
HARMONICS AND POWER PHENOMENA

Electrical quantities such as voltages, currents, or mag-
netic fluxes with a waveform that repeats in time cycle af-
ter cycle are called periodic quantities. Usually the shortest
cycle of the repetition is called a period. The number of peri-
ods per second is referred to as the fundamental frequency.
The voltage produced by power plants usually changes as a
sinusoidal function of time or it is very close to such a wave-
form. Periodic quantities that do not vary as a sinusoidal
function are referred to as nonsinusoidal quantities.

The waveform of a periodic quantity can be specified
by a uniformly spaced sequence of instantaneous values
of this quantity over a single cycle. Such a sequence de-
scribes the quantity in the time-domain. The number of
samples needed for the waveform specification depends on
the variability of the quantity. This number increases with
the increase of the quantity’s variability.

Periodic quantities in electrical systems can be ex-
pressed as the sum of an infinite number of sinusoidal
components, each having a frequency equal to an integer
multiple of the fundamental frequency, called harmonics.
Such a sum is referred to as a Fourier series. It is named
after Jean B. Fourier, who developed the concept in 1822.

Harmonics are artificial, mathematical entities, conve-
nient for handling periodic quantities and systems with
such quantities, in particular, electrical systems with non-
sinusoidal voltages and currents. The decomposition of
voltages and currents into harmonics is a decomposition
into components that do not exist physically, therefore, har-
monics must be used very carefully. Some phenolmena –
for example, current flow in linear circuits – can be stud-
ied successfully with a harmonic-by-harmonic approach,
because such circuits satisfy the superposition principle.
Such an approach may lead to substantial errors, however,
when applied to systems that contain devices with a non-
linear voltage-current relationship. The same applies to
analysis of power phenomena, since powers are products
of voltages and currents. Products of the voltage and cur-
rent individual harmonics may have no physical sense.

A single harmonic is specified in terms of three num-
bers: (1) the ratio of the frequency of the harmonic to the
fundamental frequency, referred to as the harmonic order,
(2) the root mean square (rms) value or amplitude of the
harmonic and (3) the phase with respect to a time refer-
ence, common to all harmonics of the same quantity. The
description of a quantity in terms of its harmonics (their
order, rms value and phase) is referred to as the description
in the frequency-domain. A periodic current, i1, that con-
tains the fundamental harmonic, i7 of the rms value 100 A
and the seventh order harmonic, i7, of the rms value of 15
A is shown in Fig. 1.

Harmonics in symmetrical three-phase circuits have a
specified sequence. Terminals of three-phase devices are or-
dered and tags–for example, R, S and T–are attributed to
each of them. A three-phase quantity is of a positive se-
quence, if a particular phase of this quantity (e.g., a zero-
crossing or maximum) is observed sequentially at the ter-
minal R, next at S and after that at T. Harmonics of order
higher by one than any multiplicity of three are of posi-

Figure 1. Plot of a periodic current, i, which contains the fun-
damental harmonic, i1, of rms value of 100 A and the 7th -order
harmonic, i7, of rms value of 15 A.

tive sequence. However, when the order of a harmonic is
lower by one than any multiplicity of three, then a particu-
lar phase, after it is observed at terminal R, is not observed
at terminal S but at terminal T. Harmonics of such orders
are referred to as negative sequence harmonics. The same
phase is observed simultaneously at terminals R, S and
T, however, for harmonics of the order equal to any multi-
plicity of three. These are zero sequence harmonics. Voltage
harmonics of negative sequences when applied to a three-
phase winding of a motor create magnetic fields rotating in
the opposite direction to that created by harmonics of the
positive sequence. Harmonics of the zero sequence do not
create a rotating field in such a winding at all.

Harmonics may cause various harmful effects in elec-
trical systems, both on the customers’ and on the utilities’
side. When customers are adversely affected by voltage
harmonics, one refers it to deterioration of the supply qual-
ity. When utilities are affected by load-originated current
harmonics, the loading quality is degraded by harmonics.
Therefore, harmonic-related problems in electrical systems
have been the subject of extensive studies. Several books
(1–4) and several thousand articles on harmonics in power
systems have been published. IEEE Transactions on Power
Delivery, on Industry Applications, on Power Electronics
and on Instrumentation and Measurements are the main
American journals where publications on harmonics can
be found. Electrical Power Quality and Utilitation Jour-
nal, Archiv fur Elektrotechnik, Proceedings IEE, and Euro-
pean Transactions on Electrical Power, ETEP, are impor-
tant European sources of publications on harmonics and
power phenomena. There is also a biannual International
Conference on Harmonics and Power Quality in Power Sys-
tems, organized by the IEEE Power Society and the In-
ternational Workshop on Power Definitions and Measure-
ments in Nonsinusoidal Systems, organized by the Italian
Chapter of IEEE Instrumentation and Measurement So-
ciety. Moreover, a lot of information can be found in IEEE
Standards (5–7) and CIGRE Reports (8).

Harmonic-related issues can by subdivided into several
categories. For readers interested in particular subject, a
few references are provided below along with their classi-
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fication.

1. Generation of harmonics by electrical and, in partic-
ular, by power electronics equipment and their prop-
agation (6,8,9–12)

2. Equipment and power system modeling (13–17) to
enable the determination of the level of harmonic dis-
tortion

3. Harmful effects of harmonics on the power system
and customer equipment (18–23)

4. Measurement of harmonic content (24–26) and sys-
tem parameters for harmonic frequencies (27)

5. Recommended limits of harmonics (6, 8)
6. Harmonics related power phenomena, power defini-

tions and compensation, referred to as a power theory
of systems with nonsinusoidal voltages and currents
(28–92)

7. Tariffs for electric energy (52, 53)
8. Reduction of harmonics and compensation with reac-

tive compensators and in particular, harmonic filters
(42–53)

9. Reduction of harmonics and compensation with
switching compensators (57–95)

10. Development of power electronic equipment with re-
duced current harmonics (63–65)

There are three major applications of the description
of electrical quantities in terms of harmonics. (1) circuit
analysis, (2) characterization of waveform distortion, (3)
analysis of power phenomena; fundamentals of the power
factor improvement and reduction of waveform distortion.

The first application is confined to linear circuits, that
is, circuits that fulfill the superposition principle. Such a
circuit at nonsinusoidal voltages and currents can be an-
alyzed harmonic by harmonic as a circuit with sinusoidal
voltages and currents. However, that is not possible in non-
linear circuits.

The second application is related to the supply quality
in distribution systems, since the presence of the voltage
harmonics means degradation of the quality of the supply.
Also, generation of current harmonics by the load means
degradation of the loading quality of customers’ loads.

The third application of harmonics provides fundamen-
tals for power theory of electrical systems with nonsinu-
soidal voltages and currents, meaning explanation of phys-
ical phenomena that accompany energy delivery. It con-
tributes to developing definition of power quantities and
description of energy flow in power terms. Power theory
also provides fundamentals for methods of improving the
effectiveness of energy delivery and reduction of waveform
distortion. Harmonic filters and switching compensators
are used for that.

Distribution of windings in individual slots of the power
plant generators is the primary cause of the voltage dis-
tortion in electrical power system. Therefore, generators
are built to provide a voltage that is as close as possible
to a sinusoidal voltage, and for synchronous generator the
voltage harmonics are usually below 1% of the fundamen-
tal and are negligible. The energy to ac power systems is

provided also from dc systems and from variable frequency
generators, such as–for example–wind generators, through
power electronics convertes. Unfortunately, such convert-
ers do not provide sinusoidal voltage. Voltage distortion
occurs also as a result of the current distortion. It is be-
cause a distorted current causes distorted voltage drop on
the power system impedances.

Current harmonics occur in electrical circuits due to
three reasons: (1) nonsinusoidal supply voltage, (2) nonlin-
earity of electric equipment and (3) periodic time-variance
of electrical parameters, usually caused by fast periodic
switching.

The first reason, nonsinusoidal supply voltage, is the
only cause of the current distortion in linear, time-
invariant circuits. When harmonics occur in such a circuit,
they can be moreover amplified by a resonance. Capacitors
installed in distribution systems for improving the power
factor or/and the capacitance of cable grids may resonate
with the inductance of power system transformers. Even
distributed capacitance and inductance of an overhead dis-
tribution line or a cable may contribute to amplification of
the current and voltage harmonic when the length of such
a line is comparable with the quarter-wave length of the
electromagnetic wave of such a harmonic.

Nonlinearity of the voltage-current relationship of elec-
trical devices and/or periodic switching are the main causes
of current harmonics in electrical systems. Some devices
such as transformers, are essentially linear devices. They
generate current harmonics only due to saturation of the
magnetic core, which can happen when its size is exces-
sively reduced in order to reduce its cost. Nonlinearity is
necessary, however, for the operation of some devices. Rec-
tifiers are such devices; that use the nonlinearity of diodes
for conversion of an alternating current (ac) into a direct
current (dc). Periodic switching of thyristors makes energy
flow control by ac-dc converters possible. Such devices can-
not operate without generating current harmonics. They
generate current harmonics, referred to as characteristic
harmonics, which have an order that is specific for a par-
ticular type of equipment. Rectifiers and controlled ac-dc
converters are power electronics devices, and development
of power electronics is one of the main causes of an in-
crease of harmonic distortion in electric distribution sys-
tems. Characteristic harmonics for three-phase rectifiers
and ac-dc converters are of the order equal to a multiple of
six plus and minus one: the 5th, 7th, 1 1th, 13th and so on.

Nonlinearity can also be not a necessary, but an in-
trinsic property of some devices–for example, fluorescent
lamps or devices, such as arc furnaces, that use electric
arcs. Generation of current harmonics cannot be avoided
in such devices. Nonetheless, there are usually some possi-
bilities for reducing current harmonics generated by non-
linear or switched devices by a proper choice of their struc-
ture. Loads that cause current distortion are generally re-
ferred to as harmonic generating loads (HGLs). Magnetic
or electronic ballasts for fluorescent bulbs, and rectifiers
in computers and video equipment, are the most common
examples of low-power but numerous HGLs. Rectifiers or
ac-dc converters used for adjustable speed drive supplies
are the most common industrial HGLs.
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Current harmonics which occur due to HGLs propagate
throughout the whole system, causing voltage distortion.
Frequency properties and the system structure affect prop-
agation of harmonics and waveform distortion. Frequency
properties depend on the distribution of inductances in the
system, mainly of transformers and overhead lines, and the
distribution of capacitances, mainly of capacitor banks and
cable grids. Due to resonances, harmonics can be attenu-
ated or amplified. Also, harmonic filters installed in the sys-
tem for suppressing harmonics complicate the frequency
properties of the system substantially and may cause un-
expected resonances and harmonic amplification.

The structure of the system, in particular the type of
transformers, affects the propagation of harmonics sub-
stantially. Harmonics of the positive and negative se-
quences are essentially not affected by the structure of
transformers, but harmonics of the zero sequence cannot
go through transformers with windings that are connected
in a delta configuration. In contrast, single-phase systems
are coupled for harmonics of the zero sequence through the
impedance of the neutral conductor.

