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pression codes. Both strive to minimize the number of bits
transmitted per unit of time, the former without loss of fidel-
ity and the latter with possible, controlled reduction in fidel-
ity. This source encoder is followed by the channel encoder,
which uses data transmission codes to control the detrimental
effects of channel noise. Controlled amounts of redundancy is
introduced into the data stream in a manner that affords er-
ror correction. These data transmission codes are the focus of
this article. Further down in the cascade, we have the modu-
lator which maps output strings from the channel encoder
into waveforms that are appropriate for the channel. (Tradi-
tionally, modulation has evolved as an art disjoint from cod-
ing, but some recent research has indicated the merits of com-
bined coding and modulation. We will touch upon this aspect
toward the end of this article.) Following the channel, the de-
modulator and the decoders have the corresponding inverse
functions which finally render the desired information to the
receiver. In brief, this article concentrates on data transmis-
sion codes.

Binary Symmetric ChannelsINFORMATION THEORY OF DATA
TRANSMISSION CODES Each binary digit or (group of digits) at the input of the modu-

lator is transmitted as a waveform signal over the transmis-
The basic task of a communication system is to extract rele- sion channel. Physical transmission channels may distort the
vant information from a source, transport the information signal, the net result of which is to occasionally reproduce at
through a channel and to reproduce it at a receiver. Shannon, the output of the demodulator a binary string that is different
in his ground-breaking A Mathematical Theory of Communica- from what was actually sent. In many practical cases, the er-
tions (1), quantified the notions of the information rate of a ror events in successive binary digit positions are mutually
source and the capacity of a channel. He demonstrated the statistically independent. And in many such binary memo-
highly non-intuitive result that the fundamental restrictive ryless channels the probability of error, 
, is the same for a
effect of noise in the channel is not on the quality of the infor- transmitted 0 as well as for a transmitted 1 (Fig. 1). Such a
mation, but only on the rate at which information can be binary symmetric channel (BSC) is an important abstraction
transmitted with perfect quality. Shannon considered coding in data transmission coding.
schemes, which are mappings from source outputs to trans- If a binary n-vector is transmitted sequentially (i.e., bit by
mission sequences. His random-coding arguments established bit) over a binary symmetric channel with bit error probabil-
the existence of excellent codes that held the promise of ity 
, the number of errors is a random variable with a Ber-
nearly zero error rates over noisy channels while transmitting noulli distribution:
data at rates close to the channel capacity. Shannon’s exis-
tence proofs did not, however, provide any guidelines toward
actually constructing any of these excellent codes. A major P(i) =

�
n
i

�
ε i(1 − ε)n−1, 0 ≤ i ≤ n

focus of research in information theory (as Shannon’s theory
came to be known) over the past 50 years following Shannon’s If 
 � ��, as is the case for most practically useful channels,
seminal work has been on constructive methods for channel P(i) is seen to diminish exponentially in i as (
/1 � 
)i. This
coding. A number of later books (e.g., Refs. 2–9) journalize implies that P(0) � P(1) � P(2) � � � � � P(n). More specifi-
the development of information theory and coding. In this ar- cally, P(0) is typically very large, P(1) is O(
) (i.e., on the order
ticle we present a broad overview of the state of the art in of 
), P(2) is O(
2), and so forth. Thus, even minimal levels of
such data transmission codes. error correction can bring about a significant performance im-

provement on the BSC.

DATA SOURCES AND CHANNELS
Hamming Distance and Hamming Weight

A very general schematic representation of a communication The BSC can be modeled as a mod-2 additive noise channel
link consists of the following cascade: the source, a source en- characterized by the relation Y � X � N, where X is the
coder, a channel encoder, a modulator, the channel, the de-
modulator, the channel decoder, the source decoder, and the
receiver. The source encoder typically converts the source in-
formation into an appropriate format taking into account the
quality or fidelity of information required at the receiver.
Sampling, quantization and analog-to-digital conversion of an
analog source, followed possibly by coding for redundancy re-
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1 1

1 –   

moval and data compression, is an example. The codes used
here are usually referred to as data compaction and data com- Figure 1. The binary symmetric channel with error probability 
.
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transmitted binary digit, N is a noise bit, Y is the correspond- The essence of code design is the selection of a sufficient
number of n-vectors sufficiently spaced apart in binary n-ing output bit, and ‘‘�’’ denotes mod-2 addition. The Ham-
space. Decoding can in principle be done by table lookup butming weight of a binary n-vector is defined as the number of
is not feasible in practice as the code size grows. Thus we1’s in it, and the Hamming distance [in honor of R. W. Ham-
are motivated to look for easily implemented decoders. Suchming, a coding theory pioneer (10)] between two binary vec-
practical coding schemes fall generally into two broad catego-tors is defined as the number of bit positions where the ele-
ries: block coding and convolutional coding.ments of the two vectors are different. It is easy to see that

the mod-2 sum of two binary n-vectors has a Hamming weight
equal to the Hamming distance between the two vectors. If a BLOCK CODING
binary input n-vector Xn to a BSC produces the output n-vec-
tor Yn, then the noise pattern Nn � Xn � Yn is a binary n- Linear Block Codes
vector whose Hamming weight is equal to the Hamming dis-

An (n, k) block code maps every k-bit data sequence into atance between Xn and Yn. (If a � b � c, then a � b � c).
corresponding n-bit codeword, k � n. There are 2k distinct n-Consider the n-space Sn of all binary n-vectors. Out of the
vector codewords in a linear block code. The code rate R �total 2n n-vectors in Sn, if we choose only a few vectors well
k/n is a measure of the data efficiency of the code. A linearseparated from each other, we can hope that noise-corrupted
block code has the property that for any two codewords Xn

iversions of one codeword will not be confused with another
and Xn

j , their bitwise mod-2 sum Xn
i � Xn

j is also a codeword.valid codeword. To illustrate, suppose we choose a code with
Using a geometric perspective, we can view the code as a k-two binary n-vector codewords Xn

1 and Xn
2 which are mutually

dimensional linear subspace of the n-dimensional vectorat a Hamming distance d. In Fig. 2 we have shown the exam-
space Sn, spanned by k basis vectors. Using matrix notation,ple of S4 with X4

