices
mon to acquire data over a variety of observing scenarios, and (CCD) and other detectors of optical radiation, the semiclassi-
the mathematical model for the signal acquired by these sys- cal theory leads to models for which the photocounts recorded
tems is of the form by each detector element are modeled as Poisson random

variables whose means are determined by the measurement
intensity Ik( � ). That is, the expected number of photocountsIk(y) = ∫

hk(y, x)I(x) dx, k = 1,2, . . ., K (8)
acquired by the nth photodetector during the kth observation

where I( � ) is the object incoherent intensity function— interval is
usually related directly to the emissive, reflective, or trans-
missive properties of the object, hk( � , � ) is the measurement
kernel or system point-spread function for the kth observa-

Ik[n] = γ

∫
Yn

Ik(y) dy (9)

tion, Ik( � ) is the incoherent measurement signal for the kth
observation, x is a spatial variable in two- or three-dimen- where n is a two-dimensional discrete index to the elements
sions, and y is usually a spatial variable in one-, two-, or of the detector array, Y n is the spatial region over which the
three-dimensions. The mathematical forms for the system nth detector element integrates the image intensity, and � is
point-spread functions �hk( � , � )� are induced by the physical a nonnegative scale factor that accounts for overall detector
properties of the measurement system, and much care should efficiency and integration time. Furthermore, the number of
be taken in their determination. In telescope and microscope photocounts acquired by different detector elements are usu-
imaging, for example, the instrument point-spread functions ally statistically independent, and the detector regions are of-
model the effects of diffraction, optical aberrations, and inho- ten small in size relative to the fluctuations in the image in-
mogeneities in the propagation medium; whereas for trans- tensity so that the integrating operation can be well-modeled
mission or emission tomographs, geometrical optics approxi- by the sampling operation
mations are often used and the point-spread functions model
the system geometry and detector uncertainties. Ik[n] � γ |Yn|Ik(yn) (10)
For situations such as astronomical imaging with ground-

where yn is the location of the nth detector element and �Y n�based telescopes, each measurement is in the form of a two-
is its integration area.dimensional image, whereas for tomographic systems each

measurement may be in the form of a one-dimensional projec-
tion of a two-dimensional transmittance or emittance func- Other Detector Effects
tion. In either situation, the imaging task is to reconstruct

In addition to the quantum noise, imaging detectors introducethe intensity function I( � ) from noisy measurements of Ik( � ), other nonideal effects into the imagery that they record. Thek � 1, 2, . . ., K.
efficiency with which detectors convert electromagnetic en-
ergy into photoevents can vary across elements within a de-

Quantum Noise in Incoherent Imagery
tector array, and this nonuniform efficiency can be captured

Light and other forms of electromagnetic radiation interact by attaching a gain function to the photocount mean
with matter in a fundamentally random manner, and, be-
cause of this, statistical models are often used to describe the Ik[n] = a[n]γ |Yn|Ik(yn) (11)
detection of optical waves. Quantum electrodynamics (QED)
is the most sophisticated theory available for describing this Seriously flawed detector elements that fail to record data are

also accommodated with this model by simply setting the gainphenomenon; however, a semiclassical theory for the detec-
tion of electromagnetic radiation is often sufficient for the de- to zero at the appropriate location. If different detectors are

used for each observation the gain function may need to varyvelopment of sound and practical models for imaging applica-
tions. When using the semiclassical theory, electromagnetic with each frame and, therefore, be indexed by k.

Because of internal shot noise, many detectors record pho-energy is transported according to the classical theory of wave
propagation—it is only during the detection process that the toevents even when the external light intensity is zero. The

resulting photocounts are usually modeled as independentfield energy is quantized.
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Figure 1. Image of Simeon Poisson as it
might be acquired by a detector when 1
million, 10 million, and 100 million total
photocounts are recorded.

