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In this article we introduce lossy data compression. We con-
sider the overall process of converting from analog data to
digital so that the data are processed in digital form. Our goal
is to achieve the most compression while retaining the high-
est possible fidelity. First we consider the requirements of sig-
nal sampling and quantization. Then we introduce several ef-
fective and popular lossy data compression techniques. At the
end of this article we describe the theoretical limits of lossy
data compression performance.

Lossy compression is a process of transforming data into a
more compact form in order to reconstruct a close approxima-
tion to the original data. Let us start with a description using
a classical information coding system model. A common and
general data compression system is illustrated in Fig. 1.

As shown in Fig. 1, the information source data, S, is first
transformed by the compression process to compressed signal,
which usually is a more compact representation of the source
data. The compact form of data offers tremendous advantages
in both communication and storage applications. For exam-
ple, in communication applications, the compressed signal is
transmitted to a receiver through a communication channel
with lower communication bandwidth. In storage applica-
tions, the compressed signal takes up less space. The stored
data can be retrieved whenever they are needed. After re-
ceived (or retrieved) signal is received (retrieved), it is pro-
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Figure 1. General data compression system.
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cessed by the decompression process, which reconstructs the
original data with the greatest possible fidelity. In lossy com-
pression systems, the original signal, S, cannot be perfectly
retrieved from the reconstructed signal, Ŝ, which is only a
close approximation.

Sampling
stage

Analog
data

Discrete-time
continuous-valued

Discrete-time
discrete-valued

Binary
digital data

xa(t) Quantization
stage

xs[n] xq[n] Coding
stage

10011 . . .

LOSSY VERSUS LOSSLESS Figure 2. Analog-to-digital converter.

In some applications, such as in compressing computer binary
executables, database records, and spreadsheet or word pro- a moderated implementation complexity. Because of this,
cessor files, the loss of even a single bit of data can be cata- the conferencing speech signals can be transmitted to the
strophic. For such applications, we use lossless data compres- destination through a lower bandwidth network at a rea-
sion techniques so that an exact duplicate of the input data sonable cost. For music centric entertainment applications
is generated after the compress/decompress cycle. In other that require near CD-quality audio, the amount of informa-
words, the reconstructed signal, Ŝ, is identical to the original tion loss that can be tolerated is significantly lower. However,
signal, S, it is still not necessary to restrict compression to lossless tech-

niques. The European MUSICAM and ISO MPEG digital
S = Ŝ audio standards both incorporate lossy compression yet pro-

duce high-fidelity audio. Similarly a perfect reconstruction of
Lossless data compression is also known as noiseless data

the original sequence is not necessary for most of the visual
compression. Naturally, it is always desirable to recreate per-

applications as long as the distortion does not result in
fectly the original signal after the transmission or storage

annoying artifacts.
process. Unfortunately, this requirement is difficult, costly,

Most signals in our environment, such as speech, audio,
and sometimes infeasible for some applications. For example,

video, radio, and sonar emissions, are analog signals. We
for audio or visual applications, the original source data are

have just discussed how lossy compression techniques are es-
analog data. The digital audio or video data we deal with are

pecially useful for compressing digital representations of ana-
already an approximation of the original analog signal. After

log data. Now let us discuss how to effectively convert an ana-
the compress/decompress cycle, there is no way to reconstruct

log signal to digital data.
an exact duplicate of the original continuous analog signal.

Theoretically converting an analog signal to the desired
The best we can do is to minimize the loss of fidelity during

digital form is a three-stage process, as illustrated in Fig. 2.
the compress/decompress process. In reality we do not need

In the first stage, the analog data (continuous-time and con-
the requirement of S�Ŝ for audio and video compression

tinuous-valued) are converted to discrete-time and continu-
other than for some medical or military applications. The In-

ous-valued data by taking samples of the continuous-time sig-
ternational Standards Organization (ISO) has published the

nal at regular instants, t�nT1,JPEG (Joint Photographic Experts Group) standard for still
image compression (1) and the MPEG (Moving Pictures Ex- xs[n] = xa(nT1) for n = 0, ±1, ±2, . . .
pert Group) standard for moving picture audio and video com-
pression (2, 3). Both JPEG and MPEG standards concern

