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All of us, either directly or through the use of various ma-
chines that we have become dependent upon, wait for ser-
vice in a variety of lines on a regular basis. Customers
wait in lines at banks to be served by a bank teller; drivers
wait in their cars in traffic jams or at toll booths; patients
wait in doctors’ waiting rooms; electronic messages wait
in personal computers to be delivered over communication
networks; telephone calls are put on hold to be answered
by operators; computer programs are stored in computer
memory to be executed by a time-sharing computer sys-
tem; and so on. In many situations, scarce resources are to
be shared among a collection of users who require the use
of these resources at unspecified times. They also require
the use of these resources for random periods of time. This
probabilistic nature of requests causes these requests to ar-
rive while the resources are in use by other members of the
user community. A mechanism must be put in place to pro-
vide an orderly access to the resources requested. The most
common mechanism is to put the user requests in a wait-
ing line or “queue.” “Queueing theory” deals with the study
of the behavior and the control of waiting lines. It provides
us with the necessary mathematical structure and proba-
bility tools to model, analyze, study, evaluate, and simulate
systems involving waiting lines and queues. It is a branch
of applied mathematics, applied probability theory, and op-
erations research. It is known under various names such
as: queueing theory, theory of stochastic server systems,
theory of systems of flows, traffic or teletraffic theory, con-
gestion theory, and theory of mass service. Standard texts
on queueing theory include Refs. 1–31. For a summary of
many of the most important results in queueing theory, the
reader is referred to a survey paper by Cooper (7). For a bib-
liography of books and survey papers on queueing theory
see Refs. 8, 29. For nontechnical articles explaining queue-
ing theory for the layman the reader is referred to Refs. 9,
26.

A typical queueing system can be described as one where
customers arrive for service, wait for service, and, leave the
system after being served. The service requests occur ac-
cording to some stochastic process, and the time required
for the server(s) to service a request is also probabilistically
distributed. In general, arrivals and departures (i.e., ser-
vice completions) cannot be synchronized, so waiting time
may result. It is, therefore, critical to be able to character-
ize waiting time and many other important performance
measures of a queueing system. For a typical queueing
system, one is interested in answering questions such as:
How long does a typical customer have to wait? What is the
number of customers in the system at any given point in
time? How large should the waiting room be to accommo-
date certain percentage of potential customers? How many
servers are needed to keep the waiting time below a cer-

tain limit? What are subjective and economical advantages
and disadvantages of modifying various parameters of the
systems such as the number of servers or the size of the
waiting room? How often is the server busy? Queueing the-
ory attempts to answer these and other related questions
through detailed mathematical analysis and provides us
with the necessary tools to evaluate related performance
measures.

The purpose of this article is to provide an introductory
overview of the fundamental notions of queueing theory.
The remaining sections of this article will discuss the fol-
lowing topics: a brief history of the development of queue-
ing theory; applications of queueing theory; specification
and characterization of queueing systems; notions of prob-
ability theory of importance to queueing theory; modeling
and analysis of elementary queueing systems; references
to more advanced topics; and a list of references.

HISTORY OF THE DEVELOPMENT OF QUEUEING
THEORY

The English word “queue” is borrowed from the French
word “queue” which itself is taken from the Latin word
“cauda” meaning “tail.” Most researchers and scientists
in the field prefer the spelling “queueing” over “queuing.”
However, many American dictionaries and software spell
checkers prefer the spelling “queuing.” For further discus-
sion of “queueing” vs. “queuing” spelling, see Refs. 27, 28.
Queueing theory has been under development since the
early years of this century. It has since progressed con-
siderably, and today it is based upon a vast collection of
results, methods, techniques, and voluminous literature. A
good summary of the early history of queueing theory can
be found in Ref. 6, pp. 20–25.

Historically, queueing theory originated as a very prac-
tical subject. It was developed to provide models to predict
the behavior of systems that attempt to provide service for
randomly arising demands. Much of the early work was de-
veloped in relation with problems in telephone traffic en-
gineering. The pioneering work of Agner Krarup Erlang,
from 1909 to 1929, laid the foundations of modern teletraf-
fic and queueing theory. Erlang, a Danish mathematician
and engineer who worked for the Copenhagen Telephone
Exchange, published his first article in 1909 on the applica-
tion of probability theory to telephone traffic problems (10).
Erlang’s work soon drew the attention of other probability
theorists such as T. C. Fry and E. C. Molina in the 1920s,
who expanded much of Erlang’s work on the application of
the theory to telephone systems. Telephony remained one
of the principal applications until about 1950.

In the years immediately following World War II, ac-
tivity in the fields of probability theory and operations re-
search (11, 12) grew rapidly, causing a new surge of in-
terest in the subject of queueing theory. In the late 1950s,
queueing theory became one of the most popular subjects
within the domains of applied mathematics and applied
probability theory. This popularity, however, was fueled
by its mathematical challenges and not by its applica-
tions. Clever and elegant mathematical techniques has en-
abled researchers (such as Pollaczek, Kolmogorov, Khin-
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chine, Crommelin, and Palm) to derive exact solutions for
a large number of mathematical problems associated with
models of queueing systems. Regrettably, in the period of
1950–1970, queueing theory, which was originated as a
very practical subject, had become of little direct practical
value.

Since the 1970s there has seen a rebirth and explosion
of queueing theory activities with an emphasis on practi-
cal applications. The performance modeling and analysis of
computer systems and data transmission networks opened
the way to investigate queues characterized by complex
service disciplines and interconnected systems. Most of
the theoretical advances since the 1970s are directly at-
tributable to developments in the area of computer systems
performance evaluation as represented in Refs. 13–16.