Poisson random variables, and this phenomenon is accommo- Maximum-Likelihood Image Restoration
dated by inserting a background term into the imaging equa-

Consistent with the noise models developed in the previous
tion

sections, the data recorded by each detector element in a pho-
ton-counting camera are a mixture of Poisson and GaussianIk[n] � a[n]γ |Yn|Ik(yn) + Ib[n] (12)
random variables. Accordingly, the probability of receiving N
photocounts in the nth detector element isAs with the gain function, if different detectors are used

for each observation this background term may need to vary
with each frame and, therefore, be indexed by k. With the Pr{Nk[n] = N; I} = exp(−Ik[n])(Ik[n])

N/N! (14)
inclusion of these background counts, the number of photo-
counts acquired by detector element n is a Poisson random where
variable with mean Ik[n] and is denoted by Nk[n].
The data recorded by many detectors are also corrupted by

another form of noise that is induced by the electronics used
Ik[n] = a[n]γ |Yn|Ik(yn) + Ib[n]

= a[n]γ |Yn| ∫ hk(yn, x)I(x) dx + Ib[n]
(15)

for the data acquisition. For CCD detectors, this is read-out
noise and is often approximated as additive, zero-mean

contains the dependence on the unknown intensity functionGaussian random variables so that the recorded data are
I( � ). Furthermore, the probability density for the read-outmodeled as
noise is

dk[n] = Nk[n]+ gk[n] (13)
pgk [n]

(g) = (2πσ 2[n])−1/2 exp[−g2/(2σ [n])] (16)
where gk[n] models the read-out noise at the nth detector for
the kth observation. The variance of the read-out noise �2[ � ] so that the density for the measured data is
may vary with each detector element, and the read-out noise
for different detectors is usually modeled as statistically inde-
pendent.
The appropriate values for the gain function a[ � ], back-

ground function Ib[ � ], and read noise variance �2[ � ] are usu-
ally selected through a controlled study of the data acquisi-
tion system. A detailed discussion of these and other camera
effects for optical imaging is given in Ref. 23.

pdk [n]
(d; I) =

∞∑
N=0

pgk [n]
(d − N)Pr{Nk[n] = N; I}

= (2πσ 2[n])−1/2

N

∞∑
N=0

exp[−(d − N)2/(2σ [n])]

exp(−Ik[n])(Ik[n])
N

(17)
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For a given data set �dk[ � ]�, the maximum-likelihood estimate the center of each pixel. Many other basis sets are possible
and a clever choice here can greatly affect estimator perfor-of I( � ) is the intensity function that maximizes the likelihood
mance, but the grid of two-dimensional impulses is probably
the most common. Using this basis, the data mean is ex-
pressed asl(I) =

K∏
k=1

∏
n

pdk [n]
(dk[n]; I) (18)

or, as is commonly done, its logarithm (the log-likelihood)
Ik[n] = a[n]γ |Yn|Ik(yn) + Ib[n]

= a[n]γ |Yn| ∫ hk(yn, x)
∑

m
I[m]δ2(x − xm ) dx + Ib[n]

= a[n]γ |Yn|
∑

m

hk(yn, xm)I[m]+ Ib[n]

(24)L (I) = ln l(I)

=
K∑

k=1

∑
n

ln pdk [n]
(dk[n]; I)

(19)

where yn denotes the location of the nth measurement, xm de-
The complicated form for the measurement density pdk[n]

( � ; I) notes the location of the mth object pixel, and 	2( � ) is the two-
makes this an overly complicated optimization. When the dimensional Dirac impulse. The estimation problem, then, is
read-out noise variance is large (greater than 50 or so), how- one of estimating the discrete samples I[ � ] of the intensity
ever, �2[n] can be added to the measured data to form the function from the noisy data �dk[ � ]�. Because I[ � ] represents
modified data samples of an intensity function, this function is physically

constrained to be nonnegative.
Ignoring terms in the log-likelihood that do not depend

upon the unknown object intensity, the optimization problem
required to solve for the maximum-likelihood object estimate

d̃k[n] = dk[n]+ σ 2[n]

