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PAPER INDUSTRY, SYSTEM IDENTIFICATION
AND MODELING

In many industries the processes used to manufacture a prod-
uct are at such a high level of complexity that no working
model of the process has been constructed. Such processes
generally consist of many variables (dependent and indepen-
dent) that interact through time to produce a system re-
sponse. Proper and efficient control of such systems relies
heavily on experienced operators who gain their system
knowledge from other operators, trial and error, and educated
guesses. In essence, prior experience allows operators to form
their own system model in order to best control the process.
An operator’s system model, however, is highly simplified,
since an operator cannot be expected to track the relation-
ships between hundreds of variables. It is also difficult, if not
impossible to quantify an operator’s knowledge of a system.
It would be useful if a tool could be constructed that, like an
operator, observed the system in action, only instead of form-
ing unstructured rules about the system like an operator
would, it would attempt to quantify the functional relation-
ship between the system response and the variables. Such a
tool could be used to predict the system response to a change
of one or more of the variables. Using such predictions, opera-
tors or control systems would have a better chance at effi-
ciently controlling a process. The task of system identification
is to provide such a tool.

A system identification tool would be useful in the analysis
of many human-made and naturally occurring systems. An
example of such a human-made system is a common pulp di-
gester found in the pulp and paper industry. A simplified de-
scription of a pulp digester is a tank in which wood chips
enter the top while the pulp (the raw material of paper) exits
the bottom. The system response this research effort is con-
cerned with is the height of the chip mixture in the digester,
known as the digester level. It is desired to keep this level as
constant as possible. However, the level commonly displays
erratic behavior as shown in Fig. 1.

In many paper plants the digester level is controlled by
human operators. When its level rises beyond a certain point,
the flow out the bottom of the digester (blow flow) is in-
creased. Likewise, the blow flow is decreased when the di-
gester level drops too low. In addition to blow flow, many vari-
ables within the system determine the digester level’s
dynamic response. However, the exact relationship between
the variables and digester level is unknown. A system identi-
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Figure 1. Digester level at a 15 min sampling rate.

J. Webster (ed.), Wiley Encyclopedia of Electrical and Electronics Engineering. Copyright # 1999 John Wiley & Sons, Inc.



580 PAPER INDUSTRY, SYSTEM IDENTIFICATION AND MODELING

fication tool that is able to predict the change of the digester The approximation is denoted as f̂(x) as shown in Eq. (3),
where ei represents the observation error (also called the re-level due to an adjustment in blow flow or some other variable
sidual error) of f̂(x) for observation i:would improve process control, resulting in a more stable di-

gester level.
One method of performing system identification is to use yi = f̂ (xxxi) + ei (3)

the auto-regressive moving average (ARMA) model (1). This
model is equipped with enough flexibility so that it is able to

However, the observation error alone is not an adequate mea-model an arbitrary linear dynamic system. The ARMA model
sure of the approximation. The generalization of f̂(x) mustperforms poorly, however, when the system contains nonlin-
also be considered. Generalization describes how well f̂(x)

ear characteristics. To get adequate performance, several
matches the values of f (x) when x � �xi�, x � D, where D is

ARMA models would have to be used as linear incremental the domain over which f (x) operates. If the model f̂(x) is only
models over small regions of the input space, which is imprac- valid at the observation points (corresponding to poor general-
tical for problems using large data sets. Just as linear model- ization), then it is useless, since a simple look-up table could
ing techniques such as ARMA are troubled by nonlinear char- perform the same task. One pitfall that should be avoided
acteristics, nonlinear modeling techniques have trouble when using Artificial Neural Networks (ANNs) is overfitting,
identifying exact linear relationships within a system. It is which occurs when the network becomes too specifically tuned
advantageous to have a modeling technique which has the to the training observations, resulting in poor generalization.
ability to capture both the linear and nonlinear components While there are many proposed techniques to perform off-
of a system equally well. A method of dealing with this prob- line training, only a few of these are discussed in this article.
lem is discussed in Ref. 2 and is described later in this article. One distinction of this research is that it uses local, rather

In this research, artificial neural networks (ANNs) are ap- than global, networks. A global network is made up of neu-
plied to the task of dynamic nonlinear system identification. rons whose activation functions respond strongly to inputs
ANNs were inspired by naturally occurring neural systems over a large portion of the input space. One disadvantage of
whose learning and computational abilities in many tasks are global networks is that a single node can be easily activated
far superior to the current capabilities of much faster digital by very dissimilar inputs, which causes network training to
computers. This is apparent, for example, when comparing be more difficult and time-consuming. A global activation
the superior pattern recognition ability of a small child with function is also a disadvantage when on-line training is con-
that of the most powerful supercomputer. A small child is sidered, since a very large amount of neurons and their corre-
able to distinguish the spoken word from sound wave inputs sponding weights must be altered each time the network
and is even able to assign meaning to the words, whereas the needs adjustment in order to better fit the system. In con-
most reliable way that words can be put into a computer is trast, the neurons in local networks respond only to limited
still via the keyboard. The field of neural networks represents regions of the input space, known as receptive fields. Local
an attempt to understand how neural systems process infor- nodes have an advantage over globally active units in that
mation. By doing so, it is possible to implement algorithms they can adjust themselves to model the particular character-
that attempt to model neural information processing. For istics of each subregion of the input space. The importance of
many problems, these systems produce superior results when this property is evident in the discussion of multiresolution
compared to those obtained by traditional computational analysis (MRA) presented later in this article.
methods. Generally, neural systems consist of many simple, This article consists of four major sections. First, back-
independent, and interconnected processing units known as ground information on function approximation using local ba-
neurons (also referred to as nodes). The neurons process infor- sis functions is given. In this section, the mathematics neces-
mation in parallel and are connected to each other via syn- sary to understand later concepts are reviewed. Also, the use
apses (also called weights in ANN terminology). The weights of wavelet functions as an MRA basis is discussed, followed
are adjustable, and they are responsible for the storage of in- by a discussion of radial basis functions (RBFs). Second, sev-
formation within the neural system. Learning in a neural sys- eral off-line locally active network architectures are pre-
tem corresponds to the adjustment of weights. The ability to sented. Both wavelet-based and RBF-based networks are de-
learn is one of the most useful properties of neural systems, scribed and compared. In the third section, the three network
because it often allows them to learn relationships among in- architectures used for this study are described. Finally, exper-
put variables which the human observer cannot discern. imental results are given for several problems, including the

In recent years the field of neural network has become a prediction of digester level.
popular paradigm for both function approximation and classi-
fication. In this article, function approximation is the main
concern. The goal of a function approximation problem is BACKGROUND
summed up as follows: Given a system with an unknown
functional relationship [Eq. (1)], construct an approximation This section reviews the mathematical tools used to construct
to f (x) based on a set of N input and output observations [Eq. and train networks of locally active units for function approxi-
(2)]. mation. Following a description of dynamic system modeling

using static function approximators is an explanation of the
expansion of functions over a local basis and the basic theory
behind multiresolution analysis using a wavelet basis. Fi-

y = f (xxx), f (xxx) : Rn 	→ R (1)

