
INFORMATION THEORY OF MODULATION
CODES AND WAVEFORMS

INTRODUCTION

The fundamental problem of communication is the con-
veying of information (which may take several different
forms) from a generating source through a communication
medium to a desired destination. This conveyance of in-
formation, invariably, is achieved by transmitting signals
that contain the desired information in some form and that
efficiently carry the information through the communica-
tion medium. We refer to the process of superimposing an
information signal onto another for efficient transmission
as modulation.

Several factors dictate modulating the desired informa-
tion signal into another signal more suitable for transmis-
sion. The following factors affect the choice of modulation
signals:

1. The need to use signals that efficiently propagate
through the communication medium at hand. For ex-
ample, if the communication medium is the atmo-
sphere (or free space), one might use a radio fre-
quency (RF) signal at some appropriate frequency,
whereas for underwater communications, one might
use an acoustical signal.

2. Communication media invariably distort stochas-
tically signals transmitted through them, which
makes information extraction at the receiver nonper-
fect and most often nonperfect. Thus, a need exists
to design modulation signals that are robust to the
stochastic (and other) effects of the channel, to mini-
mize its deleterious effects on information extraction.

3. It is highly desirable that communication systems
convey large amounts of information per unit time.
The price we pay in increasing the in formation rate is
often an increase in the required transmitted signal
bandwidth. We are interested in modulation signals
that can accommodate large information rates at as
small a required bandwidth as possible.

4. The power requirements (i.e., average power and
peak power) of the transmitted signals to achieve a
certain level of performance in the presence of noise
introduced during transmission are of paramount
importance, especially in power-limited scenarios,
such as portable radio and deepspace communica-
tions. Our preference is for signals that require as
little power as possible for a desired performance
level.

The problem of designing modulation signals that pos-
sibly optimize some aspect of performance, or satisfy some
constraints imposed by the communication medium or the
hardware, is known generally as signal design. Signal de-
sign problems are important and widely prevalent in com-
munications.

Currently, a proliferation of products make use of modu-
lation to transmit information efficiently. Perhaps the most
prevalent and oldest examples are commercial broadcast
stations that use frequency modulation (FM) or ampli-
tude modulation (AM) to transmit audio signals through
the atmosphere. Another example are data modems that
are used to transmit and receive data through telephone
lines. These two examples have obvious similarities but
also some very important differences. In the broadcast sta-
tion example, the information to be communicated (an au-
dio signal) is analog and is used to directly modulate a
radio-frequency (RF) carrier, which is an example of ana-
log modulation. On the other hand, the data communicated
through a modem come from the serial port of a computer
and are discrete (in fact they are binary; that is, they take
two possible values, “0” or “1”), which results in a digitally
modulated signal. Clearly, the difference between analog
and digital modulation is not in the nature of the trans-
mitted signals, because the modulation signals are analog
in both cases. Rather, the difference is in the nature of the
set of possible modulation signals, which is discrete (and
in fact finite) for digitally modulated signals and infinitely
uncountable for analog modulation.

The simplest possible digital modulation system con-
sists of two modulation signals. One signal corresponds to
the transmission of a “0” and the other of a “1,” which is
called binary modulation. Binary digits (bits) are commu-
nicated using binary modulation by assigning a signal in a
one-to-one correspondence to each of the two possible logi-
cal values of a bit. This mapping between bits and signals
is done at a rate equal to the bit rate (i.e., the number of
bits/second arriving at the input of the modulator). In re-
sponse to each transmitted modulation signal, the channel
produces a received signal at its output, which is a ran-
domly distorted replica of the transmitted signal. To ex-
tract the information superimposed on the modulation sig-
nals, a processor, called a receiver or a detector, processes
the noisy signal received. The function of the detector is
to decide which of the two (in this case) possible signals
was transmitted, and in doing so correctly, it recovers the
correct value for the transmitted bit. Because of the pres-
ence of stochastic noise in the received signal, the receiver
may make an incorrect decision for some transmitted bits.
The probability of making a decision error in extracting
the transmitted bits is known as the bit-error probability
or the bit-error rate (BER). The performance of communi-
cation systems using digital modulation is invariably mea-
sured by their achieved BER, as a function of the transmit-
ted energy per information bit. Receivers that achieve the
smallest possible BER for a given channel and modulation
signal set are called optimal.