where T1 is the sampling interval. In the quantization stage,lossy compression, even though JPEG also has a lossless
the discrete-time continuous-valued signals are further con-mode. The International Telecommunication Union (ITU) has
verted to discrete-time discrete-valued signals by represent-published the H-series video compression standards, such as
ing the value of each sample with one of a finite set of possibleH.261 (4) and H.263 (5), and the G-series speech compression
values. The difference between the unquantized sample xs[n]standards, such as G.723 (6) and G.728 (7). Both the H-series
and the quantizer output xq[n] is called the quantization error.and G-series standards are also for lossy compression.
In reality quantization is a form of lossy data compression.
Finally, in the coding stage, the quantized value, xq[n], is
coded to a binary sequence, which is transmitted through theWHY LOSSY?
communication channel to the receiver. From a compression
point of view, we need an analog-to-digital conversion systemLossy compression techniques involve some loss of source in-

formation, so data cannot be reconstructed in the original that generates the shortest possible binary sequence while
still maintaining required fidelity. Let us discuss the signalform after they are compressed by lossy compression tech-

niques. However, we can generally get a much higher com- sampling stage first.
pression ratio and possibly a lower implementation com-
plexity.

PERIODIC SAMPLINGFor many applications, a better compression ratio and a
lower implementation complexity are more desirable than

The typical method of converting a continuous-time signal tothe ability to reconstruct perfectly the original data. For
its discrete-time representation is through periodic sampling,example, in audio-conferencing applications, it is not neces-
with a sequence of samples,xs[n], obtained from the continu-sary to reconstruct perfectly the original speech samples at
ous-time signal xa(t) according to the following relationshipthe receiving end. In general, telephone quality speech is

expected at the receiver. By accepting a lower speech qual-
xs[n] = xa(nT1) for all integers nity, we can achieve a much higher compression ratio with
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where T1 is the period of s(t). The properties of impulse func-
tions imply that the idealized sampled waveform is easily ex-
pressed as

–2T –T 2T 3T 4TT0

xa(t)

xs[4]

(a)

–2T 2T 3T 4T0

xa(t)

xs[2]

(b)

t t

Figure 3. Continuous-time signal xa(t) sampled to discrete-time sig-

xs(t) = xa(t)s(t)

= xa(t)
∞∑

n=−∞
δ(t − nT1)

=
∞∑

n=−∞
xa(nT1)δ(t − nT1)

(1)

nals at the sampling period of (a) T, and (b) 2T.

To summarize, the idealized sampled data signal is defined
as a product of the original signal and a samping function andwhere n is an integer, T1 is the sampling period, and its recip-
is composed of a series of equally spaced impulses weightedrocal n1�1/T1 is the sampling frequency, in samples per sec-
by the values of the original continuous-time signal at theond. To visualize this process, consider embedding the sam-
sampling instants, as depicted in Fig. 4.ples in an idealized impulse train to form an idealized

Now let us make a Fourier analysis of xs(t). The Fouriercontinuous time sampled waveform xs(t) � ��
n���xs[n]�(t�nT1),

transform pair (8) is defined aswhere each impulse or Dirac � function can be thought of as
an infinitesimally narrow pulse of unit area at time t � nT1

which is depicted as an arrow with height 1 corresponding to
the area of the impulse. Then xs(t) can be drawn as a sequence x(t) =

∫ +∞

−∞
X ( f )e j2π f t d f (2)

of arrows of height xs[n] at time t � nT1, as shown with the
original signal xa(t) in Fig. 3 for sampling periods of T and 2T.

The sampling process usually is not an invertible process. X ( f ) =
∫ +∞

−∞
x(t)e− j2π f t dt (3)

In other words, given a discrete-time sequence, xs[n], it is not
always possible to reconstruct the original continuous-time

where X( f) is the Fourier transform of x(t), or symbolically,input of the sampler, xa(t). It is very clear that the sampling
X( f) � T (x(t)), and x(t) is the inverse Fourier transform ofprocess is not a one-to-one mapping function. There are many
X( f), x(t) � T �1(X( f)). A standard result of generalized Fouriercontinuous-time signals that may produce the same discrete-
analysis is thattime sequence output unless they have same bandwidth and

sampled at Nyquist rate.