{xxxi} yi, i = 1, 2, . . ., N
nally, the use of radially symmetric basis functions and their
ability to perform multiresolution analysis are considered.yi = f (xxxi ) (2)
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Dynamic System Modeling Using a Static Model

The systems to be modeled in this research are multivariable,
nonlinear dynamic systems. The neural networks considered
are static in nature, meaning that the network response at
discrete time step, k, is a function only of the current input,
x(k). In contrast, the response of a dynamic system is a func-
tion not only of the current input but also of the past inputs
and responses. It is possible to model such dynamic systems
using a static model as expressed in Eqs. (4) and (5), where
ŷ(k � 1) is the predicted system response and u(k) is an input
vector whose elements consist of the dependent variables in
the system:

f (x) = w1   1(x) + w2   2(x)      
^ φ

2(x)

f(x)

e(x)

φ

1(x)φ

φ

Figure 2. Geometric interpretation of Eq. (8).
ŷ(k + 1) = f̂ (xxx(k)) (4)

When f (x) � span(�), the best approximation to f (x) is
xxx(k) = [y(k), y(k − 1), . . ., y(k − ny), uuu(k),

uuu(k − 1), . . ., uuu(k − nu)] (5)
achieved by selecting the expansion coefficients so that f̂(x)
represents the projection of f (x) onto span(�). In such a case,By including ny previous responses and nu previous inputs
�e(x)� � 0, but is minimized, and e(x) is orthogonal tointo x(k), the static function approximator is able to model
span(�). A simple geometric interpretation of Eq. (9) is shownthe dynamic system by constructing a mapping between the
in Fig. 2.space spanned by x(k) and the future system response y(k �

Equation (9) indicates that the task of function expansion1). When using this method it is important to select good val-
is to select a basis set which spans a subspace of H and is asues for ny and nu. If these values are too small, the mapping
close as necessary to f (x). The expansion coefficients are thenbetween x(k) and y(k � 1) may not represent a functional re-
obtained by projecting f (x) onto this subspace. A special caselationship and the approximation is poor. If the values are
is when the basis set is orthogonal. In order to represent anlarger than necessary, the dimension of x(k) is larger than it
orthogonal basis set, the condition in Eq. (10) must be met,needs to be, which makes the approximation harder to
which states that the energy contained in each basis elementachieve. In general, the difficulty of forming a function ap-
is independent of the others.proximation increases with the dimension of input space. This

concept is known as the curse of dimensionality. 〈φi(xxx), φ j (xxx)〉 = 0, i 
= j (10)
Function Expansion on a General Basis

Finding the optimal expansion coefficients for an orthogonal
The networks used in this article can be described as func-

basis set is a simple matter of projecting f (x) onto each basis
tional expansions over a set of local basis functions. Rather

element, as given by Eq. (11):
than describing a specific basis in this section, an arbitrary
basis � � H is defined, where H is a Hilbert space with an
inner product defined by Eq. (6): wi = 〈 f (xxx), φi(xxx)〉

‖φi(xxx)‖2
(11)

Another special case is when the basis set is biorthogonal. In〈 f (xxx), g(xxx)〉 =
∫

x∈Rn
f (xxx) · g(x)dxxx (6)

this case there is another basis set �̃ which corresponds to
�. The expansion coefficient is found by projecting f (x) onLength (norm) is identical to the standard definition given by
each element in �̃, as shown by Eq. (12):Eq. (7):

‖ f (xxx)‖ =
�

〈 f (xxx), f (xxx)〉 (7) wi = 〈 f (xxx), φ̃i(xxx)〉
‖φ̃i(xxx)‖2

(12)

� contains M basis functions, each one denoted as �i(x), i �
For nonorthogonal basis sets, the expansion coefficients are1, 2, . . ., M. An expansion over this basis is expressed in Eq.
found using pseudoinversion techniques. For more informa-(8), where wi is the expansion coefficient for the ith basis func-
tion on Hilbert spaces and function expansions the reader istion:
referred to Ref. 3.

Multiresolution Analysis (MRA) Using a Wavelet Basisf̂ (xxx) =
M∑

i=1

wi · φi(xxx) (8)

When approximating a function from observations, it is im-
In order to exactly represent an arbitrary function f (x), the portant to consider the local characteristics of the function. In
basis must satisfy f (x) � span(�). If this is the case, then some regions of the spatial domain, observations are dense
f (x) can be represented by Eq. (9), with the error residual, and the function may contain high frequencies (details), while
e(x), equal to zero: other spatial regions have less observations and contain

mostly low frequencies (coarse function characteristics). A
function with such local characteristics may be difficult tof (xxx) = f̂ (xxx) + e(xxx) (9)



582 PAPER INDUSTRY, SYSTEM IDENTIFICATION AND MODELING

and t are the dilation and translation parameters which give
each wavelet their localization properties:

ψx,t (x) = s−1/2 · ψ

�x − t
s

�
, t ∈ R, s ∈ R+ (14)

Translation localizes a wavelet in space, while dilation local-
izes a wavelet in frequency. Wavelets must satisfy three main
conditions. First, they must contain oscillations above and be-
low the x axis. Second, they must decay to zero quickly in
both the positive and negative directions. Third, the wavelet
should have zero mean. These properties are discussed more
precisely in Ref. 4. Figure 4(a–c) shows the effect of transla-
tion and dilation in the spatial and frequency domains for
the Mexican hat wavelet. It is apparent from Fig. 4(b,c) that
wavelets which contain wider and higher-frequency bands are
more localized in space than wavelets which contain narrower
and lower-frequency bands. In other words, spatially wide
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wavelets are used to represent low-frequency regions,
Figure 3. Plot of y � sin(x2). whereas spatially narrow wavelets are used to represent

lower frequencies, which agrees with intuition. This property
of wavelets is governed by the uncertainty principle, which
states that we cannot simultaneously improve the frequency

model and analyze using traditional Fourier techniques and time resolutions (5).
which use sinusoidal basis functions. Although sinusoidal ba- For digital implementations a discrete form of the wavelet
sis functions have excellent frequency localization properties exist which takes the form of Eq. (15), where a and b are
(each sinusoid represents one frequency), they are not local- discrete scale and translation step sizes:
ized in the spatial domain, because they are global functions.
This lack of spatial localization does not allow the Fourier
basis to model the frequency content of a particular region ψkl (x) = a−k/2 · ψ(a−k · x − l · b), k, l ∈ Z (15)

without also affecting its approximation over the rest of the
spatial domain. It is desired that a basis be constructed which In general for this research, a � 2 and b � 1, which indicates

that the spatial resolution changes by a factor of two for eachhas both spatial and frequency localization. By doing so, the
discrete scale step. A multiresolution basis is constructed bylocal characteristics of a function could be modeled without
creating a discrete lattice of wavelet functions, where eachaffecting the approximation outside of the local area. Such a
element in the lattice has a unique k, l combination. Such abasis would have more success at modeling signals with local
discrete lattice is called a frame and is introduced in Ref. 6irregularities than a spatially global basis. Figure 3 shows a
and expanded upon in Ref. 7.plot of the function y � sin(x2).

