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CAMERA CALIBRATION FOR IMAGE PROCESSING of parameters as single variables in order to formulate the
problem as a linear system. However, in this formulation, the

The camera calibration problem is well-studied in photogram- variables are not completely linearly independent, yet are
treated as such. Furthermore, these methods mostly ignoremetry and computer vision, and it is crucial to several appli-

cations in manufacturing, metrology, and aerospace. The constraints that the extrinsic and intrinsic parameters must
obey, and hence the solutions are suboptimal. For example,topic includes the body of techniques by which we compute

(1) the three-dimensional (3-D) position and orientation of the the orthonormality constraints on the extrinsic rotation pa-
rameters are not strictly imposed. Grosky and Tamburino (4)camera relative to a certain world coordinate system (exterior

orientation) and (2) the internal camera geometric and optical extended the above linear methods to also include a skew
angle parameter, and then they satisfied the orthonormalitycharacteristics (interior orientation). In photogrammetric ter-

minology, the exterior orientation of a camera is specified by constraints. In general, linear methods are computationally
fast, but in the presence of noise the accuracy of the finalall the parameters that determine the pose of the camera in

the world reference frame. The parameters consist of the posi- solution is relatively poor.
Tsai (9) and Lenz and Tsai (10) offered a two-stage algo-tion of the center of perspectivity and the direction of the opti-

cal axis. Specification of the exterior orientation therefore re- rithm using a radial alignment constraint (RAC) in which
most parameters are computed in closed form. A small num-quires three rotation angles and three translation parameters

and is accomplished by obtaining the 3-D coordinates of some ber of parameters such as the focal length, depth component
of the translation vector, and radial lens distortion parame-control points whose corresponding positions in the image are

known. The interior orientation of a camera is specified by all ters are computed by an iterative scheme. If image center is
unknown, it is determined by a nonlinear approach (10) basedthe parameters that relate the geometry of ideal perspective

projection to the physics of an actual camera. The parameters on minimizing the RAC residual error. Although the solution
is efficient and the closed-form solution is immune to radialinclude the focal length, the image center, the scale factor,

and the specification of the lens distortion. lens distortion, the formulation is less effective if tangential
lens distortion is also included. Furthermore, by taking theThere are two types of camera calibration problems: (1)

noncoplanar calibration, in which the world points lie on a ratio of the collinearity conditions [see Eq. (1)], the method
considers tangential information only and radial information3-D surface, and (2) coplanar calibration, in which the world

points are on a two-dimensional (2-D) plane. A solution to all is discarded. This is not an optimal solution because all infor-
mation from calibration points is not fully considered. For ex-extrinsic and intrinsic calibration parameters requires non-

linear optimization. In some applications such as passive ample, Weng et al. (11) suggest that ignoring radial informa-
tion can result in a less reliable estimator. Furthermore, thestereo image analysis, camera calibration may be performed

slowly to obtain very accurate results. However, there are orthogonality of the first two rows of the rotation matrix is
not guaranteed. However, Tsai (9) has offered one of the fewseveral applications that require repeated computation of the

camera parameters at real-time or near-real-time speeds. Ex- algorithms for the coplanar case.
Next, we study the computational procedure in traditionalamples are: (1) determining the position of a camera mounted

on a moving airplane, (2) 3-D shape measurement of mechani- analytical photogrammetry. The method (12–16) is based on
the parametric recursive procedure of the method of leastcal parts in automatic parts assembly, (3) part dimension

measurement in automatic part machining, and (4) naviga- squares. Using the Euler angles for the rotation matrix [see
Ref. 17], two nonlinear collinearity equations are obtained fortion of a camera-mounted land vehicle. Thus, in some applica-

tions a complete nonlinear parameter estimation procedure each observation. The nonlinear equations are linearized us-
ing Newton’s first-order approximation. Based on the assump-can be employed, whereas others require fast and near-real-

time calibration algorithms. In light of these varying applica- tion of normal distribution of errors in measurements, the
condition of maximizing the sum of squares of the residualstions, we find many algorithms for camera calibration, each

satisfying a set of applications with different levels of results in the maximum-likelihood values of the unknowns.
Several iterations of the solution must be made to eliminateaccuracy.

The literature for camera calibration is vast and we offer errors due to the linearization procedure. That is, the com-
puted corrections are applied to the approximations at thea brief review. Many earlier studies (1–7) have primarily con-

sidered the extrinsic parameters, although some intrinsic pa- end of each iteration, which form the new approximations in
the next iteration. Initial solution is a prerequisite to this re-rameters are also computed only for the noncoplanar case.

These methods are usually efficient mostly due to the compu- cursive procedure. In addition, Malhotra and Karara (14) note
that ‘‘this solution needs considerable computational efforttation of linear equations. However, the methods generally

ignore nonlinear lens distortion, and the coplanar case is also when the number of parameters in the adjustment are large.’’
Other researchers (4,5,9) also make the same observation.dealt with inadequately. For example, Sobel (6) used the basic

pinhole camera model and utilized nonlinear optimization Faig (12), Wong (16), and Malhotra and Karara (14) used the
above method for a general solution of all parameters. Themethods to compute 18 parameters. The nonlinear approach

is similar to the parametric recursive least-squares method generality of their models allows them to accommodate many
types of distortions, and it leads to accurate results. However,discussed below. He did not model lens distortion, and the

system depended on the user to provide initial parameters convergence is not guaranteed. These earlier nonlinear meth-
ods obtain good results provided that the estimation model isfor the optimization technique. Gennery (8) found the camera

parameters iteratively by minimizing the error of epipolar good, and a good initial guess is available.
The direct linear transformation (DLT) method of Abdel-constraints, but the method is too error-prone as observed by

Tsai (9). Yakimovsky and Cunningham (7) and Ganapathy (2) Aziz and Karara (18,19) is a nonlinear method when lens
distortion is corrected. However, in this formulation, depthalso used the pinhole model and treated some combinations
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components of control points in a camera-centered coordinate
system are assumed to be constant. Beyer (20) uses a non-
linear formulation and a versatile method based on self-cali-
brating bundle adjustment. The method is general, and accu-
rate results of up to 1/46th of the pixel spacing in image space
are reported. With redundant control points, an accuracy of
1/79th of the pixel spacing is achieved. Nomura et al. (21)
also uses a nonlinear method where the dimension of the pa-
rameter space for nonlinear optimization is five. This reduced
dimensionality for nonlinear optimization is obtained by set-
ting up the calibration chart precisely to eliminate two Euler
angles. Scale factor and depth components of the translation
vector are assumed known or simply computed.

Table 1. Camera Calibration Parameters
Discussed in This Study

Parameters Type Description

R Extrinsic Rotation matrix for camera orientation
t Translation vector for position of camera

center
f Intrinsic Focal length
i0 , j0 Intrinsic Image center displacement
s Scale factor
� Skew angle
k1 , ..., kr

0
Intrinsic Radial lens distortion

p1 , p2 Decentering lens distortion
s1 , s2 Thin prism lens distortion

Although starting estimates are required in all nonlinear
methods, the research by Weng et al. (11) is an example
where a method for obtaining starting estimates is explicitly
mentioned. As shown by Weng et al., computing all extrinsic

3 � 3 rotation matrix R for the camera orientation, which canparameters with lens distortion is necessary for accurate cam-
be alternatively specified by the three Euler angles �, �, andera calibration. The method employs a two-step algorithm
� that designate rotations around the X, Y, and Z world axes,that first computes a set of starting values for all parameters,
respectively (see Fig. 1). Besides, the 3 � 1 translation vectorand then it uses linear and nonlinear optimization schemes
t denotes the position of the camera center. The intrinsic pa-to obtain accurate estimates. Each iteration improves all pa-
rameters consist of the effective focal length f of the camera,rameters by successive minimization of an objective function.
center of the image array (i0, j0), horizontal scale factor s ofThe method does not deal with the coplanar case.
the image array, skew angle � between the image axes, andWe next mention the method due to Chatterjee, Roychowd-
radial, tangential, and thin prism lens distortion parametershury, and Chong (22) that uses the Gauss–Seidel framework
�k1, k2, . . ., kr0