ALIASING
s(t) = 1

T1

+∞∑
n=−∞

e j2nπ f1 t (4)

In order to get better understanding of the periodic sampler, After substitution of Eq. (4) into Eq. (1), the sampled data,
let us look at it from frequency domain. First, consider the �s(t, yield
idealized sampling function, a periodic unit impulse train sig-
nal, s(t):

s(t) =
+∞∑

n=−∞
δ(t − nT1)

xs(t) = xa(t)s(t)

= 1
T1

∞∑
n=−∞

xa(t)e j2nπ f1 t (5)

Figure 4. Periodic sampled continuous-time signal xa(t). –2T1, 2T1,–T1, T1,. . ., . . .0,
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Figure 6. Spectrum of the sampled data sequence xs(t) for the case
of fh � f 1 � fh.

Nyquist Sampling Theorem. If xa(t) is a bandlimited continu-fh,

xs(f )
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f
ous-time signal with X( f) � 0 for �f � � fh, then xa(t) can be

Figure 5. Spectrum of the sampled data sequence xs(t). uniquely reconstructed from the periodically sampled se-
quence xa(nT), �� � n � �, if 1/T � 2fh.

On the other hand, if the signal is not bandlimited, theo-
retically there is no avoiding the aliasing problem. All real-

Now, taking the Fourier transform of xs(t) in Eq. (5), the re- life continuous-time signals, such as audio, speech, or video
sult is emissions, are approximately bandlimited. A common prac-

tice is to get a close approximation of the original signals by
filtering the continuous-time input signal with a low-pass fil-
ter before the sampling stage. This low-pass filter ensures
that the filtered continuous-time signal meets the bandlim-
ited criterion. With this presampling filter and a proper sam-
pling rate, we can ensure that the spectral components of in-
terest are within the bounds for which the signal can be
recovered, as illustrated in Fig. 7.

Xs( f ) =
∫ +∞

−∞

�
1
T1

+∞∑
n=−∞

xa(t)e j2nπ f1 t

�
e− j2π f t dt

= 1
T1

+∞∑
n=−∞

∫ +∞

−∞
xa(t)e− j2π ( f −n f1 )t dt

= 1
T1

+∞∑
n=−∞

Xa( f − n f1)

(6)

QUANTIZATIONWe see from Eq. (6) that the spectrum of a sampled-data sig-
nal consists of the periodically repeated copies of the original

In the quantization stage discrete-time continuous-valued sig-signal spectrum. Each copy is shifted by integer multiples of
nals are converted to discrete-time discrete-valued signals. Inthe sampling frequency. The magnitudes are multiplied by
the quantization process, amplitudes of the samples are quan-1T1.
tized by dividing the entire amplitude range into a finite setLet us assume that the original continuous-time signal
of amplitude ranges. Each amplitude range has a representa-xa(t) is bandlimited to 0 �f �  fh, then the spectrum of the
tive amplitude value. The representative amplitude value forsampled data sequence xs[n]takes the form illustrated in Fig.
the range is assigned to all samples falling into the given5. In the case where fh � f 1 � fh, or f 1 � 2fh, there is an
range. Quantization is the most important step to removingoverlap between two adjacent copies of the spectrum as illus-
the irrelevant information during lossy compression process.trated in Fig. 6. Now the overlapped portion of the spectrum
Therefore the performance of the quantizer plays a major roleis different from the original spectrum, and therefore it be-
of overall performance of a lossy compression system.comes impossible to recover the original spectrum. As a result

There are many different types of quantizers. The simplestthe reconstructed output is distorted from the original contin-
and most popular one is the uniform quantizer, in which theuous-time input signal. This type of the distortion is usually
quantization levels and ranges are distributed uniformly. Inreferred to as aliasing.
general, a signal with amplitude x is specified by index k if xTo avoid aliasing a bandlimited continuous-time input, it
falls into the intervalis necessary to sample the input at the sampling frequency

f 1 � 2fh. This is stated in the famous Nyquist sampling theo-
rem (10). Ik : {x : xk ≤ x < xk+1}, k = 1, 2, 3, . . ., L (7)

Figure 7. Sampling a continuous-time signal
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a lower-quality output, and the bandwidth requirement is
lower accordingly. This quantizer which changes adaptively
is called an adaptive quantizer.