To perform MRA using a wavelet basis, the function con-It is apparent that as the value of x increases, so does the
sidered must work in tandem with the wavelet called a scal-frequency of y (the frequency of y is a linear function of x). If
ing function. For each wavelet, �kl, there is a correspondinga spatially and frequency localized basis exists, it is possible
scaling function, �kl. Scaling functions have a useful propertyto model the signal by spatially placing basis functions which
which is expressed below in Eqs. (16) and (17), where Fk(k) isrepresent lower frequencies further to the left. Each basis
an approximation to f (x) at resolution level k, and ckl repre-function would essentially act as a filter which captures the
sents the expansion coefficients for each scaling function,frequency content of a signal within a spatially localized area.
which are obtained by projecting f (x) onto the space spannedMRA is a modeling and analysis technique where a func-
by the scaling functions:tional relationship f (x) can be decomposed into approxima-

tions at multiple resolution levels as shown in Eq. (13),
where f̂k(x) represents the approximation at the kth resolution
level:

F̂k(x) =
∑
l∈Z

ckl · φkl (x) (16)

F̂k−1(x) = F̂k(x) + f̂k(x) (17)

f (xxx) =
L∑

k=0

f̂k(xxx) (13)
Equations (16) and (17) show that an expansion over the scal-
ing functions at resolution k � 1 (finer resolution) is equiva-

The resolution level corresponding to k � 0 represents the lent to an expansion over the scaling functions and wavelet
finest details (highest frequencies) of the signal while the res- functions at resolution k (coarser resolution). The wavelet
olution level k � L represents the coarsest characteristics of expansion, f̂k(x), represents the detail added when progressing
the signal. A discussion is now given concerning how an MRA from a coarser approximation at resolution k to a more de-

tailed approximation at resolution k � 1.representation can be constructed using a wavelet basis
expansion. The most useful wavelet basis sets are orthogonal. Given

Wk � H, which is the space spanned by the orthogonal wave-A wavelet basis is made up of translations and dilations of
a single mother wavelet �(x) as shown in Eq. (14), where s let at resolution k, Eq. (18) shows that the wavelet spaces
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Figure 4. (a) Translations of the Mexican
hat wavelet. (b) Dilations of the Mexican hat
wavelet (spatial domain). (c) Dilation of the
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spanned at each resolution level for an orthogonal wavelet these functions to two dimensions is discussed in Ref. 7, and
the results are shown below:basis are completely independent:

WWWk ⊥WWW j, k �= j (18)

Also, the space spanned by the scaling functions at resolution
k is defined as Vk � H, which also represents an orthogonal

�mn(x1, x2) = φmn1
(x1) · φmn2

(x2) (21a)

�1
mn(x1, x2) = φmn1

(x1) · ψmn2
(x2) (21b)

�2
mn(x1, x2) = ψmn1

(x1) · φmn2
(x2) (21c)

�3
mn(x1, x2) = ψmn1

(x1) · ψmn2
(x2) (21d)

subspace. The subspaces of the scaling functions at different
resolutions are not orthogonal as is the case in Eq. (18). In-

These functions form an orthogonal basis in L2(R2). It is neces-stead, these spaces are subsets of one another.
sary to have three wavelet functions in order to completely
define the basis; each function filters information at different

. . . ⊂ VVV 2 ⊂ VVV 1 ⊂ VVV 0 ⊂ VVV −1 ⊂ VVV −2 ⊂ . . . (19)
orientations in the input space. The above result can be gen-
eralized to Rn. The number of wavelet functions, however, is

Equation (17) demonstrates a very important relation be- equal to (2n � 1), which means that (2n � 1) expansion coeffi-
tween the wavelet and scaling function spaces. cients must be computed for each frame element. This be-

comes computationally expensive for higher dimensions. One
initial concern when considering wavelet neural network im-VVV k−1 = VVV k ⊕WWWk (20)
plementations is how to keep the advantageous properties of
wavelets when the dimension of the input space is large. TheUsing the relation in Eq. (20), it is possible to form approxi-
wavelet neural networks discussed afterward confront multi-mating subspaces at arbitrarily high resolutions by beginning
dimensional spaces in different ways. For more information

with a low-resolution scaling space and including the wavelet on wavelets and their applications, the reader is referred to
subspaces at successively higher resolutions until the desired Refs. 3 and 8.
approximation accuracy is obtained. Finding the coefficients
for an orthogonal wavelet space requires that the function to

Using Radially Symmetric Basis Functionsbe approximated is projected onto each scaling and wavelet
function to be considered, as was demonstrated by Eq. (11). Radial basis functions (RBFs) are commonly used for function

In recent years several orthogonal, one-dimensional wave- approximation in the field of neural networks. RBFs are local
let sets have been constructed. The functions have found functions which are defined by a center, c � Rn, and an n �

n diagonal matrix, ��1, having 1/�2
j for the diagonal compo-many uses in signal processing applications. The extension of
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Figure 5. (a) One-dimensional Gaussian functions. (b) Two-dimensional Gaussian functions.

nents. The center defines the location of the basis function in erty. Because the levels of an RBF MRA lattice are not
orthogonal, the lattice contains redundant information (thethe input space, while ��1 defines the shape of the functions

receptive field. One of the most commonly used RBFs is the energy contained by each element is not independent), and an
approximation on such a grid may not be as efficient as thatmultidimensional Gaussian function given by Eq. (22), where

di(x) represents a weighted distance measure which defines obtained using an orthogonal basis. Also, the coefficients may
be more time-consuming to compute for an RBF basis. Thean n-dimensional hyperellipsoid [Eq. (23)]:
following section considers the ability for a wavelet basis to
maintain these advantages for high-dimensional, irregularlyφi(xxx) = e−di (xxx))2/2 (22)
sampled spaces. It is shown that the advantages offered by a
wavelet basis do not come into effect for many practical
problems.di(xxx) =

�
(xxx − ccci ) · �−1

i
· (xxx − ccci )

T =
�

n∑
j=1

(xj − ci j )
2

σ 2
i j

(23)

NETWORK IMPLEMENTATIONSFigure 5(a) shows examples of one-dimensional Gaussian
functions. The width of the receptive field can be changed by