, p1, p2, s1, s2�.(23,24) for nonlinear minimization. It exploits the structure
of the calibration problem to use smaller blocks that are

Extrinsic Parameterssolved by linear iterations or computed in closed form in each
iteration. Nonlinear optimization is performed on a reduced Here we describe the geometry of the calibration system. The
parameter space of three in the noncoplanar case. A detailed geometry involves three coordinate systems (see Fig. 1): (1) a
initialization algorithm is also provided to obtain starting es- 3-D world coordinate system (Xw, Yw, Zw) centered on a point
timates. Furthermore, they provide an analytical proof of con- Ow and including a point p � (x, y, z), (2) a camera coordinate
vergence for their algorithm. system (Xc, Yc, Zc) with origin at optical center Oc with Zc axis

Finally, there are several applications in aerospace and the same as the optical axis, and (3) a 2-D image array sys-
military that do not have accurate control points. An initial tem (I, J) centered at a point Os in the image, with (I, J) axes
estimate of the calibration parameters is made with inaccu- aligned to (Xc, Yc) respectively, and including a point (i, j). Let
rate world points and accurate image points. For such appli- f be the effective focal length of the camera. The collinearity
cations, a robust estimation scheme is required. One such al- condition equations are (13,15,19)
gorithm is given by Haralick and Shapiro (25) to solve the
extrinsic parameters only. This algorithm is extended to also
compute the focal length. f

�
rrrT

1 ppp + t1

rrrT
3 ppp + t3

�
= i and f

�
rrrT

2 ppp + t2

rrrT
3 ppp + t3

�
= j (1)

Since the literature for calibration is vast and varied, we
first discuss the camera calibration model and present off-line
methods of computing some intrinsic parameters in the sec-
tion entitled ‘‘Camera Calibration Model.’’ We next consider
noncoplanar camera calibration algorithms that employ (1)
linear optimization methods to produce suboptimal solutions
in the section entitled ‘‘Linear Methods of Noncoplanar Cam-
era Calibration,’’ (2) nonlinear optimization methods to pro-
duce optimal solutions in the section entitled ‘‘Nonlinear
Methods of Noncoplanar Camera Calibration,’’ and (3) robust
estimation methods to solve a subset of calibration parame-
ters in the section entitled ‘‘Robust Methods of Noncoplanar
Camera Calibration.’’ Finally, we discuss algorithms for co-
planar camera calibration in the section entitled ‘‘Coplanar
Camera Calibration.’’

CAMERA CALIBRATION MODEL
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In this discussion, we consider at least 11 calibration parame- Figure 1. Mapping of a 3-D world point (x, y, z) to image point
(i, j).ters shown in Table 1. The extrinsic parameters consist of the
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where RT � [r1 r2 r3] is a 3 � 3 rotation matrix defining the video. Usually the vertical spacing between lines perfectly
matches that on the sensor array, giving us no scale factor incamera orientation and tT � [t1 t2 t3] is a translation vector

defining the camera position. A very important constraint in the vertical direction; that is, sj � 1. The pixels in each line
of video signal are resampled by the ADC, which, in reality,calibration algorithms is the orthonormality constraint of the

rotation matrix R given by samples the video lines with a rate different from the camera
and causes the image to be scaled along the horizontal direc-
tion; that is, si � 1. Hence, the problem of determining scaleRTR = RRT = I (2)
factor s � si.

that is, Some researchers (9,10,26) have suggested that the hori-
zontal scale factor s can be approximately determined from
the ratio of the number of sensor elements in the I image‖rrr1‖2 = ‖rrr2‖2 = ‖rrr3‖2 = 1 and rrrT

1rrr2 = rrrT
2rrr3 = rrrT

3rrr1 = 0
direction, to the number of pixels in a line as sampled by the

Alternatively, the rotation matrix R can be represented by processor. However, due to timing errors, inconsistency of the
the Euler angles �, �, and � that denote rotations around the ADC, and possible tilt of the sensor array, this is not so accu-
Xw, Yw, and Zw world axes, respectively: rate. A more accurate estimate of s is the ratio of the fre-

quency that sensor elements are clocked off of the CCD to the
frequency at which the ADC samples.

We found a number of methods to compute the horizontal
scale factor s by special techniques. Examples are as follows:
(1) measuring the frequency of the stripes generated by the
interface of ADC-clock and camera-clock that create the scale

R =




cos φ cos κ sinω sinφ cos κ − cos ω sinφ cos κ

+ cos ω sin κ + sin ω sin κ

− cos φ sin κ − sinω sinφ sin κ cos ω sinφ sin κ

+ cos ω cos κ + sin ω cos κ

sinφ − sinω cos φ cos ω cos φ


 (3)

factor problem (10), (2) measuring the distortion in an image
of a perfect circle into an ellipse (30), (3) computing power

Image Center and Scale Factor Parameters
spectrum of the image of two sets of parallel lines (17), and
(4) counting the grid points in an image of a grid pattern (31).Ideally the image center is the intersection of the optical axis

of the camera–lens system with the camera’s sensing plane. Consider an image point (if, jf) with respect to the center
Os of the image buffer. Let the actual image center be at (i0,For real lenses, optical axis is not so easily defined, and differ-

ent definitions of image centers (26) depend on whether the j0). Let (id, jd) be the location of the point in the image with
respect to (i0, j0). We obtain (1,2,9–11,25)lens has fixed or variable parameters and on how the variable

parameters are mechanically implemented. For example, for
a simple lens, there can be two axes of symmetry: optical and id = s−1(if − i0) and jd = ( jf − j0) (4)
mechanical. The optical axis is the straight line joining the
centers of curvature of the two surfaces of the lens, whereas Lens Distortion Parameters
the mechanical axis is determined by the centerline of the

As a result of imperfections in the design and assembly ofmachine used to grind the lens’ edge. The angle between
lenses, the image of a plane object lies, in general, on athese axes is called decentration (26,27). In a compound lens,
slightly curved field (15) (see Fig. 2), wherein objects at thethe optical axes of multiple lens elements may not be accu-
edge of the field of view appear somewhat smaller or largerrately aligned due to decentration of each lens element, re-
than they should. Types of lens distortions commonly seensulting in multiple possibilities for the optical axis. In adjust-
are radial (15,32) and tangential (15,33). Two common radialable and variable focal length lenses, the misalignment
distortions are pincushion and barrel distortions. Pincushionbetween the optical and mechanical axes change as the spac-
distortion results, for example, when a lens is used as a mag-ing between the lens elements are changed.
nifying glass, whereas barrel distortion results when the ob-We found several methods to measure image center by us-
ject is viewed through a lens at some distance from the eye.ing special techniques. Examples of such methods are as fol-

Tangential distortions are usually caused by (1) decen-lows: (a) measuring the center of the radial lens distortion
tering of the lens (decentering distortion) (11,12,21,32,33),(10,26), (b) determining the normal projection of a viewing
and (2) imperfections in lens manufacturing or tilt in camerapoint onto the imaging plane (26,28), (c) measuring the center
sensor or lens (thin prism distortion) (11,12). One of the ef-of the camera’s field of view (26), (d) passing a laser beam
fects of tangential distortion is that a straight line passingthrough the lens assembly and matching the reflection of the

beam from the lens with the center of the light spot in the
image (10,26), (e) measuring the center of cos4th radiometric
falloff or the center of vignetting/image spot (26), and (f)
changing the focal length of a camera–lens system to deter-
mine image center from a point invariant in the image
(10,26). Besides, there are several algorithmic methods of
computing image center as a part of the complete calibration
algorithm (1,8,10,11,26,28,29).

Other intrinsic parameters commonly considered are the
scale factors si and sj in the I and J image directions, respec-

(a)

(b)

(c)
tively. Array sensors such as CCD/CID sensors acquire the
video information line by line, where each line of video signal Figure 2. Lens distortions: (a) Radial pincushion, (b) radial barrel,

and (c) tangential.is well separated by the horizontal sync of the composite
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Here r0 is the order of the radial distortion model. Terms in-
cluding coefficients (k1, k2, k3, . . ., kr0

) account for radial dis-
tortion, (p1, p2, p3, . . .) represent decentering distortions,
and (s1, s2, . . .) represent thin prism distortions. Image coor-
dinates are corrected for lens distortion by the expression
below:

i = id + di and j = jd + dj (6)

Discussions

Following the above description of calibration parameters,
Fig. 3 below provides the steps for transforming the frame
buffer image point (if, jf) to the ideal undistorted image point
(i, j) and to the 3-D world point p � (x, y, z).