1 � (0000) and X4
2 � (1111) at Hamming dis-

we can then represent the linear encoding operation as Yn �tance d � 4. (S4 is a four-dimensional hypercube, with each
XkG, where the k-vector Xk is the data vector, Yn is the corre-node having four neighbors at unit distance along the four
sponding n-vector codeword, and G is the k � n binary-valuedorthogonal axes.) It can be seen that if codeword 0000 has at
generator matrix. The rows of G are a set of basis vectors formost one bit altered by the channel, the resulting 4-tuple
the k-space and thus are mutually linearly independent. Lin-(e.g., 0001) is still closer to 0000 than to 1111 so that a near-
ear codes have the important feature that the minimum dis-est-codeword decoding rule decodes correctly. But if 0000 en-
tance of the code is equal to the smallest among the nonzerocounters two bit errors (e.g., 0011), the resulting word is at
Hamming weights of the codewords. (The all-zero n-vector isequal distance from either codeword; and if there are three
necessarily a codeword in each linear n-vector code.) If thebit errors (e.g., 1101), the nearest codeword now is 1111 and
codewords are of the specific concatenated form Yn �a decoding error results. In general, two codewords at a Ham-
(XkPn�k), where Pn�k is a parity vector comprising n � k parityming distance d can be correctly decoded if the number of
bits which are solely functions of Xk (i.e., if the codeword Yn

errors incurred in the BSC is at most (d � 1)/2, where x
contains the data word Xk explicitly), then the code is termedis the integer part of the number x. If in fact there are more
systematic. Systematic linear block codes have generator ma-than two codewords in the code, it should be obvious that the
trices with the special structural form G � [IkP], where Ik ispair of codewords with the minimum Hamming distance de-
the k � k identity matrix and P is a k � n � k parity genera-termine the maximum number of bit errors tolerated. Thus,
tor matrix. Any linear block code can be put into an equiva-

a code with minimum distance dmin can correct all error pat-
lent code that is also systematic. A (7,4) Hamming code (dis-

terns of Hamming weight not exceeding t � (dmin � 1)/2. cussed below) is one example of a linear block code with the
following generator matrix in its systematic form:

G =




1 0 0 0 1 1 0
0 1 0 0 0 1 1
0 0 1 0 1 0 1
0 0 0 1 1 1 1




For every linear (n, k) block code, there is a parity check
matrix H which is an (n � k � n) binary valued matrix with
the property that GHT � 0. Given G � [IkP], the correspond-
ing parity check matrix has the structure H � [PTIn�k]. The
parity check matrix for the (7,4) systematic Hamming code is
as follows:

H =




1 0 1 1 1 0 0
1 1 0 1 0 1 0
0 1 1 1 0 0 1




0001

0011
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0010 0110
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1001
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1010 1110

11001000
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The condition GHT � 0 implies that every row in G, and con-
sequently every codeword, is orthogonal to every row in H.Figure 2. Minimum distance decoding. The two codewords 0000 and

1111 are at Hamming distance 4 in the space of binary 4-tuples. Every codeword Xn satisfies the parity check condition XnHT
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� 0. For an arbitrary Yn appearing at the output of a BSC, and is clearly an important performance parameter, espe-
cially when codes are used for error detection only.the n � k vector S(Yn) � YnHT is called the syndrome of Yn.

For the general class of linear block codes, the encoder im-The 2n�k syndromes have a one-to-one correspondence with
plements the multiplication of the data vector by the genera-a set of 2n�k n-vector error patterns that the (n, k) linear code
tor matrix. Decoding consists of computing the syndrome (byis capable of correcting. If n is small, a table lookup will suf-
matrix multiplication) and looking up the corresponding cosetfice to find the error pattern from the syndrome. A standard
leader in the standard array. These lookup procedures be-array (11) as shown below helps to mechanize this procedure:
come difficult for codes with moderate to large values of block
length n. This motivates the study of a subclass of linear
block codes, namely, cyclic codes, with features that facilitate
more easily implemented decoders.

Cyclic Codes

A cyclic code is a linear block code with the special property
that every cyclic shift of a codeword is also a codeword. Cyclic
codes were first proposed by Prange (13). Polynomial algebra,
where binary vectors are represented by polynomials with bi-




0 X1 X2 · · · Xi · · · X
2k−1

N1 · · · · · · · · · · · · · · · · · ·
N2 · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · ·
Nj · · · · · · · · · Y n · · · · · ·
· · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · ·

N2n−k−1 · · · · · · · · · · · · · · · · · ·




nary coefficients, is a useful framework for characterization
of cyclic codes. A binary n-vector Xn � (x1, x2, . . ., xn) has the
polynomial representation X(D) � x1Dn�1 � x2Dn�2 � � � � �The top row of the standard array consists of the 2k code-
xn, with degree not exceeding n � 1. For instance, (0101) cor-words. The first element, N1 in the next row is chosen to be
responds to X(D) � D2 � 1. Analogous to the generator matrixan n-vector error pattern that the code is expected to correct.
of a linear block code, a cyclic code can be characterized inIt must not be one of the elements in the preceding row(s).
terms of a generator polynomial G(D) such that everyThe succeeding elements of this row are obtained by adding
codeword has a polynomial representation of the form X(D)this error pattern to the corresponding codeword in the top
� G(D)R(D). Here G(D) is a polynomial of degree n � k androw. Additional rows are formed by repeating this procedure,
G(D) is a factor of Dn � 1. The polynomial R(D) has degreeeach time choosing the first element of the row to be a pattern
k � 1 or less, representing the k-bit data vector (r1, . . ., rk)that has not appeared already in the rows above. Each row of
being encoded. A code polynomial is generated by multiplyingthe resulting 2n�k � 2k standard array is called a coset, and
the data polynomial R(D) by the generator polynomial G(D).the first element in each row a coset leader. For a BSC with
It can be verified that multiplication of polynomials corre-error probability 
 � ��, it is natural to choose the coset leaders
sponds to convolution of the corresponding vectors. This ob-N to have the least Hamming weight possible. Given the stan-
servation leads to simple implementation of encoders using

dard array, the output of a BSC, Yn, is located in the standard shift-register based digital circuits.
array. The codeword Xi at the top of the column that Yn be- Denoting G(D) � g0 � g1D � g2D2 � � � � � gn�kDn�k, the
longs to is declared as the transmitted codeword, with the generator matrix G for the linear block code generated by
error pattern produced by the BSC being the coset leader Nj G(D) has the following form:
for the coset that Yn belongs to. If the BSC produces an error
pattern which is not one of the coset leaders, the decoder will
clearly make a decoding error. In the standard array for the
(7,4) Hamming code, the coset leaders can be chosen to be the
set of all 7-bit patterns with Hamming weight 1. Hence this
code corrects all single error patterns and none else.

