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ALGEBRAIC CODING THEORY

In computers and digital communication systems, informa-
tion is almost always represented in a binary form as a se-
quence of bits each having the values 0 or 1. This sequence of
bits is transmitted over a channel from a sender to a receiver.
In some applications the channel is a storage medium like a
CD, where the information is written to the medium at a cer-
tain time and retrieved at a later time. Due to physical limita-
tions of the channel, some of the transmitted bits may be cor-
rupted (the channel is noisy) and thus make it difficult for the
receiver to reconstruct the information correctly.

In algebraic coding theory we are mainly concerned with
developing methods for detecting and correcting errors that
typically occur during transmission of information over a
noisy channel. The basic technique to detect and correct er-
rors is by introducing redundancy in the data that are to be
transmitted. This is similar to communicating in a natural
language in daily life. One can understand the information
while listening to a noisy radio or talking on a bad telephone
line due to the redundancy in the language.

For an example, suppose the sender wants to communicate
one of 16 different messages to a receiver. Each message m
can then be represented as a binary quadruple m � (c0, c1,
c2, c3). If the message (0101) is transmitted and the first posi-
tion is corrupted such that (1101) is received, this leads to an
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uncorrectable error since this quadruple represents a differ-
ent valid message than the message that was sent across the
channel. The receiver will have no way to detect and correct
a corrupted message in general, since any quadruple repre-
sents a valid message.

Therefore, to combat errors the sender encodes the data by
introducing redundancy into the transmitted information. If
M messages are to be transmitted, the sender selects a subset
of M binary n-tuples, where M � 2n. Each of the M messages
is encoded into one of the selected n-tuples. The set consisting

1

0
0 1

1 1 0

of the M n-tuples obtained after encoding is called a binary
(n, M) code and the elements are called codewords. The code- Figure 2. Example of the encoding procedure given in Fig. 1. The
words are sent over the channel. message (0011) is encoded into (0011110). Note that there is an even

number of ones within each circle.It is customary for many applications to let M � 2k, such
that each message can be represented uniquely by a k-tuple
of information bits. To encode each message the sender can
append n � k parity bits depending on the message bits and

area contains a bit ci for i � 0, 1, . . ., 6. Each of the 16use the resulting n bit codeword to represent the correspond-
possible messages, denoted by (c0, c1, c2, c3), is encoded into aing message.
codeword (c0, c1, c2, c3, c4, c5, c6), in such a way that the sum ofA binary code C is called a linear code if the sum (modulo
the bits in each circle has an even parity.2) of two codewords is again a codeword. This is always the

In Fig. 2, an example is shown of encoding the messagecase when the parity bits are linear combinations of the infor-
(0011) into the codeword (0011110). Since the sum of twomation bits. In this case, the code C is a vector space of di-
codewords also obeys the parity checks and thus is amension k over the binary field of two elements, containing
codeword, the code is a linear [7, 4] code.M � 2k codewords, and is called an [n, k] code. The main rea-

Suppose, for example, that the transmitted codeword isson for using linear codes is that these codes have more alge-
corrupted in the bit c1 such that the received word isbraic structure and are therefore often easier to analyze and
(0111110). Then, calculating the parity of each of the threedecode in practical applications.
circles, we see that the parity fails for the upper circle as wellThe simplest example of a linear code is the [n, n � 1]
as for the leftmost circle while the parity of the rightmosteven-weight code (or parity-check code). The encoding consists
circle is correct. Hence, from the received vector we can in-of appending a single parity bit to the n � 1 information bits
deed conclude that bit c1 is in error and should be corrected.so that the codeword has an even number of ones. Thus the
In the same way, any single error can be corrected by thiscode consists of all 2n�1 possible n-tuples of even weight,

where the weight of a vector is the total number of ones in its code.
components. This code can detect all errors in an odd number
of positions, since if such an error occurs the received vector
will also have odd weight. The even-weight code, however, can LINEAR CODES
only detect errors. For example, if (000 . . . 0) is sent and the
first bit is corrupted, then (100 . . . 0) is received. Also, if An (n, M) code is simply a set of M vectors of length n with
(110 . . . 0) was sent and the second bit was corrupted, then components from a finite field F2 � �0, 1�, where addition and
(100 . . . 0) is received. Hence, there is no way the receiver multiplication are done modulo 2. For practical applications
can correct this single error or, in fact, any other error. it is desirable that the code is provided with more structure.

An illustration of a code that can correct any single error Therefore, linear codes are often preferred. A linear [n, k]
is shown in Fig. 1. The three circles intersect and divide the code C is a k-dimensional subspace C of Fn

2, where Fn
2 is

plane into seven finite areas and one infinite area. Each finite the vector space of n-tuples with coefficients from the finite
field F2.

A linear code C is usually described in terms of a generator
matrix or a parity-check matrix. A generator matrix G of C is
a k � n matrix whose row space is the code C. That is,

C = {xxxG|xxx ∈ Fk
2 }

A parity-check matrix H is an (n � k) � n matrix such that

C = {ccc ∈ Fn
2 |cccHtr = 000}

where Htr denotes the transpose of H.

c4

c1

c5 c6

c2
c0

c3

Figure 1. The message (c0, c1, c2, c3) is encoded into the codeword
Example. The codewords in the code in the previous section(c0, c1, c2, c3, c4, c5, c6), where c4, c5, c6 are chosen such that there is an

even number of ones within each circle. are the vectors (c0, c1, c2, c3, c4, c5, c6) that satisfy the following
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system of parity-check equations: Therefore, finding the minimum distance of a linear code is
equivalent to finding the minimum nonzero weight among all
codewords in the code.

If w(c) � i, then cHtr is the sum of i columns of H. Hence,
an alternative description of the minimum distance of a linear

c0 + c1 + c2 + c4 = 0

c0 + c1 + c3 + c5 = 0

c0 + c2 + c3 + c6 = 0
code is as follows: the smallest d such that there exists d lin-
early dependent columns in the parity-check matrix. In par-where all additions are modulo 2. Each of the three parity-
ticular, to obtain a linear code of minimum distance at leastcheck equations correspond to one of the three circles.
three, it is sufficient to select the columns of a parity-checkThe coefficient matrix of the parity-check equations is the
matrix to be distinct and nonzero.parity-check matrix

Sometimes we include d in the notation and refer to an
[n, k] code with minimum distance d as an [n, k, d] code. If t
components are corrupted during transmission of a codeword,
we say that t errors have occurred or that an error e of weight

H =




1 1 1 0 1 0 0
1 1 0 1 0 1 0
1 0 1 1 0 0 1


 (1)

t has occurred [where e � (e0, e1, . . ., en�1) � Fn
2, where ei �

1 if and only if the ith component was corrupted—that is, if
The code C is therefore given by c was sent, c � e was received].