= Nk[n]+ gk[n]+ σ 2[n]

� Nk[n]+ Mk[n]

(20)

is

where Mk[n] is a Poisson-distributed random variable whose
mean value is �2[n]. The modified data at each detector
element are then similar (in distribution) to the sum of two
Poisson-distributed random variables Nk[n] and Mk[n] and,
as such, are also Poisson-distributed with the mean value

Î[n] = argmax
I≥0

{
−

K∑
k=1

∑
n

(Ik[n]+ σ 2[n])

+
K∑

k=1

∑
n

d̃k[n] ln(Ik[n]+ σ 2[n])

} (25)

Ik[n] � �2[n]. This approximation is discussed by Snyder et al.
in Refs. 23 and 24. The probability mass function for the mod-

where d̃k[n] � dk[n] � �2[n] is the modified data andified data is then modeled as

Ik[n] = a[n]γ |Yn|
∑

m

hk(yn, xm )I [m]+ Ib[n]Pr[d̃k[n] = D; I] = exp{−(Ik[n]+ σ 2[n])}(Ik[n]+ σ 2[n])D/D!
(21)

is the photocount mean. The solution to this problem gener-
so that the log-likelihood is ally requires the use of a numerical method, and a great num-

ber of techniques are available for this purpose. General-pur-
pose techniques such as those described in popular texts on
optimization theory (25,26) can be applied. In addition, spe-
cialized numerical methods devised specifically for the solu-

L (I) =
K∑

k=1

∑
n

{−(Ik[n]+ σ 2[n])

+ d̃k[n] ln(Ik[n]+ σ 2[n]) − lndk[n]!}
(22)

tion of maximum-likelihood and related problems can be ap-
plied (27,28)—a specific example is discussed in theTwo difficulties are encountered when attempting to find the
following section.intensity function I( � ) that maximizes the log-likelihood

L (I): (1) the recovery of an infinite-dimensional function I( � )
The Expectation-Maximization Method. The expectation-from finite data is a terribly ill-conditioned problem; and (2)

maximization (EM) method is a numerical technique devisedthe functional form of the log-likelihood does not admit a
specifically for maximum-likelihood estimation problems. Asclosed form, analytic solution for the maximizer even after
described in Ref. 27, the classical formulation of the EM pro-the dimension of the parameter function has been reduced.
cedure requires one to augment the measured data—To address the dimensionality problem, it is common to
commonly referred to as the incomplete data—with a set ofapproximate the parameter function in terms of a finite-di-
complete data which, if measured, would facilitate direct esti-mensional basis set
mation of the unknown parameters. The application of this
procedure then requires one to alternately apply an E-step,
wherein the conditional expectation of the complete-data log-

I(x) �
∑

m

I[m]ψm(x) (23)

likelihood is determined, and an M-step, wherein all parame-
ters are simultaneously updated by maximizing the expecta-where the basis functions ��m( � )� are chosen in an appropriate

manner. When expressing the object function with a predeter- tion of the complete-data log-likelihood with respect to all of
the unknown parameters. In general, the application of themined grid of image pixels, for example, �m( � ) might be an

indicator function that denotes the location of the mth pixel. EM procedure results in an iterative algorithm that produces
a sequence of parameter estimates that monotonically in-For the same situation, the basis functions might alterna-

tively be chosen as two-dimensional impulses co-located with creases the measured data likelihood.
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The application of the EM procedure to the incoherent im- The intensity estimate is then updated in the M-step by max-
imizing this conditional expectation over Iaging problems has been proposed and described for numer-

ous applications (29–32). The general application of this
method is outlined as follows. First, recall that the measured
(or incomplete) data d̃k[n] for each observation k and detector

I new = argmax
I≥0

Q (I; I old) (32)

element n are independent Poisson variables with the ex-
It is straightforward to show that the object estimate is thenpected value
updated according to