APPLICATIONS OF QUEUEING THEORY

Interest in queueing theory has often been stimulated
by practical problems and real world situations. Queue-
ing theory concepts have applications in many disciplines
such as telephone systems traffic engineering, migration
and population models in biology, electrical and fluid flow
models, clustering models in chemistry,manufacturing sys-
tems, computer systems, digital data transmission sys-
tems, flow through communication networks, inventory
control, time sharing and processor sharing computer sys-
tems, telecommunications, machine repair, taxi stands,
aircraft landing, loading and unloading ships, scheduling
patients in hospitals, factory production flow, intelligent
transportation systems, call centers, and so on. There are
many other important applications of the queueing theory
as presented in Refs. 1–6 and 13–16. We elaborate further
on only two of these applications in this section.

Queueing theory has played a major role in the study
of both packet switching and circuit switching communica-
tion networks. Queueing arises naturally in packet switch-
ing networks where user messages are broken into small
units of transmission called packets. Packets arriving at
various intermediate network nodes, on the way to their fi-
nal destination, are buffered in memory, processed to deter-
mine the appropriate outgoing route, and then are trans-
mitted on the chosen outgoing link when their time for
transmission comes up. If, for example, the chosen outgo-
ing link is in use when it is time for a given packet to be
transmitted, then that packet must be kept in the memory
(i.e., queued) until the link becomes available. The time
spent in the buffer waiting for transmission is an impor-
tant measure of system performance. This waiting time
depends on various parameters such as nodal processing
power, transmission link speed,packet lengths, traffic rates
in terms of packets per second, and so on. Queueing theory
provides the necessary mathematical tools to model and
analyze such queueing configurations.

For another example of application of queueing theory
consider a typical bank and the mechanism that bank man-
agement has put in place to direct incoming customers to
the available bank tellers. In some banks, each teller has
his or her own queue and incoming customers are free to
join the waiting line of any of the tellers based on some per-

sonal preferences. Some customers often join the shortest
queue, and some join the queue of a particular teller that
they personally know, whereas others may join the queue of
the teller that is perceived to be the fastest. On the other ex-
treme, some banks (via the use of various directional signs
and/or ropes) direct all the incoming customers into a sin-
gle waiting line that feeds all the tellers. The customer at
the head of this queue is then served by the next available
bank teller. The question now becomes which one of these
two modes of operation is more appropriate. The answer
strongly depends on such parameters as the performance
measures that the bank management is interested in op-
timizing, the number and the speed of the tellers, the type
of banking transactions, and the number of incoming cus-
tomers visiting the bank in a typical day. Similar issues
arise in other cases such as supermarket checkout coun-
ters, fast-food restaurants, airport landing and departure
schedules, and multiprocessor computer systems. Queue-
ing theory methods enable us to model, analyze, and decide
on the best strategy for such applications.

SPECIFICATION AND CHARACTERIZATION OF
QUEUEING SYSTEMS

Figure 1 represents the basic elements of a queueing sys-
tem. As shown in Fig. 1, a basic queueing system is one
where members of a population (i.e., customers or entities
of some kind) arrive at a service station to receive service
of some type. After receiving service, the units depart the
service facility. A “queue” or waiting line is developed when-
ever the service facility cannot service all the units requir-
ing service. Although many queueing systems may be rep-
resented by similar diagrams, an accurate representation
of such a system requires a detailed characterization of the
underlying parameters and processes.

Key Parameters and Varieties of Queueing Systems

To fully describe a queueing system analytically, various
aspects and parameters of the system must be known. The
most important of them are presented here.

The Arrival Pattern. Let the successive customers arrive
to the system at times t1, t2, t3, . . . , where 0 ≤ t1 < t2 <

t3 < ··· < tn < ···. Then we define yi = ti+1 − ti, where i =
1, 2, 3, . . . , as the interarrival times of the customers. We
normally assume that arrival times form a stochastic pro-
cess and that the interarrival times, yi, are independent
and identically distributed (iid) according to probability
distribution function A(·), where A(τ) = P(yi ≤ τ). Function
A(·) is then referred to as the interarrival time distribution
or simply the arrival distribution. Additional information
such as whether each arrival event contains one or a group
of customers of fixed or random size (i.e., “bulk arrivals”)
can also be specified if applicable.

Customer Population and Behavior. The customer popu-
lation, or the source of the customers, can either be finite or
infinite. Infinite customer populations are normally easier
to describe mathematically and analyze their performance
analytically. This is because in a finite population source
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Figure 1. Basic elements of a typical
queueing system.

model, the number of customers in the system affects the
arrival rate which in turn makes the analysis more diffi-
cult. In addition to the properties of the entire customer
population, behavior of individual customers could also be
of importance and, therefore, must be formally specified.
For example, if a customer decides not to join the system af-
ter seeing the size of the queue, it is said that the customer
has “balked.” Or, for example, a customer is said to have “re-
neged” if, after having waited in the queue for some time,
he or she becomes impatient and leaves the system before
his service begins. Customers, if allowed, may “jockey” from
one queueing system to another (with a perceived shorter
waiting time, for example).

The Service Mechanism. The queue’s service mechanism
is described by specifying the number of servers, c, and
the stochastic characterization of the service times. It is
normally assumed that the service times of successive cus-
tomers, x1, x2, x3, . . . , are iid with probability distribution
B(·), where B(τ) = P(xi ≤ τ), and are also independent of
the interarrival times y1, y2, y3, . . . . Additional information
such as whether the customers are served individually or
in groups (of fixed or random size) can also be specified if
applicable.