VECTOR QUANTIZATION

We have just introduced different ways of quantizing the out-
put of a source. In all cases we discussed, the quantizer inputs
were scalar values. In other words, the quantizer takes a sin-
gle output sample of the source at a time and converts it to a

lk

x x

lk

(a) (b) quantized output. This type of quantizer is called a scalar
quantizer.Figure 8. Examples of (a) a nonuniform quantizer, (b) an 8-level uni-

form quantizer. Consider a case where we want to encode a consecutive
sequence of samples from a stationary source. It is well-
known from Shannon information theory that encoding a

In this process, the continuous valued signal with amplitude block of samples is more efficient than encoding each individ-
x is mapped into an L-ary index k. In most cases the L-ary ual sample separately. In other words, during the quantiza-
index, k, is coded into binary numbers at the coding stage and tion stage we wish to generate a representative index for a
transmitted to the receiver. Often, at the coding stage, effi- block of samples instead of for each separate sample. The ba-
cient entropy coding is incorporated to generate variable sic concept is to generalize the idea from quantizing one sam-
length codewords in order to reach the entropy rate of quan- ple at a time to quantizing a set of samples at a time. The set
tized signals. Figure 8(a) and 8(b) gives examples of a nonuni- of the samples is called a vector, and this type of quantization
form quantizer and an 8-level (L � 8) uniform quantizer. process is called vector quantization.

At the receiver, the index k is translated into an ampli- Vector quantization is one of the most popular lossy data
tude Ik that represents all the amplitudes of signals fall into compression techniques. It is widely used in image, audio,
the interval Ik, namely and speech compression applications. The most popular vec-

tor quantization is fixed-length vector quantization. In the
x̂k = lk if x ∈ Ik (8) quantization process, consecutive input samples are grouped

into fixed-length vectors first. As an example, we can group L
wherê xk is the output of the decoder. The amplitude lk is samples of input speech as one L-dimensional vector, which
called the representation level, and the amplitude xk is called forms the input vector to the vector quantizer. For a typical
the decision level. The difference between the input signal and vector quantizer, both the encoder and the decoder share a
the decoded signal,̂ xk � x, is called the quantization error, or common codebook, C � �ci; i � 1, . . ., N�, which can be prede-
quantization noise. Figure 9 gives an example of a quantized fined, fixed, or changed adaptively. Each entry of the code-
waveform and the corresponding quantization noise. book, ci, is called a code-vector, which is carefully selected as

Quantization steps and ranges can be changed adaptively one of N representatives of the input vectors. Each code vec-
during the compression process. As an example, for video con- tor, ci, is also assigned an index, i. During the quantization
ferencing application, the compressed audio and video bit stage the input vector, x, is compared against each code-vec-
streams are transmitted through a network to the destina- tor, ci, in the codebook. The ‘‘closest’’ code-vector, ck, is then
tion. Under the condition that the network is out of band- selected as the representative code-vector for the input vector,
width, one cannot possibly transmit all the compressed data and the corresponding index, k, is transmitted to the receiver.
to the decoder in a timely manner. One easy solution is to In other words, ck is selected as the representative code-vector
increase the quantization step, such that quantizer generates if

d(xxx, ccck) ≤ d(xxx, ccci ) for all ccci ∈ CCC (9)

where x � (x1, x2, . . . , xL) is the L-ary input vector and C �
�ci; i � 1, . . . , N� is the shared codebook, with ith code-
vector, ci. The idea of vector quantization is identical to that
of scalar quantization, except the distortion is measured on
an L-dimensional vector basis. In Fig. 10 we show an example
of a two-dimensional vector space quantized by a vector quan-
tizer with L � 2, and N � 16. The code-vector ck represents
the input vector if it falls into the shaded vector space where
Eq. (9) is satisfied. Since the receiver shares the same code-
book with the encoder, and with received index, k, the decoder
can easily retrieve the same representative code-vector, ck.

How do we measure the closeness, d(x, y), or distortion,
between two L-ary vectors, x and y, during the vector quanti-
zation process? The answer is dependent on the application.

Time

Quantization noise = Input signal
- Quantizer output

Quantizer output

Input signal

Amplitude

A distortion measure usually quantifies how well a vector
quantizer can perform. It is also critical to the implementa-Figure 9. Quantization and quantization noise.
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where x is the original data block and T�1 is the inverse trans-
form of T. In the transform domain we refer to the compo-
nents of y as the transform coefficients. Suppose that the
transform T has the characteristic that most of the transform
coefficients are very small. Then the insignificant transform
coefficients need not to be transmitted to decoder and can be
eliminated during the quantization stage. As a result very
good compression can be achieved with the transform coding
approach. Figure 11 shows a typical lossy transform coding
data compression system.