E{d̃k[n]} = a[n]γ |Yn|
∑

m

hk(yn, xm )I [m]+ Ib[n]+ σ 2[n] (26)

Because the sum of Poisson random variables is still a Pois-
I new[m] =

∑
k

∑
n

E [N c
k[n, m]|{d̃k[n]}; I old]

∑
k

∑
n

a[n]γ |Yn|hk(yn, xm )
(33)

son random variable (and the expected value is the sum of
the individual expected values), the incomplete data can be

As described in Ref. 29, the conditional expectation is evalu-statistically modeled as
ated as

d̃k[n] =
∑

m

Nc
k[n, m]+ Mc

k[n] (27)

where for all frames k, detector locations n, and object pixels
m, the data Nc

k[n, m] are Poisson random variables, each with

E [N c
k[n, m]|{d̃k[n]}; I old]

= a[n]γ |Ynhk(yn, xm )I old[m]∑
m′

a[n]γ |Ynhk(yn, xm′ )I old[m′]+ Ib[n]+ σ 2[n]
d̃k[n] (34)

the expected value

so that the iterative formula for updating the object estimate
isE{Nc

k[n,m]} = a[n]γ |Yn|hk(yn, xm )I [m] (28)

and for all frames k and detector locations n, the data Mc
k[n]

are Poisson random variables, each with the expected value

E{M c
k[n]} = Ib[n]+ σ 2[n] (29)

In the terminology of the EM method, these data �Nc
k[ � , � ],

Mc
k[ � ]� are the complete data, and although they cannot be

observed directly, their measurement, if possible, would

I new[m] = I old[m]∑
k

∑
n

hk(yn, xm )
 a[n]γ |Yn|d̃k[n]∑

m′
a[n]γ |Ynhk(yn, xm′ )I old[m′]+ Ib[n]+ σ 2[n]




∑
k

∑
n

a[n]γ |Yn|hk(yn, xm )
(35)

greatly facilitate direct estimation of the underlying object in-
tensity. For the special case of uniform gain with no background or
Because the complete data are independent, Poisson ran- detector noise, the iterative algorithm proposed by Richard-

dom variables, the complete-data log-likelihood is son (33) and Lucy (34) has the same form as these iterations.
An excellent historical perspective of the application of the
EM method to imaging problems is presented in Ref. 35, and
detailed discussions of the convergence properties of this algo-
rithm along with the pioneering derivations for applications
in emission tomography can be found in Ref. 36.

L c(I ) = −
∑

k

∑
n

∑
m

a[n]γ |Yn|hk(yn, xm )I [m]

+
∑

k

∑
n

∑
m

N c
k[n,m] ln(a[n]γ |Yn|hk(yn, xm )I [m])

(30) Figures 2 and 3 illustrate the use of this technique on im-
agery acquired by the Hubble Space Telescope (HST). Shortly

where terms not dependent upon the unknown object inten- after the launch of the HST with its aberrated primary mirror
sity I[ � ] have been omitted. Given an estimate for the object in 1990, the imagery acquired by this satellite became a focus
intensity Iold[ � ], the EM procedure makes use of the complete of national attention. Whereas microscopic flaws in the tele-
data and their corresponding log-likelihood to update the ob- scope’s mirror resulted in the severely distorted imagery, im-
ject intensity estimate in such a way that Inew[ � ] increases the age restoration methods were successful in restoring much of
measured data log-likelihood. The E-step of the EM procedure the lost resolution (4). Figure 2, for example, shows imagery
requires the expectation of the complete-data log-likelihood, of the star cluster R136 in a star formation called 30 Doradus
conditional on the measured (or incomplete) data and using as acquired by the telescope and as restored using the meth-
the old object intensity estimate Iold[ � ] ods described in this article. Also shown in this figure are

imagery acquired by the telescope after its aberrated mirror
was corrected, along with a processed image showing the po-
tential advantage of applying image restoration methods to
imagery acquired after the correction. Figure 3 contains an
image of Saturn along with restorations formed by simple in-
verse filtering, Wiener filtering, and by the maximum-likeli-
hood method. According to scientific staff at the Space Tele-
scope Science Institute, the maximum-likelihood restoration