The Queueing Discipline. The queueing discipline is the
description of the mechanism for determining which of the
waiting customers gets served next, along with the asso-
ciated rules regarding formation of the queue. The most
basic queueing disciplines are listed and described below:

1. First-Come First Served (FCFS) or First-In First-Out
(FIFO) The waiting customers are served in the order
of their arrival times.

2. Last-Come First-Served (LCFS) or Last-In First-Out
(LIFO) The customer who has arrived last is chosen
as the one who gets served when a server becomes
available.

3. Service in Random Order (SIRO) or Random Selec-
tion for Service (RSS) The customer to be served next
is chosen stochastically from the waiting customers
according to a uniform probability distribution. In
general, the probability distribution used to choose
the next customer could be any discrete probability
distribution.

4. Priority (PR or PRI) There could also be some no-
tion of priority in the queueing system where the
customer population is divided in two or more pri-
ority classes. Any waiting member of a higher prior-
ity class is chosen to be served before any customer
from a lower priority class. Queueing systems with
priority classes are divided into two types. Under a
“preemptive priority” discipline, whenever a higher
priority customer arrives while a lower priority cus-
tomer is in service, the lower priority customer is pre-
empted and is taken out of service without having his
service completed. In this case, the preempted cus-
tomer is placed back in the queue ahead of all cus-
tomers of the same class. Under the “non-preemptive
priority” discipline, once the service of any customer
is started, it is allowed to be completed regardless
of arrivals from higher priority classes. Moreover,
the preemptive priority queueing systems can fur-
ther be divided into two types. Under the discipline
of “preemptive resume,” whenever a preempted cus-
tomer reenters service he simply continues his ser-
vice where he left off. Under “preemptive repeat,” a
preempted customer draws a new value of service
time from the service time distribution each time it
reenters service.

Maximum Number of Customers Allowed. In many sys-
tems the capacity of queueing system is assumed to be infi-
nite, which implies that every arriving customer is allowed
to join the queue and wait until served. However, in many
real-life situations, the queueing systems have either no
or only a finite amount of capacity for customers to wait.
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In a queueing system with no room for customers to wait,
whenever all the servers are busy, any additional arriving
customer is turned away; this type of system is referred to
as “loss systems.” Loss systems have been used to model the
behavior of many dial-up telephone systems and telephone
switching equipment. Queueing systems with a positive
but finite waiting room have been deployed to characterize
the performance of various computing and telecommuni-
cations systems where the finite waiting room models the
finite amount of memory or buffer present in such real-
world systems.

Number of Servers. In general a queueing system can
have either one, or finitely many, or an infinite number
of servers. “Single-server systems” are the simplest ones
where a maximum of one user can be served at any given
point in time. A “multiserver system” contains c servers,
where 0 < c < ∞, and can serve up to c simultaneous cus-
tomers at any given point in time. An “infinite-server sys-
tem” is one in which each arriving customer is immediately
provided with an idle server.

Performance Measures

In any queueing system there are many performance
tradeoffs to be considered. For example, if the number of
servers in the system is so large that queues rarely form,
then the servers are likely to be idle a large fraction of time,
resulting in wasting of resources and extra expense. On the
other hand, if almost all customers must join long queues,
and servers are rarely idle, there might be customer dissat-
isfaction and possibly lost customers which again has neg-
ative economical consequences. Queueing theory provides
the designer the necessary tools to analyze the system and
ensure that the proper level of resources are provided in the
system while avoiding excessive cost. The designer can ac-
complish this, for example, by considering several alterna-
tive system architectures and by evaluating each by queue-
ing theory methods. In addition, the future performance of
an existing system can also be predicted so that upgrading
of the system can be achieved in a timely and economical
fashion. For example, an analytical queueing model of a
computer communication network might indicate that, in
its present configuration, it cannot adequately support the
expected traffic load two years in the future. The model
may make it possible to evaluate different alternatives for
increased capacity such as increasing the number of nodes
in the network, increasing the computing power of exist-
ing nodes, providing more memory and buffer space in the
network nodes, increasing the transmission speeds of the
communication links, or increasing the number of commu-
nication links. Determining the most appropriate solution
can be done through careful evaluation of various perfor-
mance measures of the queueing systems.

The following performance measures represent some of
the most common and important aspects of queueing sys-
tems which are normally investigated:

1. The Queue Length This performance measure is re-
lated to the number of customers waiting in the sys-
tem. Some authors use this term to represent only

the number of customers in the queue proper (i.e.,
not including the one or more customers who are be-
ing served), and others use it to represent the total
number of customers in the system. In the former
case it is often referred to as the “queue length,” and
in the latter case it is often referred to as the “number
in the system.”

2. The Waiting Time This performance measure is re-
lated to the amount of time spent by a customer in
the system. This term is used in two different ways.
Some authors use the term to refer to the total time
spent by a customer in the queueing system, which
is the sum of the time spent by the customer in the
waiting line before service and the service time itself.
Others define it as only the time spent in the queue
before the service. In the former case it is often re-
ferred to as the “system time,” and in the latter case
it is often referred to as the “queueing time.”

3. The Busy Period This is the length of time during
which the server is continuously busy. Any busy pe-
riod begins when a customer arrives at an empty sys-
tem, and it ends when the number of customers in
the system reaches zero. The time period between
two successive busy periods is referred to as the “idle
period” for obvious reasons.