The waveform distortion and harmonic contents caused
by harmonic-generating loads can be calculated analyti-
cally only in very simple circuits. Moreover, such an analy-
sis usually requires substantial simplifications of a circuit’s
properties. Therefore, computer modeling is the main tool
for analysis of circuits with HGLs. Dedicated programs op-
timized for particular purposes or commercially available
software can be used for modeling. In particular, software
such as the Electromagnetic Transients Program (EMTP),
HARMFLOW, or PSpice can be used for that purpose. Pro-
grams that model nonlinear devices describe the circuit
in terms of nonlinear differential equations and integrate
them numerically. Voltage and current waveforms are usu-
ally the outputs of such programs. They provide the wave-
forms in the transient state of the circuit, when they are
usually nonperiodic, and in the steady state, when the tran-
sient components disappear. In the steady state waveforms
are periodic and can be described in terms of harmonics.

A Discrete Fourier Transform (DFT) is the main math-
ematical tool for calculating the rms values and phases of
the voltage and current harmonics when the values of the
voltage and current at discrete instants of time, referred to
as samples, are known. The amount of calculations needed
by the DFT can be substantially reduced by using the Fast
Fourier Transform (FFT) algorithm. The number of sam-
ples per waveform cycle for the DFT has to be more than
twice as large as the order of the harmonic of the high-
est frequency. If this condition, known as the Nyquist crite-
rion, is not fulfilled, harmonics are calculated with an error
caused by the spectrum-aliasing phenomenon. This applies
both when the samples are calculated by a circuit model-
ing program and when they are measured in a physical
systems.

There are two approaches to measuring harmonics. Be-
fore the digital signal processing (DSP) technology was de-
veloped, analog filters were used for measurement of har-
monic content. Such filters, tuned to frequencies of partic-
ular harmonics, were capable of measuring only their rms
value. It was not possible to measure the harmonic phase;
therefore, such measurements were useful only in situa-

tions where the harmonic phase was irrelevant. Digital
meters of harmonics, known also as harmonic analyzers,
are built of a signal-conditioning circuit, which normalizes
the signal magnitude to a level that can be handled by dig-
ital devices; a sample-and-hold circuit, which takes analog
samples of a continuous analyzed quantity; an analog-to-
digital converter, which converts the analog samples to a
digital form; a digital data storage device; and a digital
signal-processing unit, which performs the FFT algorithm
calculations needed for the DFT. Such meters provide both
the rms value and the phase of harmonics for a single quan-
tity or for several different quantities. Simultaneous sam-
pling of all quantities may in fact be needed in such a case.
Such a meter may be built as a separate dedicated device.
A personal computer equipped with an additional board for
digital data acquisition and DSP software may serve as a
harmonic analyzer as well.

Harmful effects caused by harmonic distortion in cus-
tomers’ and power utilities’ equipment are the main reason
for the concern with harmonics. These effects differ sub-
stantially in their predictability. An increase in the cur-
rent rms value, an increase in the loss of active power or
a reduction of the mechanical torque of three-phase mo-
tors due to harmonics is easy to predict. Temperature in-
crease and reduction of the lifetime expectation of motors
and transformers due to an additional heat release are
much more difficult to anticipate. The least predictable are
disturbances of harmonic-sensitive devices, such as digital
equipment and measuring, control and communication sys-
tems. They can be disturbed by harmonics on the supply
lines (mainly on the neutral conductor, since this conduc-
tor is a collector of the zero-sequence current harmonics),
as well as by capacitive and inductive coupling with other
sources of the voltage and/or current harmonics. A current
disturbing a device through capacitive coupling with a dis-
torted voltage is proportional to the derivative of this volt-
age, and this derivative increases with the harmonic order.
The same is true of a voltage induced in such a device by
inductive coupling with a distorted current. This voltage
is proportional to the derivative of the current, thus it also
increases with the harmonic order. Apart from direct harm-
ful effects, harmonics also make power factor improve-
ment with capacitor banks less effective, since harmonic
resonances and amplification of some harmonics may oc-
cur. More complex compensating devices are needed in the
presence of harmonics. Consequently, the direct harmful
effects of harmonics as well as the cost of various preven-
tive methods make energy distribution and utilization in
the presence of harmonics more expensive. The supply may
also be less reliable because the failure rate of the distri-
bution equipment increases with harmonic distortion.

Guidance with respect to the acceptable level of har-
monics is provided by standards. IEEE Standard 519 (6)
is a recommended standard for the US power system. It
specifies the level of voltage harmonics for various volt-
age levels. This acceptable level declines as the voltage
level increases. Also, it specifies the value of the current
harmonics that can be injected into a system by HGLs.
This level depends on the short-circuit power, meaning the
system impedance at the HGL terminals. The lower the
short-circuit power is (i.e., the higher the impedance), the
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lower the acceptable value of injected current harmonics is.
These acceptable levels of harmonics are based on a consen-
sus regarding a balance between the cost of harmful effects
of harmonics and the cost of their reduction. However, this
consensus applies to common situations. For specific situ-
ations these recommended limits can be too liberal or too
stringent.

When voltage distortion is unacceptably high, voltage
harmonics can be reduced by reduction of the current har-
monics injected by HGLs or by an increase in the short-
circuit power at the bus where HGLs are installed-that
is, by reducing the system impedance. There have been
various attempts to develop power electronic equipment,
mainly ac-dc converters, so that they generate as low cur-
rent harmonics as possible. The injected current harmon-
ics can also be reduced by additional equipment. Harmonic
filters (HFs) or switching compensators (SCs) connected in
parallel with the load, can be used for that purpose. HFs
provide a low-impedance path for the dominating current
harmonics generated by the load, so that they do not flow
to the supply source. They consist of a few resonant LC
and high-pass RLC branches connected in parallel with the
load. Switching compensators, consisting of fast switches
and an inductor or a capacitor for energy storage, can pro-
duce a current of the opposite sign to the load-generated
current harmonics. Thus, these current harmonics concel.
Such compensators are commonly known under the name
of active power filters. However, they are neither active de-
vices nor filters. Both HFs and SCs are also usually utilized
for compensating the reactive power of the fundamental
harmonic, meaning for the power factor improvement.

POWER THEORY OF SYSTEMS WITH NONSINUSOIDAL
VOLTAGES AND CURRENTS

Of all harmonic related issues, the power phenomena at
nonsinusoidal voltages and currents are the most con-
troversial and confusing. Electric energy is very often
conveyed at non-sinusoidal voltages and currents; conse-
quently,a comprehension of power phenomena in such situ-
ations is both a scientific and a practical imperative. There-
fore, they will be discussed in much more detail than other
issues in this article. Comprehension of power phenom-
ena may contribute to progress in methods of compensa-
tion and power factor improvement, to an improvement
of tariffs for energy in the presence of harmonics, and to
methods of improvement of the supply and loading quality
in distribution systems.

A set of power-related definitions, equations and
interpret-tations of the power phenomena that remain
valid irrespective of distortion level is referred to as a power
theory. The reasons for the difference between the active
power (the average value of energy delivered to the load
over a period) and the apparent power (the product of the
supply source voltage and current rms values) is a prime
concern of power theory.

P.C. Stainmetz was the first to observe, in 1892 (48),
that the power factor that is, the ratio of the active to the
apparent powers, declines due to the waveform distortion
caused by an electric arc, without any phase shift between

the voltage and the current. This means that devices that
cause waveform distortion cannot be described in terms
of powers defined for systems with sinusoidal waveforms.
After more than a century, the ques-tion on how the powers
should be defined in the presence of waveform distortion
still remains controversial.

There are two main approaches to defining powers and
formulating power equations, namely, with and without
the use of harmonics. The approach based on decomposi-
tion of the voltage and current into harmonics is referred
to as a frequency-domain approach. The most dissemi-
nated frequency-domain power theory was developed by
C.I. Budeanu (49) in 1927. The power definitions based on
this theory are in the present IEEE Standard Dictionary of
Electrical and Electronics Terms (5). Unfortunately, as was
proven in Ref. (33) in 1987, this theory misinterprets power
phenomena. The reactive power Q defined by Budeanu is
not a measure of the apparent power increase due to en-
ergy oscillation as it is in the case of circuits with sinu-
soidal waveforms. Also, the distortion power D defined by
Budeanu is not a measure of the apparent power increase
due to the waveform distortion. Attempts at formulating
power theory without harmonic decomposition, (i.e., in the
time-domain), were initiated by Fryze in 1931 (50). This
approach requires much more simple instrumentation and
provides algorithms for compensator control (30–59); how-
ever, it does not provide a physical interpretation of power
phenomena.

Currently, the most advanced power theory is based
on the concept of Currents’ Physical Components (CPC),
developed by Czarnecki (32–72). It provides physical in-
terpretation of power phenomena in single-phase and un-
balanced three-phase, three-wire systems under nonsinu-
soidal conditions, with linear, time-invariant loads and
with harmonic generating loads (HGLs). It also provides
fundamentals for reactive power compensation (32, 36)
and the load balancing (42–84) in such systems with reac-
tive compensators and fundamentals for control of switch-
ing compensators (62–94). The CPC-based algoritms can
supersed algoritms based on the Instantaneous Reactive
Power (IRP) p-q Theory, developed in 1984 by Nabae, Ak-
agi and Kanazawa (59). This theory misinterprets (80, 81)
power phenomena in systems with unbalanced loads.

FOURIER SERIES

The fundamentals of Fourier series and of the harmonic
concept are presented in detail in Ref. (66). Some elements
of this concept that are relevant to electrical circuits and
the symbols used are explained below.

Electrical quantities such as voltages u(t), currents i(t)
or fluxes φ(t), denoted generally by x(t) or y(t), are periodic
if for any instant of time t they satisfy the relation

where n is any integer and T, called a period, is a non
zero real number. An example of a periodic quantity, x(t), is
shown in Fig. 2. Mathematically, the period T is the small-
est number that satisfies Eq. (1). This condition is often
neglected in electrical engineering. In particular, the pe-
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Figure 2. Periodic quantity x(t) of the period T.

riod T of a power system voltage is usually considered to
be the period of other periodic quantities in such a sys-
tem, even if Eq. (1) is satisfied also for a shorter time. For
example, the output voltage of a six pulse ac-dc converter
satisfies Eq. (1) also for T/6, but it is usually considered as
a periodic quantity with the period T not T/6.

Periodic quantities in electrical systems are of a finite
power, this means they are integrable with square, i.e.,

1
T

T∫
0

x2(t)dt < ∞

Quantities of the same period T and of a finite power form
a linear space, denoted by L2

T , so that if x(t) and x(t) belong
to this space, i.e., x(t) ∈ L2

T and y(t) ∈ L2
T , then their linear

form also belong to this space, i.e., α x(t) + β y(t) ∈ L2
T , where

α and β are any real numbers. The following functionals are
defined in the space L2

T . The norm

‖x‖ =

√√√√√ 1
T

T∫
0

x2(t)dt

referred to as the root mean square (rms) value in electrical
engineering. The distance

d = ‖x − y‖ =

√√√√√ 1
T

T∫
0

[x(t)dt − y(t)]2dt

and the scalar product

(x, y) = 1
T

T∫
0

x(t)y(t)dt

The rms value of the sum of two quantities x(t), L2
T , is equal

to

‖z‖ = ‖x + y‖ =
√

‖x‖2 + 2(x, y) + ‖y‖2 =
√

‖x‖2 + ‖y‖2

only if (x, y) = 0

The quantities that have a zero scalar product are said to
be mutually orthogonal. Thus, Eq. (6) holds true only for
orthogonal quantities. In particular, quantities x(t),L2

T that
have one of the following properties

x(t)y(t) = 0, for each t

x(t) =
√

2Xsin(kω1t + α) y(t) =
√

2Ysin(nω1t + β), k �= n

are mutually orthogonal.