G =




g0 g1 g2 . . . 0 0
0 g0 g1 . . . . .

. . . . . . . .

. . . . . . gn−k 0
0 0 0 . . . gn−k−1 gn−k




The matrix HT generates an (n, n � k) code (comprising all
linear combinations of its n � k linearly independent rows). As an example, binary cyclic codes of length n � 7 are gen-
The codes generated by G and HT are referred to as dual codes erated by the factors of D7 � 1 � (D � 1)(D3 � D � 1)(D3 �
of each other. The weight spectrum of a block code of length D2 � 1). The first degree polynomial G1(D) � D � 1 generates
n is defined as the (n � 1)-vector (A0, . . ., An), where Ai is the (7, 6) code with a single overall parity bit, while G2(D) �
the number of codewords with Hamming weight i. The Mac- D3 � D � 1 results in the (7, 4) Hamming code.
Williams identities (12) link the weight spectra of dual codes. The polynomial H(D) such that G(D)H(D) � Dn � 1 is
In particular, if k � n � k, the weight spectrum of the (n, k) known as the parity check polynomial for the code generated
code with 2k codewords may be obtained more easily from the by G(D). [Since H(D) is also a factor of Dn � 1, it also can
weight spectrum of the dual code with only 2n�k codewords, by generate a cyclic code, which is the dual of the code generated
means of the MacWilliams identities. The weight spectrum of by G(D).] The polynomial H(D) � h0 � h1D � h2D2 � � � � �
a linear block code determines the probability of undetected hkDk specifies the form of the parity check matrix H of the
error when the code is used over a BSC. Whenever the n- code as follows:
vector error pattern generated by the BSC coincides with one
of the codewords, the error becomes undetectable by the code.
This undetected-error probability is

PUDE =
n∑

i=0

Aiε
i(1 − ε)n−i

H =




hk hk−1 . . . 0
0 hk . . . h0

0 0 . . . h1

. . . . . . . . . . . .

0 0 . . . hk



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is t � N � K symbol errors. Since the code can in particular
correct t consecutive symbol errors or erasures, it is especially
effective against burst errors. The Reed–Solomon codes are
maximum-distance separable; that is, for the admissible
choices of n and k, the Reed–Solomon codewords are spaced
apart at the maximum possible Hamming distance.

Perfect Codes

DU n

X n

D D

gn–k gn–k–1

+

g1 g0

An (n, k) linear code can correct 2n�k error patterns. For someFigure 3. A generic cyclic encoder.
integer t, if the set of error patterns consists of exactly all
error patterns of Hamming weight t or less and no other error
patterns at all, such a code is termed as a perfect t-error cor-The special structure of G and H for cyclic codes greatly
recting code. This would require, for binary codes, that n, k,simplifies the implementation of the encoder and the syn-
and t satisfy the following equality:drome computer. A generic encoder for a cyclic code is shown

in Fig. 3. The k-bit data vector Uk is pipelined through the
shift register for n clock times, thus generating the codeword
Xn at the output. The encoder utilizes n � k single-bit delay

t∑
i=0

�
n
i

�
= 2n−k

units D, binary multipliers, and binary adders. The circuit
The only known perfect codes are the Hamming codes, thecomplexity is seen to grow only linearly in block length n. For
double-error-correcting ternary Golay code, and the triple-er-decoding, we can develop a circuit for syndrome calculation
ror-correcting binary Golay code, described below. Tietvainenfor a received n-vector, structured very similarly to Fig. 3.
(24) proved that no other perfect codes exist.Logic circuits are used to expand the n � k bit syndrome into

an n-bit error pattern which is then added to the received
Hamming Codescodeword to effect error correction.

Hamming codes are single error correcting codes. For t � 1,
BCH Codes the condition for a perfect code becomes 1 � n � 2m where

m � n � k. For integers m, Hamming single-error-correct-Bose and Ray-Chaudhuri (14) and independently Hoquen-
ing codes exist with m parity check bits and block length n �ghem (15) discovered a remarkably powerful subclass of cyclic
2m � 1. The rate of the (2m � 1, 2m � m � 1) code is R �codes, referred to as BCH codes. The BCH code family is prac-
(2m � m � 1)/(2m � 1), which approaches 1 as m increases.tically the most powerful class of linear codes, especially for
The generator matrix G that was displayed earlier while de-small to moderate block lengths. BCH codes can be designed
scribing linear codes is indeed a generator matrix for a Ham-for a guaranteed design distance � (which of course cannot
ming (7, 4) code. It is possible to rearrange the generator ma-exceed the true minimum distance dmin of the resulting code).
trix of the code so that the decimal value of the m-bitSpecifically, given � and hence t � (� � 1)/2, and for any
syndrome word indicates the position of the (single) erroredinteger m, there is a t-error correcting binary BCH code with
bit in the codeword. Adding an overall parity bit to a basicblock length n � 2m � 1 for which the number of parity check
Hamming code results in a (2m, 2m � m � 1) code capable ofbits is no more than mt. Powerful algorithms exist for decod-
detecting double errors in addition to correcting single errors.ing BCH codes. The polynomial algebraic approach to BCH
Such codes are particularly effective in data transmissiondecoding was pioneered by Peterson (16) for binary BCH
with automatic repeat request (ARQ). If the bit error rate iscodes and extended to nonbinary BCH codes by Gorenstein

 � ��, then the single error patterns which appear with proba-and Zierler (17). Major contributions came later from Chien
bility O(
) are the most common and are corrected by the(18), Berlekamp (19), and Massey (20). An alternative ap-
code, thus avoiding the need for retransmission. The doubleproach to BCH decoding based on finite field Fourier trans-
error patterns have a lower probability O(
2) and are flaggedforms has gained attention recently, from the work of Blahut
for retransmission requests. Other error patterns occur with(21).
negligibly small probabilities O(
3) or less.