Kendall’s Notation for Queueing Systems

It is a common practice to use a short-hand notation of
the form A/B/c/K/m/Z to denote various aspects of a queue-
ing system. This notation is referred to as Kendall’s nota-
tion. This type of short-hand was first developed by Kendall
(17) and later extended by Lee (18). It defines some of the
basic parameters which must be known about a queue in
order to study its behavior and analyze its performance.
In Kendall’s notation A/B/c/K/m/Z, A describes the interar-
rival time distribution, B describes the service time distri-
bution, c is the number of (parallel) servers, K is the maxi-
mum number of customers allowed in the system (waiting
plus in service), m is the size of the customer population,
and Z describes the queue discipline. The traditional sym-
bols used in the first and second positions of Kendall’s no-
tation, and their meanings, are:

M
D
Ek

Hk

G

Exponentially distributed interarrival time or service
time distribution

Deterministic (i.e., constant) interarrival time or service
time distribution

k-stage Erlangian (Erlang-k) interarrival time or ser-
vice time distribution

k-stage Hyperexponential interarrival time or service
time distribution

General interarrival or service time distribution
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The third, fourth, and fifth positions in Kendall’s nota-
tion could be any positive integer. The traditional symbols
used in the last position of Kendall’s notation are: FCFS,
FIFO, LCFS, LIFO, SIRO, RSS, PR, and PRI, as described
earlier in this section; and also GD, which refers to a gen-
eral queue discipline.

As an example of Kendall notation, an
M/D/2/50/∞/SIRO queueing system is one with expo-
nential interarrival time, constant service time, 2 parallel
servers, a system capacity of 50 (i.e., a maximum of 48 in
the queue and 2 in service), a customer population that is
infinitely large, and the waiting customers are served in a
random order.

Whenever the last three elements of Kendall’s notation
are omitted, it is meant that K = ∞, m = ∞, and Z = FCFS
(i.e., there is no limit to the queue size, the customer source
is infinite, and the queue discipline is FCFS). As an exam-
ple of the shorter version of Kendall’s notation, an M/M/1
queue has Poisson arrivals, exponential service time, and
1 server, there is no limit to the queue size, the customer
source is infinite, and the queue discipline is FCFS.

It should be noted that although Kendall’s notation is
quite useful and very popular, it is not meant to charac-
terize all possible models and configurations of queueing
systems. For example, Kendall’s notation is normally not
used to indicate bulk arrivals, or queues in series, and so
on.

NOTIONS OF PROBABILITY THEORY OF IMPORTANCE
TO THE STUDY OF QUEUES

Probability theory has a major and fundamental role in
the study and analysis of queueing models. As mentioned
earlier, queueing theory is considered a branch of applied
probability theory. It is assumed here that the reader is
familiar with the basic notions of elementary probability
theory such as notions of events, probability, statistical in-
dependence, distribution and density functions, and expec-
tations or averages. The reader is referred to Ref. 19 for a
complete treatment of probability theory. Here we discuss
a few aspects of probability notions which are of great im-
portance to the study of queues.

Probability Distributions of Importance to Queueing
Theory

As is indicative of Kendall’s notation, queueing theory
deals with a large number of different types of probability
distributions to mathematically model the behavior of cus-
tomer interarrival times and the customer service times. In
the rest of this section, we briefly describe some of the most
important probability distributions that are used often in
various queueing theory analysis.

Exponential Probability Distribution. The probability dis-
tribution most commonly assumed for customer interar-
rival time and for customer service times in queueing mod-
els is the exponential distribution. This popularity is due to
its pleasant mathematical properties which often result in
much simplification of the analytical work. A continuous
random variable X has an exponential distribution with

parameter λ > 0 if its density function f(·) is defined by

It distribution function is given by

Both its mean and its standard deviation are equal to 1/λ.
The exponential distribution is unique among the con-

tinuous distributions because it has the so-called “mem-
oryless property” or “Markov property.” The memoryless
property is that if we know that a random variable has an
exponential distribution, and we know that the value of
the random variable is at least some value, say t, then the
distribution for the remaining value of the variable (i.e.,
the difference between the total value and t) has the same
exponential distribution as the total value. That is,

Another interpretation of Eq. (3) is that, if X is the waiting
time until a particular event occurs and t units of time
have produced no event, then the distribution of further
waiting time is the same as it would be if no waiting time
had passed; that is, the system does not “remember” that t
time units have produced no “arrival.”

Poisson Probability Distribution and Poisson Random
Process. Poisson random variable is used in many appli-
cations where we are interested in counting the number
of occurrences of an event (such as arrivals to a queueing
system) in a certain time period or in a region of space.
Poisson random variables also appear naturally in many
physical situations. For example, the Poisson probability
mass function gives an accurate prediction for the relative
frequencies of the number of particles emitted by a radioac-
tive mass during a fixed time period. A discrete random
variable X is said to have a Poisson distribution with pa-
rameter λ > 0 if X has a probability mass function of the
form

Both the mean and the standard deviation of the Poisson
random variable are equal to λ.

Now consider a situation in which events occur at ran-
dom instants of time at an average rate of λ events per sec-
ond. For example, an event could represent the arrival of
a customer to a service station or the breakdown of a com-
ponent in some system. Let N(t) be the number of event
occurrences in the time interval [0, t]. N(t) is then a nonde-
creasing, integer-valued, continuous-time random process.
Such a random process is said to be a Poisson process if the
number of event occurrences in the time interval [0, t] has
a Poisson distribution with mean λt. That is,

Like the exponential distribution, Poisson process also has
a number of unique properties which has made it very at-
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tractive for analytical studies of queueing systems. In par-
ticular, Poisson process has a “memoryless property”; oc-
currence of events during a current interval of time is in-
dependent of occurrences of events in previous intervals. In
other words, events occurring in nonoverlapping intervals
of time are independent of each other. Furthermore, the
interevent times (i.e., interarrival times in case of queue-
ing system) in a Poisson process from an iid sequence of
exponential random variables with mean 1/λ.