Q (I; I old) = E[L c(I)|{d̃k[n]}; I old]

= −
∑

k

∑
n

∑
m

a[n]γ |Yn|hk(yn, xm )I [m]

+
∑

k

∑
n

∑
m

E [N c
k[n, m]|{d̃k[n]}; I old]

ln(a[n]γ |Yn|hk(yn, xm )I [m])

(31)
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ever, and because of this the maximum-likelihood image esti-
mates frequently exhibit severe noise artifacts. Common
methods for addressing this problem are discussed briefly in
this section.

Stopping Rules. Probably the simplest method to imple-
ment for overcoming the noise artifacts seen in maximum-
likelihood image estimates obtained by numerical procedures
is to terminate the iterative process before convergence. Im-
plementation of such a procedure is straightforward; however,
the construction of optimal ‘‘stopping rules’’ can be challeng-
ing. Criteria for developing these rules for problems in coher-
ent imaging are discussed in Refs. 21, 37, 38.

Sieve Methods. The basic idea behind the method of sieves
is to constrain the set of allowable image estimates to be in a
smooth subset called a sieve. The sieve is selected in a man-
ner that depends upon the degree to which the problem is
ill-conditioned and upon the noise level. Badly ill-conditioned
problems and noisy data require a ‘‘small’’ sieve set con-
taining only very smooth functions. Problems that are better
conditioned with little noise can accommodate ‘‘large’’ sieve
sets, and the sieve is ideally selected so that its ‘‘size’’ grows
with decreasing noise levels in such a manner that the con-
strained image estimate converges to the true image as the
noise level shrinks to zero. Establishing this consistency prop-
erty for a sieve can, however, be a difficult task.Figure 2. Imagery of the star cluster R136 in the star formation 30
The general method of sieves as a statistical inference toolDoradus as acquired by the Hubble Space Telescope both before and

was introduced by Grenander (20). The application of thisafter its aberrated primary mirror was corrected. Upper left: raw data
acquired with the aberrated primary mirror; upper right: restored method to problems in incoherent imaging was proposed and
image obtained from imagery acquired with the aberrated primary investigated by Snyder et al. (39,40). The method is based on
mirror; lower left: raw data acquired after correction; lower right: re- a kernel sieve defined according to
stored image obtained from imagery acquired after the correction.
(Courtesy of R. J. Hanisch and R. L. White, Space Telescope Science
Institute and NASA.) S =

{
I : I[m] =

∑
p

s[m, p]α[ p]

}
(36)

provides the best trade-off between resolution and noise am- where intensity functions within the sieve set S are deter-
plification. mined by the nonnegative parameters ��[p]�. The sieve-con-

strained optimization problem then becomes one of maximiz-
Regularization. Under reasonably unrestrictive conditions, ing the likelihood subject to the additional constraint I � S .

the EM method described in the previous section produces a The smoothness properties of the sieve are induced by the
sequences of images that converges to a maximum-likelihood sieve kernel s[ � , � ]. With a Gaussian kernel, for instance, the
solution (36). Imaging problems for which this method is ap- smoothness of the sieve set is determined by the variance pa-
plicable are often ill-conditioned or practically ill-posed, how- rameter �

s[m, p] = 1√
2πσ 2

exp
(

− (m − p)2

2σ 2

)
(37)

This Gaussian kernel was investigated in Refs. 39, 40, but
kernels with other mathematical forms can be used. The EM
method can, with straightforward modifications, be applied to
problems in which kernel sieves are used for regularization.