Hamming codes are cyclic codes. For block lengths n �Reed–Solomon Codes
2m � 1, their generator polynomials are the primitive poly-

Reed–Solomon codes (22,23) are a very powerful generaliza- nomials of degree m over the binary field. (An mth degree
tion of BCH codes. Binary Reed–Solomon codes can be de- primitive polynomial with binary coefficients has the property
fined, for any integer m, as follows. Serial data is organized that its m roots can be characterized as the m primitive ele-
into m-bit symbols. Each symbol can take one of n � 2m val- ments in a finite field of 2m elements.) In fact, Hamming codes
ues. The Reed–Solomon code block length is N � 2m � 1 sym- are BCH codes as well. However, they are decodable by far
bols, or Nm bits. Out of these, K symbols are data symbols simpler methods than the general BCH decoding algorithms.
(i.e., k � mK), and N � K symbols are parity symbols com- Most notably, Hamming codes are perfect codes.
puted according to the algebraic description of the code.
Reed–Solomon decoding can recover from up to t � (N �

Golay Codes
K)/2 symbol errors. If symbol erasures are marked as such
(i.e., if additional side information is available as to whether Two codes discovered by Golay (25) are the only other perfect

codes, apart from the Hamming codes mentioned above. Fora symbol is in error or not, though it is not known what the
errors are), then the Reed–Solomon erasure correction limit n � 23 and t � 3, the total number of 0-, 1-, 2-, and 3-error
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binary patters of length 23 add up to 2048 � 211. Choosing weight choice of coset leaders (correctable error patterns) in
the standard array. In a burst noise channel, errored bit posi-m � 11, we can form the (23, 12) triple-error-correcting Golay

code. It is also possible to form an (11, 6) double-error-correct- tions tend to cluster together to form error bursts. Codes de-
signed to correct minimum weight error patterns are not di-ing perfect code over ternary alphabet. The Golay codes also

are BCH codes, and hence cyclic codes. rectly useful in presence of burst errors. Interleaved coding
is a technique that allows random-error-correcting codes to
effectively combat burst errors. Interleaving renders the burstExtended and Shortened Codes
noise patterns of the channel as apparent random errors to

Earlier we indicated that a single-error-correcting Hamming the decoder.
code can be made double-error-detecting as well by adding an Figure 4 depicts an elementary block interleaver to illus-
extra overall parity bit. This results in increasing the block trate the idea. Suppose a burst noise channel is known to
length by one. Such modified codes are known as extended generate error bursts spanning at most six consecutive bits.
codes. Adding an overall parity bit to a code of length n � Further, suppose that a (7, 4) Hamming single-error-correct-
2m � 1 results in a codeword whose length is a power of two. ing code is to be used. First we read 24 consecutive data bits
This may be advantageous in byte-oriented data handling, or row-wise into a 6 �4 array, as in Fig. 4. The column size is
in matching a prespecified field length in a data packet. Ex- chosen to be six so as to at least equal the maximum burst
tended Reed–Solomon codes are another practical example. length. The row size is chosen to be exactly equal to the num-
As already seen, the natural block length of Reed–Solomon ber of information digits in the code. Next we extend each row
codes is 2m � 1 m-bit symbols, and frequently there are rea- by three more positions by appending the three parity bits
sons to have a block length which is a power of two. Adding appropriate for a Hamming (7, 4) codeword. The extended
an overall parity symbol accomplishes this task. Extended transmission array is therefore 6 � 7. The transmission se-
codes may have smaller minimum distance than their original quence is column-wise—that is, in the sequence 1, 5, 9, 13,
counterparts, but in many instances the minimum distance 17, 21, 2, 6, 10, 14, . . . (see Fig. 4). The array transmits 42
remains unchanged. An example is the (7, 4) Hamming code bits for each 24-bit input. A six-bit error burst may affect the
and its (8, 4) extended version, both of which have minimum successively transmitted bits 10, 14, 18, 22, 3 and 7, as shown
distance 4. in Fig. 4. Notice that each bit in this error burst belongs to a

Shortened codes result from the reverse process where we different Hamming codeword. Thus all such errors are cor-
seek to reduce the block length of a basic code. For example, rected if the error burst does not exceed six bits and there are
the Reed–Solomon code with 8-bit symbols has a natural no other burst error within this span of 42 bits. Suitably sized
block length of 255 symbols. If the encoded data is to be trans- block interleavers are often effective in burst noise environ-
ported in fixed length packets of 240 symbols each, we can set ments.
15 information symbols to zeroes and then delete them before
transmission. Shortening can increase minimum distance in Concatenated Codes
general. The shortened code has fewer information bits and

Consider the following example. Let n � 8 and N � 2n � 1 �the same number of parity bits, so that the error correction
255. An (N, K) Reed–Solomon code has N � 255 code symbolscapability normalized with respect to block length increases
which can be represented as 8-bit binary words. Transmittedupon shortening.
through a binary symmetric channel with bit error probabil-
ity 
, each 8-bit symbol can be in error with probability 
 �Product Codes
1 � (1 � 
)8. The code can recover from up to t0 � (N �

Elias (26) showed how to combine two block codes into a prod- K)/2 symbol errors. The probability of successful decoding is,
uct code. Cyclic product codes were studied by Burton and therefore,
Weldon (27). Suppose we have an (n1, k1) code and an (n2, k2)
code. Arrange k � k1k2 data bits in an array of k1 rows and
k2 columns. Extend each row of k2 bits into an n2 bit codeword Ps0 =

t0∑
i=0

�
N
i

�
�i(1 − �)255−i

using the (n2, k2) code. Next, extend each of the resulting n2

columns to n1 bits using (n1, k1) code. The resulting array of We can now concatenate the Reed–Solomon code with a
n � n1n2 bits is the product encoding for the original k bits. Hamming (8, 4) single-error correcting/double-error detecting
The rate of the product code is the product of the rates of the
constituent codes. If the constituent codes respectively have
minimum distances d1 and d2, the product code has a mini-
mum distance dmin � d1d2. Product codes are frequently capa-
ble of correcting not only all error patterns of weight (d1d2 �
1)/2 but also many higher weight patterns. However, the
simplistic approach of row-wise decoding first, followed by col-
umn-wise decoding, may not achieve the full error correction
capability of product codes.