Binary modulation systems are the simplest to imple-
ment and detect, but they are not necessarily the most
efficient in communicating information. Modulators with
larger signal sets use a smaller bandwidth to transmit a
given information bit rate. For example, one can envision
having a modulation signal set containing four (instead of
two) signals: s1(t), s2(t), s3(t), s4(t). With four signals, we
can assign to each a two-bit sequence in a one-to-one cor-
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respondence, for example, as follows:

s1(t) ⇔ 00
s2(t) ⇔ 01
s3(t) ⇔ 10
s4(t) ⇔ 11

In this case, each time a transmitted signal is detected cor-
rectly, the receiver extracts two (correct) bits. The bit rate
has also doubled compared with a binary modulator for the
same signaling rate (transmitted signals per second). Be-
cause bandwidth is proportional to the signaling rate, we
have effectively doubled our transmission efficiency using
a modulator with four signals instead of two. Of course, the
job of the receiver is now harder because it has to make a
four-way decision, instead of just a binary decision, and ev-
erything else being the same, the probability of making an
erroneous decision increases. We refer to the above modu-
lator as a 4-ary modulator (or a quaternary modulator).

Clearly, the idea can be extended to modulation sig-
nal sets that contain M = 2k signals, for some integer
k = 1, 2, 3 · · · . In this case, each transmitted signal carries
k bits. We refer to modulators that use M signals as M-ary
modulators. As in the 4-ary modulator example above, the
advantage of a larger number of modulation signals is that
the number of signals per second that needs to be trans-
mitted to accommodate a certain number of bits per second
decreases as M increases. Because the number of signals
per second determines to a large extent the bandwidth re-
quired, more signals means a smaller required bandwidth
for a given number of transmitted bits per second, which is
a desirable result. The price paid for large signal sets is in
complexity and, as previously pointed out, in possibly re-
duced performance for the same expended average energy
per bit.

Although many analog modulation (communication)
systems are still in use, the trend is for systems to become
digital. Currently, two prominent examples of analog sys-
tems becoming digital are cellular phones and digital TV
broadcasts. Digital modulation techniques are by far the
more attractive.

ANALOG MODULATION

The most prevalent medium for everyday communication
is through RF (sinusoidal) carriers. Three quantities exist
whose knowledge determines exactly the shape of an RF
signal: (1)its amplitude; (2)its phase; and (3)its frequency,
as indicated in equation 1:

s(t) = A(t) cos[2π f ct + φ(t)] (1)

where fc is the frequency of the sinusoidal signal in Hertz.
Information can be conveyed by modulating the amplitude,
the instantaneous frequency, or the phase of the carrier (or
combinations of the three quantities).

Amplitude Modulation

Let the information signal m(t) be baseband and bandlim-
ited to some bandwidth W Hz. A baseband signal bandlim-
ited to W Hz has a frequency spectrum centered at the
origin and contains substantially no energy above W HZ.

We assume, which is a good assumption in practice, that
W < < fc. In amplitude modulation (AM), the information
signal modulates the amplitude of the carrier according to:

u(t) = Am(t)cos(2π f ct + φ) (2)

where φ is some fixed carrier phase. Insight into the process
of modulation is obtained by looking at the Fourier trans-
form of the modulated signal, given by (see, for example,
Reference (1))

U( f ) = A

2
[M( f − f c)e

jφ + M( f + f c)e
− jφ] (3)

Figure 1plots the magnitude of the Fourier transform of
the modulated signal for a simple choice (for presentation
purposes) of the Fourier transform of the information sig-
nal. It is easy to see that, whereas the information signal
has bandwidth W, the modulated signal has a bandwidth of
2W. Also, as can be observed from equation 3, no unmodu-
lated carrier component exists, which would be manifested
as delta functions at the carrier frequency fc. We refer to
this scheme as double-sideband, suppressed-carrier (DSB-
SC), amplitude modulation.

Demodulation of DSB-SC amplitude modulated signals
can be achieved by multiplying the received signal by a lo-
cally generated replica of the carrier, which is generated
by a local oscillator (LO). For best performance, the locally
generated carrier must match as closely as possible the
frequency and phase of the received carrier. It is usually
reasonable to assume the receiver generated carrier fre-
quency matches the carrier frequency in the received sig-
nal well.1 Neglecting noise, for simplicity, and assuming
perfect frequency synchronization, the demodulator is de-
scribed mathematically by

z(t) = u(t)cos(2π f ct + φ̂)

= A

2
m(t)cos(φ − φ̂) + A

2
m(t)cos(4π f ct + φ + φ̂)