LINEAR METHODS OF NONCOPLANAR
CAMERA CALIBRATION

In this section, we present four well-known linear methods of
camera calibration. These methods are due to (a) Yakimovsky

Frame buffer image point

Image center and scale
factor correction

(if, jf)

Distorted image point

Lens distortion correction

(id, jd)

Ideal undistorted
image point

p = (x, y, z) 3-D
 world point

Perspective projection
and rotation translation

(i, j)

and Cunningham (7), (b) Ganapathy (2), (c) Grosky and
Figure 3. Steps for transforming frame buffer image point (if, jf) to Tamburino (4), and (d) Tsai and Lenz (9,10). In this section,
ideal undistorted image point (i, j) and to 3-D world point p � (x, y, we discuss all methods for the noncoplanar case only. The
z). coplanar case is treated separately in the section entitled ‘‘Co-

planar Camera Calibration.’’
through the center of the field of view may appear in the im-

Yakimovsky and Cunningham’s Methodage as a weakly curved line (see Fig. 2). Clearly these distor-
tions are disturbing in applications where the ultimate task is One of the earliest methods for camera calibration that em-
to map a 3-D object in uniform scale from its acquired image. ploys a linear estimation technique is due to Yakimovsky and

Many researchers (10,11,34,35) have observed that ignor- Cunningham (7). The collinear condition equations in Eq. (1)
ing lens distortion is unacceptable in doing 3-D measure- can be written as the following linear equation with unknownments. Although several studies (9,10,21,30,36,37) have con-

parameter vector b:sidered only radial distortions up to the first or second order,
some studies (11,12,16,20,32,33) have considered both radial
and tangential lens distortions, and have used nonlinear opti-
mization schemes to compute them. For example Beyer (20)

[
pppT 000 1 0 −ifppp

T

000 pppT 0 1 − jfppp
T

]
bbb =

[
if

jf

]
(7)

has demonstrated the effects of higher-order radial and tan-
gential distortion models. By using a first-order radial model, where
an accuracy in image space of 1/7th of the pixel spacing is
obtained. By using a third-order radial and first-order decen- bbbT = [ frrrT

1 frrrT
2 ft1 ft2 rrrT

3 ]/t3
tering distortion model, this accuracy is enhanced to 1/46th

Given at least five linearly independent control points p andof the pixel spacing. Faugeras (1) and Weng et al. (11) used
wide-angle lenses and also found that adding nonradial dis- corresponding image points (i, j), the above equation can be
tortion components improved accuracy. Using a f � 8.5 mm solved by the method of linear least squares. The axial vector
wide-angle lens with both radial and tangential models, Weng r3 and the depth component of the translation vector t3 are
et al. (11) demonstrated a significant improvement in image solved by imposing the constraint �r3� � 1. Let bT � [bT

1 bT
2 b3

error. This is also supported by our experiments. b4 bT
5]. Then r3 � b5/�b5� and �t3� � 1/�b5�. As drawn in Fig. 1,

One commonly used model for correcting lens distortion is the sign of t3 is negative (positive) if the origin of the world
that developed by Brown (32,33). Let (di, dj) be the corrections coordinate system Ow is in front of (behind) the camera. An
for geometric lens distortions present in image coordinates algorithmic method to determine the sign of t3 is given in Ref.
(id, jd) respectively, where (id, jd) are obtained from Eq. (4). Let 9. Estimates of focal length f can be obtained by imposing the
(i, j) be the ideal undistorted image coordinates of a 3-D point constraints �r1� � 1 or �r2� � 1 as f � �b1�/�b5� or f �
p � (x, y, z). With r2 � (i2 � j2), di and dj are expressed by the �b2�/�b5�. However, this produces two estimates of focal length
following series (11,15,32,33): f , which cannot be resolved.

Although the method is fast, it ignores the image center,
scale factor, and lens distortion parameters. Furthermore, the
method fails to impose the orthonormality constraints given
in Eq. (2). The constraints �r1� � �r2� � �r3� � 1 are imposed
after the solution is obtained, and thus the solution is subop-
timal, and hence prone to errors due to noise in calibration
data.

di = i(k1r2 + k2r4 + · · · + kr0
r2r0 )

+ (p1(r
2 + 2i2) + 2p2ij)(1 + p3r2 + · · · ) + (s1r2 + · · · )

dj = j(k1r2 + k2r4 + · · · + kr0
r2r0 )

+ (2p1ij + p2(r
2 + 2 j2))(1 + p3r2 + · · · ) + (s2r2 + · · · )

(5)
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A modification to this method that imposes the constraint Let bT � [bT
1 bT

2 b3 b4 bT
5]. The, by imposing the orthonormality

conditions of (r1, r2, r3), we obtain�r3� � 1 during the least-squares solution can be obtained by
reformulating Eq. (7) as follows:

[
pppT 000 1 0 −if −ifppp

T

000 pppT 0 1 − jf − jfppp
T

]
bbb = 0 (8)

where

bbbT = [ frrrT
1 frrrT

2 ft1 ft2 t3 rrrT
3 ]

i0 = bbbT
1bbb5

‖bbb5‖2 , j0 = bbbT
2bbb5

‖bbb5‖2

f = ‖bbb2 − j0bbb5‖
‖bbb5‖

, s = ‖bbb1 − i0bbb5‖
‖bbb2 − j0bbb5‖

rrr1 = bbb1 − i0bbb5

sf‖bbb5‖
, rrr2 = bbb2 − j0bbb5

f‖bbb5‖
, rrr3 = bbb5

‖bbb5‖
t1 = bbb3 − i0

sf‖bbb5‖
, t2 = bbb4 − j0

f‖bbb5‖
, and |t3| = 1

‖bbb5‖
The constrained least-squares problem associated with Eq. (8) Once again, the method can be extended to include the con-
is straint �r3� � 1 during the least-squares solution.

The method is fast and includes the image center and scale
factor parameters. However, it does not include the lens dis-Minimize bbbTAbbb subject to the constraint ‖rrr3‖2 = 1 (9)
tortion parameters. Moreover, the method imposes the ortho-
normality constraints after the solution is obtained, andHere A is the 12 � 12 data matrix constructed from the
hence the solution is suboptimal. Furthermore, since therecontrol points and corresponding image points from Eq. (8).
are five components of b with six orthonormality constraintsLet
[see Eq. (2)], whereas there are 10 unknowns �r1, r2, r3, t1, t2,
t3, f , i0, j0, s�, we obtain ambiguous solutions. For example,
bT

1b2/�b5�2 � i0j0, which gives us two solutions for i0:A =
[

A1 A2

AT
2 A3

]

i0 = bbbT
1bbb5

‖b5‖2 and i0 = bbbT
1bbb2

bT
2 b5be a partition of matrix A, where A1 � �9�9, A2 � �9�3 and

A3 � �3�3. Then Eq. (9) leads to the following 3 � 3 symmetric
which may not have the same values. Besides, the methodeigenvalue problem for the solution of r3 (see Ref. 22):
treats the different variables as linearly independent when in
reality they are not.