Interleaved Coding

The binary symmetric channel models the random error pat-
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terns which are bit-to-bit independent. That the bit error
probability 
 is less than 0.5 is the basis for the minimum Figure 4. An illustration of interleaved coding.
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code, as follows. Each 8-bit symbol of the Reed–Solomon code
is chosen as a Hamming (8, 4) codeword. To do this, we orga-
nize raw data into consecutive blocks of four bits and encode
each such into a Hamming (8, 4) codeword. Then each set of K
consecutive 8-bit Hamming codewords is encoded into a 255-
symbol Reed–Solomon codeword. The probability of a symbol
error now becomes smaller, � � 1 � (1 � 
)8 � 8 � (1 � 
)7,
assuming triple and higher errors are negligibly infrequent.
Besides, the double-error detection feature identifies the erro-
red symbols in the Reed–Solomon code. With this side infor-
mation, the Reed–Solomon code can now recover from a
greater number of symbol errors, t1 � 255 � K. The probabil-
ity of successful decoding is now found as

Gilbert bound

1.00.5
Normalized minimum distance,   (R)δ

0

1

R
a

te
, 

R

Elias bound

Hamming bound

Figure 5. Bounds on the minimum distance of block codes.Ps1 =
t1∑

i=1

�
N
i

�
δi(1 − δ)255−i

This can be expressed in the following form of the HammingThe power of this concatenated coding approach is evident
upper bound on code rate R:from comparing the above two expressions for the probability

of successful decoding. The Reed–Solomon code is the outer
code and the Hamming code is the inner code. The inner code
cleans up the milder error events and reserves the outer code

R ≤ 1 − 1
n

log
t∑

i=0

�
n
i

�

for the more severe error events. In particular, in a burst
Asymptotically for large n, this reduces to the formnoise environment, a long codeword may have some parts

completely obliterated by a noise burst while other parts may
be affected by occasional random errors. The inner code typi- R ≤ 1 − H2

�
δ(R)

2

�
cally corrects most of the random errors, and the outer Reed–
Solomon code combats the burst noise. In most applications

where H2(x) � �x log x � (1 � x) log(1 � x) is the binarythe outer code is a suitably sized Reed–Solomon code. The
entropy function; �(R) is the largest value of the normalizedinner code is often a convolutional code (discussed below),
minimum distance of a rate-R code as the block length n goesthough block codes can be used as well, as shown above.
to vary large values (i.e., lim supN�� dmin/n); and the logarithmThe invention of concatenated coding by Forney (28) was a
is to the base 2 so that R is in bits of information per binarymajor landmark in coding theory. Later, Justesen (29) used
digit.

the concatenation concept to obtain the first constructive
The Hamming upper bound asserts that for a given �(R),

codes with rates that do not vanish asymptotically for large no code can exceed the rate given by the bound above. The
block lengths. Gilbert bound, on the other hand, is a constructive bound

which states that it is possible, for a given �(R), to construct
Performance Limits of Block Codes codes with rates at least as large as the value R specified by

the bound. The asymptotic Gilbert bound states that
The key performance parameters of a block code are the code
rate and the minimum distance. In this section we highlight R ≥ 1 − H2(δ(R))
some of the known bounds on these parameters. The Ham-
ming bound, also known as the sphere packing bound, is a The Elias bound is a tighter upper bound on the feasible code
direct consequence of the following geometrical view of the rates compared to the Hamming bound. In its asymptotic
code space. Let an (n, k) code have minimum distance d. form the Elias bound is stated as follows:
There are 2k codewords in this code. Around each codeword
we can visualize a ‘‘sphere’’ comprising all n-vectors that are δ(R) ≤ 2λR(1 − λR)

within Hamming distance (d � 1)/2 from that codeword.
Each such sphere consists of all the n-tuples that result from where
perturbations of the codeword at the center of the sphere by
Hamming weight at most (d � 1)/2. Any two such spheres R = 1 − H2(λR)

around two distinct codewords must be mutually exclusive if
These bounds are shown in Fig. 5. The feasibility region ofunambiguous minimum-distance decoding is to be feasible.
‘‘good’’ block codes lies between the Gilbert and Elias bounds.Thus the total ‘‘volume’’ of all 2k such mutually exclusive
Hamming bound originally appeared in Ref. 10, and the Gil-spheres must not exceed the total number of possible n-
bert bound in Ref. 30. The Elias bound was first developed bytuples, 2n. Thus,
Elias circa 1959 but appeared in print only in 1967 paper by
Shannon, Gallager, and Berlekamp (see Ref. 5, p. 3). Proofs
for these bounds are found in many coding theory books (e.g.,
Ref. 3). It had been conjectured for some time that the Gilbert

2n ≥ 2k
t∑

i=0

�
n
i

�
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bound was asymptotically tight—that is, that it was an upper output (K � 3) or the minimum number of delay elements
needed to implement the encoder (K � 2).bound as well as a lower bound and that all long, good codes

would asymptotically meet the Gilbert bound exactly. This It must be noted that Fig. 6 could have been redrawn with
only two memory elements to store the two previous bits; theperception was disproved for nonbinary codes by the work of