The error-correcting capability of a code is defined asC = {ccc = (c0, c1, · · ·, c6)|cccHtr = 000}

A generator matrix for the code in the previous example is t =
⌊

d − 1
2

⌋
given by

where x denotes the largest integer � x.
A code with minimum distance d can correct all errors of

weight t or less. This is due to the fact that if a codeword c is
transmitted and an error e of weight e � t occurs, the received
vector r � c � e is closer in Hamming distance to the trans-

G =




1 0 0 0 1 1 1
0 1 0 0 1 1 0
0 0 1 0 1 0 1
0 0 0 1 0 1 1




mitted codeword c than to any other codeword. Therefore, de-
Two codes are equivalent if the codewords in one of the coding any received vector to the closest codeword corrects all

codes can be obtained by a fixed permutation of the positions errors of weight � t.
in the codewords in the other code. If G (respectively, H) is a The code can also be used for error detection only. The code
generator (respectively, parity-check) matrix of a code, then is able to detect all errors of weight � d since if a codeword
the matrices obtained by permuting the columns of these ma- is transmitted and the error has weight � d, then the re-
trices in the same way give the generator matrix (respec- ceived vector is not another codeword.
tively, parity-check) matrix of the permuted code. The code can also be used for a combination of error correc-

The Hamming distance between x � (x0, x1, . . ., xn�1) and tion and error detection. For a given e � t, the code can cor-
y � (y0, y1, . . ., yn�1) in Fn

2 is the number of positions in which rect all errors of weight � e and in addition detect all errors
they differ. That is, of weight at most d � e � 1. This is due to the fact that no

vector in Fn
2 can be at distance � e from one codeword and at

d(xxx,yyy) = |{i|xi �= yi, 0 ≤ i ≤ n − 1}| the same time at a distance � d � e � 1 from another
codeword. Hence, the algorithm in this case is to decode aThe Hamming distance has the properties required to be a
received vector to a codeword at distance � e if such ametric:
codeword exists and otherwise detect an error.

If C is an [n, k] code, the extended code Cext is the [n � 1,1. d(x, y) � 0 for all x, y � Fn
2 and equality holds if and

k] code defined byonly if x � y.
2. d(x, y) � d(y, x) for all x, y � Fn

2.
3. d(x, z) � d(x, y) � d(y, z) for all x, y, z � Fn

2.

For any code C one of the most important parameters is
its minimum distance, defined by

Cext =
{
(cext, c0, c1, . . ., cn−1)

∣∣∣∣(c0, c1, . . ., cn−1) ∈ C,

cext =
n−1∑
i=0

ci

}

That is, each codeword in C is extended by one parity bit suchd = min{d(xxx,yyy)|xxx �= yyy,xxx,yyy ∈ C}
that the Hamming weight of each codeword becomes even. In

The Hamming weight of a vector x in Fn
2 is the number of particular, if C has odd minimum distance d, then the mini-

nonzero components in x � (x0, x1, . . ., xn�1). That is, mum distance of Cext is d � 1. If H is a parity-check matrix
for C, then a parity-check matrix for Cext isw(xxx) = |{i|xi �= 0, 0 ≤ i ≤ n − 1}| = d(xxx,000)

Note that since d(x, y) � d(x � y, 0) � w(x � y) for a linear
code C, it follows that

(
1 1

000tr H

)

d = min{w(zzz)|zzz ∈ C,zzz �= 000} where 1 � (11 . . . 1).
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For any linear [n, k] code C, the dual code C� is the [n, n where e � (d � 1)/2. This follows from the fact that the M
spheres� k] code defined by

Sccc = {xxx|d(xxx,ccc) ≤ e}C⊥ = {xxx ∈ Fn
2 |(xxx,ccc) = 0 for allccc ∈ C}

centered at the codewords c � C are disjoint and that eachwhere (x, c) � �n�1
i�0 xici. We say that x and c are orthogonal

sphere containsif (x, c) � 0. Therefore, C� consists of all n-tuples that are
orthogonal to all codewords in C and vice versa—that is,
(C�)� � C. It follows that C� has dimension n � k since it
consists of all vectors that are solutions of a system of equa-

e∑
i=0

(
n
i

)
tions with coefficient matrix G of rank k. Hence, the parity-
check matrix of C� is a generator matrix of C, and similarly vectors.
the generator matrix of C� is a parity-check matrix of C. In If the spheres fill the whole space, that is,
particular, GHtr � O [the k � (n � k) matrix of all zeros].

Example. Let C be the [n, n � 1, 2] even-weight code where

⋃
ccc∈C

Sccc = Fn
2

then C is called perfect. The binary linear perfect codes are
as follows:

• The [n, 1, n] repetition codes for all odd n
• The [2m � 1, 2m � 1 � m, 3] Hamming codes Hm for all

G =




1 0 · · · 0 0 1
0 1 · · · 0 0 1
...

...
. . .

...
...

...
0 0 · · · 0 1 1




m � 2
and • The [23, 12, 7] Golay code G23

H = (1 1 · · · 1 1 1)
We will return to the Golay code later.

Then C� has H and G as its generator and parity-check matri-
ces, respectively. It follows that C� is the [n, 1, n] repetition GALOIS FIELDS
code consisting of the two codewords (00 	 	 	 000) and (11
	 	 	 111). There exist finite fields, also known as Galois fields, with pm

elements for any prime p and any positive integer m. A Galois
Example. Let C be the [2m � 1, 2m � 1 � m, 3] code, where field of a given order pm is unique (up to isomorphism) and is
H contains all nonzero m-tuples as its columns. This is known denoted by Fpm.
as the Hamming code. In the case when m � 3, a parity-check For a prime p, let Fp � �0, 1, . . ., p � 1� denote the inte-
matrix is already described in Eq. (1). Since all columns of gers modulo p with the two operations addition and multipli-
the parity-check matrix are distinct and nonzero, the code has cation modulo p.
minimum distance at least 3. The minimum distance is in- To construct a Galois field with pm elements, select a poly-
deed 3 since there exist three columns whose sum is zero, in nomial f (x) with coefficients in Fp that is irreducible over Fp;
fact the sum of any two columns of H equals another column that is, f (x) cannot be written as a product of two polynomials
in H for this particular code. with coefficients from Fp of degree � 1 (irreducible polynomi-

The dual code C� is the [2m � 1, m, 2m�1] simplex code all als of any degree m over Fp exist).
of whose nonzero codewords have weight 2m�1. This follows Let
since the generator matrix has all nonzero vectors as its col-
umns. In particular, taking any linear combination of rows, Fpm = {am−1xm−1 + am−2xm−2 + · · · + a0|a0, . . ., am−1 ∈ Fp}
the number of columns with odd parity in the corresponding
subset of rows equals 2m�1 (and the number with even parity Then Fpm is a finite field when addition and multiplication of
is 2m�1 � 1). the elements (polynomials) are done modulo f (x) and modulo

The extended code of the Hamming code is a [2m, 2m � 1 p. To simplify the notations let � denote a zero of f (x), that
� m, 4] code. Its dual code is a [2m, m � 1, 2m�1] code that is is, f (�) � 0. If such an � exists, it can formally be defined as
known as the first-order Reed-Muller code. the equivalence class of x modulo f (x). For coding theory, p �

2 is by far the most important case, and we assume this from
now on. Note that for any a, b � F2m,

SOME BOUNDS ON CODES
(a + b)2 = a2 + b2

The Hamming bound states that for any (n, M, d) code we Example. The Galois field F24 can be constructed as follows.
have Let f (x) � x4 � x � 1 that is an irreducible polynomial over

F2. Then �4 � � � 1 and

F24 = {a3α
3 + a2α

2 + a1α + a0|a0, a1, a2, a3 ∈ F2}
M

e∑
i=0

(
n
i

)
≤ 2n
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Computing the powers of �, we obtain To verify this, one simply computes the coefficients and
uses the preceding table of F24 in the computations. For exam-
ple,α5 = α · α4 = α(α + 1) = α2 + α,

a6 = α · α5 = α(α2 + α) = α3 + α2,

α7 = α · α6 = α(α3 + α2) = α4 + α3 = α3 + α + 1 m5(x) = (x + α5)(x + α10) = x2 + (α5 + α10)x + α5 · α10

= x2 + x + 1and, similarly, all higher powers of � can be expressed as a
linear combination of �3, �2, �, and 1. In particular, �15 � 1.