If x(t) ∈ L2
T then it has the Fourier series

with coefficients

a0 = 1
T

T∫
0

x(t)dt

an = 2
T

T∫
0

x(t)cos(nω1t)dt

bn = 2
T

T∫
0

x(t)sin(nω1t)dt

At each point t, where quantity x(t) is continuous, f(t) = x(t).
If the quantity x(t) has a discontinuity at a point t = t1, then
at such a point

f (t1) = 1
2

[limx(t)
t → t+1

+ limx(t)
t → t−1

]

that is, the Fourier series f(t) converges to the mean value
of the discontinuity of x(t), or to the half of its left-side
and right-side limits. Remembering this, it is a common
custom to write the Fourier series neglecting the difference
between x(t) and f(t)

The term

is referred to as the harmonic of the order n of quantity x(t).
The parameter Xn is equal to

Xn =
√

a2
n + b2

n

2
, for n �= 0 and X0 = a0

and denotes the rms value of the harmonic, while the pa-
rameter αn, equal to

is its phase. With the use of harmonics, the Fourier series
of x(t) can be written as

When a quantity x(t) has a limited number of harmonics of
the order n from a set N, i.e.,
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such a sum is called a trigonometric polynomial of x(t). Pe-
riodic quantities in electrical engineering are usually ap-
proximated by trigonometric polynomials, and therefore,
by a limited number of harmonics.

The Fourier series in the expression (15), referred to as
a classical form, is badly suited for linear circuits analysis,
since the circuit analyzed has to be described in terms of
a set of differential equations and integrated numerically.
The complex form of the Fourier series is more convenient
for that purpose, namely

with

Xn = Xne
jαn = an − jbn√

2
=

√
2

T

T∫
0

x(t)e− jnω1tdt

referred to as a complex rms (crms) value of the nth-order
harmonic. The set of the crms Xn values of all harmonics of
the quantity x(t) is called a harmonic spectrum of x(t). The
set of all rms Xn values is called a harmonic rms spectrum.

The rms value, the distance and the scalar product of
periodic quantities defined by (3), (4) and (5) in the time-
domain, can be calculated with the crms values of harmon-
ics, that is, in the frequency-domain. They are equal to

The asterisk in the last formula denotes the complex con-
jugate number. Observe, that while these functionals were
calculated, the integration in the time-domain was super-
seded with algebraic operations on the crms values, that
means in a frequency-domain.

PROPERTIES OF HARMONICS’ CRMS VAUES

The crms values Xn of harmonics have some properties that
facilitate their calculation. The most useful properties are
compiled below.

1. The CRMS Values of Harmonics of a Linear Form. If
quantities x(t) and y(t) ∈ L2

T and their harmonics have
the crms values Xn and Yn , then harmonics of their
linear form equal to z(t) = α x(t) + β y(t) have the crms
value

2. The CRMS Values of Harmonics of a Shifted Quan-
tity. If harmonics of the quantity x(t) have the crms
values Xn , then harmonics of the quantity y(t) shifted
as shown in Fig. 3, with respect to x(t) by time τ, i.e.,
y(t) = x(t − τ) have the crms value

3. The CRMS Values of Harmonics of a Reflected Quan-
tity. If harmonics of the quantity x(t) have the crms
values Xn , then harmonics of the quantity y(t) re-
flected with respect to x(t), as shown in Fig. 4, i.e.,
y(t) = x(−t) have the crms value

4. The CRMS Values of Harmonics of an Even Quantity.
If the quantity x(t) is symmetrical with respect to the
time reference point, t = 0, meaning y(t) = x(−t), then
for each harmonic

Im{Xn} = 0 (29)

5. The CRMS Values of Harmonics of an Odd quantity.
If the quantity x(t) is asymmetrical with respect to
the time reference point, t = 0, meaning y(t) = x(−t),
then for each harmonic

Re{Xn} = 0 (30)

6. The CRMS Values of Harmonics of a Quantity Odd
with Respect to the Values Shifted by Half the Period.
If the quantity x(t) is asymmetrical with respect to
the values shifted by half of the period, as shown in
Fig. 5, [i.e., x(t − T/2) = −x(t)],then

which means the quantity can have harmonics only
of an odd order.

7. The CRMS Values of Harmonics of the Derivative
a Quantity. If the harmonics of the quantity x(t)
have the crms value Xn and the derivative y(t) =
dx(t)/dt ∈ L2

T , then harmonics of the quantity y(t) have
the crms values

8. The CRMS Values of Harmonics of the Integral
a Quantity. If the harmonics of the quantity x(t)
have the crms value Xn and the integral y(t) =
z
∫

x(t)dt ∈ L2
T , then hamonics of the quantity y(t) have

the crms values

The rms value of the zero-order harmonic, X0, can
have any real value.
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Figure 3. Quantities x(t) and y(t) shifted mutualy by time τ.

Figure 4. Quantity x(t) and reflected quantity y(t) = x(−t).

Figure 5. Quantity which is odd with respect to the values shifted
by the half of the period.

Application of these properties for calculating harmon-
ics’ crms values is illustrated with the following example.

Example of Application. Figure 6a shows a trapezoidal
approximation of the supply current i(t) of a six-pulse ac-
dc converter with inductive filtering of the output current.
The commutation angle of the converter µ = ω1 τ = 10◦. Let
us find the formula for the calculation of the crms values
of the current harmonics for I = 100 A.

The current can be considered as a linear form of two
components x(t) and x(t−T/2), where x(t) is shown in Fig.
6(b), thus i(t) = x(t) − x(t − T/2), hence

Since it is easier to calculate the crms values for symmetri-
cal quantities than for quantities without any symmetries,
we can treat quantity x(t) as the quantity y(t) shown in Fig.
6(c), shifted by a = (T/3 + τ)/2, that means, x(t) = y(t − a),
hence

Figure 6. (a) Trapezoidal approximation of the supply current
i(t) of a three-phase ac-dc converter with an inductive filter; (b) its
positive component x(t); (c) shifted positive component y(t); (d) its
derivative z(t) and (e) shifted positive component w(t) of derivative
z(t).

The quantity y(t) is an integral of the rectangular pulses
z(t), shown in Fig. 6(d), namely

y(t) = 1
τ

∫
z(t)dt

hence

The quantity z(t) is a linear form of the pulse w(t) shown in
Fig. 6(e), shifted by ±b, where b = a − τ/2 = T/6, namely,

z(t) = w(t + b) − w(t − b)

Thus

where the crms values of harmonics of the pulses w(t) are
equal to

Finaly, the supply current harmonics have the crms values

For I = 100 A and commutation angle µ = 100, the crms
values of the current harmonics up to the 17th-order are
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Figure 7. Sum of six harmonics of the trapezoidal approximation
of the supply current of a three-phase ac-dc converter.

equal to

The sum of these six harmonics is shown in Fig. 7.

HARMONICS IN LINEAR CIRCUITS WITH LUMPED RLC
PARAMETERS

Linear circuits with lumped RLC parameters are described
in terms of Kirchoff s voltage and current laws and the
voltage-current relations for the circuit RLC parameters.

1. Kirchoff’s current law (KCL) for a node of Kbranches,

is a linear form of the branch currents,

Due to linearity of crms values, the KCL is satisfied
for a node if for each harmonic

2. Kirchoff’s voltage law (KVL) for a closed path with M
voltages,

is a linear form of voltages,

KVL is satisfied for the closed path if for each har-
monic

3. The voltage-current relations can be written in one of
the following forms:

or

with

referred to as an impedance for the n th-order har-
monic. The symbol

denotes an admittance for that harmonic. The
impedance Zn for a series RLC branch, shown in Fig.
8(a), is equal to

For a parallel RLC branch, shown in Fig. 8(b), the
impedance Zn is calculated as

Zn = 1
G + jnω1C + 1

jnω1L

, with G = 1
R

These voltage-current relations along with Kirchoff ’s
laws provide fundamentals for all methods of steady-state
analysis of linear circuits in the presence of voltage and cur-
rent harmonics. The harmonic approach enables us to de-
scribe linear circuits in terms of a set of algebraic equations
with complex coefficients, separately for each harmonic.

HARMONICS OF SYMMETRICAL THREE-PHASE
QUANTITIES

When ac electric energy is conveyed to large customers,
three-phase, three-wire systems are usually used. The
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Figure 8. (a) Series RLC branch and (b) parallel RLC branch.

Figure 9. Three-phase, three-wire system, its terminals, line cur-
rents and line-to-ground voltages.

Figure 10. Example of three-phase nonsinusoidal symmetrical
voltages of the positive sequence composed of harmonics of the
second, third, and fourth order.

lines and terminals of three-phase devices have to be or-
dered and tagged, for example as terminals R, S, and T, as
shown in Fig. 9. Three-phase systems are built to achieve
the symmetry of voltages and currents, as far as possible.

The voltage provided to a customer is of the pos-
itive sequence. This means that a particular phase of
the voltage–for example, a maximum or a zero crossing,
after–it is observed at terminal R, is observed after one
third cycle at terminal S, and next, after another one third
cycle, at terminal T. Thus, a symmetrical and positive se-
quence three-phase quantity, for example a voltage, satis-
fies the relationship

Such a symmetrical, positive sequence three-phase voltage
is shown in Fig. 10.

When the voltage at terminal R contains the nth-order
harmonic, namely

then this harmonic at terminal S and T are equal to

When a voltage harmonic is of the order n = 3k, then 3k ×
2π/3 = k × 2π. Harmonics of such an order when observed
at terminals R, S and T are in phase, i.e.,

Such harmonics are referred to as the zero sequence har-
monics. They are not able to propagate in three-wire sys-
tems. Such systems behave as open circuits for zero se-
quence harmonics.

When a voltage harmonic is of the order n = 3k + 1, then
(3k + 1) × 2π/3 = k × 2π + 2π/3. This means that the same
phase of such a harmonic is observed in the same sequence
as the three-phase quantity, namely

uSn(t) = uRn(t − T/3n), uTn(t) = uRn(t + T/3n)

Such harmonics are referred to as the positive sequence
harmonics.

When a voltage harmonic is of the order of n = 3k − 1,
then (3k − 1) × 2π/3 = k × 2π − 2π/3. It means that the
same phase of such a harmonic is observed in the opposite
sequence than the sequence of the three-phase quantity,
namely

uSn(t) = uRn(t + T/3n), uTn(t) = uRn(t − T/3n)

Such harmonics are referred to as negative sequence har-
monics. There is no difference in the propagation of the
positive and the negative sequence harmonics. However,
they create magnetic fields rotating in opposite directions
in electric motors. An example of voltage harmonics of the
second, third and fourth order, that is, the negative, zero
and positive sequence, are shown in Fig. 11. Just these har-
monics, with amplitude 25 % of the fundamental, result in
the voltage distortion shown in Fig. 10.