Tsfasman et al. (31). Also McEliece et al. (32) obtained some current input bit could be residing on the input line. The
memory order of the encoder in Fig. 6 is thus only two, andimprovements on the Elias bound. See also Ref. 33 for tabula-

tions of the best-known minimum distances of block codes. the encoder output is determined by the state of the encoder
(which is the content of the two memory registers) and by the
new input bit. Whether we use an extra memory register to
hold the incoming new bit or not is similar in spirit to theCONVOLUTIONAL CODES
distinction between the Moore and the Mealy machines in the
theory of finite-state sequential machines (39).Convolutional Encoders

The impulse response of the encoder at the upper output
Convolutional codes were originally proposed by Elias (34). of the convolutional encoder in Fig. 6 is ‘1 1 1’ and that at the
Probabilistic search algorithms were developed by Fano (35) lower output line is ‘1 0 1’. The output sequences at these
and Wozencraft and Reiffan (36) as practical decoding algo- lines are therefore the discrete convolutions of the input
rithms. Massey (37) proposed the use of threshold decoding stream with these impulse responses. The following infinite-
for convolutional codes as a simpler though less efficient al- dimensional generator matrix represents the mapping of the
ternative. The Viterbi algorithm (38) was developed later as infinite input sequence (x0, x1, x2, . . .) into the infinite output
an efficient decoder for short convolutional codes. We will sequence (y0, y1, y2, . . .) where y2n and y2n�1 are the two output
briefly outline Wozencraft’s sequential decoding and the Vit- bits corresponding to input bit xn:erbi algorithm, after examining the basic structure of convo-
lutional codes.

Convolutional coding is based on the notion of passing an
arbitrarily long sequence of input data bits through a linear
sequential machine whose output sequence has memory prop-
erties and consequent redundancies that allow error correc-
tion. A linear sequential machine produces each output sym-
bol as a linear function of the current input and a given
number of the immediate past inputs, so that the output sym-
bols have ‘‘memory’’ or temporal correlation. Certain symbol
patterns are more likely than others, and this allows error
correction based on maximum likelihood principles. The out-
put of the linear sequential machine is the convolution of its
impulse reponse with the input bit stream, hence the name.
Block codes and convolutional codes are traditionally viewed
as the two major classes error correction codes, although we
will recognize shortly that it is possible to characterize finite
length convolutional codes in a formalism similar to that used
to describe block codes.

A simple convolutional encoder is shown in Fig. 6. For ev-
ery input bit, the encoder produces two output bits. The code
rate is hence ��. (More generally, a convolutional encoder may
accept k input bits at a time and produce n output bits, imple-

x0 x1x2 . . .]




1 1 1 0 1 1 0 0
0 0 1 1 1 0 1 1
0 0 0 0 1 1 1 0
0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
. . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 0 0 0 . . .

0 0 0 0 0 0 . . .

1 1 0 0 0 0 . . .

1 0 1 1 0 0 . . .

1 1 1 0 1 1 . . .

0 0 1 1 1 0 . . .

0 0 0 0 1 1 . . .

. . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . .




= [y0 y1 y2 . . .

menting a rate k/n code.) The output of the encoder in Fig. 6
is a function of the current input and the two previous inputs. Also, in terms of the impulse response polynomials G1(D) �
One input bit is seen to affect three successive pairs of output 1 � D � D2 and G2(D) � 1 � D2, respectively, for the upper
bits. We say that the constraint length of the code is therefore and lower output lines in Fig. 6, we can relate the input poly-
K � 6. There are other definitions of the constraint length, nomial X(D) to the respective output polynomials as
as the number of consecutive input bits that affect a given

Yi(D) = X (D)Gi(D), i = 1, 2

However, these matrix and polynomial algebraic approaches
are not as productive here as they were for the block codes.
More intuitive insight into the nature of convolutional codes
can be furnished in terms of its tree and trellis diagrams.

Trees, State Diagrams, and Trellises

The most illuminating representation of a convolutional code

D

Output 2

Output 1

Input D

+

+

is in terms of the associated tree diagram. The encoding pro-
cess starts at the root node of a binary tree, as shown in Fig.Figure 6. A convolutional encoder.
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Data sequences drive the encoder through various se-
quences of state transitions. The pattern of all such possible
state transition trajectories in time is known as a trellis dia-
gram. In Fig. 9 we have the trellis diagram for an encoder
that starts in state 00 and encodes a 7-bit input sequence
whose last two bits are constrained to be zeroes. This con-
straint, useful in Viterbi decoding to be described below, ter-
minates all paths in state 00. The trellis diagram in Fig. 9
thus contains 25 distinct paths of length 7 beginning and end-
ing in state 00.

Weight Distribution for Convolutional Codes

An elegant method for finding the weight distribution of con-
volutional codes is to redraw the state transition diagram
such as in Fig. 8, in the form shown in Fig. 10 with the all-
zero state (00 in our example) split into two, a starting node
and an ending node. To each directed path between two
states, we assign a ‘‘gain’’ Wi, where W is a dummy variable
and the exponent i is the Hamming weight of the binary se-
quence emitted by the encoder upon making the indicated
state transition. For example, in Fig. 10, the transition from
1 to 2 causes the bit pair 11 to be emitted, with Hamming
weight i � 2, so that the gain is W2. In transitions that emit
01 or 10, the gain is W and in the case where 00 is emitted,
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the gain is W0 � 1. We can now use a ‘‘signal flow graph’’Figure 7. A tree diagram for the convolutional encoder in Fig. 6.
technique due to Mason (40) to obtain a certain ‘‘transfer
function’’ of the encoder. In the signal flow graph method, we
postulate an input signal Sin at the starting state and com-

7 for the encoder in Fig. 6. Each node spawns two branches. pute the output signal Sout at the ending state, using the fol-
Each successive input bit causes the process to move to one lowing relations among signal flow intensities at the various
of the next higher level nodes. If the input bit is a zero, the nodes:
upper branch is taken, otherwise the lower one. The labeling
on each branch shows the bit pair produced at the output for
each branch. Tracing an input sequence through the tree, the
concatenation of the branch labels for that path produces the
corresponding codeword.