In Fig. 11 the input data block, x, passes through the for-
ward transform, T, with transform coefficients, y, as its out-

ck

put. T has the characteristics that most of its output, y, are
small and insignificant and that there is little statistical cor-Figure 10. Two-dimensional vector space quantized by a vector

quantizer. relation among the transform coefficients, which usually re-
sults in efficient compression by simple algorithms. The
transform coefficients, y, are quantized by the quantizer, Q.

tion of the vector quantizer, since measuring the distortion Small and insignificant coefficients have a zero quantized
between two L-dimensional vectors is one of the most compu- value; therefore only few nonzero coefficients need to be coded
tationally intensive parts of the vector quantization algo- and transmitted to the decoder. For the best compression ra-
rithm. There are several ways of measuring the distortion. tio, efficient entropy coding can be applied to the quantized
The most widely used distortion measure is the mean square coefficients at the coding stage. After receiving the signal
error (MSE), which is defined as from the network, the decoder decodes and inverse quantizes

the received signal and reconstructs the transform coeffi-
cients, ŷ. The reconstructed transform coefficients passes
through the inverse transform, T�1, which generates the re-

d(xxx, yyy) = 1
L

L∑
i=1

(xi − yi )
2

constructed signal, x̂.
Another popular distortion measure is the mean absolute dif- In general, transform coding takes advantage of the linear
ference (MAD), or mean absolute error (MAE), and it is defined dependency of adjacent input samples. The linear transform
as actually converts the input samples to the transform domain

for efficient quantization. In the quantization stage the trans-
form coefficients can be quantized with a scalar quantizer or
a vector quantizer. However, bit allocation among transform

d(xxx, yyy) = 1
L

L∑
i=1

|xi − yi|
coefficients is crucial to the performance of the transform cod-
ing. A proper bit allocation at the quantization stage canThere are various ways of generating the vector quantization
achieve the output with a good fidelity as well as a good com-codebook. Each method generates the codebook with different
pression ratio.characteristics. The LBG algorithm (11) or the generalized

There are quite a few transform coding techniques. EachLloyd algorithm, computes a codebook with minimum average
has its characteristics and applications. The discrete Fourierdistortion for a given training set and a given codebook size.
transform (DFT) is popular and is commonly used for spectralTree-structured VQ (vector quantitization) imposes a tree
analysis and filtering (18). Fast implementation of the DFT,structure on the codebook such that the search time is re-
also known as fast Fourier transform (FFT), reduces theduced (12,13,14). Entropy-constrained vector quantization
transform operation to n(n log2 n) for an n-point transform(ECVQ) minimizes the distortion for a given average
(19). The Karhunen–Loeve transform (KLT) is an optimalcodeword length rather than a given codebook size (15). Fi-
transform in the sense that its coefficients contain a largernite-state vector quantization (FSVQ) can be modeled as a fi-
fraction of the total energy compared to any other transformnite-state machine where each state represents a separate VQ
(20). There is no fast implementation of the KLT, however,codebook (16). Mean/residual VQ (M/RVQ) predicts the origi-

nal image based on a limited data set, and then forms a resid-
ual by taking the difference between the prediction and the
original image (17). Then the data used for prediction are
coded with a scalar quantizer, and the residual is coded with
a vector quantizer.

TRANSFORM CODING

We just considered the vector quantization, which effectively
quantizes a block of data called a vector. Suppose that we have
a reversible orthogonal transform, T, that transforms a
block of data to a transform domain with the transform pair as

T
Forward

transform

x Q
Quantizer

y
Encoder

Transmission
or

storage

Transmitted
signal

Received
signal

T
Forward
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Q–1

Inverse
quantizer

Decoder
ŷx̂

Figure 11. Basic transform coding system block diagram.

yyy = T(xxx)

xxx = T−1(yyy)
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and its basis functions are target dependent. Because of this
the KLT is not widely used. The Walsh–Hadamard transform
(WHT) offers a modest decorrelating capability, but it has a
very simple implementation (21). It is quite popular, espe-
cially for hardware implementation.