INSTANTENEOUS POWER IN SINGLE-PHASE CIRCUITS

The instantaneous power p(t) at a cross-section of a circuit
where the voltage u(t) and the current i(t) are observed
is defined as the rate of electric energy w(t) flow from the
supply source to the load, namely
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Figure 11. Harmonics of the voltages shown in Fig. 10; (a) the
fundamental harmonic; (b) the second-order harmonic which is of
the negative sequence; (c) the third-order harmonic which is of the
zero sequence; and (d) the fourth-order harmonic which is of the
positive sequence.

As the rate of energy flow, the instantaneous power has
a clear physical interpretation. When this rate is nega-
tive, energy flows back from the load to the supply source.
The instantaneous power of a passive resistive load, p(t) =
R[i(t)]2, is non-negative and it is commonly assumed that,
in spite of fluctuation of the instantaneous power, there is
no energy oscillation between the supply source and resis-
tive loads. A phase-shift between the voltage and current
could be a cause of energy oscillation. The change of en-
ergy stored in electric or magnetic fields of inductors and/or
capacitors is the only cause of such a phase shift in lin-
ear, time-invariant circuits. When a circuit is time-variant
(in particular, with periodic switching), then a phase shift
between voltage and current harmonics may occur even
without energy storage capability. A light dimmer, where a
semiconductor device known as a triac is used as a periodic
switch to control the rms value of the current of an incan-
desent bulb, is a common example of such a circuit. The
fundamental harmonic of the supply current is shifted with
respect to the supply voltage in such a circuit without en-
ergy storage. In spite of this phase shift and the presence of
reactive power, there is no reciprocating energy oscillation
between the supply and the load, since the instantaneous
power p(t) is non-negative in such a circuit.

When a circuit has, including all sources and loads, K
components with voltages uk (t) and currents ik (t) then

This is a conclusion from Tellegan’s law and is referred to
as the balance principle for the instantaneous power. This
means that instantaneous power of all sources and loads
is balanced at each instant of time.

The formula in Eq. (62) for the instantaneous power,
when the voltage and current are expressed as a sum of

Figure 12. (a) Dc source loadad with a periodic switch, (b) load
voltage and (c) load current. The instantaneous power at the load
terminals, calculated as the product of the voltage and current
harmonics, contains an infinite number of oscillating components,
but there is no energy oscillations, since the instantaneous power
is equal to zero. This circuit demonstrates that the apparent power
may have a nonzero value without energy oscillations.

harmonics,

can be a source of a substantial misconception. This is be-
cause the product of two Fourier series contains an infinite
number of oscillating components which is interpreted by
some authors (45) as a proof that energy oscillates between
the supply source and the load. In fact, such oscillating
terms in the instantaneous power may exist even if there
is no energy flow between the source and the load at all.
This is illustrated (50) with the circuit shown in Fig. 12.

The load, supplied from a dc source, consists only of a
periodic switch. The product of the load voltage and cur-
rent Fourier series contains an infinite number of oscillat-
ing components, while at the same time there is no energy
flow to such a load. In spite of the presence of the oscil-
lating components of the instantaneous power p(t), energy
does not flow to the load when the switch is open or closed.
There is only a very small amount of energy in the load
associated with the stray capacitance and inductance. The
product u(t) i(t) is equal to zero over the whole period of
time, apart from instants where the voltage and cur-rent
have discontinuities.

ACTIVE POWER IN SINGLE-PHASE CIRCUITS

The active power is the average value of the instantaneous
power p(t) over a single period of the voltage, namely

P =
°

p(t) = 1
T

T∫
0

u(t)i(t)dt = (u, i)

The active power in systems with sinusoidal voltages and
currents is a synonymous with the useful power. This may
not be true in the presence of harmonics, since the active
power associated with harmonics may not contribute to
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useful work, but to various harmful effects.
When a circuit has, including all sources and loads, K

components with voltages uk (t) and currents ik (t), then the
mean value of the instantaneous power of all components,
that means their active power, fulfills the relationship,

referred to as the balance principle for the active power.
The active power is the scalar product of the voltage and

current, then if the crms values of the voltage and current
harmonics are equal to Un = Une

jαn and In = Ine
jβn , respec-

tively, then the active power can be expressed, according to
Eq. (25), as

Since In = YnUn = (Gn + jBn)Un, then the active power can
be expressed as

Similarly, since Un = ZnIn = (Rn + jXn)In, the active power
can be expressed as

The term, which can alternatively be expressed as

Pn = Re{UnI
∗
n} = UnIncosϕn = GnU

2
n = RnI

2
n

is called the harmonic active power of the nth-order har-
monic. Equation (57), which describes the balance princi-
ple for the active power in a circuit with harmonic orders
n ∈ N, can be written in the form

This equation is fulfilled for any set N, only if

for all harmonic orders n. This means that the sum of har-
monic active power of all components of an electric circuit
has to be equal to zero for each harmonic separately. This
is a balance principle for harmonic active power.

APPARENT POWER IN SINGLE-PHASE CIRCUITS

When the load has the active power specified with Eq. (56),
then the rms value of the supply source voltage is, accord-
ing to Eq. (23), equal to

and the rms value of the source current is equal to

The supply source has to provide the voltage and current of
the rms values ‖u‖ and ‖i‖ independently of the load active
power P, and these two rms values affect the power ratings
of the supply source and the active power loss inside of the
source indepen-dently of each other. Therefore, the power
rating of supply sources is characterized by the product of
the voltage and current rms values ‖u‖ and ‖i‖ they are
able to provide, referred to as an apparent power, namely

This is not a physical quantity, however, but a conven-
tional one.The adjective apparent emphasizes the fictitious
nature of this power. There is no physical phenomenon
related to the apparent power. For example, the appar-
ent power S in the circuit shown in Fig. 12 is equal to
S = ‖i‖‖u‖ = 70.7 × 70.7 = 5000 VA, and this power is not
related to any power phenol-menon in the load, since there
is no energy flow to the load (the switch), and in particular,
this power is not related to any reciprocating oscillation of
energy between the load and the source.

Because the apparent power is a conventional quantity,
other conventions are also possible. Nonetheless, definition
in Eq. (66) is commonly used in the power theory of single-
phase electrical circuits.

BUDEANU’S REACTIVE AND DISTORTION POWERS

Apart from powers discussed above, a reactive power Q is
defined for circuits with sinusoidal voltages and currents.

When the load voltage has only a single harmonic of
the nth-order, which means it has the waveform un(t) =√

2Uncosnω1t, the current is equal to in(t) = √
2Incos(nω1t −

ϕn), and the instantaneous power p(t) can be decomposed
into the two following components

with

Pn = UnIncosϕn, Qn = UnInsinϕn

The second term in Eq. (67) is an oscillating component
of the instantaneous power. Its amplitude Qn is referred
to as the reactive power of the nth-order harmoninc. It is
denoted by Q in sinusoidal systems, where this power is a
component of the power equation

The reactive power for single-phase circuits with nonsinu-
soidal waveforms was defined by C.I. Budeanu (49) in 1927.
To distinguish this definition from other definitions of the
reactive power, it is denoted by here QB, namely
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Figure 13. Circuit with Budeanu’s reactive power QB equal to
zero but with energy oscillation between the source and the load.

With such a definition of the reactive power, we have

Therefore, Budeanu introduced a new power quantity

and called it the distortion power. Budeanu’s definitions of
the reactive and distortion powers are supported by the
IEEE Standard Dictionary of Electrical and Electronics
Terms (5), and they are widely disseminated in electrical
engineering.

By an analogy to its interpretation in circuits with sinu-
soidal waveforms, the reactive power QB is interpreted as a
measure of the increase in apparent power S due to energy
oscillation between the source and the load. The distortion
power D is interpreted as a measure of the increase in ap-
parent power due to waveform distortion. Unfortunately,
these two interpretations are erroneous (33). According to
Eq. (70), the reactive power is defined by Budeanu as a sum
of amplitudes Qn of the oscillating components of the in-
stantaneous power with different frequencies, 2nω1. These
amplitudes, according to Eq. (68), can be positive or neg-
ative. Therefore, oscillation of energy between the source
and the load may exists even if the sum of these ampli-
tudes is equal to zero. This is illustrated with the load
shown in Fig. 13. The load is supplied with the voltage
u(t) = √

2(100sinω1t + 25sin3ω1t)V. The parameters of the
load were chosen such that the reactive power QB is equal
to zero.

As shown in Figure 14, there are intervals of time when
the instantaneous power p(t) is negative, so that energy
flows back to the source, thus there is an oscillation of en-
ergy between the load and the source. The reactive power
QB is no measure of the effect of this oscillation on the ap-
parent power.

Also the distortion power D is interpreted erroneously.
When the supply voltage has harmonics of orders from a
set N, the formula (72) can be written in the form

This means, that distortion power D is equal to zero only if
the load admittances for all harmonics of the order n ∈ N,

Yn = const.

However, in order to meet this condition the load current
must be distorted with respect to the load voltage. This

Figure 14. The supply voltage u(t) and the instantaneous power
p(t) in the circuit shown in Fig. 13. Change of the sign of the in-
stantaneous power p(t) means that there is oscillation of energy
in this circuit between the source and the load.

Figure 15. A circuit that has the same load admittance for the
fundamental and the third-order harmonic, and consequently zero
distortion power D in spite of current distortion.

current is not distorted but only shifted, i.e., i(t) = Y u(t −
τ), on the condition that

Thus, apart from resistive loads, the condition (74) for the
zero distortion power D and the condition (75) for the lack
of waveform distortion are mutually exclusive.

The situation where the distortion power D is equal
to zero in spite of the distortion of the load current with
respect to the supply voltage is illustrated with the load
shown in Fig. 15. It is assumed that the supply voltage
contains the fundamental and the third-order harmon-
ics. The load parameters were chosen such that the ad-
mittance for these harmonics are mutually equal, namely,

Y1 = Y3 = 1e
− j

π

2 S, thus according to Eq. (73) the distortion
power D is equal to zero.

However, the waveform of the load current at the supply
voltage u(t) = √

2(100sinω1t + 50sin3ω1t)V, plotted in Fig.
16, shows that the voltage and the current waveforms are
mutually distorted.

The reactive power defined with Eq. (70) proves also to
be useless for improvement of the power factor in the pres-
ence of harmonics. In systems with sinusoidal waveforms,
the value of the reactive power Q enables the design of a
compensator that improves the power factor to unity. Un-
fortunately, all attempts to do the same in nonsinusoidal
systems using the value of Budeanu’s reactive power QB

have failed. The reasons for this were explained in Ref.
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Figure 16. The load voltage and current waveform in the circuit
shown in Fig. 15. They are mutually distorted dispite of zero dis-
tortion power D.