Careful inspection of the tree diagram in Fig. 7 reveals a

Sout = S2W
2

S2 = (S3 + S4)W

S4 = (S3 + S4)W

S3 = SinW2

certain repetitive structure depending on the ‘‘state’’ of the
encoder at each tree node. The branching patterns from any The transfer function T(W) � Sout/Sin can be readily found to
two nodes with identical states are seen to be identical. This be
allows us to represent the encoder behavior most succinctly
in terms of a state transition diagram in Fig. 8. The state of
the encoder is defined as the contents of the memory elements

T(W ) = W5

(1 − 2W )
=

∞∑
i=0

2iW5+i = W5 + 2W6 + 4W7 + · · ·
at any time. The encoder in Fig. 7 has four states, 1 � 00,
2 � 01, 3 � 10 and 4 � 11. The solid lines in Fig. 8 indicate Each term in the above series corresponds to a set of paths
state transitions caused by a zero input, and the dotted lines of a given weight. The coefficient 2i gives the number of paths
indicate input one. The labels on the branches are the output of weight 5 � i. There is exactly one path of weight 5, two
bit pairs, as in the tree diagram in Fig. 7. paths of weight 6, four of weight 7, and so on. There are no

paths of weight less than 5. The path with weight 5 is seen
to be the closest in Hamming distance to the all-zero
codeword. This distance is called the free distance, dfree, of the
code. In the present example, dfree � 5. The free distance of a
convolutional code is a key parameter in defining its error
correction, as will be seen in the next section.

Maximum Likelihood (Viterbi) Decoding
for Convolutional Codes

Each path in a trellis diagram corresponds to a valid code

11

10
10

00

01 01

1111

10

00

01

00

sequence in a convolutional code. A received sequence with
bit errors in it will not necessarily correspond exactly to anyFigure 8. The state transition diagram for the convolutional encoder

in Fig. 6. one particular trellis path. The Viterbi algorithm (38) is a
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Figure 9. The trellis diagram for the con-
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00 00 00 00
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10

3 3 3 3 3

4 4 4 4

10 1010
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volutional encoder in Fig. 6.

computationally efficient way for discovering the most likely tal, for any path emanating from state 1 at time t � 3, the
prefix with the lower cumulative distance is clearly the bettertransmitted sequence for any given received sequence of bits.

With reference to the trellis diagram in Fig. 9, suppose that choice. Thus at this point we discard the path 1–1–1–1 from
further consideration and retain the unique survivor pathwe have received the sequence 11 01 10 01 01 10 11. Starting

in state 1 at time t � 0, the trellis branches out to states 1 or 1–3–2–1 in association with state 1 at the current time. Simi-
larly we explore the two contending paths converging at the2 in time t � 1, and from there to all four states 1, 2, 3, 4, in

time t � 2. At this point there is exactly one unique path to other three states at this time (t � 3) and identify the mini-
mum distance (or maximum likelihood, for the BSC) survivorseach of the four current possible states staring from state 1.

In order to reach state 1 at time t � 2, the trellis path indi- for each of those states.
The procedure now iterates. At each successive stage, wecates the transmitted prefix sequence 00 00 which is at a

Hamming distance three from the actual received prefix 11 identify the survivor paths for each state. If the code sequence
were infinite, we would have four infinitely long parallel path01. The path reaching state 2 in time t � 2 in the trellis dia-

gram similarly corresponds to the transmitted prefix se- traces through the trellis in our example. In order to choose
one of the four as the final decoded sequence, we require thequence 11 01 which is seen to be at Hamming distance zero

from the corresponding prefix of the received sequence. Simi- encoder to ‘‘flush out’’ the data with a sequence of zeroes, two
in our example. The last two zeroes in the seven-bit inputlarly we can associate Hamming distances 3 and 2 respec-

tively to the paths reaching states 3 and 4 in time t � 2 in data to the encoder cause the trellis paths to converge to state
1 or 2 at time t � 6 and to state 1 at t � 7. By choosing thethe trellis diagram.

Now we extend the trellis paths to time t � 3. Each state survivors at these states, we finally have a complete trellis
path starting from state 1 at time t � 0 and ending in statecan be reached at time t � 3 along two distinct paths. For

instance, in order to reach state 1 in time t � 3, the encoder 1 at time t � 7. The output labels of the successive branches
along this path gives the decoder’s maximum likelihood esti-could have made a 1 to 1 transition, adding an incremental

Hamming distance of one to the previous cumulative value of mate of the transmitted bits corresponding to the received se-
quence.three; or it could have made the 2 to 1 transition, adding one

unit of Hamming weight to the previous value of zero. Thus The average bit error rate of the Viterbi decoder, Pb, can
be shown to be bounded by an exponential function of the freeat time t � 3, there are two distinct paths merging at state

1: the state sequence 1–1–1–1 with a cumulative Hamming distance of the code, as below:
distance of four from the given received sequence, and the
sequence 1–3–2–1 with a cumulative Hamming distance of Pb ≈ Ndfree

[2
√

ε(1 − ε)]dfree ≈ Ndfree
[2

√
ε ]dfree

one. Since the Hamming weights of the paths are incremen-

This applies to codes that accept one input bit at a time, as
in Fig. 6. Ndfree

is the total number of nonzero information bits
on all trellis paths of weight dfree, and it can in general be
found via an extension of the signal flow transfer function
method outlined above. The parameter � is the BSC error
probability and is assumed to be very small in the above ap-
proximation.

The Viterbi algorithm needs to keep track of only one sur-

3 2

4
W

W W2W2

W

W

11

vivor path per state. The number of states, however, is an
exponential function of the memory order. For short convolu-Figure 10. The signal flow graph for the convolutional encoder in

Fig. 6. tional codes of modestly sized state space, the Viterbi algo-
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rithm is an excellent choice for decoder implementation. A mum distance decoding. Burst error channels are another im-
portant class of transmission channels encountered inmemory order of 7 or 8 is typically the maximum feasible.