Penalty and MAP Methods. Another method for regularizing
maximum-likelihood estimation problems is to augment the
likelihood with a penalty function

C (I ) = L (I ) − γ�(I ) (38)

where � is a function that penalizes undesirable qualities (or
Figure 3. Raw imagery and restorations of Saturn as acquired by

rewards desirable ones) of the image estimate, and � is a non-the Hubble Space Telescope. From left to right: telescope imagery;
negative scale factor that determines the relative contributionrestoration produced by simple inverse filtering; restoration produced
of the penalty to the optimization problem. The penalized im-by Wiener filtering; restoration produced by the maximum-likelihood
age estimate is then selected to maximize the cost function C ,method. (Courtesy of R. J. Hanisch and R. L. White, Space Telescope

Science Institute and NASA. which involves a trade between maximizing the likelihood L
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and minimizing the penalty �. The choice of the penalty can where p is an index to sensor locations (either real or syn-
thetic), up is the complex-amplitude measured by the pth sen-greatly influence the resulting image estimate, as can the se-

lection of the scale factor �. A commonly used penalty is the sor, u(x) is the complex-amplitude of the field that is reflected
from an object or scene of interest, hp(x) is a sensor responsequadratic smoothness penalty
function for the pth sensor measurement, and wp accounts for
additive sensor noise. The response function accounts for both
the sensor characteristics and for wave propagation from the

�(I ) =
∑

n

∑
m∈Nn

wnm(I [n]− I [m])2 (39)

object or scene to the sensor; in the Fraunhofer approximation
where N n denotes a neighborhood of pixel locations about the for wave propagation, these functions take on the form of a
nth object pixel, and the coefficients wnm control the link be- Fourier-transform kernel (10).
tween pixel n and m. This penalty can also be induced by When the object or scene gives rise to diffuse reflections,
using a MAP formulation with Gaussian Markov random field the Gaussian speckle model (50) is often used as a statistical
(GMRF) prior model for the object. However, because the use model for the reflected field u( � ). That is, u( � ) is modeled as
of this penalty often results in excessive smoothing of the ob- a complex Gaussian random process (13,51,52) with zero-
ject edges, alternative penalties have been developed and in- mean and the covariance
vestigated (41–43). A particularly interesting penalty is in-
duced by using a MAP formulation with the generalized E [u(x)u∗(x′)] � s(x)δ2(x − x′) (42)
Gaussian Markov random field (GGMRF) model (43). The use

where s( � ) is the object incoherent scattering function. Theof this prior results in a penalty function of the form
sensor noise is often modeled as zero-mean, independent com-
plex Gaussian variables with variance �2 so that the recorded
data are complex Gaussian random variables with zero-mean

�(I ) = γ q
∑

n

∑
m∈Nn

wnm|I [n]− I [m]|q (40)

and the covariance
where q � [1, 2] is a parameter that controls the smoothness
of the reconstruction. For q � 2 this is the common quadratic E [upu∗

p′ ] = ∫
hp(x)h∗

p′ (x)s(x) dx + σ 2δ[ p − p′] (43)
smoothing penalty, whereas smaller values of q will, in gen-
eral, allow for sharper edges in the object estimates. where 	[ � ] is the Kronecker delta function. The maximum-
Although the EM method is directly applicable to problems likelihood estimation of the object scattering function s( � )

in which stopping rules or kernel sieves are used, the EM then becomes a problem of covariance estimation subject to
approach is less simple to use when penalty or MAP methods the linear structure constraint of Eq. (43).
are employed. The major difficulty arises because the maximi- Using vector-matrix notation the data covariance is, as a
zation step usually has no closed-form solution; however, ap- function of the unknown object scattering function
proximations and modifications can be used (41,44) to address
this problem. RRR(s) = E [uuuuuu†]

= ∫
hhh(x)hhh†(x)s(x) dx + σ 2III

(44)