This section presents the construction of basis function net-modifying ��1. Functions with narrow receptive fields contain
works to be used as function approximators. The generalhigher frequencies than those with wide receptive fields.
method of network construction is discussed, followed by aChanging ��1 is analogous to changing the dilation value of a
description of various networks which use wavelet basis func-wavelet. Figure 5(b) shows examples of two-dimensional
tions and various techniques used to construct networks uti-Gaussian functions with different centers and ��1.
lizing an RBF basis set.It is important to notice that for different ��1, the major

axis of the ellipsoidal receptive field along each dimension
General Network Construction from an Arbitrary Basischanges length. This permits control of how fast the Gaussian

function decays to zero along each dimension. This is an im- Figure 6 represents the network model used for this research.
portant property since it allows the scaling of a Gaussian Each circle corresponds to a functional node, �i, of the net-
function to cover a particular input space. For example, con- work which accepts an input, x � Rn, and generates an out-
sider a two-dimensional space for which one variable ranges put. All of the outputs, �i(x), are multiplied by a correspond-
from �1000 to 1000, and the second variable ranges from ing weight, wi, and then summed to obtain the network
�0.1 to 0.1. If a standard euclidean distance measure is used output, f̂(x). This architecture matches the model defined by
to define the receptive field by setting ��1 � I, the Gaussian Eq. (8) exactly. Generally, the network makes an approxima-
response is the same in each input direction. Such a Gaussian tion of a function based on a set of training observations as
function models the input space poorly since it barely detects shown by Eq. (2). The problem can then be viewed in matrix
a variation in the second dimension compared to the first di- form, Eq. (24), where Y is an M � 1 column vector whose
mension. It is necessary to adjust ��1 so that the Gaussian elements are the set �yi�, � is an M � N matrix whose col-
decay is related to the data range covered by each dimen- umns are made up of the activation values of a single node,
sion. If this is done properly, it is equivalent to normalizing �i(x), for each x � �xi�, and w is an N � 1 column vector
each input dimension and using a circular receptive field whose elements represent the weight or expansion coefficient
(��1 � I). for each node:

A basis made up of RBFs is not orthogonal by nature, as
opposed to a wavelet basis. Like wavelets, however, an RBF YYY = ��� · www (24)
basis can be set up to perform MRA by having several differ-
ent resolution levels of RBF units. The chief advantage of us- Training the network corresponds to solving the system of lin-

ear equations, Eq. (24), while still attempting to ensureing a wavelet basis to perform MRA is its orthogonality prop-
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sure for a particular parameter set, P, is defined to be the
sum-squared error between the network approximation and
the desired network responses [given by Eq. (2)] and is ex-
pressed by Eq. (26), where f̂P(x) is the network output for pa-
rameter set P:

E(PPP) =
N∑

j=1

(yj − f̂PPP(xxxj ))
2 (26)

It is desired to find the parameter set which makes this error
small (note that minimizing the error may cause poor gener-
alization). The partial derivative of E(P) is found for each pa-
rameter (Di, Ri, ti, wi), and the parameters are iteratively up-
dated using Eq. (27), where pk is the kth parameter in P:

pppk(t + 1) = pppk(t) − ∂E(PPP)

∂pppk
(27)

…

w1 w2 w3

f (x)

x

wM

φ 1 φ 2 φ 3 φM

+

^

Figure 6. General basis function network. The error surface for the parameter space is very rough and
plagued by local minima. This makes the convergence of such
a technique very unstable and slow. The authors describe a

proper generalization. Every network discussed in this article method for selecting initial values for the parameters, which
can be described by this basic model. Two main tasks are in- slightly improves the performance. Results are given for only
volved when training a basis function network which is repre- one- and two-dimensional functions since the network would
sented by Eqs. (8) and (24). First, the network structure (�) be very difficult to train for problems of higher complexity. As
must be determined, which corresponds to selecting appro- pointed out in Ref. 11, this approach is essentially a slight
priate basis functions which give the network enough flexibil- variation of an RBF network (to be described later) trained
ity to perform the desired approximation. Second, the weights using gradient descent, a training method which has been
(expansion coefficient) must be determined which provide the shown to be inferior to other training methods.
best approximation to the target function. The differences be- Zhang et al. present another implementation of a wavelet
tween the various networks that are presented are due to dif- network in Ref. 11. In this network, scaling functions from a
ferent ways of determining the network structure and single resolution are used for the node activation levels. To
weights. contend with multiple dimensions, the node activations are

products of the scaling function calculated for each dimension.
The following brute force training method is used. First, se-Wavelet Networks
lect a scale level of k � k0 and use the scaling functions at

In this section, work done in the field of function approxima- that resolution to generate the � matrix of Eq. (24). Then,
tion using wavelet networks is considered. It is important to use the generalized matrix inverse to solve for the weights of
pay attention to how each network contends with high dimen- the least-squares solution as given by Eq. (28):
sional spaces, since this is a potentially troublesome problem
when using wavelets. Also, it is important to consider how www = ((���T���)−1���T)YYY (28)
the orthogonality of a wavelet basis aids the network, if at all
for high-dimensional spaces. If the solution using the weights given by Eq. (28) does not

Zhang and Benveniste present a wavelet based network in produce an acceptable result (large error), then the resolution
Ref. 9. In this design, the number of nodes to be used in the is decreased by one (resulting in a finer scale) and the process
network is arbitrarily selected. Each node used the Mexican is continued until the appropriate scale level is determined.
Hat wavelet (second derivative of the Gaussian function) for One problem that becomes apparent is that for high-dimen-
an activation function. This wavelet constitutes a nonorthogo- sional spaces, far too many scaling functions are needed to
nal basis; therefore, the results obtained do not yield any in- adequately cover the space. In an attempt to solve this prob-
formation about the advantages of using an orthogonal wave- lem, the researchers use a principal component analysis
let basis. To deal with multiple dimensions, the activation (PCA) technique which reduces the dimension of the input
function of each node is defined by Eq. (25), where Di is the space. This technique may perform well for some input
dilation matrix (same role as ��1 for RBFs), ti is the transla- spaces; but for high-dimensional spaces in which most compo-
tion vector (same role as ci for RBFs), and Ri is a rotation nents are significant, PCA loses information, leading to poor
matrix which rotates the receptive field of the wavelet in or- results. This network implementation does not take advan-
der to account for the various possible orientations: tage of MRA (all the functions are from the same scale). The

results given compare RBF performance to that of the wavelet
network. It is shown that the wavelet network and RBF net-
work achieved results of the same accuracy using the same

φi(xxx) = �(DDDiRRRi(xxx − ttti ))

�(x) = ψ(x1)ψ(x2) . . . ψ(xn), x ∈ Rn (25)

number of nodes. The chief advantage given for using the
wavelet network over the RBF network was that the RBF net-A gradient descent method is used to adjust the network pa-

rameters for network training. This method is similar to the work requires an amount of trial and error during training
while the wavelet network does not. This wavelet network,way a backpropagation network (10) is trained. An error mea-
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however, uses an automated trial-and-error process to find When the approximation error is small, no additional neurons
are added and training ends. The method of orthogonalthe correct scale level.

Bakshi and Stephanopoulos present another wavelet-based search has been used before (as will be seen in the RBF sec-
tion), but the chief advantage of this method over previousnetwork, Wave-Net, in Ref. 12. This network utilizes the con-

cepts of both orthogonal wavelets and MRA. Both scaling and orthogonal-search-based methods is that the candidate set of
neurons represents many resolutions, offering more flexibilitywavelet functions are used as the node activation functions.