(A3 − AT
2 A−1

1 A2)rrr3 = λrrr3 (10)

Grosky and Tamburino’s Method
Here r3 is the eigenvector corresponding to the minimum ei-

Grosky and Tamburino (4) extended Ganapathy’s method to
genvalue �. The remaining parameters are obtain a unique linear solution for the noncoplanar camera

calibration problem. In order to remove the ambiguity in Ga-
napathy’s solution, Grosky and Tamburino introduced a skew[ frrrT

1 frrrT
2 f t1 f t2 t3] = −A−1

1 A2rrr3 (11)
angle parameter � which is the positive angle by which the I
image coordinate is skewed from J. From Eqs. (1) and (4), we

Ganapathy’s Method obtain the collinearity condition equations:
Ganapathy (2) extended the Yakimovsky and Cunningham
method to also include the image center and scale factor pa-
rameters. From Eqs. (1) and (4), we obtain the collinear condi-
tion equations below:

f

�
rrrT

1 ppp + t1

rrrT
3 ppp + t3

�
cos(θ ) + f

�
rrrT

2 ppp + t2

rrrT
3 ppp + t3

�
sin(θ )

= s−1(if − i0) and f

�
rrrT

2 ppp + t2

rrrT
3 ppp + t3

�
= ( jf − j0) (14)

From Eq. (14), we obtain the following linear equations in
unknown parameter vector b:

f

�
rrrT

1 ppp + t1

rrrT
3 ppp + t3

�
= s−1(if − i0) and f

�
rrrT

2 ppp + t2

rrrT
3 ppp + t3

�
= ( jf − j0)

(12)

From Eq. (13), we obtain the following linear equation in un-
known parameter vector b:

[
pppT 0 1 0 −if pppT

0 pppT 0 1 − jf pppT

]
bbb =

[
if

jf

]
(15)

where
[

pppT 000 1 0 −ifppp
T

000 pppT 0 1 − jfppp
T

]
bbb = 0

[
if

jf

]
(13)

bbbT = [sf (rrrT
1 cos θ + rrrT

2 sin θ ) + i0rrrT
3 frrrT

2 + j0rrr
T
3

sf (t1 cos θ + t2 sin θ ) + i0t3 ft2 + j0t3 rrrT
3 ]/t3where

Let bT � [bT
1 bT

2 b3 b4 bT
5]. Then, we obtain the following solu-

tion for the calibration parameters by imposing the orthonor-bbbT = [sfrrrT
1 + i0rrrT

3 frrrT
2 + j0rrrT

3 sft1 + i0t3 ft2 + j0t3 rrrT
3 ]/t3
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mality conditions of (r1, r2, r3): From Eq. (19), we obtain the following linear equation with
unknown parameter vector b:

[ jpppT − ipppT j]bbb = [i], where bbbT = [srrrT
1 rrrT

2 st1]/t2 (20)

Let bT � [bT
1 bT

2 b3]. We next perform the following steps:

1. Solve Eq. (20) by using the linear least squares method
to compute b.

2. Compute �t2� � 1/�b2� by imposing the constraint �r2� �
1. The sign of t2 is determined from Eq. (19).

3. Compute scale factor s � �b1�/�b2� by imposing the con-
straint �r1� � 1.

|t3| = 1
‖bbb5‖

, i0 = bbbT
1bbb5

‖bbb5‖2 , j0 = bbbT
2bbb5

‖bbb5‖2

f = ‖bbb2 − j0bbb5‖
‖bbb5‖

, s = ‖bbb1 − i0bbb5‖
‖bbb2 − j0bbb5‖

sin θ = (bbb1 − i0bbb5)T(bbb2 − j0bbb5)

sf 2‖bbb5‖2

rrr1 = bbb1 − i0bbb5

sf‖bbb5‖
sec θ − bbb2 − j0bbb5

f‖bbb5‖
tan θ, rrr2 = bbb2 − j0bbb5

f‖bbb5‖
t1 = b3 − i0

sf‖bbb5‖
sec θ − b4 − j0

f‖bbb5‖
tan θ, t2 = b4 − j0

f‖bbb5‖

(16)

4. Ignoring lens distortion (i.e., k1 � 0), compute approxi-
mate values of focal length f and depth component ofOnce again, the method can be extended to include the con-
translation vector t3 from the following equation [de-straint �r3� � 1 during the least-squares solution of Eq. (15).
rived from the second equation in Eq. (18)] by using theThe method is computationally efficient, solves the image
least-squares method:center and scale factor parameters, and satisfies the orthonor-

mality conditions given in Eq. (2). However, the method does
not include the lens distortion parameters, and it produces a
suboptimal solution since the constraints are imposed after

[(rrrT
2 ppp + t2) − jd]

[
f
t3

]
= [ jdrrrT

3 ppp]

the solution is obtained. Moreover, the method also treats dif-
ferent variables as linearly independent when they are not. 5. Compute exact values of f , t3, and radial lens distortion

parameter k1 from the following equation [derived from
Tsai and Lenz’s Method the second equation in Eq. (18)] by using a standard

nonlinear optimization scheme such as steepest de-Tsai (9) and Lenz and Tsai (10) designed a method that in-
scent:cludes the radial lens distortion parameters in their camera

model and provides a two-stage algorithm for estimating the
camera parameters. In their method, most parameters are f (rrrT

2 ppp+ t2)− t3 jd − k1( jdr 2
drrrT

3 ppp) − k1t3( jdr 2
d)− jdrrrT

3 ppp = 0

computed in a closed form, and a small number of parameters
where r2

d � i2
d � j2

d.such as focal length, the depth component of the translation
vector, and the radial lens distortion parameters are com-

The method is fast and also includes the radial lens distor-puted by an iterative scheme.
tion parameters. This makes the method widely applicable toTsai (9) introduced an radial alignment constraint (RAC)
a variety of applications. However, the solution is suboptimalwhich results from the observation that the vectors (id, jd),
and does not impose the orthonormality constraints given in(i, j), and (rT

1p � t1, rT
2p � t2) in Fig. 1 are radially aligned

Eq. (2). Furthermore, the image center parameters are notwhen the image center is chosen correctly. Algebraically, the
included in the solution. Lenz and Tsai (10) proposed a non-RAC states that
linear method for solving the image center parameters by
minimizing the RAC residual error. However, this computa-(id, jd)//(i, j)//(rrrT

1 ppp + t1,rrrT
2 ppp + t2) (17)

tion is applicable after all extrinsic parameters and focal
length are computed by the above-mentioned steps. By takingIf we determine the image center parameters (i0, j0) by any
the ratio of the collinearity condition equations [see Eq. (19)],one of the methods described in the section entitled ‘‘Image
the method considers only the tangential component of theCenter and Scale Factor Parameters,’’ then the frame buffer
collinearity equations and ignores the radial component. Fur-image coordinates (if, jf) can be corrected for image center by
thermore, the tangential lens distortion parameters are ig-using Eq. (4) to obtain the distorted image coordinates sid �
nored.if � i0 and jd � jf � j0. Using first-order radial lens distortion,

the collinearity condition equations are

NONLINEAR METHODS OF NONCOPLANAR
CAMERA CALIBRATION

The nonlinear methods of noncoplanar camera calibration
first originated in the photogrammetry literature, and they

sf

�
rrrT

1 ppp + t1

rrrT
3 ppp + t3

�
= sid(1 + k1r 2

d) and

f

�
rrrT

2 ppp + t2

rrrT
3 ppp + t3

�
= jd(1 + k1r 2

d)

(18)

were later refined in computer vision research. We present
three methods of nonlinear camera calibration. These are (a)where r2

d � i2
d � j2

d. Dividing the first equation by the second,
nonlinear least-squares method (25), (b) Weng et al.’s methodwe obtain
(11), and (c) Chatterjee, Roychowdhury, and Chong’s method
(22). These methods are computationally more intensive than
the linear methods discussed before, but they lead to very ac-
curate estimates of the parameters. We shall consider only

srrrT
1 ppp + st1

rrrT
2 ppp + t2

= sid

jd
(19)
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the noncoplanar case in this section, and the coplanar case is where
considered separately in the section entitled ‘‘Coplanar Cam-
era Calibration.’’