This also leads to a factorization into irreducible polynomials:We get the following table of the powers of �. In the table the
polynomial a3�3 � a2�2 � a1� � a0 is represented as a3a2a1a0.

x24 + x = x
14∏
j=0

(x + α j )

= x(x + 1)(x2 + x + 1)(x4 + x + 1)

(x4 + x3 + x2 + x + 1)(x4 + x3 + 1)

= xm0(x)m1(x)m3(x)m5(x)m7(x)

i �i i �i i �i

0 0001 5 0110 10 0111
1 0010 6 1100 11 1110
2 0100 7 1011 12 1111
3 1000 8 0101 13 1101
4 0011 9 1010 14 1001

Hence, the elements 1, �, �2, . . ., �14 are all the nonzero In fact, it holds in general that x2m
� x is the product of all

elements in F24. Such an element � that generates the nonzero irreducible polynomials over F2 of degree that divides m.
elements of F2m is called a primitive element in F2m. An irreduc- Let Ci � �i2j (mod n) � j � 0, 1, . . .�, which is called the
ible polynomial g(x) with a primitive element as a root is cyclotomic coset of i (mod n). Then the elements of the cyclo-
called a primitive polynomial. Every finite field has a primi- tomic coset Ci (mod 2m � 1) correspond to the exponents of
tive element, and therefore the multiplicative subgroup of a the zeros of mi(x). That is,
finite field is cyclic.

All elements in F2m are roots of the equation x2m
� x � 0.

Let � be an element in F2m. It is important to study the poly- mi(x) =
∏
j∈Ci

(x − α j )

nomial m(x) of smallest degree with coefficients in F2 that has
� as a zero. This polynomial is called the minimal polynomial

The cyclotomic cosets (mod n) are important in the next sec-of � over F2.
tion when cyclic codes of length n are discussed.First, observe that if m(x) � �


i�0 mixi has coefficients in
F2 and � as a zero, then

CYCLIC CODESm(β2) =
κ∑

i=0

miβ
2i =

κ∑
i=0

m2
i β

2i =
(

κ∑
i=0

miβ
i

)2

= (m(β))2 = 0

Many good linear codes that have practical and efficient de-
Hence, m(x) has �, �2, . . ., �2
�1

, as zeros, where 
 is the coding algorithms have the property that a cyclic shift of a
smallest integer such that �2


� �. Conversely, the polynomial codeword is again a codeword. Such codes are called cyclic
with exactly these zeros can be shown to be a binary irreduc- codes.
ible polynomial. We can represent the set of n-tuples over Fn

2 as polynomials
of degree � n in a natural way. The vector c � (c0, c1, . . .,Example. We will find the minimal polynomial of all the ele-
cn�1) is represented as the polynomial c(x) � c0 � c1x � c2x2 �ments in F24. Let � be a root of x4 � x � 1 � 0; that is, �4 �
	 	 	 � cn�1xn�1. A cyclic shift� � 1. The minimal polynomials over F2 of �i for 0 � i � 14

are denoted mi(x). Observe by the preceding argument that
m2i(x) � mi(x), where the indices are taken modulo 15. It fol- σ (ccc) = (cn−1, c0, c1, . . ., cn−2)

lows that

of c is then represented by the polynomial

σ (c(x)) = cn−1 + c0x + c1x2 + · · · + cn−2xn−1

= x(cn−1xn−1 + c0 + c1x + · · · + cn−2xn−2) + cn−1(x
n + 1)

≡ xc(x) (mod xn + 1)

Example. Rearranging the columns in the parity-check ma-
trix of the [7, 4] Hamming code in Eq. (1), an equivalent code
is obtained with parity-check matrix

H =




1 0 0 1 0 1 1
0 1 0 1 1 1 0
0 0 1 0 1 1 1


 (2)

m0(x) = (x + α0) = x + 1,

m1(x) = (x + α)(x + α2)(x + α4)(x + α8)

= x4 + x + 1,

m3(x) = (x + α3)(x + α6)(x + α12)(x + α9)

= x4 + x3 + x2 + x + 1,

m5(x) = (x + α5)(x + α10) = x2 + x + 1,

m7(x) = (x + α7)(x + α14)(x + α13)(x + α11)

= x4 + x3 + 1,

m9(x) = m3(x),

m11(x) = m7(x),

m13(x) = m7(x)
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This code contains 16 codewords, which are represented Since the generator polynomial of a cyclic code divides
xn � 1, it is important to know how to factor xn � 1 into irre-next in polynomial form:
ducible polynomials. Let n be odd. Then there is an integer m
such that 2m � 1 (mod n) and there is an element � � F2m of
order n [if � is a primitive element of F2m, then � can be taken
to be � � �(2m1)/n].

We have

xn + 1 =
n−1∏
i=0

(x + αi)

Let mi(x) denote the minimal polynomial of �i; that is, the
polynomial of smallest degree with coefficients in F2 and hav-
ing �i as a zero. The generator polynomial g(x) can be written
as

g(x) =
∏
i∈I

(x + αi)

1000110 ↔ x5 + x4 + 1 = (x2 + x + 1)g(x)

0100011 ↔ x6 + x5 + x = (x3 + x2 + x)g(x)

1010001 ↔ x6 + x2 + 1 = (x3 + x + 1)g(x)

1101000 ↔ x3 + x + 1 = g(x)

0110100 ↔ x4 + x2 + x = xg(x)

0011010 ↔ x5 + x3 + x2 = x2g(x)

0001101 ↔ x6 + x4 + x3 = x3g(x)

0010111 ↔ x6 + x5 + x4 + x2 = (x3 + x2)g(x)

1001011 ↔ x6 + x5 + x3 + 1 = (x3 + x2 + x + 1)g(x)

1100101 ↔ x6 + x4 + x + 1 = (x3 + 1)g(x)

1110010 ↔ x5 + x2 + x + 1 = (x2 + 1)g(x)

0111001 ↔ x6 + x3 + x2 + x = (x3 + x)g(x)

1011100 ↔ x4 + x3 + x2 + 1 = (x + 1)g(x)

0101110 ↔ x5 + x4 + x3 + x = (x2 + x)g(x)

0000000 ↔ 0 = 0
1111111 ↔ x6 + x5 + · · · + x + 1 = (x3 + x2 + 1)g(x)

where I is a subset of �0, 1, . . ., n � 1�, called the definingBy inspection it is easy to verify that any cyclic shift of a
set of C with respect to �. Then mi(x) divides g(x) for all i �codeword is again a codeword. Indeed, the 16 codewords in
I. Further, g(x) � �l

j�1 mij
(x) for some i1, i2, . . ., il.the code are 0, 1 and all cyclic shifts of (1000110) and

We can therefore describe the cyclic code in alternative(0010111). The unique nonzero polynomial in the code of low-
equivalent ways asest possible degree is g(x) � x3 � x � 1, and g(x) is called the

generator polynomial of the cyclic code. The code consists of
all polynomials c(x) that are multiples of g(x). Note that the
degree of g(x) is n � k � 3 and that g(x) divides x7 � 1 since
x7 � 1 � (x � 1)(x3 � x � 1)(x3 � x2 � 1).

The code therefore has a simple description in terms of the

C = {c(x)|mi(x) divides c(x), for all i ∈ I},
C = {c(x)|c(αi) = 0, for all i ∈ I},
C = {ccc ∈ Fn

2 |cccHtr = 000}
set of code polynomials as

where
C = {c(x)|c(x) = u(x)(x3 + x + 1),deg(u(x)) < 4}

This situation holds in general for any cyclic code.
For any cyclic [n, k] code C, we have

C = {c(x)|c(x) = u(x)g(x),deg(u(x)) < k}
H =




1 αi1 α2i1 · · · α(n−1)i1

1 αi2 α2i2 · · · α(n−1)i2

...
...