(4)

where φ̂ is the phase of the locally generated carrier. Now
the component in equation 4at twice the carrier frequency
is easily filtered out by low-pass filtering to yield

m̂(t) = A

2
m(t)cos(φ − φ̂) (5)

which is a scaled version of the modulation signal. In the
presence of noise, to maximize the signal-to-noise ratio
(SNR), it is important that the phase error (φ − φ̂) be small.
The problem of phase synchronization is an important one
and is often practically achieved using a phase-locked loop
(PLL) (see, for example, References (2)–(5).) When the lo-
cally generated carrier is perfectly phase and frequency
locked to the phase and frequency of the received signal,
detection of the information is referred to as coherent. This
is in contrast to noncoherent detection, when the phase of
the locally generated carrier does not match that of the re-
ceived signal. Clearly, coherent detection achieves the ulti-
mate limit in performance. It can be approached in practice
by using sophisticated algorithms, at the cost of increased
complexity.

A simpler,noncoherent,detector can be used if the trans-
mitted carrier contains an unmodulated component (or a
“pilot tone”) resulting in what is referred to as DSB mod-
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Figure 1. The magnitude of the Fourier transform of a DSB-SC amplitude-modulated signal. (Figure is not to scale).

ulation. In conventional AM (such as in broadcasting), the
modulated signal takes the form

u(t) = A[1 + am(t)]cos(2π f ct + φ)

with the constraint that |m(t)| ≤ 1; a, 0 ≤ a ≤ 1, is the mod-
ulation index. Figure 2shows an example of a convention-
ally modulated AM signal. Clearly, the modulated signal
for conventional AM has a strong unmodulated component
at the carrier frequency that carries no information but
uses power, and thus, a significant power penalty exists
in using it. The benefit resulting from the reduced power
efficiency is that simple receivers can now be used to de-
tect the signal. The loss in power efficiency can be justi-
fied in broadcasting, where conventional AM is used, be-
cause in this case only one high-power transmitter draws
power from the power grid, with millions of (now simpler
and therefore less costly) receivers.

Demodulation of AM Signals

The most popular detection method for conventional AM
is envelope detection. This method consists of passing the
received modulated signal [usually after RF amplification
and down conversion to some intermediate frequency (IF)]
through a rectifier followed by a simple low-pass filter (in
the form of a simple, passive, RC circuit). This simple de-
tector is shown in Fig. 3.

Double-sideband amplitude modulation is wasteful in
bandwidth, requiring a bandwidth that is twice the base-
band signal bandwidth. It can be shown that the two side-
bands are redundant, and that the information signal can
be obtained if only one sideband was transmitted, which
reduces the required bandwidth by a factor of two com-
pared with DSB-AM. At the same time, an improvement
in power efficiency, occurs because transmitting the redun-
dant sideband requires not only extra bandwidth but also
extra power. When only one sideband is transmitted, the
resulting signal is referred to as single sideband (SSB). The

general form of a single-sideband signal is

u(t) = A[m(t)cos(2π f ct) ± m̂(t)sin(2π f ct)] (6)

where m̂(t) is the Hilbert transform of m(t) given by

m̂t = m(t) ∗ 1
πt

⇔ M̂( f ) = M( f )H( f )

where H(f) is the Fourier transform of h(t) = 1/πt and is
given by

H( f ) = {
− j f > 0
j, f < 0
0, f = 0,

In equation 6 , the plus or minus sign determines
whether the upper or the lower sideband is chosen. Fig-
ure 4shows the spectrum of an upper sideband SSB signal.
For a more complete exposition to SSB, including modu-
lation and demodulation methods, consult References (1)
and (6–9).

Another amplitude modulation scheme, widely used in
TV broadcasting, is vestigial sideband (VSB). The reader is
referred to References (1) and (6–9) for more information.

Angle Modulation

Angle modulation of a sinusoidal carrier includes phase
modulation (PM) and frequency modulation (FM). In phase
modulation, the information signal modulates the in-
stantaneous phase of a high-frequency sinusoidal carrier,
whereas in frequency modulation, the information signal
directly modulates the instantaneous frequency of the car-
rier. As the instantaneous frequency and phase of a sig-
nal are simply related (the instantaneous frequency is the
scaled derivative of the instantaneous phase), clearly PM
and FM are also closely related and have similar proper-
ties. For angle modulation, the modulated signal is given
by

u(t) = Acos[2π f ct + φ(t)]
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Figure 2. Illustration of a conventionally amplitude-modulated signal.