This, in turn, limits the free distance and hence the bit error practice, both in wireline and wireless links. Errored bit posi-
tions tend to cluster together in such channels, making directprobability. For long convolutional codes, the survivor path

information storage required per state becomes large. In prac- application of much of the foregoing error correction codes fu-
tile in such cases. We have already mentioned interleavedtice, we may choose to retain only some most recent segment

of the history of each survivor path. The resulting ‘‘truncated’’ coding as a practical method for breaking the error clusters
into random patterns and then using random-error correctingViterbi algorithm is no longer the theoretically ideal maxi-

mum likelihood decoder, though its performance is usually codes. Also we noted that Reed–Solomon codes have an in-
trinsic burst error correction capability. In addition, thereclose to the ideal decoder. All these considerations restrict the

application of the Viterbi algorithm to short convolutional have been error correction codes specifically developed for
burst noise channels. For a detailed treatment of this subject,codes with small constraint lengths. Within these limitations,

however, the Viterbi algorithm affords excellent performance. see, for example, Ref. 8, Chap. 9.

Sequential Decoding for Convolutional Codes Intersymbol Interference Channels and Precoding
Tree diagrams lead to one viable strategy for decoding convo- Binary data are transmitted by mapping the 0’s and 1’s into
lutional codes. Given a received sequence of bits (possibly con- baseband or radio-frequency (RF) pulses. In a bandwidth-lim-
taining errors), the decoder attempts to map it to one path ited channel, the channel response waveform corresponding
along the tree, proceeding node by node and keeping track of to one input pulse tends to overlap those of succeeding pulses,
the cumulative Hamming distance of the path from the re- if the input pulse rate is high. This intersymbol interference
ceived sequence. Along a wrong path, the cumulative Ham- (ISI) can be controlled by appropriately shaping the input
ming distance exceeds a preset threshold after a few nodes, spectrum by precoding the input pulse waveform. By suitably
whereupon the decoder backtracks to the previous node and constraining the 0/1 transition patterns, it becomes possible
explores another path. The time to decode any given sequence to receive the input bit stream despite the overlap of the pulse
in this scheme is a random variable, but its expected value response waveforms. This technique has been important in
remains bounded for code rates below a number Rcomp � C, high-speed modem designs for the wireline channel. Because
where Rcomp is the computational cutoff rate and C is the chan- of the recent interest in digital subscriber lines, there has
nel capacity. This technique, known as sequential decoding, been much activity in this area. We cite Ref. 41 as an example
is an appropriate technique for decoding very long convolu- of recent work and for pointers to earlier work in this impor-
tional codes. tant area.

A sequential decoder executes a random number of compu-
tations to decode a received sequence—unlike the Viterbi de-

Synchronization Codescoder, which executes a fixed number of computations per
code sequence. This can be a strength or a weakness, de- Coding techniques described so far implicitly assume synchro-
pending on the average noise intensity. If the noise level is nization; that is, the decoder knows the exact times when one
high, the sequential decoder typically has to explore many codeword ends and the next begins, in a stream of binary
false paths before it discovers the correct path. But the Vit- data. In real life this of course cannot be assumed. Codes that
erbi algorithm produces an output after a fixed number of can self-synchronize are therefore important. Key results in
computations, possibly faster than the sequential decoder. On this direction is summarized in standard coding theory
the other hand, if the noise level is low, the Viterbi algorithm sources such as Ref. 4. However, the practical use of these
still needs to execute all of its fixed set of computations synchronization codes does appear to be limited, compared to
whereas the sequential decoder will typically land on the more advanced timing and synchronization techniques used
right tree path after only a few trials. Also, sequential decod- in modern digital networks.
ing is preferred in applications where long codes are needed
to drive the postdecoding error probability to extremely low Soft Decision Decoding
values. In such cases, complexity considerations eliminate

The actual inputs and outputs of the physical channel areViterbi algorithm as a viable choice.
analog waveforms. The demodulator processes the noisyAn efficient approach to implementing sequential decoding
waveform output of the physical channel and furnishes ais the stack algorithm. The key idea here is that the pre-
noisy estimate of the currently transmitted bit or symbol. Aviously explored paths and their likelihood metrics can be
hard decision is made at the demodulator output when astored in a stack ordered according to the likelihood metric
threshold device maps the noisy analog data into a 0 or a 1value, with the most likely path at the top. The topmost path
(in the binary case). Instead, we can retain the analog valueis then extended to the set of branches extending from that
(or a finely quantized version of it) and then make an overallnode, metrics are recomputed, and the stack is updated with
decision about the identity of an entire codeword from thesethe new information.
soft decision data. Clearly, the soft decision data retain more
information, and hence the overall decision made on an entire

ADDITIONAL TOPICS
codeword can be expected to be more reliable than the concat-
enation of bit-by-bit hard decisions. Analysis and practical im-

Burst Noise Channels
plementations have borne out this expectation, and soft deci-
sion decoding enables achievement of the same bit error rateIn the foregoing discussion, we had mostly assumed the bi-

nary symmetric channel model which was the basis for mini- with a lower signaling power requirement than that for hard
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decision decoding. Many recent text books on digital commu- standards use Reed–Solomon coding for delivery of com-
pressed, high-rate digital video (48). Almost all of the recentnications (e.g., Ref. 42) contain details of this approach.
digital wireless technologies, such as GSM, IS-54 TDMA, IS-
95 CDMA, cellular digital packet data (CDPD), and othersCombined Coding and Modulation
(49), have found it advantageous to make use of error correc-

As mentioned earlier, coding and modulation have tradition- tion coding to mitigate the excessive noisiness of the wire-
ally developed in mutual isolation. Ungerboeck (43) proposed less channel.
the idea that redundancy for error correction coding may be In summary, over the past 50 years following the inception
embedded into the design of modulation signal constellations, of information theory (1), not only has the art of data trans-
and combined decoding decisions may be based on the Euclid- mission codes matured into a variety of applications technolo-
ean distance between encoded signal points rather than on gies, but also we are remarkably close to the ultimate theoret-
Hamming distance. The approach has been found to be capa- ical limits of coding performance predicted in Ref. 1.
ble of significant improvements in the performance of coded
communications. For more details on this topic, see Ref. 44 or
one of the more recent textbooks in digital communications BIBLIOGRAPHY
such as Ref. 42.
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