...
. . .

...
1 αil α2il · · · α(n−1)il




for a polynomial g(x) of degree n � k that divides xn � 1.
The encoding for cyclic codes is usually done in one of twoWe can show this as follows: Let g(x) be the generator poly-

ways. Let u(x) denote the information polynomial of degree �nomial of C, which is the nonzero polynomial of smallest de-
k. The two ways are as follows:gree r in the code C. Then the cyclic shifts g(x), xg(x), 	 	 	 ,

xn�r�1g(x) are codewords as well as any linear combination
u(x)g(x), where deg(u(x)) � n � r. These are the only 2n�r code- 1. Encode into u(x)g(x).
words in the code C, since if c(x) is a codeword then 2. Encode into c(x) � xn�ku(x) � s(x), where s(x) is the poly-

nomial such thatc(x) = u(x)g(x) + s(x), where deg(s(x)) < deg(g(x))
• s(x) � xn�ku(x) (mod g(x)) [thus g(x) divides c(x)]
• deg(s(x)) � deg(g(x))By linearity, s(x) is a codeword and therefore s(x) � 0 since

deg(s(x)) � deg(g(x)) and g(x) is the nonzero polynomial of
The last of these two methods is systematic; that is, the lastsmallest degree in the code. It follows that C is as described
k bits of the codeword are the information bits.previously. Since C has 2n�r codewords, it follows that n �

r � k; that is, deg(g(x)) � n � k.
Finally, we show that g(x) divides xn � 1. Let c(x) � c0 �

BCH CODESc1x � 	 	 	 � cn�1xn�1 be a nonzero codeword shifted such that
cn�1 � 1. Then a cyclic shift of c(x) given by �(c(x)) � cn�1 �

An important task in coding theory is to design codes withc0x � c1x � 	 	 	 � cn�2xn�1 is also a codeword and
a guaranteed minimum distance d that correct all errors of
Hamming weight (d � 1)/2. Such codes were designed inde-σ (c(x)) = xc(x) + ϑ(xn + 1)
pendently by Bose and Ray-Chaudhuri (1960) and by Hoc-
quenghem (1959) and are known as BCH codes. To constructSince both of the codewords c(x) and �(c(x)) are divisible by

g(x), it follows that g(x) divides xn � 1. a BCH code of designed distance d, the generator polynomial
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is chosen to have d � 1 consecutive powers of � as zeros Similarly, a binary triple-error correcting BCH code of the
same length is obtained by choosing the generator polynomial

αb, αb+1, · · ·, αb+d−2

That is, the defining set I with respect to � contains a set of
d � 1 consecutive integers (mod n). The parity-check matrix
of the BCH code is

g(x) = m1(x)m3(x)m5(x)

= (x4 + x + 1)(x4 + x3 + x2 + x + 1)(x2 + x + 1)

= x10 + x8 + x5 + x4 + x2 + x + 1

The main interest in BCH codes is due to the fact that they
have a very fast and efficient decoding algorithm. We describe
this later.H =




1 αb α2b · · · α(n−1)b

1 αb+1 α2(b+1) · · · α(n−1)(b+1)

...
...

...
. . .

...
1 αb+d−2 α2(b+d−2) · · · α(n−1)(b+d−2)




AUTOMORPHISMS
To show that this code has minimum distance at least d,

it is sufficient to show that any d � 1 columns are linear Let C be a binary code of length n. Consider a permutation �
independent. Suppose there is a linear dependency between of the set �0, 1, . . ., n � 1�; that is, � is a one-to-one function
the d � 1 columns corresponding to �i1b, �i2b, . . ., �id�1b. In this of the set of coordinate positions onto itself.
case the (d � 1) � (d � 1) submatrix obtained by retaining For a codeword c � C, let
these columns in H has determinant

π(ccc) = (cπ (0), cπ (1), . . ., cπ (n−1))

That is, the coordinates are permuted by the permutation �.
If

{π(ccc)|ccc ∈ C} = C

then � is called an automorphism of the code C.

Example. Consider the following (nonlinear code):

C = {101,011}

∣∣∣∣∣∣∣∣∣∣∣

αi1b αi2b · · · αid−1b

αi1 (b+1) αi2 (b+1) · · · αid−1 (b+1)

...
...

. . .
...

αi2 (b+d−2) αi2 (b+d−2) · · · αid−1 (b+d−2)

∣∣∣∣∣∣∣∣∣∣∣

= αb(i1+i2+...+id−1 )

∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1

αi1 αi2 · · · αid−1

...
...

...
...

α(d−2)i1 α(d−2)i2 · · · α(d−2)id−1

∣∣∣∣∣∣∣∣∣∣
= αb(i1+i2+...+id−1 )

∏
k<r

(aik − αir ) �= 0

The actions of the six possible permutations on three ele-
ments are given in the following table. The permutations thatsince the elements �i1, �i2, 	 	 	 , �id�1 are distinct (the last
are automorphisms are marked by a star.equality follows from the fact that the last determinant is a

Vandermonde determinant). It follows that the BCH code has
minimum Hamming distance at least d.

If b � 1, which is often the case, the code is called a nar-
row-sense BCH code. If n � 2m � 1, the BCH code is called a
primitive BCH code. A binary single error-correcting primi-
tive BCH code is generated by g(x) � m1(x). The zeros of g(x)
are �2i

, i � 0, 1, . . ., m � 1. The parity-check matrix is

�(0) �(1) �(2) �((101)) �((011))

0 1 2 101 011 �

0 2 1 110 011
1 0 2 011 101 �

1 2 0 011 110
2 0 1 110 101
2 1 0 101 110

H = (1 α1 α2 . . . α2m−2)

In general, the set of automorphisms of a code C is a group,This code is equivalent to the Hamming code since � is a
the Automorphism group Aut(C). We note thatprimitive element of F2m.

To construct a binary double error-correcting primitive
BCH code, we let g(x) have �, �2, �3, �4 as zeros. Therefore,
g(x) � m1(x)m3(x) is a generator polynomial of this code. The

n−1∑
i=0

xiyi =
n−1∑
i=0

xπ (i)yπ (i)

parity-check matrix of a double error-correcting BCH code is

and so (x, y) � 0 if and only if (�(x), �(y)) � 0. In particular,
this implies thatH =

(
1 α1 α2 · · · α2m−2

1 α3 α6 · · · α3(2m−2)

)

Aut(C) = Aut(C⊥)
In particular, a binary double-error correcting BCH code of
length n � 24 � 1 � 15 is obtained by selecting That is, C and C� have the same automorphism group.

For a cyclic code C of length n, we have by definition �(c)
� C for all c � C, where �(i) � i � 1 (mod n). In particular,
� � Aut(C). For n odd, the permutation � defined by �( j) �

g(x) = m1(x)m3(x)

= (x4 + x + 1)(x4 + x3 + x2 + x + 1)

= x8 + x7 + x6 + x4 + 1
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2j (mod n) is also contained in the automorphism group. To The automorphism group is transitive since the code is cy-
clic, but not doubly transitive. For example, there is no auto-show this it is easier to show that � �1 � Aut(C). We have
morphism � such that �(0) � 0 and �(3) � 1 since 0 and 1 are
not equivalent modulo 3. A simple counting argument shows
that Aut(C) has order 1296: First choose �(0); this can be done

δ−1(2 j) = j for j = 0, 1, . . ., (n − 1)/2,

δ−1(2 j + 1) = (n + 1)/2 + j for j = 0, 1, . . ., (n − 1)/2 − 1
in 9 ways. There are then 2 ways to choose �(3) and �(6). Next
choose �(1); this can be done in 6 ways. There are again 2Let g(x) be a generator polynomial for C, and let �n�1

i�0 cixi �
ways to choose �(4) and �(7). Finally, there are 3 	 2 ways toa(x)g(x). Since xn � 1 (mod xn � 1), we have
choose �(2), �(5), �(8). Hence, the order is 9 	 2 	 6 	 2 	 3 	 2 �
1296.