For multidimensional spaces, generalizations of Eq. (21) are to the network structure. The authors claim that the use of
wavelets in the WaveARX network was a chief advantage.used. This produces (2n � 1) wavelet functions for each grid

point of an MRA lattice. Wave-Net is trained by first defining However, it seems that the chief advantage lies in the MRA
orthogonal search combination, and not in the fact that aan MRA lattice, which is done by setting the finest resolution

level (k � 0) in each dimension to have a spacing equal to the wavelet basis function was used. In this article it is proposed
that using RBF nodes instead of wavelet nodes in this net-smallest sampling rate for the particular dimension. The rest

of the lattice is constructed by decreasing the resolution of work would produce nearly the same results.
For completeness, a discussion of the orthogonal search al-the coarser levels by a factor or two, until only two units are

present in each dimension. The scaling functions at an ade- gorithm is now given. Using the form in Eq. (24), it is helpful
to view Y as a linear combination of the columns of �, eachquately coarse resolution are then used to construct a net-

work and find a solution using Eq. (28). If this solution is not of which represents the trace of a single basis function over
the training observations. Some of these columns are moreacceptable, then wavelets at successively finer resolutions are

added to the network (increasing the detail of the approxima- important to the approximation than others. The orthogonal
search algorithm is a way to measure the importance of eachtion) until the solution is acceptable. Wavelets and scaling

functions at each resolution level which contribute least to column (and thus each basis function) in �. The basis func-
tions are then included in the order of their importance untilthe approximation (small weights) are then removed from the

network. This network takes full advantage of the orthogonal an acceptable network performance is reached. The impor-
tance of each column is determined by calculating how muchMRA. It can be seen from this network, however, that using

orthogonal wavelets does not help solve for the weights when unique energy a column has in the direction of Y. The unique-
ness criteria implies that each time another column is addedthe space is nonuniformly sampled. In this case, the weights

must be found using Eq. (28) rather than using the projection to the network, it is the one which has the maximum amount
of useful energy which is not already present in the approxi-of the target function onto each basis unit. Also, this network

is still plagued by the curse of dimensionality, since the num- mation. To determine this, the Gram–Schmidt orthogonaliza-
tion procedure is used. First, an energy reduction ratio (ERR)ber of nodes can be very large for high-dimensional spaces.

Results are not given for problems with a dimension greater is defined, which indicates how much energy a column, �, con-
tains in the direction of Y:than two.

Finally, Chen and Bruns present the WaveARX network
in Ref. 2. This network uses the nonorthogonal Mexican Hat
wavelet as an activation function. To confront multiple di- ERR(φ) =

�
φTYYY
‖φ‖

�2

(30)

mensions, a radial wavelet function is defined to be the acti-
vation of each node, as shown in Eq. (29), where ti and si are The algorithm proceeds as follows:
the translation and dilation parameters, respectively:

1. Initialization. Set the columns of � to be equal to the
traces of each basis function, �i(x). Create an empty
set, I � � � to store the indexes of the selected nodes.

φi(xxx) = ψ

�∥∥∥∥xxx − ttti

si

∥∥∥∥
�

(29)

2. Node Selection. Determine the index, k, which satisfies
By defining the activation function in this way, the orthogo-
nality property of wavelets for higher dimensions is lost, al- max(EER(φk)), 1 ≤ k ≤ N, k ∈/ III
though in this case it did not matter since the wavelet is al-
ready nonorthogonal. This method reduces the number of Add k as an element of set I.
wavelet units needed in the network for higher dimensions. 3. Orthogonalization Step. Remove the component of �k
To train the network, an MRA lattice is defined over the input from all candidates in � as shown below:
space, and those wavelets for which training data fall within
their receptive fields are selected as network candidate neu-
rons. Another set of n � 1 neurons, where n is the input di- φi = φi −

�
φT

k φi

‖φk‖2

�
φk, 1 ≤ i ≤ N, i ∈/ III

mension, is added to the candidate set. These are called the
autoregressive external (ARX) input nodes, whose responses 4. Calculate a Termination Condition. This condition is
are linear with respect to the input variables. An extra neu- the approximation error found using the basis functions
ron is added as a bias unit which produces a constant output. contained in I.
Thus the wavelet nodes represent the nonlinear portion of the

5. Loop. If the termination criterion was not satisfied, goapproximation, while the ARX nodes represent the linear por-
to step 2.tion. An orthogonal search procedure, which is described be-

low, is then used to select candidate neurons to be added to
RBF Networks

the network in the order of their importance to the approxi-
mation. As each neuron is added, the weights of the network The RBF network with a single layer of nodes, each having

the same width, has been shown to possess the universal ap-are found using Eq. (28) to solve for the approximation error.
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proximation property in Ref. 13, and it is discussed further in
Ref. 14. This property, however, reveals nothing about meth-
ods to obtain such an approximation. Much work has been
done trying to solve this problem, part of which is reviewed
in this section.

The goal is to use the system defined by Eq. (24) to form
the approximation f̂(x). For all cases in this section the
weights, W, are found using Eq. (28). The main task is to
select a set of basis functions which result in a stable solution
of Eq. (24). The stability of a solution in this case corresponds
to the degree of smoothness of the approximation. The degree
of smoothness represents how the approximation behaves for
the input space outside of the training set and dictates the
generalization ability of the network. For example, if the
widths of an RBF network are selected to be too small, then
the approximation may pass through the training points as
desired; however, the rest of the approximation may be very
unstable, constituting poor generalization. Also, if the widths
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are selected to be too large, then the basis function matrix,
�, may be ill-conditioned (since its columns will be strongly Figure 7. Clustering example. *, clusters; ., data points.
dependent), resulting in unstable weights.

To obtain a stable solution, the RBF nodes must cover the
input space of the approximation, which is accomplished by 2. Cluster Formation
selecting appropriate centers, and the node widths are se- • Assign each input xi to a set �g�j of vectors whose clos-
lected to yield good generalization, by selecting good values est center is cj:
for the elements of ��1. It is also desired to keep the number
of RBF nodes as small as possible. The simplest method of xxxi ∈ {ggg} j → ‖xxxi − ccc j‖ = min{‖xxxi − cccl‖}, l = 1, . . ., K

selecting the centers of a network is to create an exact net-
3. Center Modificationwork, which means that one center is selected for each train-

• Move each center cj in the direction of the mean of alling data point. There are several ways of selecting the widths
the input vectors in �g�j. The learning rate parameterfor such a network, one being to assign each node the same
� determines the fraction of the distance the center is��1 and use trial and error to find an appropriate value. An-
moved.other approach is to use a P-nearest-neighbor heuristic which

considers the P nearest neighbors of a particular node to cal- ccc j = ccc j + η · (mean({ggg} j ) − ccc j )culate ��1. Some of these heuristics are discussed in Ref. 15.
The obvious dilemma with an exact network is that the num-

4. Termination Criteriaber of nodes grows very large for large training data sets.
• If the average movement of the centers is below a cer-It is generally possible to get a better or comparable ap-

tain threshold, terminate the algorithm. Else, repeatproximation of an exact network using far fewer nodes. One
steps 2 and 3.way to reduce the number of nodes is to use a clustering algo-

rithm to distribute the nodes relatively evenly over the input
space. A common clustering algorithm is known as k-means
clustering, which is used in several RBF implementations, in-

IF
1
K

K∑
l=1

‖mean({g} j ) − ccc j‖ ≥ α

cluding Ref. 16. Figure 7 shows the results of using 50 nodes
THEN GOTO Step 2(stars) to cluster a two-dimensional random data set con-
ELSE ENDsisting of 1000 points (small dots).