Erlang-k Probability Distribution. A. K. Erlang (10) used
a special class of gamma random variables (19), now of-
ten called “Erlang-k” or “k-stage Erlangian,” in his study
of delays in telephone traffic. A random variable, T, is said
to be an Erlang-k random variable with parameter λ or to
have an Erlang distribution with parameters k and λ, if
T is gamma random variable with the density function f
given by

The mean and variance of Erlang-k random variable are
1/λ and 1/(kλ2), respectively. An Erlang-k random variable
can be obtained by adding k independent exponentially dis-
tributed random variables each with parameter λk. The
physical model that Erlang had in mind was a service fa-
cility consisting of k identical independent service substa-
tions connected in series one after another, each with an
exponential distribution of service time. He wanted this
special facility to have the same average service time as a
single service facility whose service time was exponential
with parameter λ. Thus the service time, T, for the facility
with k stages could be written as the sum of k exponential
random variables, each with parameter λk.

Hyperexponential Probability Distribution. If the service
time of a queueing system has a large standard deviation
relative to the mean value, it can often be approximated by
a hyperexponential distribution. The model representing
the simplest hyperexponential distribution is one with two
parallel stages in the facility; the top one having exponen-
tial service with parameter µ1, and the bottom stage having
exponential service with parameter µ2. A customer enter-
ing the service facility chooses the top stage with probabil-
ity α1 or the bottom stage with probability α2, where α1 +
α2 = 1. After receiving service at the chosen stage, with the
service time being exponentially distributed with average
service rate µi, the customer leaves the service facility. A
new customer is not allowed to enter the facility until the
original customer has completed service. The probability
density function for the service time, the probability dis-
tribution function, mean, and variance are given by

The two-stage hyperexponential distribution described
above can be generalized to k stages for any positive in-
teger greater than 2.

Notions of Transient and Steady State

Analysis of a queueing system often involves the study of
the system’s characteristics over time. A system is defined
to be in “transient state” if its behavior and associated per-
formance measures are dependent on time. This usually
occurs at the early stages of the operation of the system
where its behavior is heavily dependent on the initial state
of the system. A system is said to be in “steady state” or
“equilibrium” when the behavior of the system becomes in-
dependent of time. This usually occurs after the system
has been in operation for a long time, and the influence of
initial conditions and of the time since start-up have di-
minished. In steady state, the number of customers in the
system and in the queue are independent of time.

A necessary condition for a queueing system to reach
steady state is that the elapsed time since the start of the
operation is mathematically long enough (i.e., the limit as
time tends to infinity). However, this condition is not suf-
ficient to guarantee that a queueing system is in steady
state. In addition to elapsed time, particular parameters of
the queueing system itself will have an effect on whether
and when the system reaches steady state. For example,
if the average arrival rate of customers is higher than the
overall average service rate of the system, then the queue
length will continue to grow forever and steady state will
never be reached. Although many authors have studied the
transient behavior of queueing systems, the majority of the
key results and existing literature deal with steady-state
behavior of queueing systems.

Random Variables of Interest

In this section we define and list the key random variables
and associated notations used in queueing theory and in
the rest of this article. Some of the primary random vari-
ables and notations are graphically illustrated in Fig. 2 and
many more are listed in Table 1. Clearly, there are some ob-
vious relationships between some of the random variables
listed in Fig. 2 and/or Table 1. For example, with respect to
the number of customers in the system, we must have

and

In Eq. (12), it is assumed that the queueing system has
reached the steady state. It should, however, be noted that
although the system is in steady state, quantities N, Nq,
and Ns are random variables; that is, they are not constant
and have probability distributions associated with them.
In other words, “steady state” means that the probabilities
are independent of time but not that the system becomes
deterministic.
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Figure 2. Graphical representation of
some variables of importance to queueing
theory.

Applying expectations operation to both sides of Eq. (12),
we get

There are similar obvious relationships between some of
the random variables related to waiting times. For exam-
ple, the total time in the queueing system for any customer
is the sum of his waiting time in the queue and his service
time, that is,

We are clearly interested in studying relationships be-
tween other random variables and parameters of the in-
terest which might not be as obvious as those given in Eqs.
(11)–(14). Development of such relationships are a major
byproduct of modeling and analysis of queueing systems,
as will be discussed in the next section.

MODELING AND ANALYSIS OF ELEMENTARY
QUEUEING SYSTEMS

In this section we present, in some detail, some of the key
techniques used by queueing theory community to model
and analyze some of the elementary queueing models. In
particular, we will illustrate the application of birth-and-
death stochastic processes to the analysis of these models.

Little’s Formula

Little’s formula (which is also known as “Little’s result”
and “Little’s theorem”) is one of the most fundamental and
often used results in queueing theory. It provides a simple,
but very general, relationship between the average wait-
ing time and the average number of customers in a queue-
ing system. Its first rigorous proof in its general form was
given by J. D. C. Little (20). Its validity and proofs of some
special cases, however, were known to researchers prior to
Little’s proof. Consider an arbitrary queueing system in
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steady state. Let L, W, and λ be the average number of cus-
tomers in the system, average time spent by customers in
the system, and average number of customer arrivals per
unit time, respectively. Little’s theorem states that

regardless of the interarrival and service time distribu-
tions, the service discipline, and any dependencies within
the system.