Example. Consider the extended Hamming code Hext
m . The

positions of the codewords correspond to the elements of F2m

and are permuted by the affine group

n−1∑
i=0

c
δ−1 (i)x

i ≡
(n−1)/2∑

j=0

c jx
2 j +

(n−1)/2−1∑
j=0

c(n+1)/2+ j x
2 j+1+n

=
(n−1)/2∑

j=0

c jx
2 j +

n−1∑
j=(n+1)/2

c jx
2 j

= a(x2)g(x2) = (a(x2)g(x))g(x), (mod xn + 1) AG = {π |π(x) = ax + b, a, b ∈ F2m , a �= 0}

and so ��1(c) � C; that is, ��1 � Aut(C) and so � � Aut(C). This is the automorphism group of Hext
m . It is double transitive.

The automorphism group Aut(C) is transitive if for each
pair (i, j) there exists a � � Aut(C) such that �(i) � j. More
general, Aut(C) is t-fold transitive if, for distinct i1, i2, . . ., it

and distinct j1, j2, . . ., jt, there exists a � � Aut(C) such that THE WEIGHT DISTRIBUTION OF A CODE
�(i1) � j1, �(i2) � j2, . . ., �(it) � jt.

Let C be a binary linear [n, k] code. As we noted before,
Example. Any cyclic [n, k] code has a transitive automor-
phism group since � repeated s times, where s � i � j (mod d(xxx,yyy) = d(xxx − yyy,000) = w(xxx − yyy)
n), maps i to j.

If x, y � C, then x � y � C by the linearity of C. In particular,
Example. The (nonlinear) code C � �101, 011� was consid- this means that the set of distances from a fixed codeword to
ered previously. Its automorphism group is not transitive all the other codewords is independent of which codeword we
since there is no automorphism � such that �(0) � 2. fix; that is, the code looks the same from any codeword. In

particular, the set of distances from the codeword 0 is the set
of Hamming weights of the codewords. For i � 0, 1, . . ., n,Example. Let C be the [9, 3] code generated by the matrix
let Ai denote the number of codewords of weight i. The se-
quence

A0, A1, A2, . . ., An




0 0 1 0 0 1 0 0 1
0 1 0 0 1 0 0 1 0
1 0 0 1 0 0 1 0 0




is called the weight distribution of the code C. The correspond-
This is a cyclic code and we will determine its automorphism ing polynomial
group. The all zero and the all one vectors in C are trans-
formed into themselves by any permutation. The vectors of AC(z) = A0 + A1z + A2z2 + · · · + Anzn

weight 3 are the rows of the generator matrix and the vectors
of weight 6 are the complements of these vectors. Hence, we

is known as the weight enumerator polynomial of C.see that � is an automorphism if and only if it leaves the set
The polynomials AC(z) and AC�(z) are related by the funda-of the three rows of the generator matrix invariant, that is, if

mental MacWilliams identity:and only if the following conditions are satisfied:

AC⊥ (z) = 2−k(1 + z)nAC

(
1 − z
1 + z

)
π(0) ≡ π(3) ≡ π(6) (mod 3),

π(1) ≡ π(4) ≡ π(7) (mod 3),

π(2) ≡ π(5) ≡ π(8) (mod 3). Example. The [2m � 1, m] simplex code has the weight enu-
merator polynomial 1 � (2m � 1)z2m�1

. The dual code is the
Note that the two permutations � and � defined previously [2m � 1, 2m � 1 � m] Hamming code with weight enumerator
satisfy these conditions, as they should. They are listed ex- polynomial
plicitly in the following table

i 0 1 2 3 4 5 6 7 8

�(i) 8 0 1 2 3 4 5 6 7
�(i) 0 2 4 6 8 1 3 5 7

2−m(1 + z)2m−1


1 + (2m − 1)

(
1 − z
1 + z

)2m−1



= 2−m(1 + z)2m−1 + (1 − 2−m)(1 − z)2m−1
(1 + z)2m−1−1
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For example, for m � 4, we get the weight distribution of the The weight distribution of G23 is given by the following
table:[15, 11] Hamming code:

1 + 35z3 + 105z4 + 168z5 + 280z6 + 435z7 + 435z8 + 280z9

+ 168z10 + 105z11 + 35z12 + z15

Consider a binary linear code C that is used purely for er-

i Ai

0, 23 1
7, 16 253
8, 15 506

11, 12 1288
ror detection. Suppose a codeword c is transmitted over a bi-
nary symmetric channel with bit error probability p. The The automorphism group Aut(G23) of the Golay code is the
probability of receiving a vector r at distance i from c is Mathieu group M23, a simple group of order 10200960 � 27 	
pi(1 � p)n�i, since i positions are changed (each with probabil- 32 	 5 	 7 	 11 	 23, which is four-fold transitive.
ity p) and n � i are unchanged (each with probability 1 � Much information about G23 can be found in the book by
p). If r is not a codeword, then this will be discovered by the MacWilliams and Sloane (see Reading List).
receiver. If r � c, then no errors have occurred. However, if
r is another codeword, then an undetectable error has oc-
curred. Hence, the probability of undetected error is given by DECODING

Suppose that a codeword c from the [n, k] code C was sent
and that an error e occurred during the transmission over the
noisy channel. Based on the received vector r � c � e, the
receiver has to make an estimate of what was the transmitted
codeword. Since error patterns of lower weight are more prob-
able than error patterns of higher weight, the problem is to
estimate an error ê such that the weight of ê is as small as
possible. He will then decode the received vector r into ĉ �
r � ê.

Pue(C, p) =
∑
ccc′ �=ccc

pd(ccc′ ,ccc)(1 − p)n−d(ccc′ ,ccc)

=
∑

ccc′′ �=000

pw(ccc′ ′ )(1 − p)n−w(ccc′′ )

=
n∑

i=1

Ai p
i(1 − p)n−i

= (1 − p)nAC

(
p

1 − p

)
− (1 − p)n

If H is a parity-check matrix for C, then cHtr � 0 for all
From the MacWilliams identity we also get codewords c. Hence,

Pue(C⊥, p) = 2−kAC(1 − 2p) − (1 − p)n
rrrHtr = (ccc + eee)Htr = cccHtr + eeeHtr = eeeHtr (3)

Example. For the [2m � 1, 2m � 1 � m] Hamming code Hm, The vector
we get

sss = eeeHtr

Pue(Hm, p) = 2−m(1 + (2m − 1)(1 − 2p)2m−1
) − (1 − p)2m−1

is known as the syndrome of the error e; Eq. (3) shows that s
More information on the use of codes for error detection can can be computed from r. We now have the following outline
be found in the book by Kløve and Korzhik (see Reading List). of a decoding strategy:

1. Compute the syndrome s � rHtr.
THE BINARY GOLAY CODE 2. Estimate an error ê of smallest weight corresponding to

the syndrome s.
The Golay code G23 has received much attention. It is practi- 3. Decode to ĉ � r � ê.
cally useful and has a number of interesting properties. The
code can be defined in various ways. One definition is that