Figure 3. A simple demodulator for conventional AM signals.

where

φ(t) = {
dpm(t) PM

2πd f

∫ t

−∞
m(τ)dτ FM

The constants dp and df are the phase and frequency de-
viation constants, respectively. These constants, along with
the peak amplitude of the information signal, define the
peak phase deviation and peak frequency deviation con-

stants, given by

�φ = dp · |m(t)|
and

� f = d f · |m(t)|
In turn, the peak deviation constants define the phase

and frequency modulation indices according to

βp = �φ



Information Theory of Modulation Codes and Waveforms 5

Figure 4. The spectrum of an upper sideband SSB signal.

and

β f = � f

W

where W is the bandwidth of the information signal signal
m(t). As an example, the peak frequency deviation for FM
broadcasts is 75 KHz, and the signal bandwidth is limited
to 15 KHz, which yields a modulation index of 5. For illus-
tration, Fig. 5shows typical waveforms for frequency and
phase modulation.

The spectrum of an angle-modulated signal is much
more difficult to obtain mathematically than in the AM
case because angle modulation is nonlinear. Moreover,
strictly speaking, angle-modulated signals have an infi-
nite bandwidth. However, an approximation for the effec-
tive bandwidth (i.e., the frequency band containing most of
the signal energy) of angle-modulated signals is given by
Carson’s rule:

B = 2(β + 1)W

where β is the phase- or frequency-modulation index and W
is the bandwidth of the information signal. The bandwidth
of the modulated signal increases linearly as the modula-
tion index increases. FM systems with a small modulation
index are called narrowband FM, whereas systems with a
large modulation index are called wideband FM. One pop-
ular and practical way to generate wideband FM is to first
generate a narrowband FM signal (which is easily gener-
ated) and then, through frequency multiplication, to con-
vert it into a wideband FM signal at an appropriate carrier
frequency. Wideband FM is used in broadcasting, and nar-
rowband FM is used in point-to-point FM radios.

Detection of FM or PM signals takes several different
forms, including (PLLs) and discriminators, which convert
FM into AM that is then detected as such. For more infor-
mation on ways to modulate and demodulate angle modu-
lated signals, consult References (1,3,5), and (9).

DIGITAL MODULATION

A wide variety of digital modulation methods exists, de-
pending on the communication medium and the mode
of communication, both of which impose constraints on
the nature of transmitted signals. For example, for opti-
cal systems that use an optical carrier [generated by a
light-emitting diode (LED) or a laser], various modulation
schemes are particularly suitable, which may not be suit-
able for RF communications systems. Similarly, modula-
tion schemes used in magnetic recording systems may not
be suitable for other systems. Generally, as indicated in
the Introduction, the modulation must be matched to the
channel under consideration.

Signal Space

In designing and describing digital modulation schemes, it
is often desirable to consider modulation signals as points
in some appropriate signal space, spanned by a set of
orthonormal-basis signals. The dimensionality of the sig-
nal space equals the number of orthonormal-basis signals
that span it.

A set of signals {φ1(t), φ2(t), · · · , φN (t)}, for 0 ≤ t ≤ T is
orthonormal if the following condition holds:

∫ T

0

φi(t)φj(t)dt = { 1, i = j

0, i �= j

If s(t) is any signal in the N-dimensional space spanned
by these signals, then it can be expressed as

s(t) =
N∑

i=1

siφi(t)

for some set or real numbers s1, s2, ·, sN . The N coefficients
uniquely describing s(t) are obtained using

sk =
∫ T

0

s(t)φk(t)dt, k = 1, 2, · · · , N
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Figure 5. Illustration of frequency- and phase-modulated signals.

Figure 6illustrates the concept of signal space for the spe-
cial case of two dimensions. In the figure, four distinct sig-
nals are represented as points in the signal space.

Perhaps the most widely known and used modulation
schemes are those pertaining to RF communication, some
of which are examined next.