(33). A current harmonic can be decomposed as follows

Hence, the rms value of the supply current can be ex-
pressed as

This formula shows that at unchanged harmonic active
powers Pn, the supply current has a minimum rms value,
not when∑

n ∈ N

Qn = QB = 0, but when
∑
n ∈ N

(
Qn

Un

)2 = 0

This has nothing to do with Budeanu’s reactive power, QB.

CURRENT’S PHYSICAL COMPONENTS POWER THEORY
OF LINEAR, TIME-VARIANT LOADS

When a load, shown in Fig. 17(a), with harmonic admit-
tances Yn , supplied with the voltage u(t), has the active
power P, then a resistive load, shown in Fig. 17(b), is equiv-
alent to that load with respect to the active power if its
conductance is equal to

Such a load draws the current

referred to as the active current. It can be considered as
the main component of the load current associated with
the load active power. The concept of the active current
was introduced by S. Fryze in 1931 (50). The remaining
current of the load

Figure 17. (a) Linear time-invariant load and (b) equivalent load
with respect to the active power P at the same voltage u. The
equivalent load is a resistive load, which draws the active current
ia from the supply source.

can be decomposed into two components. The current

is referred to as a reactive current. Its concept was intro-
duced in 1972 by W. Shepherd and P. Zakikhani (28). The
second current

is referred to as a scattered current. Its presence in the
load current was revealed by L.S. Czarnecki in Ref. (32).
Thus, the load current can be decomposed into three com-
ponents associated with three different phenomena, with
permanent energy delivery to the load; with the phase
shift between the voltage and current harmonics; and with
the change of the load conductance with harmonic order,
namely This compnonents are referred to as current’s phys-
ical components (CPC).

The decomposition of the load current into the physical
components, ia(t), ir(t) and is(t) forms the fundamentals of
the CPC Power Theory (67).

The scalar products of the CPCs, (ia,is), (ia,ir) and (is,ir),
are equal to zero, (32). Thus, they are mutually orthogonal,
and therefore, the rms value of the load current can be ex-
pressed in terms of the rms values of the current’s physical
components, namely

where

The relation between the rms value of the current physical
components, ia, is and ir and the rms value of the supply
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Figure 18. Geometrical illustration of the relationship between
the rms values of the active, scattered and reactive currents. When
the sides of the rectangular box are proportional to the rms val-
ues ‖ia‖, ‖is‖ and ‖ir‖, the diagonal is proportional to the supply
current rms value ‖i‖.

current is the same as the relation between the length of
the sides of a rectangular box, shown in Fig. 18, and its
diagonal.

Decomposition of the load current into physical compo-
nents enables the development of the power equation of
the load. Multiplying Eq. (84) by the square of the voltage
rms value ‖u‖2, we obtain the power equation

where

is referred to as a scattered power, and

is a reactive power. The reactive power Q is used to be as-
sociated in common interpretations with energy oscillation
between the supply source and the load. It was proven in
(71) that this is a major misinterpretation of power phe-
nomena in electrical circuits. The reactive power occurs as
an effect of the phase shift between the load voltage and
its current or their harmonics.

The scattered current is(t) and the scattered power Ds

occur in a circuit when the load conductance Gn changes
with harmonic order n around a constant equivalent con-
ductance Ge. This circuit phenomenon contributes to an
increase in the rms value of the load current and the ap-
parent power. The reactive current ir(t) and the reactive
power Q occur when there is a phase shift between the
voltage and current harmonics, i.e., when there is at least
one non zero Qn value. Unlike the reactive power defined
by Budeanu, the reactive power Q defined with Eq. (90) is
a measure of the apparent power increase (32, 40) due to a
phase shift between the voltage and current harmonics.

The power factor of the supply source, which is a mea-
sure of the supply source utilization, is the ratio of the ac-
tive and apparent power of the source. It can be expressed
in terms of the rms value of CPCs, ia, is, and ir:

Both the scattered and the reactive currents contribute to
degradation of the power factor.

Numerical illustration. The load shown in Fig. 19 is sup-
plied with the voltage

u(t) = U0 + √
2Re{U1e

jω1t + U5e
j5ω1t} =

= 20 + √
2Re{100 e jω1t + 5 e j5ω1t} V

of the rms value

The load admittance

Yn = Gn + jBn = 1
R + jnω1L

+ jnω1C =

= R

R2 + (nω1L)2
+ j(nω1C − nω1L

R2 + (nω1L)2
)

for harmonic orders n = 0, 1,5 has the values

Thus the load current

i(t) = Y0U0 + √
2Re{Y1U1e

jω1t + Y5U5e
j5ω1t} =

= 20 + √
2Re{50 e jω1t + 11.55 e j89◦

e j5ω1t}A
has the rms value

The load active power is equal to

P =
∑

n=0,1,5

GnU
2
n = 1.202 + 0.5 · 1002 + 0.038 · 52 = 5401 W

thus, the load equivalent conductance is equal to

The active current, which is the current’s physical compo-
nent needed for the load active power, has the waveform

and the rms value

The scattered current, that is, the current’s physical com-
ponent caused by the load conductance variation, has the
waveform

ia(t) = Geu(t) = 10.36 +
√

2Re{51.81 e jω1t + 2.59 e j5ω1t} A

and the rms value

The reative current, that is, the current’s physical compo-
nent caused by the phase shift between the voltage and
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Figure 19. Example of a linear, time-invariant load.

Figure 20. Circuit with reactive LC compensator. When the sup-
ply voltage is not affected by the compensator, it only affects the
reactive current leaving the scattered current unchanged.

current harmonics as the waveform

ir(t) =
√

2Re
∑
n=1,5

jBnUne
jnω1t =

√
2Re{ j11.5 e j5ω1t} A

and the rms value, ‖ir‖ = 11.5 A. One can verify that the
root of squares of the rms value of the current’s physical
components is equal to the rms value of the load current.
Indeed,

Although the scattered and reactive currents are both
useless power currents, they are associated with different
power phenomena. Also, they are affected in a different
way by shunt reactive compensators connected as shown
in Fig. 20.

An ideal compensator (i.e., a compensator that has no
active power loss) does not change either the load con-
ductances for harmonic frequencies Gn or the equivalent
conductance Ge. Hence, if the supply voltage is not af-
fected by such a compensator, meaning if the supply source
impedance can be neglect-ted, then it does not affect the
scattered current. On the other hand, such a compensator
affects the reactive current. When the compensator has
susceptance Bcn, then it changes the rms value of the reac-
tive component of the supply current i’ to the value

In particular, if the susceptance of the compensator, Bcn,
satisfies the condition

for each harmonic of the supply voltage, then the reactive
current of the load is totally compensated. This improves
the power factor λ of the supply source to the maximum
value

Figure 21. Circuit with harmonic generating load (HGL). The
supply source provides a sinusoidal voltage of the fundamental
frequency, while the load generates the second-order harmonic.
The load active power P has a value of zero at nonzero apparent
power S. The nonzero value of the apparent power S in this circuit
cannot be explained in terms of the active, reactive and scattered
powers.

The power factor can be improved to unity with a reactive
compensator that compensates also the scattered current.
However, it has to have not only a shunt but also a line
branch (36).

CURRENT’S PHYSICAL COMPONENTS AND POWERS
OF SINGLE-PHASE HARMONIC GENERATING LOADS

Current harmonics can be generated in passive loads due
to a periodic change of their parameters, mining when the
load is time-variant. Also, current harmonics are generated
in passive nonlinear loads. Harmonics can also occur in
circuits with active loads that contain sources of voltage
or current harmonics. Such loads, referred to as harmonic
generating loads (HGLs), cannot be described in terms of
powers defined for linear, time-invariant (LTI) loads. This
is illustrated with the following circuit.

Numerical illustration. The circuit shown in Fig. 21 is
composed of a voltage source of the fundamental harmonic
equal to e(t) = 100

√
2sin ω1t A, with an internal resistance,

and a resistive load with a current source of the second-
order harmonic, equal to j(t) = 50

√
2sin 2ω1t A. Thus, the

load can be considered as an active HGL. At the junction
x-x, where the energy flow is observed, the voltage, current
and their rms values are equal to:

The apparent power S = ‖u‖‖i‖ = 4000 VA. There is no ac-
tive power P in this junction, however, since

The active power P is equal to zero because the active
power P2 of the second-order harmonic is negative and
equal to the active power of the fundamental harmonic,
P1. Moreover, there is no reactive power Q in this junc-
tion, since the fundamental harmonics of the voltage and
current are in phase, while the second-order harmonics
are shifted by 180◦. Also, there is no scattered power Ds,
since the conductance of the load does not change with the
harmonic order. Thus, the presence of a non-zero apparent
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Figure 22. General structure of single-phase loads. The side A
is assu-meed to be a load, the side B is assumed to be the supply
source.

power S cannot be explained in terms of any of the known
powers. We are not able to write the power equation for
the voltage and current observed at the cross section x-
x. The presence of current harmonics originnating on the
right side of the cross section observed is the main obstacle
to writing the current and power equations in the known
form.

When a current harmonic is observed in a cross sec-
tion x-x, and the load is not linear and time-invariant, then
there is insufficient information to conclude whether or not
this current harmonic occurred because of the supply volt-
age harmonic or it was generated in the HGL. When the
load is supplied from an ideal voltage source, then the pres-
ence of a harmonic in the current along with its lack in the
voltage means that it is generated in the load. However,
in real circuits, because of the voltage drop, the set of the
current harmonic orders is identical with the set of the
voltage harmonic orders. The sign of the harmonic active
power Pn may indicate (35) where the dominating source
of harmonic active power is, in the supply source or in the
load.

Assume that a load (A) and its supply source (B) in the
circuit shown in Fig. 22 are unknown and the voltage and
current observed at the cross section x-x have harmonics
from a set N.

Active powers Pn can be calculated individually for each
harmonic. When Pn ≥ 0 it means this power is dissipated in
the load. When Pn < 0 it means that it is dissipated in the
supply source. The sign of Pn enables us to decompose the
set N into to sub-sets, NA and NB, as well as to define the
voltage, current and active power components as follows:

If Pn ≥ 0, then n ∈ NA and

If Pn < 0 then n ∈ NB and

Thus, the load current, voltage and power can be expressed
as

Equations (97) can be interpreted (35) as follows. The cur-
rent i at terminals x-x in a circuit with HGLs contains a
supply originated current iA and a load generated current
iB. Similarly, the terminal voltage u contains a supply origi-
nated voltage uA and a load generated voltage uB. Moreover,

Figure 23. Equivalent circuit of a harmonic generating load (A).
For harmonics of the order from the set NA the load is equivalent
to a passive linear load of admittance YA. For harmonics of order
from the set NB (negative Pn) the load is equivalent to the current
source jA = iB

the active power P at the cross-section observed is com-
posed of a supply originated active power PA and a load
generated active power PB.

The currents iA and iB have no common harmonics; thus
their scalar product (iA, iB) = 0, so that they are mutually
orthogonal. Hence the current rms value fulfills the rela-
tion

For harmonic orders n ∈ NA the load can be considered
as a passive load of admittance

where Sn denotes the harmonic complex power,

and for the remaining harmonics the load can be consid-
ered as a current source of the current jA(t) = iB(t), con-
nected as shown in Fig. 23.