The hard part is, of course, step 2.G23 is the cyclic code generated by the irreducible polynomial
For any vector x � Fn

2, the set �x � c � c � C� is a coset of
C. All the elements of the coset have the same syndrome—x11 + x9 + x7 + x6 + x5 + x + 1
namely, xHtr. There are 2n�k cosets, one for each syndrome in
Fn�k

2 , and the set of cosets is partition of Fn
2. We can rephrasewhich is a factor of x23 � 1 over F2. Another definition is the

step 2 as follows: Find a vector e of smallest weight in thefollowing: Let H denote the [7, 4] Hamming code and let H*
coset with syndrome s.be the code whose codewords are the reversed of the code-

words of H. Let
Example. Let C be the [6, 3, 3] code with parity-check ma-
trixC = {(uuu + xxx,vvv + xxx,uuu + vvv + xxx)|uuu,vvv ∈ Hext,xxx ∈ (H∗)ext}

where Hext is the [8, 4] extended Hamming code and (H*)ext is
the [8, 4] extended H*. The code C is a [24, 12, 8] code. Punc-
turing the last position, we get a [23, 12, 7] code that is
(equivalent to) the Golay code.

H =




1 1 0 1 0 0
1 0 1 0 1 0
0 1 1 0 0 1
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A standard array for C is the following array (the eight col- This implies that S3
1 � S3 � �i�jS1 � S3. Furthermore,

x1 � ��i and x2 � ��j are roots of the equationumns to the right):

1 + S1x + S3
1 + S3

S1
x2 = 0 (4)

This gives the following procedure to correct two errors:

• Compute S1 and S3.

000 111000 001011 010101 011110 100110 101101 110011 111000

110 100000 101011 110101 111110 000110 001101 010011 011000

101 010000 011011 000101 001110 110110 111101 100011 101000

011 001000 000011 011101 010110 101110 100101 111011 110000

100 000100 001111 010001 011010 100010 101001 110111 111100

010 000010 001001 010111 011100 100100 101111 110001 111010

001 000001 001010 010100 011111 100111 101100 110010 111001

111 100001 101010 110100 111111 000111 001100 010010 011001
• If S1 � S3 � 0, then assume that no errors have occurred.
• Else, if S3 � S3

1 � 0, then one error has occurred in theEach row in the array is a listing of a coset of C; the first row
ith position determined by S1 � �i.is a listing of the code itself. The vectors in the first column

have minimal weight in their cosets and are known as coset • Else (if S3 � S3
1), consider the equation

leaders. The choice of coset leader may not be unique. For
example, in the last coset there are three vectors of minimal 1 + S1x + (S3

1 + S3)/S1x2 = 0
weight. Any entry in the array is the sum of the codeword at

If the equation has two roots ��i and ��j, then errorsthe top of the column and the coset leader (at the left in the
have occurred in positions i and j.row). Each vector of F 6

2 is listed exactly once in the array. The
Else (if the equation has no roots in F2m), then morestandard array can be used for decoding: Locate r in the array

than two errors have occurred.and decode to the codeword at the top of the corresponding
column (that is, the coset leader is assumed to be the error

Similar explicit expressions (in terms of the syndrome) forpattern). However, this is not a practical method; except for
the coefficients of an equation with the error positions assmall n, the standard array of 2n entries is too large to store
roots can be found for t error-correcting BCH codes when t �(also locating r may be a problem). A step in simplifying the
3, t � 4, etc., but they become increasingly complicated. How-method is to store a table of coset leaders corresponding to
ever, there is an efficient algorithm for determining the equa-the 2n�k syndromes. In the preceding table this is illustrated
tion, and we describe this is some detail next.by listing the syndromes at the left. Again this is a possible

Let � be a primitive element in F2m. A parity-check matrixalternative only if n � k is small. For carefully designed
for the primitive t error-correcting BCH code iscodes, it is possible to compute e from the syndrome. The sim-

plest case is single errors: If e is an error pattern of weight 1,
where the 1 is in the ith position, then the corresponding syn-
drome is the ith column of H; hence, from H and the syn-
drome we can determine i.

Example. Let H be the m � (2m � 1) parity-check matrix

H =




1 α α2 · · · αn−1

1 α3 α6 · · · α3(n−1)

...
...

...
. . .

...
1 α2t−1 α2(2t−1) · · · α(2t−1)(n−1)




where the ith column is the binary expansion of the integer i
for i � 1, 2, . . ., 2m � 1. The corresponding [2m � 1, 2m � where n � 2m � 1. Suppose errors have occurred in positions
1 � m, 3] Hamming code corrects all single errors. Decoding i1, i2, . . ., i, where  � t. Let Xj � �ij for j � 1, 2, . . ., . The
is done as follows: Compute the syndrome s � (s0, s1, . . ., error locator polynomial �(x) is defined by
sm�1). If s � 0, then correct position i � �m�1

j�0 sj 2 j.

Example. Let �(x) =
τ∏

j=1

(1 + Xjx) =
τ∑

l=0

λlx
l

The roots of �(x) � 0 are X�1
j . Therefore, if we can determineH =

(
1 α α2 · · · αn−1

1 α3 α6 · · · α3(n−1)

)
�(x), then we can determine the locations of the errors. Ex-
panding the expression for �(x), we get

where � � F2m and n � 2m � 1. This is the parity-check matrix
for the double error-correcting BCH code. It is convenient to
have a similar representation of the syndromes:

sss = (S1, S3) where S1, S3 ∈ F2m

Depending on the syndrome, there are several cases:

1. If no errors have occurred, then clearly S1 � S3 � 0.
2. If a single error has occurred in the ith position (that

is, the position corresponding to �i), then S1 � �i and
S3 � �3i. In particular, S3 � S3

1.

λ0 = 1,

λ1 = X1 + X2 + · · · + Xτ ,

λ2 = X1X2 + X1X3 + X2X3 + · · · + Xτ−1Xτ ,

λ3 = X1X2X3 + X1X2X4 + X2X3X4

+ · · · + Xτ−2Xτ−1Xτ ,

...

λτ = X1X2 · · · Xτ ,

λl = 0 for l > τ

3. If two errors have occurred in positions i and j, then
Hence �l is the lth elementary symmetric function of X1, X2,
. . ., X.S1 = αi + α j, S3 = α3i + α3 j
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From the syndrome we get S1, S3, . . ., S2t�1, where will have the required property. If �(r)(x) � 1, then there ex-
ists a maximal positive integer � � r such that �(�)

2��1 � 0 and
we add a suitable multiple of �(�):

�(r+1)(x) = �(r) (x) + ω(r)

2r+1(ω
ρ

2ρ+1)
−1x2r−2ρ�(ρ)(x)

We note that this implies that

S1 = X1 + X2 + · · · + Xτ ,

S2 = X 2
1 + X 2

2 + · · · + X 2
τ ,

S3 = X 3
1 + X 3

2 + · · · + X 3
τ ,

...