Nonlinear Least-Squares Method

In this formulation of the camera calibration problem, the
representation of the rotation matrix R in terms of the Euler

gk =
[

g1(βk
1 , . . ., βk

M )

g2(βk
1 , . . ., βk

M )

]
and

Gk =
[
∂g1/∂β1 ∂g1/∂β2 . . . ∂g1/∂βM

∂g2/∂β1 ∂g2/∂β2 . . . ∂g2/∂βM

]

angles �, �, and � as given in Eq. (3) is used. Substituting
The method produces very accurate parameter estimatesthis R and the image coordinate corrections [see Eqs. (4) and

and is less prone to errors in the data when compared with(6)] in the collinearity condition equations [Eq. (1)], we obtain
the linear methods. The method solves all calibration parame-two nonlinear equations below (for first-order radial lens dis-
ters, and the orthonormality constraints are imposed duringtortion only):
the optimization process. This is an optimal solution to the
calibration problem. However, the method is computationally
slow and requires at least 5 to 10 iterations to converge, pro-if = i0 + sf

�
rrr1(ω, φ, κ)Tppp + t1

rrr3(ω, φ, κ)Tppp + t3

�
+ (if − i0)k1r(s, i0, j0)2

vided that good starting estimates are available. Further-
more, accurate starting estimates are very important for theand
method to converge to the correct solution. Usually, a linear
method such as Grosky and Tamburino’s method is used to
obtain starting parameter estimates.jf = j0 + f

�
rrr2(ω, φ, κ)Tppp + t2

rrr3(ω, φ, κ)Tppp + t3

�
+ ( jf − j0)k1r(s, i0, j0)2

Weng et al.’s Methodwhere r(s, i0, j0)2 � s�2(if � i0)2 � ( jf � j0)2.
The unknowns are the parameters of exterior orientation Weng et al. (11) described a two-step nonlinear algorithm of

��, �, �, t1, t2, t3� and interior orientation �f , s, i0, j0, k1�. These camera calibration which first computes a set of starting esti-
equations are of the following general form: mates for all parameters in an initialization algorithm and

then uses linear and nonlinear optimization schemes to ob-
αi = gi(β1, . . ., βM) + ξi for i = 1,2 tain accurate estimates. Weng et al. also showed that comput-

ing all extrinsic parameters with lens distortion is necessary
where �1, . . ., �M are the unknown parameters, �1 and �2 are for accurate camera calibration.
the observations, and 	1 and 	2 are additive zero mean Weng et al. presents two sets of parameters: (1) extrinsic
Gaussian noise having covariance 
. The maximum likelihood and intrinsic nondistortion parameters m � �f , s, i0, j0, �, �,
solution leads to the minimization of the criterion �, t1, t2, t3� and (2) set of distortion parameters d � �k1, k2, p1,

p2, s1, s2�. Given control points p and corresponding image
J = (α − g)T
−1(α − g) (21) points (if, jf), they use the following optimization criterion:

where �T � [�1 �2] and gT � [g1 g2]. Starting from a given
approximate solution �0 � (�0

1, . . ., �0
M)T, we begin by lineariz- J(mmm,ddd) =

∑
all points

[(if − i(mmm,ddd))2 + ( jf − j(mmm,ddd))2] (22)

ing the nonlinear transformations about �0 and solve for ad-
justments �� � (��1, . . ., ��M)T, which when added to � con- where
stitute a better approximate solution. We perform this
linearization and adjustment iteratively. If good starting esti-
mates �0 are available, in most cases 5 to 10 iterations are
required to produce the solution of desired accuracy.

In the kth iteration, let �k be the current approximate solu-

i(mmm,ddd) = i0 + sf
�

rrr1(ω, φ, κ)Tppp + t1

rrr3(ω, φ, κ)Tppp + t3

�
+ (i f − i0)k1r(s, i0, j0)2

+ higher-order lens distortion terms
tion. The linearization proceeds by representing each gi(�k �

and��) by a first-order Taylor series expansion of gi taken
around �k:

gi(β
k + �β) = gi(β

k) + �gi(�β;βk) for i = 1, 2
j(mmm,ddd) = j0 + f

�
rrr2(ω, φ, κ)Tppp + t2

rrr3(ω, φ, κ)Tppp + t3

�
+ ( j f − j0)k1r(s, i0, j0)2

+ higher-order lens distortion terms
where �gi, the total derivative of gi, is a linear function of the
vector of adjustments �� given by where r(s, i0, j0)2 � s�2(if � i0)2 � ( jf � j0)2.

In the initialization stage, Weng et al. uses two steps
shown below:�gi(�β;βk) =

[
∂gi

∂β1
(βk) · · · ∂gi

∂βM
(βk)

]
�β for i = 1, 2

1. Use a linear algorithm (by ignoring lens distortion) such
Substituting the linearized expressions into the least-squares as Grosky and Tamburino’s method (see section entitled
criterion [Eq. (21)] and then minimizing it with respect to ��, ‘‘Grosky and Tamburino’s Method’’) to obtain the start-
we obtain ing estimates of the extrinsic parameters ��, �, �, t1, t2,

t3�, focal length f , image center parameters (i0, j0), and
scale factor s.�β = (GkT


−1Gk)−1GkT

−1(α − gk)
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2. Ignoring lens distortions parameters d, minimize the stant, and the most recently computed values of the re-
maining blocks are used. This method is particularlyoptimization criterion [Eq. (22)] with respect to the pa-

rameter set m by a nonlinear optimization technique attractive because of its easy implementation (23,24,38), and
it lends itself to a comprehensive theoretical convergencesuch as Levenberg–Marquardt (23,38).
analysis (22,24). These properties are utilized to obtain a sim-
pler solution and also obtain a rigorous convergence study.For the initialization algorithm, only the central points are

The method partitions the parameter set into three blocks:used. Central points are those calibration points close to the
(1) extrinsic parameters and focal length b � �r1, r2, r3, t1, t2,center of the image, and they do not contain significant lens
t3, f �; (2) image center and scale factor parameters m � �i0,distortion effects.
j0, s�; and (3) lens distortion parameters d � �k1, k2, . . ., kr0

,After the initial estimates are obtained, the main estima-
p1, p2, s1, s2�. In the noncoplanar case, most parameterstion algorithm uses iterations between the following two
(blocks b and d) are computed by linear iterations or in closedsteps:
form. Unlike the previous two methods, nonlinear optimiza-
tion is performed only for the parameter block m—that is, in1. Estimate the distortion parameters d with the nondis-
a reduced parameter space of dimension 3.tortion parameters m held constant by a linear estima-

tion step. Note that in Eq. (22), if the nondistortion pa-
Initialization Algorithm. From Eq. (1), we obtain the follow-rameters m are held constant, then the distortion

ing objective function:parameters d can be represented by the following linear
equation:

J(bbb,mmm,ddd) =
∑

all points

[( frrrT
1 ppp + f t1 − rrrT

3 ippp − it3)2

+ ( frrrT
2 ppp + f t2 − rrrT

3 jppp − jt3)2]
(23)

under constraint �r3�2 � 1. Here i � i(m, d) and j � j(m, d)
by using Eqs. (4) and (6). The initialization algorithm consists
of the following steps:

1. Ignoring lens distortion (i.e., d � 0), an initial estimate
of m is obtained by using Grosky and Tamburino’s
method with only central calibration points.

2. Iterate between the following two steps for all calibra-

[
sidr2

d sidr4
d s(r2

d + 2i2
d) 2sid jd sr2

d 0
jdr2

d jdr4
d 2id jd (r2

d + 2 j2
d) 0 r2

d

]



k1

k2

p1

p2

s1

s2




=




if − i0 − sf

�
rrrT

1 ppp + t1

rrrT
3 ppp + t3

�

jf − j0 − f

�
rrrT

2 ppp + t2

rrrT
3 ppp + t3

�



tion points:
a. Compute b with d held constant. From Eq. (23), we

Here, the distorted image points (id, jd) are obtained obtain the following constrained linear equation in
from frame buffer points (if, jf) by using Eq. (4). terms of b:

2. Estimate the nondistortion parameters m with the dis-
tortion parameters d held constant by nonlinear mini-
mization of the optimization criterion J(m, d) in Eq.
(22).

[
pppT 0 1 0 −i −ippp
0 pppT 0 1 − j − jppp

]

bbb = 0 under constraint‖rrr3‖2 = 1
The method iterates between the above two steps until a de-

where bT � [frT
1 frT

2 ft1 ft2 t3 rT
3]. As discussed in thesired accuracy in the estimates is obtained.

section entitled ‘‘Yakimovsky and Cunningham’sThe method provides very accurate estimates, solves all
Method’’ this problem leads to the constrained least-calibration parameters, and gives us an optimal solution.
squares problem given in Eq. (9) whose solutions areHowever, the method is computationally slow and requires
given in Eqs. (10) and (11).good starting estimates to converge to the correct solution.