Phase-Shift Keying

Under phase-shift keying (PSK), the information bits de-
termine the phase of a carrier, which takes values from a
discrete set in accordance with the information bits. The
general form of M-ary PSK signals (i.e., a PSK signal set
containing signals) is given by

si(t) =
√

2E

T
cos(2π f ct + θi), i = 1, 2, · · · , M, 0 ≤ t ≤ T

(7)

where

θi = 2π(i − 1)
M

and

E =
∫ T

0

s2
i (t)dt

is the signal energy. Equation (7)is rewritten in a slightly
different form as

si(t) = √
E[cos(θi)

√
2
T

cos(2π f ct) − sin(θi)

√
2
T

sin(2π f ct)]

= √
E[cos(θi)φ1(t) − sin(θi)φ2(t)]

where φ1(t) and φ2(t) are easily observed to be orthonormal.
Thus, PSK signals are points in a two-dimensional space
spanned by φ1(t) and φ2(t). Figure 7illustrates various PSK
signal constellations, including binary PSK (BPSK) and 4-
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Figure 6. Illustration of the concept of signal space. The two signals on top are the basis signals. Signals a(t), b(t), c(t), and d(t) are
represented in signal space as points in the two-dimensional space spanned by the two basis signals.

ary PSK, also known as quadrature PSK (QPSK). The fig-
ure also illustrates the mapping of information bits to each
signal in the constellation. The illustrated mapping, known
as Gray coding, has the property that adjacent signals are
assigned binary sequences that differ in only one bit. This
property is desirable in practice, because, when a detection
error is made, it is more likely to be to a signal adjacent to
the transmitted signal. Then Gray coding results in a sin-
gle bit error for the most likely signal errors.

Performance in Additive Gaussian Noise. The simplest
channel for data transmission is the additive, white, Gaus-
sian noise (AWGN) channel. For this channel, the transmit-
ted signal is corrupted by and additive Gaussian process,
resulting in a received signal given by

r(t) = si(t) + n(t), 0 ≤ t ≤ T (8)

where n(t) is zero-mean, white Gaussian noise of spectral
density N0/2.

For PSK signals, the optimum receiver (detector), also
known as a maximum-likelihood (ML) receiver, decides
which of the M possible PSK signals was transmitted by

finding the modulation signal that maximizes

l1 =
∫ T

0

r(t)si(t)dt

This signal is the well-known correlation receiver, where
the most likely signal transmitted is chosen as the one
most correlated with the received signal. The correlation
receiver involves a multiplication operation, followed by in-
tegration. Because processing is linear, it is possible to ob-
tain the same result by passing the received signal through
a linear filter with an appropriate impulse response and
sampling it at an appropriate instant. The impulse re-
sponse hi(t) of the linear filter is easily derived as

hi(t) = si(T − t)

This linear filter implementation of the optimum receiver
is called a matched-filter receiver.

For binary PSK, the probability that the optimal re-
ceiver makes a decision error is given by

PBPSK(e) = 1
2

erfc(

√
E

N0
) (9)
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Figure 7. Signal space representation of various PSK constellations. The bit assignments correspond to Gray coding.

where

erfc(x) = 1 − 2√
π

∫ x

0

e−y2
dy

is the complimentary error-function. In equation 9 , the
ratio E/N0 is the SNR, which determines performance. The
performance of QPSK is also derived easily and is given by

PQPSK(e) = PBPSK(e)[2 − PBPSK(e)]

where PBPSK(e) is as given in equation 9 . An exact expres-
sion for the error probability of larger PSK constellations
also exists and is found, for example, in Chapter 9 of Ref-
erence (1). Figure 8shows the error probability of various
PSK constellations as a function of the SNR per informa-
tion bit.

Baseband Pulse-Amplitude Modulation

Pulse-amplitude modulation (PAM) is the digital equiva-
lent of AM. The difference is that now only discrete ampli-
tudes are allowed for transmission. M-ary PAM is a one-
dimensional signaling scheme described mathematically

by

si(t) = (2i − 1 − M)
√

E p(t), i = 1, 2, · · · , M, 0 ≤ t ≤ T

where p(t) is a unit-energy baseband pulse. Figure 9shows
the signal-space representation of PAM signals assuming
E = 1. In contrast to PSK signals, clearly not every signal
has the same energy; in which case, the constellation is
described by its average energy:

Eav = E

M

M∑
i=1

(2i − 1 − M)2 = (
M2 − 1

3
)E

Performance in Additive Gaussian Noise. Based on the
data r(t) received (as given in equation 8 ), the maximum-
likelihood receiver for PAM signaling chooses as the most
likely signal transmitted the signal that maximizes

li = (2i − 1 − M) · r −
√

E

2
(2i − 1 − M)2

where

r =
∫ T

0

r(t) p(t)dt
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Figure 8. Symbol error probability for BPSK, QPSK, and 8-PSK as a function of the SNR per bit.

Figure 9. The signal space representation of various PAM constellations.