Transform coding plays a very important role in the recent
lossy compression history. In the next section we will intro-
duce the discrete cosine transform (DCT), which is the most
popular transform for transform coding techniques.

Bandpass
filter 1

Q Encoder
1

y[n]

x1(t) x1[n] y1[t]

M

U

X

Input

x(f )

Bandpass
filter 2

Q Encoder
2

x2(t) x2[n] y1[t]

Bandpass
filter M Q Encoder

M
xm(t) xm[n] ym[n]

DISCRETE COSINE TRANSFORM
Figure 12. Block diagram of a typical subband coder.

The most important transform for transform coding is the dis-
crete cosine transform (DCT) (22). The one-dimensional DCT
F of a signal f is defined as follows (23,24): tion and bit allocation are applied to the transform coeffi-

cients in the transform domain. One of the drawbacks of
transform coding is that it has high computational complex-
ity. Now we introduce another compression technique—
subband coding, which usually has lower complexity than

F(k) =
r

2
N

c(k)

N−1∑
j=0

f ( j) cos
[

(2 j + 1)kπ

2N

]
,

k − 0, 1, 2, 3, . . ., N − 1 transform coding.
Just like transform coding, subband coding uses a fre-

where c(0) � 1/�2 and c(k) � 1 for k � 0. The inverse DCT quency domain approach. The block diagram of a typical sub-
(IDCT) is given by band encoder is illustrated in Fig. 12. The input signal, x(t),

is first filtered by a bank of M bandpass filters. Each band-
pass filter produces a signal, xk(t), with limited ranges of spa-
tial frequencies. Each filtered signal is followed by a quan-
tizer and a bandpass encoder, which encodes the signal, xk(t),

f (n) =
r

2
N

N−1∑
k=0

c(k)F(k) cos
[

(2n + 1)kπ

2N

]
,

n = 0, 1, 2, 3, . . ., N − 1
with different encoding techniques according to the properties

A two-dimensional DCT for an image is formed by first taking of the subband. It may be encoded with different bit rates,
the one-dimensional DCT of all rows of an image, and then quantization steps, entropy codings, or error distributions.
taking the one-dimension DCT of all columns of the re- The coding techniques we introduced in the previous sections,
sulting image. such as the vector quantization and entropy coding, are often

The DCT has fast implementations with a computational used at the encoder. Finally the multiplexer combines all the
complexity of O(n log n) for an n-point transform. It has subband coder output, yk[n], together and sends it through the
higher compression efficiency, since it avoids the generation communication channel to the decoder.
of spurious spectral components. The DCT is the most widely A subband decoder has the inverse stages of its encoder,
used transform in transform coding for many reasons. It has as shown in Fig. 13. When a signal, ŷ[n], is received from the
superior energy compaction characteristics for most corre- communication channel, it goes through demultiplexing, de-
lated source (25), especially for Markov sources with high cor- coding, and bandpass filtering prior to subband addition.
relation coefficient �, Subband coding has many advantages over other compres-

sion techniques. By controlling the bit allocations, quantiza-
tion levels, and entropy coding separately for each subband,
we can fully control the quality of the reconstructed signal.

ρ = E[xnxn+1]
E[x2

n]
For this reason we can fully utilize the bandwidth of the com-

where E denotes expectation. Since many sources can be mod- munication channel. With an appropriate subband coding
eled as Markov sources with a high correlation coefficient technique, we can achieve a good reconstruction signal qual-
value, the superior energy compaction capability has made ity, along with good compression. To take an example, for
the DCT the most popular transform coding technique in the
field of data compression. The DCT also tends to reduce the
statistical correlation among coefficients. These properties
make DCT-based lossy compression schemes very efficient. In
addition the DCT can be implemented with reasonably low
complexity. Because of this the DCT transform coding tech-
nique is widely used for both image and audio compression
applications. The JPEG (1) and MPEG (2,3) published by ISO,
and H.261 (4) and H.263 (5) published by ITU, are based on
DCT transform coding compression techniques.

SUBBAND CODING
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M

In the last section we introduced transform coding, which con-
verts the input samples to the transform domain. Quantiza- Figure 13. Subband decoder.
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ley (27), Croisier, Easteban, and Galand (28), Johnson (29),
and Smith and Barnwell (30).