Since the method also provides an initialization algorithm, b. Compute d with b held constant. Here d can be
reliable starting estimates can be obtained. solved from the following unconstrained least-

squares equation derived from Eq. (23):
Chatterjee, Roychowdhury, and Chong’s Method

This recent technique (22) for camera calibration also offers a
two-step algorithm that consists of an initialization phase and
a main estimation step. Instead of using the Euler angles (�,
�, �) to represent the rotation matrix R, this method instead

(rrrT
3 ppp + t3)

[
ir 2 ir 4 . . . ir 2r0 r 2 + 2i2

jr2 jr4 . . . jr2r0 2ij

2ij r 2 0
r 2 + 2 j2 0 r 2

]
ddd =

[
f (rrrT

1 ppp + t1) − i(rrrT
3 ppp + t3)

f (rrrT
2 ppp + t2) − j(rrrT

3 ppp + t3)

]
directly imposes the orthonormality constraints given in Eq.
(2). This relieves the objective function of periodic transcen-

where d � [k1 k2 . . ., kr0
p1 p2 s1 s2]dental terms which frequently results in many false minima.

Due to the structure of the objective function in the calibra-
tion problem, this method employs the Gauss–Seidel (23,24)
technique of nonlinear optimization. The Gauss–Seidel

r2 = s−2(if − i0)2 + ( j f − j0)2

i = s−1(if − i0), j = ( j f − j0)

method for block components iteratively minimizes the objec-
tive function for a given block with the remaining held con- and r0 is the order of the radial lens distortion model.
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Main Algorithm. From Eq. (1), we obtain the following ob- tained by the initialization algorithm, is essential for
accurate convergence of this step.jective function:

The method obtains accurate parameter estimates and
solves all calibration parameters. The method offers an opti-
mal solution. Although the method reduces the nonlinear op-
timization to only a dimension of 3, it is still computationally
more intensive than the linear optimization methods dis-

J(bbb,ddd,mmm) =
∑

all points

[�qi
f

− rrrT
1 ppp − t1

�2

+
�q j

f
− rrrT

2 ppp − t2

�2

+ (q − rrrT
3 ppp − t3)2

] (24)

cussed in the section entitled ‘‘Linear Methods of Noncoplanar
Camera Calibration.’’ The method also needs good startingunder orthonormality constraints [Eq. (2)]. Here i � i(m, d)
estimates to converge to the correct solution. Since thisand j � j(m, d) by using Eqs. (4) and (6), and q is a depth
method also provides an initialization algorithm, we can ob-variable that is also estimated. We define parameter blocks
tain reliable starting estimates. In addition, the method pro-b � �R, t, f �, dT � [k1 k2 . . . kr0

p1 p2 s1 s2] and mT � [i0 j0 s].
vides a Lyapunov-type convergence analysis of the initializa-The algorithm starts with an initial estimate of the depth pa-
tion and main algorithms (22).rameter q for each calibration point. The initial values could

be the same constant for each point, with the constant repre-
senting an initial guess of how far the object is from the cam- ROBUST METHODS OF NONCOPLANAR
era center. The algorithm then iterates between the following CAMERA CALIBRATION
three steps:

In some applications, we do not have accurate control points
1. Compute b with d and m held constant. This step is to obtain good parameter estimates. Such applications are

similar to the exterior orientation or space resection common in aerospace and military problems, where a camera
problem (15,25,39) in analytical photogrammetry. For mounted on a moving airplane estimates the locations of
this step, we define vT � [i/f j/f 1]. We then iterate be- points on the ground. Since ground points may not be avail-
tween the following three steps: able accurately, the algorithm has to adaptively improve the
a. Compute R and t with f and q held constant. From calibration parameter estimates as more points are obtained.

Eq. (24) we obtain the following constrained optimi- We describe a robust estimation technique (41) for such appli-
zation problem: cations. Since estimating all parameters with a robust tech-

nique is cumbersome and in most cases unnecessary, we pre-
sent a method to robustly estimate only the extrinsic
parameters and focal length. The method discussed below is

Minimize
∑ ‖qvvv − Rppp − ttt‖2 under constraint RTR = RRT = I

(25)
only applicable to the noncoplanar camera calibration prob-This is the well-known problem (13,15,25,40) in pho-
lem. This method can, however, be easily extended to the co-togrammetry, commonly known as the absolute ori-
planar camera calibration problem discussed in the sectionentation problem. In this formulation, R can be ob-
entitled ‘‘Coplanar Camera Calibration.’’tained from the singular value decomposition of B �

The standard least-squares techniques are ideal when the
(p � p)(qv � qv)T which is B � UDVT. We obtain
random data perturbations or measurement errors are(24,39,40) R � VUT. Here p and qv are the averages
Gaussian distributed. However, when a small fraction of theof p and qv, respectively, with all calibration points.
data have large non-Gaussian perturbations, least-squaresThe translation vector t is obtained from: t � qv �
techniques become useless. With least-squares techniques,Rp.
the perturbation of the estimates caused by the perturbationb. Compute q with R, t, and f held constant. From Eq.
of even a single data component grows linearly in an un-(25), we obtain the following solution of q:
bounded way. In order to estimate a parameter � from a set
of observations x1, . . ., xN by the robust method, we use a
function � whose derivative with respect to � is  as shownq = (Rppp + ttt)Tvvv

‖vvv‖2
(26)

below:

c. Compute f with R, t, and q held constant. From Eq.
(25), we obtain the following solution of f : J(θ ) =

N∑
n=1

ρ(xn − θ ) and
∂J(θ )

∂θ
=

N∑
n=1

ψ(xn − θ )

The minimization of J(�) is achieved by finding the appro-f =
∑

q2(i2 + j2)∑
q(rrrT

1 ppp + t1)i + ∑
q(rrrT

2 ppp + t2) j
(27)

priate � that satisfies �N
n�1 (xn � �) � 0, where (x) �

��(x)/�x. The solution to this equation that minimizes J(�) is2. Compute d with b and m held constant. This is a linear
called the maximum-likelihood or M-estimator of �. Thus, inoptimization step similar to the initialization algorithm,
robust M-estimation, we determine a  function so that theStep 2b.
resulting estimator will protect us against a small percentage
(say, around 10%) of ‘‘outliers.’’ But, in addition, we desire3. Compute m with b and d held constant. This is an un-

constrained nonlinear optimization step with three pa- these procedures to produce reasonably good (say, 95% effi-
cient) estimators in case the data actually enjoy the Gaussianrameters. The objective function J in Eq. (24) is mini-

mized by standard optimization methods such as the assumptions. Here, the 5% efficiency that we sacrifice in these
cases is sometimes referred to as the ‘‘premium’’ that we payConjugate Direction (31) or Quasi-Newton (31) meth-

ods. Needless to say, a proper starting value of m, ob- to gain all that protection in very non-Gaussian cases.
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A scale invariant version of robust M-estimator can also be where the denominator of the second term counts the number
of items that enjoy �xn � �k�/s � a for Huber’s and Tukey’s ,obtained by finding the solution of
�xn � �k� � a� for Andrew’s Sine , and b � �xi � �k� � c for
Hampel’s .
H-Method:

N∑
n=1

ψ

�xn − θ

s

�
= 0

where s is the robust estimate of scale such as θk+1 = θk + s
∑N

n=1 ψ[(xn − θk)/s]
N

where the second term is the average of the pseudo (Win-s = median|xn − median(xn)|
0.6745

sorized) residuals (that is, ‘‘least squares’’ is applied to the re-
siduals).or
Weighted Least-Squares:

s = 75th percentile − 25th percentile
2(0.6745)

θk+1 =
∑N

n=1 wnxn∑N
n=1 wn

= θk + s
∑N

n=1 ψ[(xn − θk)/s]∑N
n=1 wn

If the sample arises from a Gaussian distribution, then s is
an estimate of the standard deviation �. where the weight is