With respect to the active power PA at voltage uA, the
load is equivalent to a resistive load of the conductance

which draws the active current

The remaining part of the current iA can be decomposed
into the scattered and reactive components

The formula for the scattered current was written assum-
ing that the voltage uA does not contain dc component. If
the voltage uA contains this component, formula (103) can
be modified to include it. Thus, taking into account Eq. (97),
the load current can be decomposed into four physical com-
ponents (CPC)

They are mutually orthogonal (35); hence their rms values
fulfill the relationship
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Figure 24. Geometrical illustration of the relationship between
the rms values of the CPC in single-phase circuits with harmonic
gene-rating loads.

This relation can be visualized with the help of the polygon
shown in Fig. 24, with sides whose length are proportional
to the CPC rms value. It can be drawn, of course, with any
sequence of the sides.

Four different power phenomena are responsible for the
rms value of the load current. The interpretation of the
active, scattered and reactive currents is similar to that
for linear, time-invariant loads. However, these power cur-
rents in circuits with HGL are associated with only a part
of the voltage observed at the cross-section x-x, namely,
with the supply-originated voltage uA, and therefore with
the supply source harmonics. The load generated current,
iB, not only increases the current rms value but also re-
duces the active power at the load terminals, since the ac-
tive power associated with this current, PB, is negative. It
dissipates in the supply source resistance.

When the load is linear and time-invariant, then the
load current contains only the supply-originated current
(i.e., i = iA), and the load active power P = PA. The pres-
ence of the load-generated current iB increases the active
power loss in the supply source; thus it increases fuel con-
sumption by the electric energy producer and the needed
power ratings of the equipment. At the same time, the load-
generated power PB reduces the active power P and the bill
for energy delivered to the customer, which is proportional
to the integral of the active power, P. Thus, energy produc-
ers are loosing part of their revenue (53) when they serve
harmonics generating loads.

The voltages uA and uB are orthogonal; thus the rms
value of the supply voltage is equal to

and the apparent power at the cross-section x-x can be ex-
pressed as

S = ‖u‖ · ‖i‖ =
√

‖uA‖2 + ‖uB‖2
√

‖iA‖2 + ‖iB‖2

=
√

S2
A + S2

B + S2
E

with

SA � ‖uA‖ · ‖iA‖ =
√

P2
A + S2

sA + Q2
A

SB � ‖uB‖ · ‖iB‖, SE �
√

‖uA‖2‖iB‖2 + ‖uB‖2‖iA‖2

The apparent power denoted by SA is the supply-originated
apparent power, while that denoted by SB is the load-
generated apparent power. The load-generated apparent

Figure 25. Structure of three-phase, three-wire system

power only occurs when there is a voltage response uB

to the load-generated current iB, that is, when the sup-
ply source has an internal impedance. The last component
of the apparent power, SE, occurs even in an ideal circuit,
when the supply voltage source is connected with a cur-
rent source of harmonic orders different than the supply
voltage harmonics. The voltage source of voltage uA and
current iA has to withstand the extorted current iB. When
this voltage source has an impedance then the voltage uB

is extorted as well. Therefore, the power SE is referred to
as an extorted apparent power.

The power equation for the circuit considered in the il-
lustration at the beginning of this Section can be written
just in terms of apparent powers S, PA, PB, SB and SE. All
other powers are equal to zero.

The power factor λ of a source with a HGL can be ex-
pressed in the form

λ = P

S
= PA − PB√

P2
A + D2

AsQ
2
A + S2

B + S2
E

which shows all causes of its degradation. Very often the
internal voltage of the supply source can be considered
as purely sinusoidal of the fundamental frequency, which
means uA = u1. In such a case PA = P1, DAs = 0, QA = Q1

Moreover, a displacement power factor λ1 (43), equal to the
cosine of the phase shift of the voltage and current funda-
mental harmonics, can be separated in such a case, namely

where

is a current distortion factor.

THREE-PHASE SYSTEMS—DOUBTS WITH RESPECT TO
APPARENT POWER DEFINITIONS

The basic structure of a three-phase, three-wire systems is
shown in Fig. 25.

There were numerous attempts to explain and describe
power properties of three-phase systems with nonsinu-
soidal voltages and currents using Budeanu’s or the Fryze’s
approach to power definitions. Unfortunately, even appar-
ently successful results of such an extension convey all
misconceptions and deficiencies of these two approaches
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with such an extension. Also, an extension from sinusoidal
to nonsinusoidal condition requires that power properties
of three-phase systems in sinu-soidal conditions are de-
scribed properly. Unfortunately, the commonly used power
equation of three-phase systems

S2 = P2 + Q2

provides a true value of the apparent power and power
factor only if the load is balanced. Some misconceptions
with respect to definition of the apparent power are demon-
strated below.

The active and reactive powers in three-phase, three-
wire systems, shown in Fig. 25, with sinusoidal supply volt-
age and sinusoidal line currents are defined as follows

P = 1
T

T∫
0

(uRiR + uSiS + uTiT)dt =
∑

f=R,S,T

Uf If cosϕf

Q =
∑

f=R,S,T

Uf If sinϕf

The apparent power in such systems is defined according
to the conclusion (68) of the joint committee of AIEE and
NELE (presently, Edison Institute) in 1920. According to
(68), the apparent power is defined as

S =
√

P2 + Q2 = SG

This quantity is known as the geometric apparent power.
It can also be defined as

S = URIR + USIS + UTIT = SA

It is known as the arithmetic apparent power. These defi-
nitions are provided by the IEEE Standard Dictionary of
Electrical and Electronics Terms (5). There is a third def-
inition of the apparent power, suggested by Buchholz (51)
in 1922:

S =
√

U2
R + U2

S + U2
T

√
I2

R + I2
S + I2

T = SB

but not referred to in Standard (5). These three definitions
result in the same value of apparent power S, only if the
line currents are symmetrical. Otherwise these values are
different. This is demonstrated with the following illustra-
tion.

Numerical illustration. Let us consider a single-phase re-
sistive load supplied from a three-phase circuit as shown
in Fig. 26.

Assuming that the line-to-ground voltage RMS value is
120 V, transformer turn ratio is 1:1, the active power at the
supply terminals is P = 21.6 kW, while the apparent power,
depending on the definition, is

SA = 24.9 VA, SG = 21.6 kVA, SB = 30.5 kVA

Consequently, power factor depends on the selected defi-
nition of the apparent power and is equal to, respectively,

λA = 0.86, λG = 1, λB = 0.71

Figure 26. Example of three-phase circuit

Figure 27. Circuit with balanced resistive load

Figure 28. Circuit with unbalanced load

The reactive power in the system considered is Q = 0, thus,
power equation (140) is satisfied only for the geometric def-
inition of the apparent power. However, the question arises:
is the power factor of such an unbalanced load equal to
λ = 1?

The apparent power is not a physical, but a conventional
quantity. Various objectives could be taken into account
when a convention for the apparent power definition is se-
lected. One of them, and probably particularly important,
is such a definition that results in such a value of power
factor that characterizes correctly the power loss at energy
delivery. In such a case, the issue of selection of the appar-
ent power definition is equivalent to the question: which
value λA, λG or λB characterizes power loss on energy deliv-
ery?

The answer to this question was based on the following
reasoning presented in (70) in 1999. At first, a circuit with a
balanced resistive load was found, a circuit that at the load
active power P = 100 kW has the power loss, 	Ps = 5 kW,
on delivery. Parameters of such a circuit are shown in Fig.
27.

In the next step, the same source supplies an unbal-
anced resistive load, shown in Fig. 28, with the same active
power P = 100 kW.

Depending on definition of the apparent power, it is
equal to

SA = 119 kVA, SG = 100 kVA, SB = 149 kVA
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Figure 29. Balanced load equivalent to unbalanced load in Fig.
28 with respect to power loss in the source

and the power factor is equal to, respectively,

λA = 0.84, λG = 1, λB = 0.67

Observe, that in spite of the same load active power, the
power loss on energy delivery has increased in the cir-
cuit with the unbalanced load from 	Ps = 5.0 kW to 	Ps =
11.2 kW. It means that the load shown in Fig. 28 is not
a load with unity power factor. This conclusion disquali-
fies geometric definition (117) of the apparent power. How-
ever, still we do not know whether λA or λB provides the
true value of the power factor. To answer this question,
let us find the power factor of a balan-ced RL load that
supplied from the same source will have the same active
power, P = 100 kW, and will causes the same power loss,
	Ps = 11.2 kW. Such an RL balanced load has parameters
shown in Fig. 29.

The load in this circuit is balanced thus, the apparent
power does not depend on the selected definition of the ap-
parent power and SA = SB = 149 kVA. Consequently, the
power factor is λB = λ = 0.67. It means that the power fac-
tor has a true value only if the apparent power S is cal-
culated according to definition (119). Arithmetic and geo-
metric definitions of the apparent power result in an er-
roneous value of the power factor. However, when the ap-
parent power S is calculated according to definition (119),
power equation (114) is not fulfilled. Thus, this power equa-
tion is erroneous even for sinusoidal voltages and currents.
It is true only for balanced loads supplied with a symmetri-
cal voltage. However, power properties of such sys-tems are
trivial and could be described phase by phase as properties
of single-phase systems.

CURRENTS’ PHYSICAL COMPONENTS OF
THREE-PHASE, LINEAR, TIME-INVARIANT (LTI) LOADS

To describe a three-phase system as a whole, not only as
a connection of three separate phases, it is convenient to
arrange the phase voltages and currents observed at ter-
minals R, S and T of a three-phase circuit, as shown in Fig.
25, into three-phase vectors (34), namely

[
uR(t)
uS(t)
uT(t)

] = u(t) = u, [
iR(t)
iS(t)
iT(t)

] = i(t) = i

Let us consider a three-phase device shown in Fig. 30.
When the current i flows through a three-phase device

shown in Fig. 30(a), then the active power of this device is

Figure 30. (a) Three-phase, three-wire symmetrical device and
(b) single-phase device with current rms value ‖i‖ equivalent to
the three-phase current rms value ‖i‖ with respect to the active
power loss.

equal to

P = rR‖iR‖2 + rS‖iS‖2 + rT‖iT‖2

Three-phase equipment is built so that it is as symmetrical
as possible, thus, it can be assumed that rR = rS = rT = r.
In such a case

P = r(‖iR‖2 + ‖iS‖2 + ‖iT‖2) = r
1
T

T∫
0

iT (t)i(t)dt � r‖i‖2

where superscript T denotes a matrix transposition. The
quantity

‖i‖�

√√√√√ 1
T

T∫
0

iT(t)i(t)dt =
√

‖iR‖2 + ‖iS‖2 + ‖iT‖2

is referred to (34) as the rms value of a three-phase current.
This is the rms value of the single-phase current in a circuit
shown in Fig. 30(b), which is equivalent to the three-phase
current with respect to the active power in a symmetrical
three-phase, three-wire device. Similarly,

‖u‖ 


√√√√√ 1
T

T∫
0

uT(t)u(t)dt =
√

‖uR‖2 + ‖uS‖2 + ‖uT‖2

is referred to as the rms value of a three-phase voltage.
The instantaneous power p(t) of a three-phase load is

defined as the rate of energy W(t) flow to the load, namely

p(t) = d

dt
W(t) = uR(t)iR(t) + uS(t)iS(t) + uT(t)iT(t) = uTi

The instantaneous power p(t) in three-phase systems
with a symmetrical and sinusoidal supply voltage u and a
balanced load is constant, equal to the load active power
P, independently of the load reactive power Q. This means
that reactive power may occur in such a circuit without
any reciprocating oscillation of energy between the sup-
ply source and the load. On the other hand, if the supply
voltage u in such a system contains harmonics, than the
instantaneous power p(t) contains oscillating components
even if the load is purely resistive and consequently the
power factor is equal to one. Though some authors (46)
claim that all nonactive powers occur only due to energy
oscillation, there is no relation between such a reciprocat-
ing oscillation of energy between the load and the supply
source and reactive power Q in three-phase systems. Also,
it is important to observe that a single term, for example,
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uR(t) iR(t), cannot be interpreted (47) as an instantaneous
power PR(t) of a single phase of the three-phase system,
since generally it is not possible to separate energy deliv-
ered to a three-phase load by a single phase. Moreover, any
point in a three-phase system could be chosen as a refer-
ence point without affecting power phenomena, whereas
single-phase products like uR(t) iR(t) may change with the
change of the reference point. When, for example, termi-
nal R is chosen as a reference, then uR(t) = 0 and uR(t)
PR(t) = 0. Thus, there is no relation between such single-
phase voltage and current products and power phenomena
in three-phase circuits.