It is observed that the centers are distributed uniformly
Although this algorithm performs well, it has one weakness.over the input space. This clustering algorithm, as well as
There is no guarantee that all K centers represent valid clus-the others used in this research, is performed using a slight
ters. If an initial center is not closest to any input vector, itmodification to the k-means algorithm. The k-means algo-
is not updated and becomes useless. In order to solve thisrithm is explained below, followed by the modification which
problem, a Robin Hood variation of the K-means algorithm isis referred to as the Robin Hood variation.
used, which robs the rich centers to feed the poor centers. TheThe k-means algorithm performs the operation of as-
richness of the jth center equals the number of input vectorssigning K nodes to the means of K clusters of data. This is
assigned to the set �g�j. Essentially, input vectors are stolen

accomplished by the following iterative algorithm. from the richest centers and given to the centers with �g�l �
� �, l � 1, . . ., K. This procedure relocates isolated centers to

1. Initialization the most heavily populated regions of the input space. Thus,
• Let �xi�, xi � Rn, i � 1, . . ., M, be the set of input the clusters provide a better approximation of the input space

vectors. because more centers are present in the densest regions. Step
• Generate a set of K randomly distributed cluster cen- 3 of the above algorithm can be modified in order to imple-

ment the Robin Hood variation.ters �cj�, cj � Rn, j � 1, . . ., K.
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3. Center Modification and are trained using the orthogonal search algorithm to
limit the number of nodes. It is assumed that such a networkA. Richness Sorting
generates a solution which is at least as good as a network• Let the set �ri�, i � 1, . . ., K, contain the elements
trained without the technique. The disadvantage to using anof �cj� sorted in descending order according to their
orthogonal search is that for large data sets with large num-richness.
bers of nodes, the training time can be quite lengthy. To helpB. Center Adjustment
overcome this problem, the fast orthogonal search (FOS) algo-• For each center cj, if �g�j � � �, move cj very close
rithm is used instead of the more straightforward orthogonalto the richest center that hasn’t already been
search. The FOS algorithm is presented in Ref. 19 and simplyrobbed; else move cj in the direction of the mean of
represents a faster way to perform an orthogonal search.all the input vectors in �g�j.

SET i � 1
WaveARX Like MethodsIF �g�j � � �,

THEN cj � ri � �; i � i � 1 The WaveARX network, as described above, is used in the
ELSE cj � cj � � 	 (mean(�g�j) � cj) experimental results section of this article. In Ref. 2 the

• Each element of the vector � is randomly selected WaveARX network is shown to yield results superior to that
to be 
�, where � is a very small number. of a standard RBF network and also superior to that of previ-

ous attempts at wavelet-based networks (no comparison with
After the clustering process is complete, the width of the RBF Wave-Net was given). Because of the high dimension of the
nodes must be selected so as to cover the entire input space. system identification problem presented in this research,
This can be done using various P-nearest-neighbor tech- Wave-Net is not implemented. Recall that Wave-Net requires
niques. (2n � 1) nodes for each grid point. This is impractical for high-

Another method of selecting the node locations and width dimensional applications. The main goal, then, is to deter-
is presented in Ref. 17. Here, a genetic algorithm is used to mine what gives WaveARX its advantage. To aid in answer-
evolve populations of RBF nodes toward a good approxima- ing this question, an RBF version of the WaveARX network
tion structure. The initial results indicate that this method is implemented, which differs from WaveARX only in the fact
outperforms the k-means clustering algorithm. However, fur- that it uses Gaussian activation functions rather than Mexi-
ther study is necessary to draw definite conclusions. One pos- can hat functions. This is similarly called the GaussianARX
sible weakness of the genetic approach is that it is very sensi- network. For each case the MRA grid is set up as follows.
tive to changes in its many parameters. Begin with the coarsest resolution level so that there are two

Finally, an RBF approach is implemented in Ref. 18, which nodes along each input dimension. The spacing between
combines clustering with the orthogonal search. The standard nodes in each dimension is set according to the span of the
k-means clustering technique and P-nearest-neighbor heuris- training data in each dimension. For successively higher reso-
tics are used to select a set of centers and corresponding lution layers, the number of nodes along each dimension is
widths. The orthogonal search algorithm is then used to select doubled. For the GaussianARX network, the widths are se-
the most useful centers until the training error is acceptable. lected so that each Gaussian unit has a value of b at the cen-
This method achieves more efficient results, with less nodes, ter of its nearest neighbor in the grid. Generally, a value of b
than an approximation which uses all of the centers found by between 0.2 and 0.5 works well. Although many nodes are
the clustering algorithm. This efficiency becomes increasingly present in the full MRA grid, only the nodes whose receptive
important as the dimension of the input space is increased. fields cover the input data are used. The FOS algorithm is
There are a few differences between this approach and the then used to select the most important basis functions until
approach used by the WaveARX network. First, the an acceptable result is reached.
WaveARX network creates the candidate set of nodes using When using the WaveARX or GaussianARX networks, one
an MRA grid, where the orthogonal RBF implementation does potential problem concerns the memory and time required for
not include nodes at multiple resolutions for a single spatial network construction, specifically for the FOS algorithm. This
region. This means that the WaveARX network has a wider is because with a moderate number of resolution levels (gen-
variety of nodes to select from, which gives it an advantage. erally three or more), the initial group of nodes given to the
Second, the RBF implementation does not include the linear FOS algorithm is very large for problems with several dimen-
terms in the model. There is no reason, however, that an RBF sions and a large number of data points. Often there are so
network cannot use linear terms just as effectively as the many initial nodes that the number of resolution levels must
WaveARX network. Third, the WaveARX network uses the be decreased in order to perform the FOS computation in a
Mexican hat function as opposed to a Gaussian function. It is reasonable time. It is desirable to give the FOS algorithm a
not believed that the activation function is responsible for the multiresolution set of candidate nodes for which the number
advantages exhibited by the WaveARX network. If an RBF of nodes is not dependent on the number of data points. This
network is given a multiresolution set of nodes and is trained would make the FOS algorithm running time less dependent
using an orthogonal search procedure, the performance on the number of data points. The following network is an
should be very similar to the WaveARX network. attempt to address this problem.