There are several choices of  functions given below that
are commonly used in literature (36):
Huber’s :

wn = ψ[(xn − θk)/s]
(xn − θk)/s

for n = 1, 2, . . ., N

We invoke the objective function (25) to compute robust
estimates of the rotation matrix R, translation vector t, and
focal length f . Given world (control) points pn and correspond-
ing image points (in, jn) for i � 1, . . ., N, from Eq. (25), we

ψ(x) =




−a, x < −1

x, |x| ≤ a

a, x > a

obtain the following constrained robust estimation problem:
where the ‘‘tuning constant’’ a equals 1.5.
Hampel’s :

Minimize
N∑

n=1

ρ

�‖qnvn − Rpn − t‖
s

�

under constraint RT R = RRT = I (28)

where
ψ(x) =




|x|, 0 ≤ |x| < a

a, a ≤ |x| < b
c − |x|
c − b

, b ≤ |x| < c

0, c ≤ |x| vT
n = [in/ f jn/ f 1]

which leads to the problemwhere reasonably good values are a � 1.7, b � 3.4, and
c � 8.5
Andrew’s Sine : Solve

N∑
n=1

ψ

�‖qnvn − Rpn − t‖
s

�

= 0 under constraint RT R = RRT = Iψ(x) =
{

sin(x/a), |x| ≤ aπ

0, |x| > aπ

Since  is a nonlinear function and the above equation is dif-
ficult to solve, we use the weighted least-squares method towith a � 2.1.
obtain robust estimates of the parameters R, t, and f .Tukey’s Biweight :

The method consists of the following steps:

1. Obtain initial estimates of the depth parameter qn forψ(x) =
{

x[1 − (x/a)2]2, |x| ≤ a

0, |x| > a
each calibration point. The initial values could be the
same constant for each point, the constant representing

with a � 6.0. an initial guess of how far the object is from the camera
Let us mention three iteration schemes that can be used center.

to solve � [(xn � �)/s] � 0, where  is any one of the func-
2. Iterate between the following three steps:tions above. We use the sample median as the initial guess

A. (Optional) Estimate scale s from�0 of �. Define �(x) as the derivative of  with respect to x,
and �k as the estimate of � at the kth iteration of the algo-
rithm. The 3 methods are: s = median

‖qnvn−Rpn −t‖�=0

‖qnvn − Rpn − t‖
0.6745Newton’s method:

B. Iterate between the following steps:
a. Compute R and t with f , qn, and wn held constant.

As described in Section 4.3.1, this is the abso-
θk+1 = θk + s

∑N
n=1 ψ[(xn − θk)/s]∑N

n=1 ψ ′[xn − θk)/s]
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lute orientation problem in photogrammetry and first-order lens distortion parameter d � �k1�. This
method uses the ratio of the two collinearity condition equa-(25,39,40). We first compute the matrix B � �N

n�1

wn(pn � p)(qnvn � qv)T and then compute its tions given in Eq. (1). The second method utilizes both collin-
earity condition equations and is called the ‘‘Conventionalsingular value decomposition as B � UDVT. We

then obtain (24,39,40): R � VUT. Here, p � Method’’. In both methods we drop the image center and scale
factor parameters m � �i0, j0, s� which may be estimated by�N

n�1 wnpn/�N
n�1 wn and qv � �N

n�1 wnqnvn/�N
n�1 wn

are the weighted averages of pn and qnvn, respec- several offline methods discussed in the section entitled
‘‘Image Center and Scale Factor Parameters’’.tively, for all calibration points. The translation

vector t is obtained from: t � qv � Rp.
Tsai’s Coplanar Method. Let p � (x, y, z) be a world (control)b. Compute qn with R, t, f and wn held constant.

point with corresponding image point (if, jf). Given image cen-From Eq. (28), we obtain the following solution
ter and scale factor parameters �i0, j0, s�, computed before, weof qn for each calibration point:
can correct the image point (if, jf) to obtain distorted image
point (id, jd) by applying Eq. (4). If we use radial lens distor-
tion only, then the undistorted image point (i, j) is:qn = (Rpn + t)T vn

‖vn‖2
for n = 1, . . ., N (29)

c. Compute f with R, t, qn, and wn held constant.
From Eq. (28), we obtain the following estimate

i = id(1 + k1r2
d + · · · + kr0

r2r0
d

) and

j = jd(1 + k1r2
d + · · · + kr0

r2r0
d

)
of f :

where r2
d � i2

d � j2
d and k1, . . ., kr0

are the radial lens distor-
tion parameters. Then, by taking the ratio of the two collin-
earity condition equations (see Eq. (1)), we obtain:

f =

N∑
n=1

wnq2
n(i2

n + j2
n)

N∑
n=1

wnqn(rT
1 pn + t1)in +

N∑
n=1

wnqn(rT
2 pn + t2) jn

(30)
r11x + r12y + t1

r21x + r22y + t2
= i

j
= id

jd

where tT � [t1 t2 t3]. where �r11, r12, r21, r22, t1, t2� are the extrinsic parameters.
Tsai’s algorithm uses the above equations and consists of theC. Compute weights wn from:
following steps:

1. Compute the extrinsic parameters b from the followingwn = ψ(‖qnvn − Rpn − t‖/s)
‖qnvn − Rpn − t‖/s

for n = 1, . . ., N

linear equation:

Although most people concerned with robustness do iterate [ jdx jdy jd − idx − idy]b = [id]
on scale s also (Step A), this step is optional since some prob-
lems of convergence may be created. where

COPLANAR CAMERA CALIBRATION bT =
[

r11

t2

r12

t2

t1

t2

r21

t2

r22

t2

]
In coplanar camera calibration, the calibration points lie on a

2. Compute t2 from the following equations:plane. Without loss of generality, we assume that it is the z
coordinate that is unimportant. Due to this assumption, the
last column of the rotation matrix R and the depth component
of the translation vector t are not available in the collinearity
condition equations [Eq. (1)]. Instead of the six orthonor-
mality constraints described in Eq. (2), we have three con-

t2
2 = S −

√
S2 − 4(b1b5 − b4b2)2

2(b1b5 − b4b2)2
or

|t2| = 2√
(b1 + b5)2 + (b2 − b4)2 +

√
(b1 − b5)2 + (b2 + b4)2

straints:
where

bT = [b1 b2 b3 b4 b5], and S = b2
1 + b2

2 + b2
4 + b2

5

r 2
11 + r 2

21 + r 2
31 = 1, r2

12 + r 2
22 + r 2

32 = 1, and

r11r12 + r21r22 + r31r32 = 0
(31)

3. Determine the sign of t2. If Sign(b1x � b2y � b3) andwhere rij is the jth component of ri. We discuss two methods
Sign(id) are same then Sign(t2) � �1, otherwiseof estimating the parameters in the coplanar case: (1) itera-
Sign(t2) � �1.tive linear methods that produce a suboptimal solution and

4. Determine the extrinsic parameters:(2) nonlinear methods that produce an optimal solution.

Iterative Linear Methods for Coplanar Camera Calibration

Here we discuss two methods of parameter computation. The
first method is due to Tsai (9) and computes all extrinsic and
the focal length parameters

b = {rrr11rrr12rrr21,rrr22,rrr31,rrr32, f, t1, t2}

r11 = t1b1, r12 = t2b2, r21 = t2b4, r22 = t2b5, t1 = t2b3

r13 = −
p

1 − r2
11 − r2

12

r23 = Sign(r11r21 + r12r22)
p

1 − r2
21 − r2

22

r31 = r12r23 − r22r13

r32 = r21r13 − r11r23, r33 = r11r22 − r21r12
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5. Obtain an approximate solution for focal length f and r0 is the order of the radial lens distortion model, and
bT � [b1 b2 b3 b4 b5 b6 b7 b8].translation component t3 from the following equation by

ignoring lens distortion:
Then, by imposing the orthonormality constraints [Eq.

