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received signals. He only provided an existence proof stating
that such procedures exist but did not specify an approach to
design the best encoders and decoders. Also, he did not dis-
cuss the implementation complexity. These results have pro-
vided the impetus for researchers to try to design encoding
and decoding procedures that approach the fundamental lim-
its given by information theory.

While information theory was primarily developed as a
mathematical model for communications, it has had an im-
pact on a wide variety of fields that include physics, chemis-
try, biology, psychology, linguistics, statistics, economics, and
computer science. For example, languages provide a means
for communication between human beings, and application of
information theory to linguistics arises naturally. Examples
of application of information theory to computer science in-
clude the design of efficient decision trees and introduction of
redundancy in computer systems to attain fault-tolerant com-
puting.

COMMUNICATION SYSTEM MODEL

The main components of a digital communication system are
shown in Fig. 1. The source is assumed to be a digital source
in that a symbol from a finite alphabet is generated in dis-
crete time. An analog source can be converted to a digital
source by sampling and quantization. Data from the source
are processed by the source encoder, which represents the
source data in an efficient manner. The objective of the source
encoding operation is to represent the source output in a com-
pact form with as high fidelity as possible (i.e., with as little
information loss as possible). The sequence of source code-
words generated by the source encoder is fed to the channel
encoder, which yields the sequence of channel codewords. TheINFORMATION THEORY
channel encoder adds redundancy to provide error control
capabilities. The goal is to exploit the redundancy in the mostThe primary goal of a communication system is to convey in-
effective manner by achieving a high degree of error controlformation-bearing messages from an information source to a capability for a specified amount of redundancy. In some en-

destination over a communication channel. All real channels coding schemes, the input data stream is divided into blocks
are subject to noise and other channel impairments that limit of fixed length, and then some additional symbols are added
communication system performance. The receiver attempts to to each block to yield channel codewords. These codes are
reproduce transmitted messages from the received distorted known as block codes. In the class of codes known as tree
signals as accurately as possible. codes, the encoding process exhibits memory in that a block

In 1948, Shannon proposed a mathematical theory for the of input data stream is encoded based on the past blocks also.
communication process. This theory, known as information In either case, the output of the channel encoder is a string
theory, deals with the fundamental limits on the representa- of symbols to be transmitted. The modulator converts source
tion and transmission of information. Information theory was codeword symbols to analog waveforms suitable for transmis-
a remarkable breakthrough in that it provided a quantitative sion over the channel. The received waveforms are distorted
measure for the rather vague and qualitative notion of the due to noise and other interference processes present over the
amount of information contained in a message. Shannon sug- channel. The demodulator converts the received waveform
gested that the amount of information conveyed by the occur- into symbols and then furnishes received words to the chan-
rence of an event is related to the uncertainty associated with nel decoder. Due to channel noise, the received word may be
it and was defined to be inversely related to the probability in error. The channel decoder exploits the redundancy intro-
of occurrence of that event. Information theory also provides duced at the channel encoder to detect and/ or correct errors
fundamental limits on the transmission of information and on in the received word. This corrected word is the best estimate

of the source codeword, which is delivered to the destinationthe representation of information. These fundamental limits
after performing the inverse of the source encoding operation.are employed as benchmarks and are used to evaluate the
Information theory is based on a probabilistic model of thisperformance of practical systems by determining how closely
communication system.these systems approach the fundamental limits.

In his celebrated work, Shannon laid the foundation for
the design and analysis of modern communication systems. ENTROPY
He proved that nearly error-free information transmission
over a noisy communication link is possible by encoding sig- Let the discrete random variable S represent the output of

a source generating a symbol every signaling interval in anals prior to transmission over the link and by decoding the
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Figure 1. Block diagram of a communication system.
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statistically independent manner. This discrete memoryless It is plotted in Fig. 2 as a function of p0. Note that H(S) is
zero when p0 � 0 or 1. This corresponds to no uncertainty.source (DMS) is assumed to generate symbols from a fixed

finite alphabet �s1, . . ., sK� with probabilities P(S � sk) � pk, When p0 � ��, H(S) � 1. This corresponds to maximum uncer-
tainty since symbols 0 and 1 are equally likely.k � 1, . . ., K. The amount of information gained after ob-

serving the symbol sk is defined by the logarithmic function

SOURCE CODINGI(sk) = log(1/pk)

One of the important problems in communications is an effi-
It is inversely related to the probability of a symbol occur- cient representation of symbols generated by a DMS. Each
rence. The base of the logarithm is usually taken to be 2 and symbol sk is assigned a binary codeword of length �k. For an
the unit is called a bit. In this article, the base of all loga- efficient representation, it is desirable to minimize the aver-
rithms is assumed to be 2. Some properties of I(sk) are as age codeword length L, where
follows:

1. If the outcome of an event is certain, no information L =
K∑

k=1

pk�k

gain occurs; that is,

Shannon’s first theorem, also known as the source coding the-I(sk) = 0 if pk = 1
orem, provides a fundamental limit on L in terms of the en-
tropy of the source.2. Information gain from the occurrence of an event is

nonnegative; that is,
Source Coding Theorem: Given a DMS with entropy
H(S), the average codeword length L for any source encodingI(sk) ≥ 0 for 0 ≤ pk ≤ 1
scheme is bounded as

3. Occurrence of less probable events results in more infor- L ≥ H(S)
mation gain; that is,

I(sk) > I(s� ) if pk < p� Thus, entropy of a DMS provides a fundamental limit on the
average number of bits per source symbol necessary to repre-

The average information per source symbol for a DMS is
obtained by determining the average of I(s1), . . ., I(sK).

H(S) =
K∑

k=1

pk log(1/pk)

This quantity is known as the entropy of the DMS. It charac-
terizes the uncertainty associated with the source and is a
function of source symbol probabilities. The entropy is
bounded as 0 � H(S) � log2 K. The lower bound is attained
when one of the symbols occurs with probability one and the
rest with probability zero. The upper bound is realized when
all the symbols are equally likely.

Example: Consider a binary DMS whose output symbols are
zero and one with associated probabilities of occurrence given
by p0 and p1, respectively. The entropy is given by
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H(S) = −p0 log p0 − p1 log p1 Figure 2. Binary entropy function.
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Table 1. Illustration of Huffman Coding Algorithm

Probabilities at Different Stages

Source Symbols 1 2 3 4 5 Codewords

1
s0 0.3 0.3 0.45 0.55 1.0 11

1
s1 0.25 0.25 0.3 0.45 10

0

1
s2 0.25 0.25 0.25 01

0

1
s3 0.1 0.2 001

0

s4 0.1 000
0

sent the DMS. Based on this lower bound on L, we can ex- In this case,
press the coding efficiency of a source encoder as

η = H(S)

L

H(S) = − 0.3 log 0.3 − 0.25 log 0.25

− 0.25 log 0.25 − 0.1 log 0.1 − 0.1 log 0.1

= 2.1855 bits/symbol

A source encoder that is able to attain the lower bound has
and L � 2.2 bits/symbol. Thus, L � H(S) and � � 0.9934.an efficiency of one.

An important requirement for source codes is that they be
uniquely decodable so that perfect reconstruction is possible

MUTUAL INFORMATIONfrom the encoded binary sequence. One class of uniquely de-
codable codes is the class of prefix-free codes. In these codes,

Let X and Y be two discrete random variables that take val-no codeword is a prefix of any other codeword. Huffman code
ues from �x1, . . ., xJ� and �y1, . . ., yK�, respectively. The con-is an example of such a source code in which L approaches
ditional entropy H(X�Y) is defined asH(S). This code is optimum in that no other uniquely decoda-

ble code has a smaller L for a given DMS. The basic procedure
for Huffman coding can be summarized as follows:

H(X |Y ) =
K∑

k=1

J∑
j=1

p(xj, yk ) log[1/p(xj|yk )]

1. Arrange the source symbols in decreasing order of prob-
abilities. This quantity represents the amount of uncertainty re-

2. Assign a 0 and a 1 to the two source symbols with low- maining about X after observing Y. Since H(X) represents the
est probability. original uncertainty regarding X, information gained regard-

ing X by observing Y is obtained by the difference of H(X)3. Combine the two source symbols into a new symbol
and H(X�Y). This quantity is defined as the mutual informa-with probability equal to the sum of two original proba-
tion I(X; Y).bilities. Place this new symbol in the list according to

its probability.

4. Repeat this procedure until there are only two source I(X;Y ) = H(X ) − H(X |Y )

symbols in the list. Assign a 0 and a 1 to these two
symbols. Some important properties of I(X; Y) are as follows:

5. Find the codeword for each source symbol by working
backwards to obtain the binary string assigned to each 1. The mutual information is symmetric with respect to X
source symbol. and Y; that is,

Example: Consider a DMS with an alphabet consisting of I(X;Y ) = I(Y; X )
five symbols with source probabilities, as shown in Table 1.
Different steps of the Huffman encoding procedure and the

2. The mutual information is nonnegative; that is,resulting codewords are also shown. Codewords have been ob-
tained by working backward on the paths leading to individ-

I(X;Y ) ≥ 0ual source symbol.
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3. I(X; Y) is also given as

I(X;Y ) = H(Y ) − H(Y |X )