In signal space, the decision boundaries for this receiver
are midway between constellation points, and a decision is
made accordingly, based on where r falls on the real line.
The error probability for M-ary PAM signals is given by

PPAM(e) = (M − 1)
M

erfc(

√
3

M2 − 1
Eav

N0
)

The error probability for various PAM constellations is
shown in Fig. 10as a function of SNR per bit.

Quadrature Amplitude-Modulation

Quadrature amplitude modulation (QAM) is a popular
scheme for high-rate, high-bandwidth efficiency systems.
QAM is a combination of both amplitude and phase mod-
ulation. Mathematically, M-ary QAM is described by

si(t) =
√

E p(t)[Ai cos(2π f ct) + Bisin(2π f ct)], 0 ≤ t ≤ T,

i = 1, 2, · · · , M

where Ai and Bi take values from the set {±1, ±3, ±5, · · · }
and E and p(t) are as defined earlier. The signal space rep-
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Figure 10. Symbol error probability for 2-, 4-, and 8-PAM as a function of SNR per bit.

resentation of QAM signals is shown in Fig. 11for various
values of M, which are powers of 2; that is, M = 2k, k =
2, 3, · · · . For even values of k, the constellations are square,
whereas for odd values, the constellations have a cross
shape and are thus called cross constellations. For square
constellations, QAM corresponds to the independent am-
plitude modulation of an in-phase carrier (i.e., the cosine
carrier) and a quadrature carrier (i.e., the sine carrier).

Performance in Additive Gaussian Noise. The optimum
receiver for QAM signals chooses the signal that maxi-
mizes

li = Airc + Birs −
√

E

4
(A2

i + B2
i )

where

rc =
∫ T

0

r(t) p(t)cos(2π f ct)dt

and

rs =
∫ T

0

r(t) p(t)sin(2π f ct)dt

For square constellations that correspond to independent
PAM of each carrier, an exact error probability is derived
easily and is given by

PQAM(e) = 1 − [1 − (1 − 1√
M

)erfc(

√
3

2(M − 1)
· Eav

N0
)]

2

For cross constellations, tight upper bounds and good ap-
proximations are available. Figure 12plots the symbol er-
ror probability of various square QAM constellations as a
function of SNR per bit.

Frequency-Shift Keying

As the name implies, frequency-shift keying (FSK) modu-
lates the frequency of a carrier to convey information. FSK
is one of the oldest digital modulation techniques and was
the modulation of choice for the first, low-rate modems. Its
main attribute, which makes it of interest in some appli-
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Figure 11. Signal space representation of various QAM constellations.

cations, is that it can be detected noncoherently (as well as
coherently), which reduces the cost of the receiver. Mathe-
matically, the modulated M-ary FSK signal is described by

si(t) =
√

2E

T
cos[2π( f c + f i)t], 0 ≤ t ≤ T, i = 1, 2, · · · , M

where

f i = (
2i − 1 − M

2
)�r f

� f is the minimum frequency separation between modu-
lation tones. For orthogonal signaling (i.e., when the cor-
relation between all pairs of distinct signals is zero), the
minimum tone spacing is 1/2T. This a condition is often
imposed in practice. Orthogonal signaling performs well
as a function of energy per bit, but it is also bandwidth-
inefficient, which makes it impractical for high-speed, band
limited applications.

Performance in Additive Gaussian Noise. FSK is detected
coherently or incoherently. Coherent detection requires a
carrier phase synchronization subsystem at the receiver
that generates locally a carrier phase-locked to the received
carrier. The optimum receiver for coherent detection makes
decisions by maximizing the following (implementation as-
sumes phase-coherence):

li =
∫ T

0

r(t)si(t)dt

For binary (orthogonal) signaling, the error probability is
given simply by

PFSK(e) = 1
2

erfc (

√
E

2N0
), (coherent FSK)

which is 3 dB worse than BPSK. For M-ary signaling, an
exact expression exists in integral form and is found, for ex-
ample, in Reference (10). Noncoherent detection does not
assume phase coherence and does not attempt to phase-
lock the locally generated carrier to the received signal.
In this case, it is easy to argue that the phase difference
between the LO carrier and the received carrier is com-
pletely randomized. An optimum receiver is also derived
in this case, and it is one that maximizes over the set of
frequency tones

li = r2
ci + r2

si

where

r2
ci =

∫ T

0

r(t)cos[2π( f c + f i)t]dt

and

r2
si =

∫ T

0

r(t)sin[2π( f c + f i)t]dt

The exact error-probability performance of this noncoher-
ent receiver is available in analytical form, but it is com-
plicated to compute for the general M-ary case (see, for ex-
ample, Reference (10)). For the binary case, the error prob-
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Figure 12. Symbol error probability as a function of SNR per bit for 4-, 16-, and 64-QAM.