The idea of QMF is to allow the aliasing caused by overlap-
ping filters in the encoder (analysis filter) canceled exactly by
the filter banks in the decoder (synthesis filter). The filters
are designed such that the overall amplitude and phase dis-
tortion is minimized. Then overall subband coding system
with QMF filter bank is almost aliasing-free.

PREDICTIVE CODING

In this section we introduce another interesting compression
technique—predictive coding. In the predictive coding sys-

High-pass
band

Input

High-pass
filter

Low-pass
filter

xs[n]

High-pass
filter

Low-pass
filter

High-pass
filter

Low-pass
filter

High-low
band

Low-high
band

Low-low
band

tems, we assume a strong correlation between adjacent input
Figure 14. Four-band filter bank for uniform subband coding.

data, which can be scalar, vector, or even block samples.
There are many types of predictive coding systems. The most
popular one is the linear predictive coding system based onaudio and speech applications low-frequency components are
the following linear relationship:usually critical to the reconstructed sound quality. The sub-

band coding technique enables the encoder to allocate more
bits to lower subbands, and to quantize them with finer quan-
tization steps. As a result the reconstructed data retains x̂[k] =

k−1∑
i=0

αix[i] (10)

higher fidelity and higher signal-to-noise ratio (SNR).
A critical part of subband coding implementation is the fil-

where the x[i] are the input data, the �i are the predictionter bank. Each filter in the filter bank isolates certain fre-
coefficients, and x̂[k] is the predicted value of x[k]. The differ-quency components from the original signal. Traditionally the
ence between the predicted value and the actual value, e[k],most popular bandpass filter used in subband coding con-
is called the prediction error:sisted of cascades of low-pass filters (LPFs) and high-pass fil-

ters (HPFs). A four-band filter bank for uniform subband cod-
ing is shown in Fig. 14. The filtering is usually accomplished e[k] = x[k] − x̂[k] (11)
digitally, so the original input is the sampled signal. The cir-
cled arrows denote down sampled by 2, since only half the It is found that the prediction error usually has a much lower
samples from each filter are needed. The total number of sam- variance than the original signal, and is significantly less cor-
ples remains the same. An alternative to a uniform subband related. It has a stable histogram that can be approximated
decomposition is to decompose only the low-pass outputs, as by a Laplacian distribution (31). With linear predictive cod-
in Fig. 15. Here the subbands are not uniform in size. A de- ing, one can achieve a much higher SNR at a given bit rate.
composition of this type is an example of a critically sampled Equivalently, with linear predictive coding, one can reduce
pyramid decomposition or wavelet decomposition (26). Two- the bit rate for a given SNR. There are three basic compo-
dimensional wavelet codes are becoming increasingly popular nents in the predictive coding encoder. They are predictor,
for image coding applications and include some of the best quantizer, and coder, as illustrated in Fig. 16.
performing candidates for JPEG-2000. As shown in Fig. 16, the predicted signal, x̂[k], is sub-

Ideally the filter bank in the encoder would consist of a tracted from the input data, x[k]. The result of the subtraction
low-pass and a high-pass filter set with nonoverlapping, but is the prediction error, e[k], according to Eq. (11). The predic-
contiguous, unit gain frequency responses. In reality the ideal tion error is quantized, coded, and sent through communica-
filter is not realizable. Therefore, in order to convert the full tion channel to the decoder. In the mean time the predicted
spectrum, it is necessary to use filters with overlapping fre- signal is added back to quantized prediction error, eq[k], to
quency response. As described earlier, the overlapping fre- create reconstructed signal, x̃. Notice that the predictor
quency response will cause aliasing. The problem is resolved makes the prediction according to Eq. (10), with previously
by using exact reconstruction filters such as the quadrature reconstructed signal, x̃’s.
mirror filters (QMF), as was suggested by Princey and Brad-

Quantizer
eq[k]x[k] e[k]

Output to
channel

Coder

Predictor
x[k]^

+

+

+

–

x~

Figure 16. Block diagram of a predictive coder.

xs[n]
HPF

LPF HPF

LPF

HPF

LPF

Figure 15. Filter bank for nonuniform subband coding.
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The rate of the quantizer R(q) has two useful definitions. If a
fixed number of bits is sent to describe each quantizer level,
then

R(q) = log2 M

Decoder
Reconstructed signal

Received signal
from channel Predictor

+

+

Figure 17. Predictive coding decoder. where M is the number of possible quantizer outputs. On the
other hand, if we are allowed to use a varying number of bits,