RELATIVE ENTROPY

The relative entropy or discrimination is a measure of the
distance between two probability distributions. Let p( � ) and
q( � ) be two probability mass functions. Then relative entropy
or Kullback Leibler distance between the two is defined as

D(p‖q) =
K∑

k=1

p(xk) log
p(xk)

q(xk)

The relative entropy is always nonnegative and is zero only if Transition probability, p

C
h

a
n

n
e

l c
a

p
a

ci
ty

1

0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.5

0.4

0.3

0.2

0.1

0.9

0.8

0.7

0.6

p and q are identical.
Figure 4. Capacity of a binary symmetric channel.The mutual information I(X; Y) can be interpreted as the

relative entropy between the joint distribution p(xj, yk) and
the product distribution p(xj) p(yk). That is,

Channel capacity is a function only of the channel transition
probabilities and its units are bits per channel use.I(X ;Y ) = D(p(xj, yk)‖p(xj )p(yk))

Example: The capacity of a BSC as a function of the error
probability p is given byCHANNEL CAPACITY

C = 1 − H(p)
Consider a discrete channel with input X and output Y, where
X and Y are discrete random variables taking values from and is shown in Fig. 4. When p � 0 or p � 1, the channel
(x1, . . ., xJ) and (y1, . . ., yK), respectively. This channel is capacity is maximum and is equal to 1 bit. Note that p � 1
known as a discrete memoryless channel (DMC) if the output also corresponds to a deterministic channel in that a zero is
symbol at any time depends only on the corresponding input always received as a one and vice versa. When p � ��, the
symbol and not on any prior ones. This channel can be com- channel is very noisy and the capacity is zero.
pletely characterized in terms of channel transition probabili-
ties, p(yk�xj); j � 1, . . ., J; k � 1, . . ., K.

CHANNEL CODING THEOREM

Example: An important example of a DMC is the binary
To combat the effects of noise during transmission, the incom-symmetric channel (BSC) shown in Fig. 3. In this case, both
ing data sequence from the source is encoded into a channelthe input and the output take values from �0, 1� and the two
input sequence by introducing redundancy. At the receiver,types of errors (receiving a zero when a one is sent, and re-
the received sequence is decoded to reconstruct the data se-ceiving a one when a zero is sent) are equal.
quence. Shannon’s second theorem, also known as the chan-
nel coding theorem or the noisy coding theorem, provides the

For a DMC, mutual information I(X; Y) is the amount of fundamental limits on the rate at which reliable information
input source uncertainty reduced after observing the output. transmission can take place over a DMC.
The channel capacity of a DMC is defined as the maximum
mutual information for any signaling interval, where the Channel Coding Theorem
maximization is performed over all possible input probability
distributions. That is, (i) Let a DMS with entropy H(S) produce a symbol every

Ts seconds. Let a DMC have capacity C and be used
once every Tc seconds. Then, ifC = max

{p(x j )}
I(X;Y )

H(S)

Ts
≤ C

Tc

there exists a coding scheme with which source output
can be transmitted over the channel and be recon-
structed at the receiver with an arbitrarily small proba-
bility of error. Here, error refers to the event that a
transmitted symbol is reconstructed incorrectly.

(ii) Conversely, if

1 − p

1 − p

p

p

1 1

0 0

Figure 3. Binary symmetric channel.
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it is not possible to transmit data with an arbitrarily where B is the bandwidth of the channel, P is the average
transmitted signal power, and the noise power spectral den-small probability of error.
sity is equal to N0/2.

It must be emphasized that the foregoing result only states
the existence of ‘‘good’’ codes but does not provide methods The capacity provides a fundamental limit on the rate at
to construct such codes. Development of efficient codes has which information can be transmitted with arbitrarily small
remained an active area of research and is discussed else- probability of error. Conversely, information cannot be trans-
where in this volume. In error-control coding, redundant sym- mitted at a rate higher than C bits/s with arbitrarily small
bols are added to the transmitted information at the trans- probability of error irrespective of the coding scheme em-
mitter to provide error detection and error correction ployed.
capabilities at the receiver. Addition of redundancy implies
increased data rate and thus an increased transmission band-
width. RATE DISTORTION THEORY

Previously, the problem of source coding that required perfectDIFFERENTIAL ENTROPY
reconstruction of a DMS was considered. It was seen that the
entropy provided the minimum rate at which perfect recon-Thus far, only discrete random variables were considered.
struction is possible. A question arises as to what happensNow we define information theoretic quantities for continuous
when the allowed rate is less than the lower bound. Also,random variables. Consider a continuous random variable X
what if the source is continuous, because a finite representa-with probability density function f (x). Analogous to the en-
tion of such a source can never be perfect? These questionstropy of a discrete random variable, the differential entropy
give rise to rate distortion theory. A distortion measure needsof a continuous random variable X is defined as
to be defined to quantify the distance between the random
variable and its representation. For a given source distribu-
tion and distortion measure, the fundamental problem in rate

h(x) =
∫ ∞

−∞
f (x) log[1/ f (x)] dx

distortion theory is to determine the minimum achievable ex-
pected distortion at a given rate. An equivalent problem is toExample: For a Gaussian random variable with probability
find the minimum rate required to attain a given distortion.density function,
This theory is applicable to both continuous and discrete ran-
dom variables.