Rigorous proof of Little’s theorem is given in every stan-
dard queueing theory text (1–6). What follows is an intu-
itive justification of Little’s result given in Ref. 12. Suppose
that the system receives a reward (or penalty) of 1 for ev-
ery unit of time that a customer spends in it. Then the
total expected reward per unit time is equal to the average
number of customers in the system, L. On the other hand,
the average number of customers coming into the system
per unit time is λ; the expected reward contributed by each
customer is equal to his average residence time, W. Since it
does not matter whether the reward is collected on arrival
or continuously, we must have L = λW. A different inter-
pretation of Little’s result is obtained by rewriting it as λ

= L/W. Since a customer in the system remains there for
an average time of W, his average rate of departure is 1/W.
The total average departure rate is, therefore, L/W. Thus,
the relation holds if the average arrival rate is equal to the
average departure rate. But the latter is clearly the case
since the system is in equilibrium.

It is important to note that we have not even speci-
fied what constitutes “the system,” nor what customers do
there. It is just a place where customers (entities) arrive,
remain for some time, and then depart after having re-
ceived service. The only requirement is that the processes
involved should be stationary (i.e., system should be in
steady state). Therefore, we can apply Little’s theorem not
only to the entire queueing system [as represented by Eq.
(15)], but also to particular subsections of it. For example,
applying Little’s theorem to only the waiting line portion
of a G/G/c queueing system, where 1 ≤ c ≤ ∞, results in

where Lq and Wq are as defined in Table 1. Now consider
another situation, where the “system” is defined as the “set
of c servers” in a G/G/c queueing system, where 1 ≤ c ≤
∞. Since every incoming customer enters a server eventu-
ally, the rate of arrivals into the “set of c servers” is also
λ. The average time a customer spends in the system here
is simply 1/µ. According to Little’s theorem, the average
number of customers in the system is therefore λ/µ. Thus
in any G/G/c or G/G/∞ system in steady state, the average
number of busy servers is equal to the traffic intensity, ρ.
When c = 1, the average number of busy servers is equal
to the probability that the server is busy. Therefore, in any
single-server system in the steady state we have

Birth-and-Death Process

Most elementary queueing models assume that the inputs
(i.e., arriving customers) and outputs (i.e., departing cus-
tomers) of the queueing system occur according to the so-
called “birth-and-death process.” This important process
in probability theory has application in other areas also.
However, in the context of queueing theory, the term “birth”
refers to the arrival of a new customer and the term “death”
refers to the departure of a served customer. The state of
the system at time t, for t ≥ 0, is given by random variable
N(t) defined as the number of customers in the system at
time t. Thus the birth-and-death process describes proba-
bilistically how N(t) changes at t increases.

Formally speaking, a stochastic process is a birth-and-
death process if it satisfies the following three assump-
tions: (1) Given N(t) = n, the current probability distri-
bution of the remaining time until the next birth is ex-
ponentially distributed with parameter λn for n = 0, 1, 2,
. . . ; (2) given N(t) = n, the current probability distribution
of the remaining time until the next death is exponen-
tially distributed with parameter µn for n = 0, 1, 2, . . . ;
and (3) only one birth or death can occur at a time. Figure
3, which shows the state transition diagram of a birth-and-
death process, graphically summarizes the three assump-
tions just described. The arrows in this diagram show the
only possible transitions in the state of the system, and the
label for each arrow gives the mean rate for the transition
when the system is in the state at the base of the arrow.

Except for a few special cases, analysis of the birth-and-
death process is very difficult when the system is in a tran-
sient condition. On the other hand, it is relatively easy to
derive the probability distribution of the number of cus-
tomers in the system in steady state. In steady state, the
probability of finding the system in a given state does not
change with time. In particular, the probability of there
being more than k customers in the system is constant.
The transition from state k to state k + 1 increases this
probability, and the transition from state k + 1 to state k
decreases it. Therefore, these two transitions must occur at
the same rate. If this were not so, the system would not be
in steady state. This yields to the following key principle:
In equilibrium, the average rate into any state is equal to
the average rate out of that state. This basic principle can
be used to generate a set of equations called the “balance
equations.”After constructing the balance equations for all
the states in terms of the unknown probabilities Pn, this
system of equations can then be solved to find these prob-
abilities. As shown in Fig. 3, there are only two transitions
associated with state zero which result in the following bal-
ance equation for that state:

There are four transitions associated with state 1 resulting
in the following balance equation for that state:

Balance equations for states n ≥ 2 are similar to that of
state 1 and can be easily be generated by inspecting the
associated transitions in Fig. 3. This collection of balance
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Figure 3. State transition diagram for a birth-and-death process.

equations along with the auxiliary equation

can be solved for Pn, n = 0, 1, 2, 3, . . . , resulting in the
following set of steady-state probabilities for the number
of customers in the system:

where

Given these expressions for the steady-state probability
of number of customers in the system, we can derive the
average number of customers in the system by

These steady-state results have been derived under the as-
sumption that the λn and µn parameters are such that the
process actually can reach a steady-state condition. This
assumption always holds if λn = 0 for some value of n, so
that only a finite number of states (those less than n) are
possible. It also always holds when λn = λ and µn = µ for
all n and when ρ = λ/µ < 1.

M/M/1 Queue

Consider the simplest model of a nontrivial queueing
model. This model assumes a Poisson arrival process (i.e.,
exponentially distributed interarrival times), an exponen-
tially distributed service time, a single server, infinite
queue capacity, infinite population of customers, and FCFS
discipline. If the state of the system at time t, for t ≥ 0, is
given by the random variable N(t), defined as the number
of customers in the system at time t, it represents a birth-
and-death process with rates

Therefore, by using Eqs. (22)–(24), we get

where ρ = λ/µ. The mean number of customers in the sys-
tem can now be computed as

Having found the mean number of customers in the system,
we can now use Little’s formula to determine the average
total waiting time, W, as follows:

Behavior of the average number of customers in the sys-
tem (i.e., L) and the normalized average waiting time (i.e.,
Wµ) for the M/M/1 queue as a function of traffic intensity,
ρ, has been graphically shown in Fig. 4. Note that the av-
erage waiting time and the queue length explode as traffic
intensity approaches 1. Therefore, the M/M/1 queue is sta-
ble only if 0 ≤ ρ < 1.