Alternative Numerical Approaches

where u � [u1u2 � � �uP]T is the data vector, h(x) � [h1(x)h2(x)A major difficulty encountered when using the EM method
� � �hP(x)]T is the system response vector, [ � ]T denotes matrixfor incoherent-imaging problems is its slow convergence (45).
transposition, [ � ]† denotes Hermitian matrix transposition,Many methods have been proposed to overcome this problem,
and I is the P 
 P identity matrix. Accordingly, the data log-and a few of these are summarized briefly here. Because of
likelihood isthe similarities of the EM method to gradient ascent, line-

search methods can be used to accelerate convergence (45), as
L(s) = − ln det[RRR(s)]− tr[RRR−1(s)SSS] (45)can other gradient-based optimization methods (46,47). Sub-

stantial improvements in convergence can also be obtained by where S � uu† is the data sample-covariance. Parameteriza-
using a generalization of the EM method—the space-alternat- tion of the parameter function as in Eq. (23) is a natural step
ing generalized expectation-maximization (SAGE) method before attempting to solve this problem, but direct maximiza-
(28,48)—whereby convergence is accelerated through a novel tion of the likelihood is still a difficult problem. Because of
choice for the complete data at each iteration. In addition, a this, the EM method has been proposed and discussed in Refs.
coordinate descent (or ascent) optimization method has been 53–55 for addressing this problem, and the resulting algo-
shown to provide for greatly reduced computational time (49). rithm has been shown to produce parameter estimates with

lower bias and variance than alternative methods (56). A ma-
jor problem with this method, though, is the high computa-COHERENT IMAGING
tional cost; however, the application of the SAGE method (28)
to this problem has shown great promise for reducing theFor synthetic aperture radar (SAR), ultrasound, and other
computational burden (57). The development and applicationforms of coherent array imaging, an object or scene is illumi-
of regularization methods for problems in coherent imaging isnated by a highly coherent source (such as a radar transmit-
an area of active research.ter, laser, or acoustic transducer), and heterodyne, homodyne,

or holographic methods are used to record amplitude and
phase information about the reflected field. The basic signal SUMMARY
model for these problems is of the form:

Imaging science is a rich and vital area of science and tech-
nology in which information-theoretic methods can be andup = ∫

hp(x)u(x)dx + wp, p = 1,2, . . ., P (41)
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22. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics,have been applied with great benefit. Maximum-likelihood
New York: Cambridge University Press, 1995.methods can be applied to a variety of problems in image res-

23. D. L. Snyder, A. M. Hammoud, and R. L. White, Image recoverytoration and synthesis, and their application to the restora-
from data acquired with a charge-coupled-device camera, J. Opt.tion problem for incoherent imaging has been discussed in
Soc. Am., A, 10 (5): 1014–1023, 1993.great detail in this article. To conclude, the future of this field

24. D. L. Snyder et al., Compensation for readout noise in CCD im-is best summarized by the following quote from Bracewell
ages, J. Opt. Soc. Am., A, 12 (2): 272–283, 1995.(58):

25. D. G. Luenberger, Linear and Nonlinear Programming, Reading,
MA: Addison-Wesley, 1984.

The study of imaging now embraces many major areas of modern
26. R. Fletcher, Practical Methods of Optimization, New York: Wi-technology, especially the several disciplines within electrical en-

ley, 1987.gineering, and will be both the stimulus for, and recipient of, new
27. A. P. Dempster, N. M. Laird, and D. B. Rubin, Maximum likeli-advances in information science, computer science, environmental

hood from incomplete data via the EM algorithm, J. R. Stat. Soc.,science, device and materials science, and just plain high-speed
B, 39: 1–37, 1977.computing. It can be confidently recommended as a fertile subject

area for students entering upon a career in engineering. 28. J. A. Fessler and A. O. Hero, Space-alternating generalized ex-
pectation-maximization algorithm, IEEE Trans. Signal Process.
42: 2664–2677, 1994.
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