Consider a source with alphabet X that produces a se-f (x) = 1

σ
√

2π
exp

{
− x2

2σ 2

}
quence of independent identically distributed random vari-
ables X1, X2, . . .. Let X̂1, X̂2, . . . be the corresponding repro-the differential entropy can be computed to be
ductions with reproduction alphabet denoted as X̂ . The
single-letter distortion measure d(x, x̂) is a mapping d: X xX̂

� R� from the source alphabet-reproduction alphabet pair
h(x) = 1

2
log 2πeσ 2 bits

into the set of nonnegative real numbers. It quantifies the
In an analogous manner, mutual information for two con- distortion when x is represented by x̂. Two commonly used

tinuous random variables X and Y can be defined as distortion measures are as follows:
Hamming distortion measure:

I(X;Y ) =
∫ ∞

−∞

∫ ∞

−∞
f (x, y) log

f (x, y)

f (x) f (y)
dx dy

d(x, x̂) =
{

0 if x = x̂

1 if x �= x̂
CAPACITY OF GAUSSIAN CHANNELS

Squared error distortion measure:
Earlier, the fundamental limit on error-free transmission over
a DMC was presented. Here we present the channel capacity d(x, x̂) = (x − x̂)2
theorem for band-limited and power-limited Gaussian chan-
nels. This theorem is known as Shannon’s third theorem or as

The single-letter distortion measure can be extended to definethe Shannon–Hartley theorem. It is an extremely important
the distortion measure for n-tuples as follows:result with great practical relevance because it expresses the

channel capacity in terms of system parameters channel
bandwidth, average signal power, and noise power spectral
density.

d(xn, x̂n) = 1
n

n∑
i=1

d(xi, x̂i )

Channel Capacity Theorem: The capacity of a band-lim- This is the average of the per symbol distortion over the ele-
ited additive white Gaussian noise (AWGN) channel is given ments of the n-tuple.
by Now we consider the encoding of the source output se-

quence of length n, Xn, and then its decoding to yield X̂n. To
accomplish this we define a (2nR, n) rate distortion code that
consists of an encoding function and a decoding function, as

C = B log
�

1 + P
N0B

�
bits/s



144 INFORMATION THEORY

given by

fn : X n → {1,2, . . ., 2nR}
gn : {1,2, . . ., 2nR} → X̂ n

where R is the number of bits available to represent each
source symbol. The expected distortion for this rate distortion
code is given by

Dn =
∑
xn

p(xn)d(xn, gn( fn(xn)))

where p( � ) is the probability density function associated with
the source.

A rate distortion pair (R, D) is said to be achievable if there
exists a rate distortion code with rate R such that D
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Figure 6. Rate distortion function for the Gaussian source.lim
n→∞ Dn ≤ D

The rate distortion function R(D) is the infimum of rates R
Example: Consider a zero-mean Gaussian source with vari-such that (R, D) is achievable for a given D. Next, we present
ance 	2. For the squared error distortion measure, the ratethe fundamental theorem of rate distortion theory.
distortion function is given by

Rate Distortion Theorem: The rate distortion function for
an independent identically distributed source X with distribu-
tion p(x) and bounded distortion function d(x, x̂) is given by R(D) =




1
2

log
σ 2

D
0 ≤ D ≤ σ 2

0 D > σ 2

It is plotted in Fig. 6.
R(D) = min

p(x̂|x):
∑

(x, x̂)

p(x)p(x̂|x)d(x,x̂)≤D
I(X; X̂ )

Thus, R(D) is the minimum achievable rate at distortion D. The rate distortion function R(D) is a nonincreasing convex
function of D. For the binary source, when D � 0, the mini-Conversely, if R is less than R(D), we cannot achieve a distor-

tion less than or equal to D. mum rate required for perfect reconstruction is given by
H(p). As D increases, minimum required rate R decreases.

Example: Consider a binary source that produces an output Similar observations can also be made for the Gaussian
of 1 with probability p. For the Hamming distortion measure, source.
its R(D) is given by
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