Other Elementary Queueing Systems

There are a number of other single-queue models whose
steady-state behavior can be determined via birth-and-
death process techniques. We briefly mention the most im-
portant ones and refer the reader to standard texts on
queueing theory (1–6) for detailed analysis and the associ-
ated mathematical expressions. Lack of space prevents us
from listing all the associated results and formulas in these
areas. The reader is referred to Ref. 3 (pp. 400–409) for a
tabular listing of all the key formulas related to important
queueing models.

M/M/1/K. The M/M/1 model is somewhat unrealistic in
the sense that, for example, no communication link can
have an unlimited number of buffers. The M/M/1/K system
is a more accurate model of this type of system in which a
limit of K customers is allowed in the system. When the sys-
tem contains K customers, arriving customers are turned
away. This model can easily be analyzed by truncating the
birth-and-death state diagram of the M/M/1 queue to only
K states. This results in a birth-and-death process with
coefficients
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Figure 4. Performance characteristics of M/M/1 queue.

and

M/M/c. For this model we assume exponential inter-
arrival times, exponential service times, and c identical
servers. This system can be modeled as a birth-and-death
process with the coefficients

and

Note that Eq. (33) agrees with Eq. (26) when c = 1; that is,
for the M/M/1 queueing system, as it should. Historically,
the expression of the probability that an arriving customer
must wait is known as “Erlang’s C Formula” or “Erlang’s
Delay Formula” (3, p. 404). Tables of values of Erlang’s C
Formula are often given in standard queueing texts; see,
for example, Ref. 1 (pp. 320–323).

M/M/c/c. This system is sometimes called the “M/M/c
loss system” because customers who arrive when all the
servers are busy are not allowed to wait for service and
are lost. Each newly arriving customer is given his private
server; however, if a customer arrives when all servers are
occupied, that customer is lost; when modeling telephone
calls, it is said that this is a system where blocked calls are
cleared. The birth-and-death coefficients for this model are

and

Historically, the expression for the probability that all
servers are busy in an M/M/c/c queueing system is referred
to as “Erlang’s B Formula” or “Erlang’s Loss Formula” (3,
p. 404). Tables of values of Erlang’s B Formula are often
given in standard queueing texts; see, for example, Ref. 1
(pp. 316–319).

M/M/∞ Queueing System. Mathematically speaking, an
M/M/∞ queueing system has an infinite number of servers
which cannot be physically realized. M/M/∞ queueing sys-
tems are used to model situations where a server is always
immediately provided for each arriving customer. The coef-
ficients of the associated birth-and-death process are given
by

and

Solving the birth-and-death equations for the steady-state
probability of number of customers in the queue results in

Therefore, the number of customers in an M/M/∞ queue is
distributed according to a Poisson distribution with param-
eter λ/µ. The average number of customers in the system
is simply L = λ/µ and the average waiting time is W = 1/µ.
This answer is obvious since if we provide each arriving
customer his own server, then his time in the system is
equal to his service time. M/M/∞ models can be used to es-
timate the number of lines in use in large communications
networks or as an estimate of values of M/M/c or M/M/c/c
systems for large values of c.

M/M/1/K/K and M/M/c/K/K Queueing Systems. These
queueing systems, with a limited source model in which
there are only K customers, is usually referred to as the
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“machine repair model” or “machine interference model.”
One way to interpret these models is to assume that there
is a collection of K machines, each of which has an up
time which is exponentially distributed. The operating ma-
chines are outside of the system and enter the system only
when they break down and thus need repair. The one re-
pairman (or c repairmen) repairs the machines at an expo-
nential rate. The coefficients of the associated birth-and-
death process are

and

REFERENCES TO MORE ADVANCED TOPICS

The discussion of previous sections has been limited to
some of the more elementary, but important, queueing
models. However, the queueing theory literature currently
contains a vast amount of results dealing with much more
advanced and sophisticated queueing systems whose dis-
cussions are outside of the scope of this introductory article.
The purpose of this section is to inform the reader of the
existence of such advanced and complex models and to re-
fer the interested reader to appropriate sources for further
investigation.

Imbedded Markov Chain Queueing Models

Our discussion of queueing models in the previous section
was limited to those whose probabilistic characterization
could be captured by birth-and-death processes. When one
ventures beyond the birth-and-death models into the more
general Markov processes, then the type of solution meth-
ods used previously no longer apply. In the preceding sec-
tions we dealt mainly with queues with Poisson arrivals
and exponential service times. These assumptions imply
that the future evolution of the system will depend only
on the present state of the system and not on the past his-
tory. In these systems, the state of the system was always
defined as the number of customers in the system.

Consider the situation in which we like to study a queue-
ing system for which the knowledge of the number of cus-
tomers in the system is not sufficient to fully character-
ize its behavior. For example, consider a D/M/1 queue in
which the service times are exponentially distributed, but
the customer interarrival times are a constant. Then the
future evolution of the system from some time t would de-
pend not only on the number of customers in the system at
time t, but also on the elapsed time since the last customer
arrival. This is so because the arrival epoch of the next cus-
tomer in a D/M/1 queue is fully determined by the arrival
time of the last customer. A different and powerful method
for the analysis of certain queueing models, such as the one
mentioned above, is referred to as the “imbedded Markov
chain” which was introduced by Kendall (17). The reader
is referred to Refs. 1–6 for detailed discussion of imbedded
Markov chain techniques and its application for analyzing
such queueing systems as M/G/1, GI/M/c, M/D/c, Ek/M/c.