S2t = X 2t
1 + X 2t

2 + · · · + X 2t
τ �(r+1)(x)S(x) =

∑
l≥0

w(r)

l xl + ω(r)

2r+1(ω
(ρ)

2ρ+1)
−1

∑
l≥0

ω(ρ)

l
xl+2r−2ρ

Further,
Hence for odd l we get

S2r = X 2r
1 + X 2r

2 + · · · + X 2r
τ = (X r

1 + X r
2 + · · · + X r

τ )2 = S2
r

for all r. Hence, from the syndrome we can determine the
polynomial

S(x) = 1 + S1x + S2x2 + · · · + S2tx
2t

ω(r+1)

l =




ω(r)

l
= 0

for 1 ≤ l ≤ 2r − 2ρ − 1,

ω(r)

l
+ ω(r)

2r+1
(ω(ρ)

2ρ+1
)−1ω(ρ)

l−2r+2ρ
= 0 + 0 = 0

for 2r − 2ρ + 1 ≤ l ≤ 2r − 1,

ω(r)

2r+1
+ ω(r)

2r+1
(ω(ρ)

2ρ+1
)−1ω(ρ)

2ρ+1
= ω(r)

2r+1
+ ω(r)

2r+1
= 0

for l = 2r + 1
The Newton equations are a set of relations between the

power sums Sr and the symmetric functions �l—namely, We now formulate these ideas as an algorithm (in a Pas-
cal-like syntax). In each step we keep the present �(x) [the
superscript (r) is dropped] and the modifying polynomial
[x2r�2��1 or (�(�)

2��1)�1x2r�2��1�(�)(x)], which we denote by B(x).

l−1∑
j=0

Sl− jλ j + lλl = 0 for l ≥ 1

Let Berlekamp–Massey algorithm in the binary case

(x) = S(x)�(x) =
∑
l≥0

ωlx
� (5)

Since �l � �l�1
j�0 Sl�j�j � �l, the Newton equations imply that

ωl = 0 for all odd l, 1 ≤ l ≤ 2t − 1 (6)

The Berlekamp–Massey algorithm is an algorithm that,
given S(x), determines the polynomial �(x) of smallest degree

Input: t and S(x).

�(x) :� 1; B(x) :� 1;
for r :� 1 to t do
begin

� :� coefficient of x2r�1 in S(x)�(x);
if � � 0 then B(x) :� x2B(x)

else [�(x), B(x)] :� [�(x) �
�xB(x), x�(x)/�]

end;such that Eq. (6) is satisfied, where the �l are defined by Eq.
(5). The idea is, for r � 0, 1, . . ., t, to determine polynomials

The assignment following the else is two assignments to be�(r) of lowest degree such that
done in parallel; the new �(x) and B(x) are computed from the
old ones.ω(r)

l = 0 for all odd l,1 ≤ l ≤ 2r − 1
The Berlekamp–Massey algorithm determines the polyno-

mial �(x). To find the roots of �(x) � 0, we try all possible
where elements of F2m. In practical applications, this can be effi-

ciently implemented using shift registers (usually called the
Chien search).

∑
l≥0

ω(r)

l xl = S(x)�(r)(x)

Example. We consider the [15, 7, 5] double-error correcting
For r � 0, we can clearly let �(0)(x) � 1. We proceed by BCH code; that is, m � 4 and t � 2. As a primitive element,

induction. Let 0 � r � t, and suppose that polynomials �(�)(x) we choose � such that �4 � � � 1. Suppose that we have
have been constructed for 0 � � � r. If �(r)

2r�1 � 0, then we can received a vector with syndrome (S1, S3) � (�4, �5). Since
choose S3 � S3

1, at least two errors have occurred. Equation (4) be-
comes

�(r+1)(x) = �(r) (x)

1 + α4x + α10x2 = 0
If, on the other hand, �(r)

2r�1 � 0, then we modify �(r)(x) by add-
ing another suitable polynomial. There are two cases to con- which has the zeros ��3 and ��7. We conclude that the re-
sider. First, if �(r)(x) � 1 [in which case �(r)(x) � 1 for 0 � ceived vector has two errors (namely, in positions 3 and 7).
 � r], then

Now consider the Berlekamp–Massey algorithm for the
same example. First we compute S2 � S2

1 � �8 and S4 � S2
2 �

�(r+1)(x) = 1 + ω(r)

2r+1x2r+1
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�. Hence Thus, the Reed–Solomon codes satisfy the Singleton bound
with equality n � k � d � 1. That is, they are MDS codes.

S(x) = 1 + α4x + α8x2 + α5x3 + αx4
The weight distribution of the Reed–Solomon code is (for

i � d)The values of r, �, �(x), and B(x) after each iteration of the
for-loop in the Berlekamp–Massey algorithm are shown in
the following table: Ai =

(
n
i

)
i−d∑
j=0

(−1) j

(
i
j

)
(2m(i−d− j+1) − 1)

The encoding of Reed–Solomon codes is similar to the en-
coding of binary cyclic codes. The decoding is similar to the
decoding of binary BCH codes with one added complication.

r � �(x) B(x)

1 1
1 �4 1 � �4x �11x
2 �14 1 � �4x � �10x2 �x � �5x2

Using a generalization of the Berlekamp–Massey algorithm,
we determine the polynomials �(x) and �(x). From �(x) weHence, �(x) � 1 � �4x � �10x2 (as before).
can determine the locations of the errors. In addition, we haveNow consider the same code with syndrome of received
to determine the value of the errors (in the binary case thevector (S1, S3) � (�, �9). Since S3 � S3

1, at least two errors have
values are always 1). The value of the error at location Xj canoccurred. We get
easily be determined using �(x) and �(x); we omit further de-

�(x) = 1 + αx + x2
tails.

However, the equation 1 � �x � x2 � 0 does not have any
roots in F24. Hence, at least three errors have occurred, and NONLINEAR CODES FROM CODES OVER Z4

the code is not able to correct them.
In the previous sections we have mainly considered binary
linear codes; that is, codes where the sum of two codewords isREED–SOLOMON CODES
again a codeword. The main reason has been that the linear-

In the previous sections we have considered binary codes ity greatly simplified construction and decoding of the codes.
where the components of the codewords belong to the finite A binary nonlinear (n, M, d) code C is simply a set of M
field F2 � �0, 1�. In a similar way we can consider codes with binary n-tuples with pairwise distance at least d, but without
components from any finite field Fq. any further imposed structure. In general, to find the mini-

The Singleton bound states that for any [n, k, d] code with mum distance of a nonlinear code one has to compute the dis-
components from Fq, we have tance between all pairs of codewords. This is, of course, more

complicated than for linear codes, where it suffices to find the
d ≤ n − k + 1 minimum weight among all the nonzero codewords. The lack

of structure in a nonlinear code also makes it quite difficultA code for which d � n � k � 1 is called maximum distance
to decode in an efficient manner.separable (MDS). The only binary MDS codes are the trivial

There are, however, some advantages to nonlinear codes.[n, 1, n] repetition codes and [n, n � 1, 2] even-weight codes.
For given values of length n and minimum distance d, it isHowever, there are important nonbinary MDS codes (in par-
sometimes possible to construct nonlinear codes with moreticular, the Reed–Solomon codes, which we now will de-
codewords than is possible for linear codes. For example, forscribe).
n � 16 and d � 6 the best linear code has dimension k � 7Reed–Solomon codes are t error-correcting cyclic codes
(i.e., it contains 128 codewords). The code of length 16 ob-with symbols from a finite field Fq, even though they can be
tained by extending the double-error-correcting primitiveconstructed in many different ways. They can be considered

as the simplest generalization of BCH codes. Since the most BCH code has these parameters.
important case for applications is q � 2m, we consider this In 1967, Nordstrom and Robinson found a nonlinear code
case here. Each symbol is then an element in F2m and can be with parameters n � 16 and d � 6 containing M � 256 code-
considered as an m-bit symbol. words, which has twice as many codewords as the best linear

The construction of a cyclic Reed–Solomon code is as fol- code for the same values of n and d.
lows: Let � be a primitive element of F2m. Since �i � F2m for In 1968, Preparata generalized this construction to an in-
all i, the minimal polynomial of �i over F2m is just x � �i. The finite family of codes having parameters
generator polynomial of a (primitive) t error-correcting Reed–
Solomon code of length 2m � 1 has 2t consequtive powers of � (2m+1, 22m+1−2m−2, 6), m odd, m ≥ 3
as zeros:

A few years later, in 1972, Kerdock gave another generaliza-
tion of the Nordstrom–Robinson code and constructed an-
other infinite class of codes with parameters

g(x) =
2t−1∏
i=0

(x + αb+i)

= g0 + g1x + · · · + g2t−1x2t−1 + x2t

(2m+1, 22m+2, 2m − 2(m−1)/2), m odd, m ≥ 3
The code has the following parameters:

The Preparata code contains twice as many codewords as
Block length: n � 2m � 1 the extended double-error-correcting BCH code and is optimal
Number of parity-check symbols: n � k � 2t in the sense of having the largest possible size for the given

length and minimum distance. The Kerdock code has twice asMinimum distance: d � 2t � 1
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many codewords as the best known linear code. In the case powers of � in terms of 1, �, and �2, as follows:
m � 3 the Preparata code and the Kerdock codes both coin-
cide with the Nordstrom–Robinson code.