The active power of a three-phase load is defined as the
mean value of the instantaneous power

P =
°

p(t) = 1
T

T∫
0

uT(t)i(t)dt = (u, i)

The symbol (u,i) denotes the scalar product of a three-
phase load voltage and current. Generally, the scalar prod-
uct of three-phase vectors, x and y, is defined as

(x, y) = 1
T

T∫
0

xT(t)y(t)dt

These quantities are orthogonal when their scalar product
is equal to zero. The rms values of three-phase orthogonal
quantities fulfill the relationship

‖x‖2 = ‖x + y‖2 = ‖x‖2 = ‖y‖2

When the entries of a three-phase vector x have harmonics
from a set N, the vector can be expressed in the form

x(t) =
∑
n ∈ N

xn(t) = √
2Re

∑
n ∈ N

[
XR n

XS n

XT n

]e jnω1t =

= √
2Re

∑
n ∈ N

Xne
jnω1t

The scalar product defined with Eq. (157) in the time-
domain, can be calculated in the frequency domain as

(x, y) = Re
∑
n ∈ N

XT
n Y ∗

n

In particular, the active power of the load can be expressed
in the frequency-domain as

P = (u, i) = Re
∑
n ∈ N

UT
n I∗

n

The rms value ‖x‖ of the vector x can be expressed as

‖x‖ =
√

(x, x) =
√∑

n ∈ N

XT
n X∗

n =
√∑

n ∈ N

(X2
R n + X2

S n + X2
T n)

A three-phase load has the active power P on the condi-
tion that the supply source provides the voltage of the rms
value ‖u‖ and is capable of providing current of the rms
value ‖i‖. By an analogy to the apparent power of single-
phase sources, the product of these two rms values can be
considered (34,39,51) as the apparent power of three-phase
sources, namely

‖u‖ · ‖i‖ = S

When voltages and currents are sinusoidal then this def-
inition is equivalent to the definition given by Eq. (145).
The last definition is valid for systems with no sinusoidal
voltages and current, but with the following restriction.

The supply source may produce voltage harmonics of
the zero sequence, in particular, the third order. Such har-
monics contribute to the voltage rms value ‖u‖ increase
in the distribution equipment. They cause no current in
three-wire systems, however, and do not deliver energy to
loads. Therefore, when the load power factor λ is of concern,
the zero sequence harmonics should be neglected when the
voltage rms value ‖u‖ is calculated. Otherwise, even an
ideal resistive balanced load would not have a unity power
factor, and the customer cannot be blamed for that. Con-
sequently, when power properties of customers’ loads are
analyzed, it is assumed that the load voltage u contains no
zero-sequence harmonics.

Let us assume that a load is supplied symmetrically
with a single voltage harmonic of the nth-order

un(t) =
√

2Re[
UR n

US n

UT n

]e jω1t =
√

2ReUne
jnω1t

and the load current is equal to

in(t) =
√

2Re[
IR n

IS n

IT n

]e jω1t =
√

2ReIne
jnω1t

The complex power of the load for the nth-order harmonic
has the value

Sn = Pn + jQn = UT
n I∗

n

A symmetrical resistive load having a star structure as
shown in Fig. 31(b) is equivalent to the load shown in Fig.
31 (a) with respect to the active power Pn at voltage un ,
when its phase conductance is equal to

Ge n = Pn

3U2
R n

= Pn

‖un‖2

This conductance can be referred to as equivalent conduc-
tance of the load for the nth-order harmonic. A load of such
a conductance draws a symmetrical current

ian(t) = Genun(t) =
√

2ReGenUne
jnω1t

which can be referred to as an active current of the nth-order
harmonic. Its rms value is equal to

‖ian‖ = Gen‖un‖
A symmetrical reactive load having a star structure as
shown in Fig. 32(b) is equivalent (34, 39) to the load shown
in Fig. 32(a) with respect to the reactive power Qn at volt-
age un , when its phase susceptance is equal to

Ben = − Qn

3U2
Rn

= − Qn

‖un‖2

This susceptance can be referred to as equivalent suscep-
tance of the load for the nth-order harmonic. A load of such
a susceptance draws a symmetrical current

irn(t) = Ben

d

d(nω1t)
un(t) =

√
2Re{ jBenUne

jnω1t}
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Figure 31. (a) Linear, time-invariant load and (b) symmetrical
resistive load equivalent to the load in (a) with respect to the active
power Pn of the nth-order harmonic. It draws symmetrical active
current ian.

Figure 32. (a) Linear, time-invariant load and (b) symmetrical
reactive load, equivalent to the load (a) with respect to the reactive
power Qn of the nth-order harmonic. It draws reactive current irn.

Figure 33. (a) Linear, time-invariant load; (b) load having a delta
structue and equivalent to load (a) with respect to the line current
in.

which can be referred to as a reactive current of the nth-
order harmonic. Its rms value is equal to

‖irn‖ = ‖Ben‖‖un‖
The equivalent conductance Gen and susceptance Ben

are the real and imaginary parts of an equivalent admit-
tance (34, 39) for the nth-order harmonic.

Ye n �Ge n + jBe n = S∗
n

‖un‖2

Each three-phase load has a delta equivalent load shown
in Fig. 33(b).

The complex apparent power Sn of such a load supplied
with a symmetrical voltage can be calculated as

Sn = (Y ∗
RS n + Y ∗

ST n + Y ∗
TR n)‖un‖2

thus, the equivalent admittance Yen of the load for the nth-
order harmonic is equal to

Yen = YRSn + YSTn + YTRn

When the load is unbalanced, its current is asymmetri-
cal, while the active and reactive currents are symmetrical.

Therefore, the load current contains a component

iun = in − (ian + irn)

referred to (34) as an unbalanced current of the nth-order
harmonic. The crms value of this current in phase R is
equal to

IRun = IR n − (IRan + IRrn) =
= (YRS nURSn − YTR nUTR n) − Ye nUR n =
� AR nUR n

where

ARn �An � − (YSTn + βYTRn + β∗YRSn)

is the unbalanced admittance of the load for the nth-order
harmonic. The symbol β denotes a complex turn coefficient
dependent on the harmonic sequence, namely

β�1e js 2π
3 , { s = 1, for positive sequence harmonics

s = −1, for negative sequence harmonics

The unbalanced current in lines S and T is equal to

ISun = β∗AnUS n = β IRun

ITun = βAnUT n = β∗ IRun

which means that the unbalanced current iun has a se-
quence which is the opposite to the voltage harmonic in .
This means that it is also opposite to the sequence of the
active and reactive currents, ian and irn . The unbalanced
current iun can be expressed in a compact form as follows

iun(t) = √
2Re[

1 0 0
0 β∗ 0
0 0 β

]An[
UR n

US n

UT n

]e jnω1t =

= √
2Re{bnAnUne

jnω1t}
Its rms value is equal to

‖iun‖ = An‖un‖
In such a way, the nth-order load current harmonic has been
decomposed into three physical components:

in = ian + irn + iun

Their scalar products (ian , irn ) = (ian , iun ) = (irn , iun ) = 0,
thus they are orthogonal (39), and hence rms values of the
physical components of the current harmonics fulfill the
relationship

‖in‖2 = ‖ia n‖2 + ‖ir n‖2 + ‖iu n‖2

In three-phase, three-wire systems with sinusoidal
waveforms, there is no need to keep the index n, and re-
lation (154) represents (39) the final decomposition of the
load current into physical components (CPC), that means
the active, reactive and unbalanced currents,

i = ia + ir + iu

It is important to observe that the supply current in three-
phase, three-wire systems is composed, in general, not only
the active and reactive current, but also an unbalanced
current. Their rms values satisfy the relationship

‖in‖2 = ‖ia‖2 + ‖ir‖2 + ‖iu‖2

Thus, the unbalanced current contributes to the supply cur-
rent rms value in the same way as the active and reactive
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currents. Observe however, that this equation is developed
under the assumption that the supply voltage is symmet-
rical. The current decomposition and the power equation
of loads at asymmetrical supply was developed in (72).

Equation (186) after multiplying both sides by voltage
rms value ‖u‖, results in the power equation

S2 = P2 + Q2 + D2
u

with

Du � ‖u‖ · ‖iu‖
Power equation (157) is the valid equation of three-

phase, three-wire systems with sinusoidal voltages and
currents. It reveals a new, unknown earlier power referred
to as the unbalanced power Du. The commonly used power
equation in the form (114) is erroneous. It is valid only if
the voltages and currents are symmetrical.

The power factor λ can be related to the current physical
components and load parameters as follows

λ� P

S
= ‖ia‖√

‖ia‖2 + ‖ir‖2 + ‖iu‖2
= Ge√

G2
e + B2

e + A2

and this formula shows that the unbalanced current affects
the power factor in a manner similar to the way that the
reactive current does.

It is important to observe (39) that not only the reactive
current but also the unbalanced current can be compen-
sated by a passive reactive compensator. Thus the power
factor can be improved to unity, independently of the load
imbalance.