Queueing Systems with Priority

Queueing models with priority are those where the queue
discipline is based on a priority mechanism where the or-
der in which the waiting customers are selected for service
is dependent on their assigned priorities. Many real queue-
ing systems fit these priority-discipline models. Rush jobs
are taken ahead of other jobs, important customers may
be given precedence over others, and data units containing
voice and video signals may be given higher priority over
data units containing no real-time information in a packet
switched computer communication network. Therefore, the
use of queueing models with priority often provides much
needed insight into such situations. The inclusion of pri-
ority makes the mathematical analysis of models much
more complicated. There are many ways in which notions
of priority can be integrated into queueing models. The
most popular ones were defined earlier in this article under
queue disciplines. They include such priority disciplines as
non-preemptive priority, preemptive resume priority, and
preemptive repeat priority (21).

Networks of Queues

Many queueing systems encountered in practice are queue-
ing networks consisting of a collection of service facilities
where customers are routed from one service center to an-
other, and they receive service at some or all of these ser-
vice facilities. In such systems, it is necessary to study the
entire network in order to obtain information about the
performance of a particular queue in the network. Such
models have become very important because of their ap-
plicability to modeling computer communication networks.
This is a current area of great research and application in-
terest with many difficult problems. Networks of queues
can be described as a group of nodes (say n of them) where
each node represents a service center each with ci servers,
where i = 1, 2, . . . , n. In the most general case, customers
may arrive from outside the system to any node and may
depart the system from any node. The customers entering
the system traverse the network by being routed from node
to node after being served at each node they visit. Not all
customers enter and leave from the same nodes, or take the
same path through the network. Customers may return to
nodes previously visited, skip some nodes, or choose to re-
main in the system forever. Analytical results on queueing
networks have been limited because of the difficulty of the
problem. Most of the work has been confined to cases with
a Poisson input and exponential service times and proba-
bilistic routing between the nodes. The reader is referred
to Ref. 22 for a complete treatment of network of queues.

Simulation of Queueing Systems

Very often, analytical solutions to many practical queueing
models are not possible. This is often due to many factors
such as the complexity of the system architecture, the na-
ture of the queue discipline, and the stochastic character-
istics of the input arrival streams and service times. For
example, it would be impractical to develop analytical so-
lutions to a multinode multiserver system where the cus-
tomers are allowed to recycle through the system, the ser-
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vice times are distributed according to truncated Gaussian
distribution, and each node has its own complex queueing
discipline. For analytically intractable models, it may be
necessary to resort to analysis by simulation. Another area
that simulation could be used for is those models in which
analytical results are only available for steady state and
one needs to study the transient behavior of the system.

Generally speaking, simulation refers to the process of
using computers to imitate the operation of various kinds
of real-world systems or processes. While simulation may
offer a mechanism for studying the performance of many
analytically intractable models, it is not without its dis-
advantages. For example, since simulation can be consid-
ered analysis by experimentation, one has all the usual
problems associated with running experiments in order to
make inferences concerning the real world, and one must
be concerned with such things as run length, number of
replications, and statistical significance. Although simula-
tion can be a powerful tool, it is neither cheap nor easy to
apply correctly and efficiently. In practice, there seems to be
a strong tendency to resort to simulation from the outset.
The basic concept is easy to understand, it is relatively easy
to justify to management, and many powerful simulation
tools are readily available. However, an inexperienced an-
alyst will usually seriously underestimate the cost of many
resources required for an accurate and efficient simulation
study.

Viewing it from a high level, a simulation model
program consists of three phases. The data generation
phase involves the production of representative interar-
rival times and service times where needed throughout the
queueing system. This is normally achieved by employing
one of the many random number generation schemes. The
so-called bookkeeping phase of a simulation program deals
with (a) keeping track of and updating the state of the sys-
tem whenever a new event (such as arrival or departure)
occurs and (b) monitoring and recording quantities of inter-
est such as various performance measures. The final phase
of a simulation study is normally the analysis of the output
of the simulation run via appropriate statistical methods.
The reader is referred to Refs. 23 and 24 for a comprehen-
sive look at simulation techniques.

Cyclic Queueing Models

This area deals with situations where a collection of queues
is served by a single server. The server visits each queue
according to some predetermined (or random) order and
serves each queue visited for a certain amount of time (or
certain number of customers) before traversing to the next
queue. Other terms used to refer to this area of queueing
theory are “round-robin queueing” or “queueing with va-
cations.” As an example, a time-shared computer system
where the users access the central processing unit through
terminals can be modeled as a cyclic queue. The reader is
referred to Ref. 25 and Section 5.13 of Ref. 1 for detailed
discussion of cyclic queues.

Control of Queues

This area of queueing theory deals with optimization tech-
niques used to control the stochastic behavior and to op-

timize certain performance measures of a queueing sys-
tems. Examples of practical questions that deal with this
area of queueing theory include the following (22, Chap.
8): When confronted with the choice of joining one waiting
line among many (such a supermarket checkout counter or
highway tool booths),how does one choose the “best”queue?
Should a bank direct the customers to form a single wait-
ing line, or should each bank teller have his or her own
queue? Should a congested link in a communication net-
work be replaced with another link twice as fast, or should
it be augmented with a second identical link working in
parallel with the first one?
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