ability has a simple form given by

PFSK(e) = 1
2

e
− E

2N0 (noncoherent FSK)

Figure 13compares the performance of coherent and inco-
herent binary FSK. At an error probability of about 10−6,
noncoherent detection is inferior only slightly more than
half a decibel compared with coherent detection. However,
this small loss is well compensated for by the fact that no
carrier phase synchronization is needed for the former.

Continuous-Phase Modulation

All modulation schemes described so far are memoryless,
in the sense that the signal transmitted in a certain symbol
interval does not depend on any past (or future) symbols.
In many cases, for example, when a need exists to shape
the transmitted signal spectrum to match that of the chan-
nel, it is necessary to constrain the transmitted signals in
some form. Invariably, the imposed constraints introduce
memory into the transmitted signals. One important class
of modulation signals with memory are continuous-phase

modulation (CPM) signals. These signals constrain the
phase of the transmitted carrier to be continuous, thereby
reducing the spectral sidelobes of the transmitted signals.
Mathematically, the modulation signals for CPM are de-
scribed by the expression

u(t) = Acos[2π f ct + φ(t;d)]

where

φ(t;d) = 2π

n∑
k=−∞

dkhkq(t − kT ), nT ≤ t ≤ (n + 1)T

The dk are the modulation symbols and hk are the modu-
lation indices, which may vary from symbol to symbol. For
binary modulation, the modulation symbols are either 1
or −1. Finally, q(t) is the integral of some baseband pulse
p(t) containing no impulses (thus guaranteeing that q(t) is
continuous)

q(t) =
∫ t

−∞
p(τ)dτ
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Figure 13. Error probability comparison between coherent and noncoherent FSK.

When p(t) is zero for t ≥ T , we have what is called full-
response CPM, otherwise, we have partial-response CPM.
In general, partial-response CPM achieves better spectral
sidelobe reduction than does full-response CPM. A special
case of CPM in which the modulation indices are all equal
and p(t) is a rectangular pulse of duration T seconds is
called continuous-phase FSK (CPFSK). If,h = 1/2, we have
what is called minimum-shift keying (MSK). A variation
of MSK, in which the rectangular baseband pulse is first
passed through a filter with a Gaussian-shape impulse re-
sponse for further reduction in the spectral sidelobes, is
called Gaussian MSK (GMSK). Various simple ways for de-
tecting GMSK are available, which combined with its spec-
tral efficiency, has made it a popular modulation scheme.
In particular, it is the modulation scheme originally used
for the European digital cellular radio standard, known as
GSM. For more information on CPM signaling, including
spectral characteristics and performance in noise, refer to
Reference (10).

Modulation Codes

Another technique for shaping the spectrum of transmitted
modulation signals is putting constraints on the sequence
of bits sent to the modulator. This coding of bits to shape the
spectrum of the transmitted modulation signals is called
modulation coding or line coding. Important examples of
the use of such codes are in magnetic and optical recording
channels. Simple examples of modulation codes are found
in the baseband transmission of binary data where a pulse
is sent for a binary “1” and its negative for a “0” (called an-
tipodal signaling). If the pulse amplitude does not return to
zero in response to consecutive similar bits, then we have
nonreturn-to zero (NRZ) signaling. If the pulse returns to
zero, then we have return-to-zero (RZ) signaling. The en-
coding of bits using NRZ and RZ signaling is illustrated in
Fig. 14.

It is often desirable to have a transmitted pulse se-
quence, in response to random input bits, with no spectral
component at zero frequency (i.e., in dc). This condition
is desirable, for example, when the modulation signals are
sent through a channel with a null at dc. If the bits arriving
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Figure 14. Illustration of NRZ, RZ, and Manchester coding.

at the input of the modulator are truly random (each with
probability 1/2 of being zero or one) and independent, then
the expected value of the dc component of the transmitted
signal is zero. However, at any given time (even though the
average is zero), a significant dc component may be caused
by the transmission of a long sequence of zeros or ones. Be-
sides the creation of a dc component, these long sequences
of zeros or ones also negatively affect the performance of
the timing recovery system at the receiver, whose function
is to establish time synchronization (essential before data
detection).