When the supply voltage contains harmonics of the or-
ders from a set N, then the load current can be expressed
as

i =
∑
n ∈ N

in =
∑
n ∈ N

(ian + irn + iun)

The three-phase load at the distorted voltage u has the
same active power P as a resistive symmetrical load if its
conductance is equal to

Ge = P

‖u‖2

and such a load draws only the active current from the
source, namely

ia(t) = Geu(t) =
√

2Re
∑
n ∈ N

GeUne jnω1t

When the load equivalent conductance Gen changes with
the harmonic order, a difference

is(t)�
∑
n ∈ N

ian(t) − ia(t) =
√

2Re
∑
n ∈ N

(Gen − Ge)Une
jnω1t

occurs in the load current. This is a scattered current. The
reactive and unbalanced currents are the sum of the reac-
tive and unbalanced harmonic currents, namely

ir(t)�
∑
n ∈ N

ir n =
√

2Re
∑
n ∈ N

jBenUne
jnω1t

Figure 34. Geometrical illustration of the relationship between
the rms values ‖ia‖, ‖ir‖ and ‖iu‖ of the currents physical com-
ponents and the supply current rms value ‖i‖ of three-phase LTI
loads.

iu(t)�
∑
n ∈ N

iu n =
√

2Re
∑
n ∈ N

bnAnUne
jnω1t

Thus, the load current of a three-phase linear and time-
invariant load supplied with a symmetrical nonsinusoidal
voltage has four components

i = ia + is + ir + iu

Each of these four currents is associated with a different
power phenomenon, namely, the active power of the load,
a change of its conductance with harmonic order, a phase-
shift between the voltage and current harmonics and the
load imbalance. Therefore, similarly as in single-phase sys-
tems, they are referred to as currents’ physical components,
(CPCs).

The scalar products of all these power currents are equal
to zero (34), thus they are mutually orthogonal, so that
their rms values fulfill the relationship

‖i‖2 = ‖ia‖2 + ‖is‖2 + ‖ir‖2 + ‖iu‖2

which means, that these four power phenomena contribute
to the increase of the load current rms value independently
of each other. This relationship can be illustrated with the
polygon shown in Fig. 34.

Multiplying Eq. (167) by the square of the load voltage
rms value ‖u‖2 results in the power equation

S2 = P2 + D2
s + Q2 + D2

u

with the scattered power of three-phase loads, defined as

Ds � ‖u‖ · ‖is‖

CURRENTS’ PHYSICAL COMPONENTS AND POWERS
OF THREE-PHASE HARMONIC GENERATING LOADS

The previously presented approach to analysis of power
phenomena in single-phase circuits with HGLs can be ap-
plied to three-phase, three-wire circuits, shown in Fig. 35,
with HGLs.

The sign of the harmonic active power Pn enables us to
conclude where the source of this power is located, namely,
in the supply source or in the HGL, and to decompose the
set of harmonic orders N into to subsets, NA, NA.
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Figure 35. General structure of three-phase, three-wire circuits,
with sub-circuit A assumed to be a load and sub-circuit B assumed
to be a supply system.

If Pn ≥ 0, then n ∈ NB and∑
n ∈ NA

in � iA,
∑
n ∈ NA

un � uA,
∑
n ∈ NA

Pn �PA

∑
n ∈ NB

in � iB,
∑
n ∈ NB

un � − uB,
∑
n ∈ NB

Pn � − PB

Thus, similarly as in single-phase circuits, the load current,
voltage and power can be expressed as

i =
∑
n ∈ N

in = iA + iB

u =
∑
n ∈ N

un = uA − uB

P =
∑
n ∈ N

Pn = PA + PB

Interpretation of this decomposition is exactly the same
(37) as interpretation of such a decomposition in single-
phase circuits, except that the voltages and currents are
superseded by three-phase vectors of line voltages and cur-
rents. The current vectors iA and iB are mutually orthogo-
nal; hence

‖i‖2 = ‖iA‖2 + ‖iB‖2

For harmonic orders n ∈ NA the three-phase load can
be considered as a passive load of having equivalent delta
structure as shown in Figure 36 and equivalent admittance

YenA �GenA + jBenA = S∗
n

‖un‖2

where the harmonic complex power Sn of a three-phase
load can be calculated as

Sn �Pn + jQn = UT
n I∗

n

The remaining harmonics, i.e., of the order n ∈ NB, are
considered to be harmonics of a current source located
in the sub-circuit A, meaning harmonic generating load,
jA(t) = iB(t).

With respect to the active power PA at voltage uA, the
load is equivalent to a resistive symmetrical load having a
star configuration and the conductance per phase equal to

GeA � PA

‖uA‖2

Such a load draws the active current

iaA �GeAuA

Figure 36. Equivalent circuit of a three-phase harmonic-
generating load (A). For harmonics of the order from the set NA,
(nonnegative Pn ) the load is equivalent to a passive linear load.
For harmonics of the order from the set NB, (negative Pn ) the load
is equivalent to the current source with jA = iB.

The remaining part of the current iA can be decomposed
into the scattered, reactive and unbalanced currents

isA �
√

2Re
∑
n ∈ NA

(Ge nA − GeA)Une
jnω1t

irA �
√

2Re
∑
n ∈ NA

jBenAUne
jnω1t

iuA �
√

2Re
∑
n ∈ NA

bnAnUne
jnω1t

Thus, taking into account eqn. (194), the load current can
be decomposed into five physical components, namely

i = iaA + isA + irA + iuA + iB.

They are mutually orthogonal (38); hence their rms values
fulfill the relationship

‖i‖ = ‖iaA‖2 + ‖isA‖2 + ‖irA‖2 + ‖iuA‖2 + ‖iB‖2

This relation can be visualized with the help of the poly-
gon shown in Fig. 37. Five different power phenomena are
responsible for the load current rms value. The active, scat-
tered, reactive, unbalanced and the load generated current
are associated with these phenomena.

The voltage vectors uA and uB orthogonal, thus the rms
value of the supply voltage is equal to

‖u‖2 = ‖uA‖2 + ‖uB‖2

and the source apparent power can be expressed as

S � ‖u‖ · ‖i‖ =
√

‖uA‖2 + ‖uB‖2
√

‖iA‖2 + ‖iB‖2 =
=

√
S2

A + S2
B + S2

E

with

SA � ‖uA‖ · ‖iA‖ =
√

P2
A + P2

sA + Q2
A + D2

uA

SB � ‖uB‖ · ‖iB‖, SE � =
√

‖uA‖2‖iB‖2 + ‖uB‖2‖iA‖2

Although the extorted apparent power SE and the HGL-
originated apparent power SB look very similar, there is
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Figure 37. Geometrical illustration of the relationship between
the rms value of the currents’ physical components and the sup-
ply current rms value ‖i‖ in three-phase circuits with harmonic-
generating loads.

a substantial difference between them. There is no power
phenomenon behind the extorted power SE. It occurs only
because the voltages uA and uB as well as currents iA and
iB have rms values the supply source has to withstand.
In the case of the apparent SB it can be decomposed not
only into the active power PB, but also into a scattered,
reactive and unbalanced powers, dependent on the power
phenomena inside of the supply source.

The power factor λ of a three-phase unbalanced HGL
can be expressed in the form

λ� P

S
= PA − PB√

P2
A + D2

sA + Q2
A + D2

uA + S2
B + S2

E

This formula reveals all power components that contribute
to deterioration of the power factor in three-phase circuits
with harmonic generating loads.

INSTANTANEOUS REACTIVE POWER P-Q THEORY

Since the main approaches to power theory, as suggested by
Budeanu and Fryze, were not capable of describing power
properties and providing fundamentals for compensation
of single-phase systems, a new concept, known as the In-
stantaneous Reactive Power (IRP) p-q Theory, has been de-
veloped by Akagi, Kanazawa and Nabae (59) in 1984. It
was to provide mathematical fundamentals for the control
of Pulse Width Modulated (PWM) inverter-based switch-
ing compensators, commonly known as “active power fil-
ters”. According to Authors (73), the development of the
IRP p-q Theory was a response to “. . . the demand to in-
stantaneously compensate the reactive power” and the ad-
jective “instantaneous” suggested that this theory could in-
stantaneously provide information needed for a compen-
sator control. Moreover, harmonic analysis is not needed
for that purpose. Consequently, the IRP p-q Theory gained
very high popularity (74–79).

Unfortunately, it was proven in (80, 81) that the IRP
p-q Theory misinterprets power phenomena in electrical
circuits. There is no physical phenomenon that is charac-
terized by the instantaneous reactive power q. It can occur
even in purely resistive circuits. Moreover, the instanta-
neous powers p and q do not enable for instantaneous iden-

tification of power properties of the load. They have to be
observed over a whole period T for that purpose. Moreover,
there is no direct relation of these two powers to power
phenomena. This is because even in a sinusoidal situation
there are three different phenomena that determine power
properties of three-phase loads. These are: (1) the perma-
nent flow of energy to the load characterized by the load
active power, P; (2) phase shift between the voltage and
current characterized by the load reactive power Q; and
(3) the load current asymmetry and consequently, the load
unbalanced power D. Three different phenomena cannot
be identified with only two power quantities, p and q, the
Instantaneous Reactive Power p-q Theory is based upon.

ADVANCED TOPICS THAT HAVE NOT BEEN DISCUSSED

The Currents’ Physical Components (CPC) Power Theory
is currently the most powerful tool for explanation and de-
scription of power phenomena in electrical systems with
sinusoidal and nonsinusoidal voltages and currents. It ap-
plies not only to single-phase, but also to three-phase,
three-wire systems with linear, time-invariant loads as
well as with harmonic generating loads. The CPC Power
Theory has proved its effectiveness in revealing major
misconceptions in power theories developed by Budeanu,
Fryze, Shepherd and Kusters, as well as in the Instanta-
neous Reactive Power p-q Theory.

The CPC Power Theory is also a major theoretical tool
for design and control of compensator for improving the
power factor and reducing harmonic distortion. It provides
fundamentals for design of reactive compensators both of
the reactive current (32, 82), scattered current (36) and un-
balanced currents (42,83,84). It can also be used, instead
of the IRP p-q Theory, as a fundamental for switching com-
pensator control algorithm (62,85,86,94). As it was demon-
strated in (86), the CPC-based control algorithm is more
universal than the IRP p-q Theory-based algorithm and
enables external controllability and adaptive operation of
the compensator.

The progress in the development of the power theory
of nonsinusoidal systems, obtained mainly due to the CPC
concept, now enables (87) an extension of this theory be-
yond its traditional scope, meaning power phenomena and
compensation in systems with periodic voltages and cur-
rents.

Due to fast varying, or in particular, pulsing loads, volt-
ages and currents are loosing periodicity and consequently,
the harmonic approach and the CPC power theory in its
classical form cannot be applied. However, voltages and
currents in electrical systems with time-varying or puls-
ing loads can be considered as semi-periodic. This concept
is explained in (88). It was demon-strated in (87) that the
CPC-based power theory can be exten-ded to systems with
semi-periodic quantities and conesequ-ently, it enables de-
scription of power phenomena in such systems in power
terms and provides a control algorithm for switching com-
pensators (89).

The Reader should be aware that this article does not
cover all issues on harmonics and powers. Due to an in-
crease in number and in power of loads that cause current
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distortion, there is a lot of research on systems with nonsi-
nusoidal voltages and currents. The scope of this research
is very wide. There is still research related to mathemati-
cal fundamentals of analysis of such systems (90–92) and
attempts aimed at standardization (7) of power quantities,
based on an intuition rather than on a rigorous analysis
of power phenomena. A lot of research is focused on com-
pensation. This includes research on control algorithms for
individual switching compensators (85,86,93–95) and on
optimization and compensation of the whole system (96,
97).
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