Just like the encoder, the predictive coding decoder has a then Shannon’s lossless coding theorem says that
predictor, as shown in Fig. 17, which also operates in the
same way as the one in the encoder. After receiving the pre- R(q) = H(q(x))

diction error from the encoder, the decoder decodes the re-
The entropy of the discrete quantizer output is the number ofceived signal first. Then the predicted signal is added back to
bits required on the average to recover q(x). Variable lengthcreate the reconstructed signal. Even though linear prediction
codes can provide a better trade-off of rate and distribution,coding is the most popular predictive coding system, there are
since more bits can be used on more complicated data andmany variations. If the predictor coefficients remain fixed,
fewer bits on low-complexity data such as silence or back-then it is called global prediction. If the prediction coefficients
ground. Whichever definition is used, we can define the opti-change on each frame basis, then it is called local prediction.
mal performance at a given bit rate byIf they change adaptively, then it is called adaptive prediction.

The main criterion of a good linear predictive coding is to
have a set of prediction coefficients that minimize the mean- �(r) = min

q : R(q)≤r
D(q)

square prediction error.
Linear predictive coding is widely used in both audio and By the operational distortion-rate function, or by the dual

video compression applications. The most popular linear pre- function,
dictive codings are the differential pulse code modulation
(DPCM) and the adaptive differential pulse code modulation
(ADPCM).

R(d) = min
q : D(q)≤d

R(q)

That is, a quantizer is optimal if it minimizes the distortionRATE DISTORTION THEORY
for a given rate, and vice versa. In a similar fashion we could
define the optimal performance �k(r) or Rk(d) using vectorIn the previous sections we have briefly introduced several
quantizers of dimension k as providing the optimal rate-dis-lossy data compression techniques. Each of them has some
tortion trade-off. Last we could ask for the optimal perfor-advantages for a specific environment. In order to achieve the
mance, say ��(r) or R�(d), when one is allowed to use quantiz-best performance, one often combines several techniques. For
ers of arbitrary length and complexity:example, in the MPEG-2 video compression, the encoder in-

cludes a predictive coder (motion estimation), a transform
coder (DCT), an adaptive quantizer, and an entropy coder
(run-length and Huffman coding). In this section we consider

�∞(r) = min
k

�k(r)

R∞(d) = min
k

Rk(d)
how well a lossy data compression can perform. In other
words, we explore the theoretical performance trade-offs be-

where the �k and Rk are normalized to distortion per sampletween fidelity and bit rate.
(pixel) and bits per sample (pixel). Why study such optimiza-The limitation for lossless data compression is straightfor-
tions? Because they give an unbeatable performance bound toward. By definition, the reconstructed data for lossless data
all real codes and they provide a benchmark for comparison.compression must be identical to the original sequence.
If a real code is within 0.25 dB of ��(r), it may not be worthTherefore lossless data compression algorithms need to pre-
any effort to further improve the code.serve all the information in the source data. From the lossless

Unfortunately, �� and R� are not computable from thesesource coding theorem of Shannon information theory, we
definitions, the required optimization is too complicated.know that the bit rate can be made arbitrarily close to the
Shannon rate-distortion theory (32) shows that in some casesentropy rate of the source that generated the data. So the
�� and R� can be found. Shannon defined the (Shannon) rate-entropy rate, defined as the entropy per source symbol, is the
distortion function by replacing actual quantizers by randomlower bound of size of the compressed data.
mappings. For example, a first-order rate-distortion functionFor lossy compression, distortion is allowed. Suppose that
is defined bya single output X of a source is described by a probability

density source function f x(x) and that X is quantized by a
R(d) = min I(X , Y )quantizer q into an approximate reproduction x̂ � q(x). Sup-

pose also that we have a measure of distortion d(x, x̂) � 0
where the minimum is over all conditional probability densitysuch as a square error �x � x̂�2 that measures how bad x̂ is as
functions fY�X(y�x) such thata reproduction of x. Then the quality of the quantizer q can

be quantized by the average distortion

D(q) = Ed(x, q(x)) =
∫

fx(x)d(x, q(x))dx
Ed(X , Y ) =

∫ ∫
fY |X (y|x) fX (x)d(x, y) dxdy

≤ d
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