Biphase or Manchester pulses have the property of zero
dc over each bit interval. These pulses and their encoding
are illustrated in Fig. 14, along with NRZ and RZ signaling.
An important property of a line code that describes the dc
variations of a baseband signal is the running digital sum
(RDS) (11). The RDS is the running sum of the baseband
amplitude levels. It has been shown that, if the RDS for a
modulation code is bounded, then the code has a null at dc
(12). This process facilitates transmission of the modulated
data through channels with a null at dc and avoids a form
of intersymbol-interference (ISI) known as baseline wan-
der. A converse result also shows that modulation codes,
generated by finite-state machines, which have a spectral
null at dc, have a bounded RDS (13).

Run-Length Limited Codes. Run-length limited (RLL)
codes are an important class of modulation codes, which
are often used in magnetic recording systems. RLL codes
impose constraints on the minimum and maximum num-

ber of consecutive zeros between ones and are also called
(d, k) codes, where d is the minimum number of zeros and
k is the maximum number of zeros between ones. The min-
imum number of zeros between ones ensures that ISI is
kept small, and the maximum number of zeros between
ones ensures that the transmitted signal has enough tran-
sitions in it to aid in timing recovery. RLL codes (and in fact
a much larger class of codes) are conveniently described by
finite-state machines (FSMss). An FSM consists of a set of
interconnected states that describe the allowable bit tran-
sitions (paths). The interconnections between all possible
pairs of states are often described by a two-dimensional
state transition matrix, which is known also as the adja-
cency matrix. A one at the i,j position in the matrix means
that there is a path from state i to state j. A zero means
that no path exists between the two states. Figure 15shows
the FSM for the (1,3) (d, k) code. It consists of four states,
and its adjacency matrix is given by

A =

⎛
⎜⎝

0 1 0 0
1 0 1 0
1 0 0 1
1 0 0 0

⎞
⎟⎠

Clearly, the constraints imposed on the binary sequences
(in the form of d and k) limit the number of possible se-
quences of a given length n, which satisfy the constraint
to a subset of the total number of 2n possible sequences. If
the number of sequences of length n satisfying the (d, k)
constraints is M(n), then the capacity of the code is defined
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Figure 15. The finite-state machine for the ((1, 3)) RLL code.

by

C(d, k) = n → ∞lim
1
n

log2[M(n)] (10)

For a fixed n, the ratio on the right-hand side of equation
10is called the rate of the code (which is the fraction of
information bits per transmitted bit). It can be shown that
the rate of the code is monotonically nondecreasing in n.
Thus, the capacity of the code is the largest achievable rate.
Shannon (14,15) has shown that the capacity of a FSM (the
(d, k) code is just an example) is given by

C(d, k) = log2(λmax)

where λmax is the largest real eigenvalue of the adjacency
matrix of the FSM. As an example, the eigenvalues of the
adjacency matrix for the (1,3) code are 1.4656, −1.0000,
−0.2328 + 0.7926i, and −0.2328 − 0.7926i The largest real
eigenvalue is 1.4656, and thus, the capacity of the code is
log2(1.4656) = 0.5515. For an excellent overview of infor-
mation theory, including Shannon’s result above, consult
Reference (16).

The fact that an FSM is found that produces sequences
satisfying the necessary constraints does not automatically
imply that a code has been constructed. The problem of as-
signing information bits to encoded bits still exists. The
problem of constructing such codes from their FSM repre-
sentation has been studied by Adler et al. (17). An excel-
lent tutorial paper on the topic can be found in Reference
(18). Practical examples of applying the results of Refer-
ence (17) are, for example, in References (19) and (20). An-
other important class of codes that shapes the spectrum
of the transmitted data and achieves a coding gain in the
process is the class of matched spectral null (MSN) codes.
The interested reader is referred to the paper by Karabed
and Siegel (21)for more details.

Yet, another, very important class of modulation signals
includes those signals that combine coding and modula-
tion for improved performance. These combined modula-
tion and coding techniques and, in particular, trellis-coded
modulation (TCM) became better known from the break-
through paper of Unger-boeck (22). In contrast to previ-
ous classic coding techniques that separate the coding and
modulation problems, TCM achieves a coding gain (i.e., im-
proved performance) without expanding bandwidth. It is
thus very appealing in band limited applications, such as
telephone modems, where it has been widely employed.

1 This assumption is not as easy to justify when the receiver moves
relative to the transmitter, because of the frequency offset caused
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