Multiresolution Clustering Network
NETWORKS USED FOR THIS STUDY

This network uses a multiresolution clustering (MRC) tech-
nique in order to generate a candidate set of RBF nodes forThis section discusses the three networks which will be used

in the experimental results section. It is desired that these the FOS algorithm to select from. MRC is similar to a struc-
ture called a multilayer self-organizing feature map which isnetworks have some form of MRA built into their structure,
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used for image segmentation (20). The idea behind both algo- • Calculate the number of neurons for the next layer.
rithms is to cluster data at successive resolution levels. Es-
sentially the MRC technique begins by using the k-means al- Pk+1 = int(λ · Pk), 0 < λ < 1
gorithm to cluster the training data using N0 nodes. Next, the In general, � � 0.5 is used, so that the number of neu-
values of the N0 node locations are clustered using N1 centers, rons decreases by one-half with each iteration.
where N0 
 N1. The successive clustering is continued until • Increase the counter
the number of nodes used for clustering is less than 2. For
each level of clustering, the widths are selected using a P- k = k + 1
nearest-neighbor technique. Such a clustering method pro-

3. Termination Criteria.duces a set of nodes at multiple resolutions, since as the num-
• If the number of neurons in the current layer � 2, theber of nodes is decreased for each level, the widths of the

next layer has at least one neuron and the above pro-nodes on that level increase in order to cover the space, which
cess is repeated.yields a coarser resolution than the previous level.

IF Pk � 2,The goal is to end up with the sets �ci� � Rn and �ai� � R
THEN GOTO Step 2which represent the center locations and width parameters,
ELSE ENDrespectively, for each candidate node. The width parameter

set stores a scalar value for each node which defines a width
After performing the MRC algorithm, use the sets C, A aswith respect to the other nodes. It would appear that more
candidate nodes for the FOS algorithm.than one scalar is necessary to represent the width for each

dimension. However, the P-nearest-neighbor heuristic used
here simply assigns a ��1

i matrix to each node which is a sca- EXPERIMENTAL RESULTS
lar multiple of a common ��1, whose diagonal elements are
the variances of the training data in each input dimension. This section presents the results of two experiments per-
The reason this is done is so that the ��1 matrix has a normal- formed to address the following concerns. First, it is desired to
ization effect on the input space. Scaling this matrix permits observe if there is a significant difference between the results
change in the receptive field size of a particular node, which obtained by the WaveARX network and those obtained by its
corresponds to changing its resolution. The activation for each Gaussian counterpart. If there is not a significant difference,
node is found using Eqs. (22), (23), and (31), where xi repre- then it is probable that the advantages achieved by the
sents the training data inputs: WaveARX network are due to the MRA orthogonal search

combination rather than the activation function. Second, the
results of the multiresolution clustering network are com-
pared to those of the WaveARX-like networks in order to see

�−1
i = ai�

−1

�−1 = var({xxxi})
(31)

if it possesses any significant advantages or disadvantages.
Finally, the ability of such networks to model a real-worldP-Nearest-Neighbor Heuristic. To calculate the scalar width
nonlinear dynamic systems is discussed.values, ai, for a set of centers, �ci�, solve for ai using Eqs. (22),

The first experiment is a one-dimensional function approx-(23), and (31) such that the RBF node defined by ci has an
imation problem which is designed to demonstrate the MRAactivation value of b at the coordinate defined by the center
capabilities of the networks. The second experiment is toof its Pth nearest neighbor. Generally P � 2 and b � 0.5 yield
model the level of the pulp digester at a paper plant, whichgood results.
is a seven-dimensional problem. Each experiment follows theNow that a method of selecting widths has been devised,
same procedure. Each of the three networks are trained usingthe MRC technique is given below:
a training data set and likewise tested with an independent
testing data set. The performances of the networks are com-1. Initialization.
pared based on the training error, testing error, and the num-

• Select P0, the number of neurons for the initial layer.
ber of nodes used for the approximation. The error measure

• Create sets C and A to store the centers, c, and width
to be used is the mean-squared error (MSE) and is given byparameters, a, of the neuron candidates.
Eq. (32), where M is the number of observations (samples),

• Set C � � � and A � � �.
yi is the ith output observation, and f̂(xi) is the network output

• Define a set of vectors to be clustered, D � �di�. Initial-
for the ith input observation:ize D to contain the input training vectors.

{dddi} = {xxxi}, i = 1, . . ., M MSE = 1
M

M∑
i=1

(yi − f̂ (xxxi))
2 (32)

• Set the iteration counter, k � 0.
2. Clustering.

One-Dimensional Function• Create a new set of centers, D� � �d�i �, i � 1, . . ., Pk,
by clustering D with the K-means algorithm and The function to be modeled is the example function shown in
‘‘Robin Hood’’ criteria. Fig. 3, with a linear term added as given by the expression

• Calculate a set of width parameters, A� � �a�i �, i � 1, below:
. . ., Pk, for the centers in D�.

• Add the new centers in D� to C and the new width y = sin(x2) + x, 0 ≤ x ≤ 2π

parameters in A� to A.
• Set D � D�, so that the most recent set of centers will The training data consisted of 40 evenly spaced function sam-

ples, while the testing data contained 200 evenly spaced sam-be clustered into a smaller set with the next iteration.
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Table 1. Results of One-Dimensional
Function Approximation

Training Testing Number
MSE MSE of Nodes wlin

MRC 0.0021 0.0041 23 1.122
WaveARX 0.0028 0.0030 26 0.987
GaussianARX 0.0021 0.0047 23 1.098
Standard RBF 0.0025 0.0081 35 0.975

ples. For this example, the three networks described above
were trained, along with a standard RBF network which was
trained using K-means clustering and the P-nearest-neighbor
heuristic described earlier. For the standard RBF network,
the number of nodes was increased until the desired error
was reached. Note that a linear term was included in the
model so that it could be better compared to the other net-
works. The standard RBF network is included in this experi-
ment to demonstrate the advantage gained by using MRA,
which the standard RBF doesn’t support. The networks were
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all trained until the training MSE reached 0.003 (an arbitrary
Figure 8. MRA demonstration.value which yields good results). Then, the testing MSE was

calculated and the number of nodes was recorded. As ex-
pected, the linear node corresponding to the input x was se-

are used to predict the digester level in this study are thelected by the FOS algorithm for each network, and the weight
blow flow, which is a measure of the flow out of the bottom ofassociated with the linear node, wlin, was recorded. It is impor-
the digester, and three strain gauges, which measure thetant to note that the results given for the MRC network rep-
strain at different points on the digester. The present andresent averages taken over five trials. This is to account for
past values of the digester level are also used in the model.the fact that performance will vary for the MRC networks
These variables may not be the only ones the digester level issince the clustering is not exactly the same for each run. This
dependent on, but they are the ones available which producedis one disadvantage of the MRC network. The results are
the best experimental results. The network was also given thegiven in Table 1.
current digester level, as well as the digester levels 15 minIt is clear from the table that the networks utilizing MRA
and 30 min prior to the current time (the sampling rate for(the first three in the table) all achieve significantly more ef-
all the data is 15 min).ficient network structure (fewer nodes) than the solution