The Preparata and Kerdock codes are distance invariant.
This means that the distance distribution from a given
codeword to all the other codewords is independent of the
given codeword. In particular, since they contain the all-zero
codeword, their weight distribution equals their distance dis-
tribution.

β3 = 2β2 + 3β + 1

β4 = 3β2 + 3β + 2

β5 = β2 + 3β + 3

β6 = β2 + 2β + 1

β7 = 1
In general, there is no natural way to define the dual code

of a nonlinear code, and thus the MacWilliams identities have Consider the code C over Z4 with generator matrix given by
no meaning for nonlinear codes. However, one can define the
weight enumerator polynomial A(z) of a nonlinear code in the
same way as for linear codes and compute its formal dual
B(z) from the MacWilliams identities:

B(z) = 1
M

(1 + z)nA
(

1 − z
1 + z

)

The polynomial B(z) obtained in this way has no simple inter-

G =
[

1 1 1 1 1 1 1 1
0 1 β β2 β3 β4 β5 β6

]

=




1 1 1 1 1 1 1 1
0 1 0 0 1 2 3 1
0 0 1 0 3 3 3 2
0 0 0 1 2 3 1 1




pretation. In particular, it may have coefficients that are non-
integers or even negative. For example, if C � �(110), (101), where the column corresponding to �i is replaced by the coef-
(111)�, then A(z) � 2z2 � z3 and B(z) � (3 � 5z � z2 � z3)/3. ficients in its expression in terms of 1, �, and �2. Then the

An observation that puzzled the coding theory community Nordstrom–Robinson code is the Gray map of C .
for a long time was that the weight enumerator of the Prepar- The dual code C � of a code C over Z4 is defined similarly
ata code A(z) and the weight enumerator of the Kerdock code as for binary linear codes, except that the inner product of the
B(z) satisfied the MacWilliams identities, and in this sense vectors x � (x1, x2, . . ., xn) and y � (y1, y2, . . ., yn) with
these nonlinear codes behaved like dual linear codes. components in Z4 is defined by

Hammons, Kumar, Calderbank, Sloane, and Solé (IEEE
Trans. Information Theory 40: 301–319, 1994) gave a signifi-
cantly simpler description of the family of Kerdock codes. (xxx,yyy) =

n∑
i=1

xiyi (mod 4)

They constructed a linear code over Z4 � �0, 1, 2, 3�, which is
an analog of the binary first-order Reed–Muller code. This

The dual code C � of C is thencode is combined with a mapping called the Gray map that
maps the elements of Z4 into binary pairs. The Gray map � is
defined by C ⊥ = {xxx ∈ Zn

4 (xxx, ccc) = 0 for allccc ∈ Zn
4}

φ(0) = 00, φ(1) = 01, φ(2) = 11, φ(3) = 10
For a linear code C over Z4, there is a MacWilliams rela-

tion that determines the Lee weight distribution of the dualThe Lee weight of an element in Z4 is defined by
code C � from the Lee weight distribution of C . Therefore, one
can compute the relation between the Hamming weight dis-wL(0) = 0, wL(1) = 1, wL(2) = 2,wL(3) = 1
tributions of the nonlinear codes C � �(C ) and C� � �(C �),
and it turns out that the MacWilliams identities hold.Extending � in a natural way to a map �: Zn

4 � Z2n
2 , one

Hence, to find nonlinear binary codes related by the Mac-observes that � is a distance preserving map from Zn
4 (under

Williams identities, one can start with a pair of Z4-linear dualthe Lee metric) to Z2n
2 , (under the Hamming metric).

codes and apply the Gray map. For any odd integer m � 3,A linear code over Z4 is a subset of Zn
4 such that any linear

the Gray map of the code K m over Z4 with generator matrixcombination of two codewords is again a codeword. From a
linear code C of length n over Z4, one obtains a binary code
C � �(C ) of length 2n by replacing each component in a
codeword in C by its image under the Gray map. This code is G =

[
1 1 1 1 · · · 1

0 1 β β2 · · · β2m−2

]
usually nonlinear.

The minimum Hamming distance of C equals the mini-
is the binary nonlinear (2m�1, 22m�2, 2m � 2(m�1)/2) Kerdock code.mum Lee distance of C and is equal to the minimum Lee
The Gray map of K �

m has the same weight distribution as theweight of C since C in linear over Z4.
(2m�1, 22m�1

�2m�2, 6) Preparata code. It is, however, not identical
to the Preparata code and is therefore denoted the ‘‘Prepar-Example. To obtain the Nordstrom–Robinson code, we will
ata’’ code. Hence the Kerdock code and the ‘‘Preparata’’ codeconstruct a code over Z4 of length 8 and then apply the Gray

map. are the Z4-analogy of the first-order Reed–Muller code and
the extended Hamming code, respectively.

Hammons, Kumar, Calderbank, Sloane, and Solé alsoLet f (x) � x3 � 2x2 � x � 3 � Z4[x]. Let � be a zero of
f (x); that is, �3 � 2�2 � � � 3 � 0. Then we can express all showed that the binary code defined by C � �(C ), where C is
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the quaternary code with parity-check matrix given by ALGORITHMS FOR BACKTRACKING. See BACK-

TRACKING.
ALGORITHMS FOR RECURSION. See RECURSION.
ALGORITHMS, GENETIC. See GENETIC ALGORITHMS.
ALGORITHMS, MULTICAST. See MULTICAST ALGO-

H =




1 1 1 1 · · · 1

0 1 β β2 · · · β2m−2

0 2 2β3 2β6 · · · 2β3(2m−2)




RITHMS.
ALGORITHMS, ONLINE. See ONLINE OPERATION.is a binary nonlinear (2m�1, 22m�1

�3m�2, 8) code whenever m � 3
is odd. This code has the same weight distribution as the Goe-
thals code, which is a nonlinear code that has four times as
many codewords as the comparable linear extended triple-er-
ror-correcting primitive BCH code. The code C� � �(C �) is
identical to a binary nonlinear code that was constructed in a
much more complicated way by Delsarte and Goethals more
than 20 years ago.

To analyze codes obtained from codes over Z4 in this man-
ner, one is led to study Galois rings instead of Galois fields.
Similar to a Galois field, a Galois ring can be defined as
Zpe[x]/( f(x)), where f (x) is a monic polynomial of degree m that
is irreducible modulo p. The richness in structure of the Ga-
lois rings has led to several recently discovered good nonlin-
ear codes that have an efficient and fast decoding algorithm.
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