The training set consists of about 7 days of digester levelreached by the standard RBF. This is the expected result
operation which yields 700 training data points. The testingsince the frequency concentration of this function changes
data consisted of 300 data points, or about 3 days of digesteracross the spatial domain, which means that an MRA struc-
level operation. Each network was trained until the trainingture is better suited to make the approximation. No conclu-
MSE became less than 55 (the MSE of 55 was found to yieldsion can be drawn, however, regarding the approximation
good generalization for all networks), and then the testingmade by the three MRA-based networks. The Gaussian-based
MSE and number of neurons used was recorded. Table 2network used three fewer nodes than the WaveARX network.
shows the results for this experiment.However, the WaveARX network achieved a slightly better

The results show that the GaussianARX network gives thetesting error. It can be seen that for all networks, the weight
best overall performance with respect to testing MSE andassociated with the linear node represented the linear portion
number of neurons used. It is interesting to point out thatof the signal very well since the values are all very close to
both networks which use Gaussian activation function use 101.0, which is the slope of the linear portion. To further demon-
less nodes than the WaveARX network. Apparently for re-strate the MRA structure of the networks, Fig. 8 shows the
search effort, the Gaussian function is better suited to makefunction to be approximated along with the first 10 nodes se-
the approximation than the Mexican hat function. This, how-lected by the FOS algorithm for the GaussianARX network.
ever, gives no indications as to which activation function isNote that the Gaussian nodes are more narrow on the
best for the general case. If anything, the result indicates thatright portion of the graph. This is expected, since the fre-

quency content of the signal increases on the right.

Pulp Digester Level

The goal of the second experiment is to model the multidi-
mensional dynamic system defined by the pulp digester level
in a paper mill. As described earlier, the digester level is a
process variable indicating the approximate height of the
pulp in the digester. This level fluctuates freely, which is de-
pendent on many factors. The four independent variables that

Table 2. The Training and Test Results of the Digester
Level Experiment

Number
Training MSE Testing MSE of Nodes

MRC 54.91 77.86 60
WaveARX 54.94 75.49 71
GaussianARX 54.52 69.32 60
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Figure 9. Training and testing outputs for (a) MRC network, (b) WaveARX network, and (c)
GaussianARX network.

certain activation functions are better for certain problems. CONCLUSION
Figure 9 shows the training and testing results for the three
networks. The basic theory of dynamic system identification using net-

works of locally active multiresolution units was given, in-The network output captures the general characteristics of
the system. However, the network output curve possesses cluding a discussion of wavelet based networks and radial ba-

sis function (RBF) networks. Arguments were given for thehigher frequency components than the actual digester level
curve. This is most likely due to the network becoming overly fact that the advantages a wavelet basis has over a nonor-

thogonal basis are not truly advantages when the function tosensitive to one or more input variables which possess com-
paratively higher frequency components. It is also important be approximated is of high input dimension or is irregularly

sampled. Three network architectures were described, imple-to notice that the testing is worse on the right-hand portion
of the plot. This is because the digester system characteristics mented, and tested. The first was an RBF implementation

which utilized a multiresolution clustering (MRC) algorithmchange with time, and therefore the network yields the best
results immediately after it has been trained and become and a fast orthogonal search (FOS) to train the network. Sec-

ond, a wavelet network implementation called WaveARX wasworse as time passes. This problem is a good example of the
importance of an on-line training procedure. described, which extends the wavelet function to multidimen-
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11. J. Zhang et al., Wavelet neural networks for function learning,sions by using a norm for the wavelet input argument. The
IEEE Trans. Signal Process., 43 (6): 1485–1497, 1995.network is trained by defining a multiresolution analysis

12. B. Bakshi and G. Stephanopoulos, Wave-Net: A multiresolution,(MRA) grid of nodes which are used by an orthogonal search
hierarchical neural network with localized learning, AIChE J., 39procedure to train the network. Third, an RBF network
(1): 57–81, 1993.(GaussianARX) utilizing the same training techniques used

13. J. Park and I. Sandberg, Universal approximation using radial-by WaveARX was created. The only difference between
basis-function networks, Neural Comp., 3 (2): 246–257, 1991.GaussianARX and WaveARX was that the GaussianARX net-

14. T. Chen and H. Chen, Approximation capability to functions ofwork used a Gaussian activation function as opposed to the
several variables, nonlinear functionals, and operators by radialMexican hat wavelet. The networks were tested on two exam-
basis function neural networks, IEEE Trans. Neural Netw., 6 (4):ples. First, a one-dimensional problem was given in which the
904–910, 1995.frequency content of the signal changed with the spatial loca-

15. J. Moody and C. Darken, Fast learning in networks of locally-tion. It was shown that the three networks described in this
tuned processing units, Neural Comput., 1 (2): 281–294, 1989.article, which all used MRA, produced better results than a

16. C. Bishop, Improving the generalization properties of radial basisstandard RBF network which did not utilize MRA. Second,
function neural networks, Neural Comput., 3 (4): 579–588, 1991.the networks were used to model the pulp level of a paper

17. B. Whitehead and T. Choate, Cooperative-competitive geneticplant pulp digester, a seven-dimensional problem. The
evolution of radial basis function centers and widths for time se-GaussianARX network produced the solution of smallest test-
ries prediction, IEEE Trans. Neural Netw., 7 (4): 869–880, 1996.ing error, and at the same time it used the fewest number of

18. S. Chen, C. Cowan, and P. Grant, Orthogonal least squares learn-nodes. Again, it was apparent that all the networks were able
ing algorithm for radial basis function networks, IEEE Trans.to learn the general characteristics of the system equally well, Neural Netw., 2 (2): 302–309, 1991.

and no conclusion could be drawn as to the dominance of a
19. W. Ahmed, Fast orthogonal search for training radial basis func-particular network. The MRC network has an advantage over tion neural networks, Master’s thesis, Univ. of Maine, 1995.

the other two networks in that the number of nodes given to
20. J. Koh, M. Suk, and S. Bhandarkar, A multilayer self-organizingthe FOS algorithm was not dependent on the number of train-

feature map for range image segmentation, Neural Netw., 8 (1):
ing data (which reduces training time for large data sets). A 67, 86, 1995.
disadvantage of using the MRC architecture is that the re-
sults will not be the same from trial to trial due to the random MOHAMAD T. MUSAVI
initial conditions of the clustering algorithm. The results also University of Maine
indicate that the advantages exhibited by the WaveARX net- ALAN FERN
work over prior network architectures was due mainly to the Purdue University
fact that an orthogonal search procedure was used in combi-

DAN R. COUGHLINnation with MRA, and not due to the fact that a wavelet acti-
Sappi Fine Paper

vation function was used. It is reasonable to conclude that
certain activation functions are better at solving some prob-
lems than others. The combination of MRA and the orthogo-
nal search procedure was shown to be a promising method of
system identification.
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