(31)], we obtain the parameters below:
[(r21x + r22y + t2) − jd]

[
f
t3

]
= [ jd(r31x + r32y)]

6. Obtain an accurate estimate of focal length f , transla-
tion component t3, and first-order radial lens distortion
parameter k1 from the following equation by using a
standard nonlinear minimization scheme such as
steepest descent:

f 2 = − b1b2 + b3b4

b5b6
, t2

3 = f 2

b2
1 + b2

3 + f 2b2
5

or t2
3 = f 2

b2
2 + b2

4 + f 2b2
6

r11 = t3b1

f
, r12 = t3b2

f
, r21 = t3b3

f
= r22 = t3b4

f

r31 = t3b5, r32 = t3b6, t1 = t3b7

f
, and t2 = t3b8

f

The sign of t3 can be determined from the camera position
with respect to the world coordinate system as described

f (r21x + r22y + t2) − t3 jd − k1( jdr2
d(r31x + r32y))

− k1t3( jdr2
d ) − jd(r31x + r32y) = 0

in the section entitled ‘‘Yakimovsky and Cunningham’s
Method.’’where r2

d � i2
d � j2

d. The method is computationally effi-
The method is reasonably efficient, but it produces a sub-cient but it produces a suboptimal solution. Moreover,

optimal solution including an ambiguous solution for t3. Fur-the image center and scale factor parameters are not
thermore, the image center and scale factor parameters areconsidered.
not considered.

The Conventional Method. The conventional method is
Nonlinear Method for Coplanar Camera Calibrationbased on the following unconstrained objective function:

The nonlinear method is based on the objective function, Eq.
(32), except that the image coordinates i and j are corrected
for image center, scale factor, and lens distortion; that is, they

J(bbb,ddd) =
∑

all points

[( fr11x + fr12 y + ft1 − r31ix − r32iy − it3)2

+ ( fr21x + fr22 y + ft2 − r31 jx − r32 jy − jt3)2]
(32)

are functions of both m and d: i � i(m, d) and j � j(m, d).
Furthermore, the orthonormality constraints, Eq. (31), areHere, i � i(d) and j � j(d) by using Eq. (6). The method con-
imposed during the optimization process. We define the pa-sists of the following iterative algorithm consisting of two lin-
rameter block containing extrinsic parameters and focalear least-squares step:
length as bT � [fr11 fr12 fr21 fr22 r31 r32 ft1 ft2]/t3. We can now
write the three constraints in Eq. (31) in terms of the ele-1. Compute b with d held constant. From Eq. (32), we ob-
ments of b. Let bT � [b1 b2 b3 b4 b5 b6 b7 b8]. The constraint fortain the following linear equation in unknown parame-
coplanar camera calibration ister vector b:

h(bbb) = (b5b1 + b6b2)(b6b1 − b5b2)

+ (b5b3 + b6b4)(b1b3 − b5b4) = 0
(33)

[
x y 0 0 −ix −iy 1 0
0 0 x y − jx − jy 0 1

]
bbb =

[
i
j

]

The method consists of the following three iterative steps:
where

1. Compute b with d and m held constant. From Eq. (32),bbbT = [ f r11 f r12 f r21 f r22 r31 r32 f t1 f t2]/t3 we derive the problem: Solve for b from the following
constrained equations:We use the linear least-squares method to solve for b.

2. Compute d with b held constant. From Eq. (32), we ob-
tain the following linear equation in unknown parame-
ter vector d:

[
x y 0 0 −ix −iy 1 0
0 0 x y − jx − jy 0 1

]
bbb =

[
i
j

]

under constraint h(b) � 0 [see Eq. (33)]. We use nonlin-
ear optimization methods to solve this problem.

2. Compute d with b and m held constant. This step is
similar to the corresponding step in the conventional
linear method described in the section entitled ‘‘The

c3

[
ir 2 ir 4 . . . ir 2r0 r 2 + 2i2 2ij r 2 0
jr 2 jr 4 . . . jr 2r0 2ij r 2 + 2 j 2 0 r 2

]

ddd =
[

c1

c2

]

Conventional Method.’’ From Eq. (32), we obtain the fol-
where lowing linear equation in unknown parameter vector

d:

c3

[
ir 2 ir 4 . . . ir 2r0 r 2 + 2i2 2ij r 2 0
jr2 jr4 . . . jr 2r0 2ij r 2 + 2 j 2 0 r 2

]

ddd =
[

c1

c2

]
dddT = [k1k2 . . . kr0

p1 p2s1s2]

r 2 = i2 + j2

c1 = (b1x + b2y + b7) − i(b5x + b6 y + 1)

c2 = f (b3x + b4 y + b8) − j(b5x + b6 y + 1)

c3 = (b5x + b6 y + 1)
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where coplanar case, the Zw component is randomly generated (uni-
form distribution) within the range (�5, �5). The rotation
matrix R in Eq. (3) is generated from Euler angles � � � �
� � 15�. Translation vector t is (0.5, 0.5, �14.0), and focal
length f � 300. Image coordinates are obtained from the col-
linearity conditions, stated in Eq. (1). Lens distortion is then
added to this data according to first- and second-order radial
distortion models with coefficients k1 � 10�7 and k2 � 10�14.
Image center and scale factor parameters are next added to

dddT = [k1k2 . . . kr0
p1 p2s1s2]

r 2 = s−2(i f − i0)2 + ( j f − j0)2

i = s−1(i f − i0), j = ( j f − j0)

c1 = (b1x + b2y + b7) − i(b5x + b6 y + 1)

c2 = f (b3x + b4y + b8) − j(b5x + b6 y + 1)

c3 = (b5x + b6 y + 1), and the image with i0 � 5, j0 � 8 and s � 0.8. Finally, an indepen-
dent Gaussian quantization noise is added to the image com-

r0 is the order of the radial lens distortion model. ponents. In accordance with (40), the variance of the added
3. Compute m with b and d held constant. This is an un- noise in i and j image coordinates are (sf )�2/12 and f�2/12,

constrained minimization problem similar to the one de- respectively. The reasoning behind these noise variances are
scribed in the section entitled ‘‘Main Algorithm.’’ The briefly given below. Different values of � in Tables 2, 3, and
objective function J(.) in Eq. (32) is minimized. 4 denote different multiples of this noise.

In accordance with (11), calibration accuracy can be de-
All extrinsic parameters and focal length are obtained from fined by projecting each pixel onto a plane that is orthogonal
the equations at the end of the section entitled ‘‘The Conven- to the optical axis, and go through the projected pixel center
tional Method.’’ The ambiguity in the solution of t3 is resolved on the calibration surface. The projection of the pixel on this
due to the constraint h(b) � 0. plane is a rectangle of size a � b with a in the I image direc-

The method is computationally complex, but it produces an tion and b in the J image direction (see Fig. 1). Uniform digit-
optimal solution. The method also computes the image center ization noise in a rectangle a � b has standard deviation
and scale factor parameters. �0 � �(a2 � b2)/12 � z2 �((sf )�2 � f�2)/12 at depth z. As per

(11), this positional inaccuracy is comparable to the normal-
ized error in image plane denoted by �, and defined as below:EXPERIMENTAL RESULTS

Though we have presented at least 10 different methods of
camera calibration, we select four representative methods for
our experiments. Two of these methods are for noncoplanar
calibration, and two for coplanar calibration. Of these two

Normalized Image Error

= µ =
�

1
N

�
N∑

n=1

� in − in(b, d, m)

sf

�2

+
N∑

n=1

� jn − jn(b, d, m)

f

�2
�

(35)methods in each calibration case, one is a linear computation
method and one a nonlinear method. For noncoplanar calibra-

We shall use the normalized image error � to evaluate thetion, we choose the Grosky and Tamburino’s method (4) as
accuracy of all algorithms.the linear method, and the Chatterjee, Roychowdhury, and

Chong’s method (22) as the nonlinear method. For coplanar
Noncoplanar Case. First the Grosky and Tamburino’s Lin-calibration, we choose the Conventional method for linear

ear method is applied to the synthetic image data and corre-computation, and then the nonlinear method.
sponding world coordinates. Next, the Chatterjee, Roychowd-We test these algorithms on two sets of data: (1) synthetic
hury, and Chong’s nonlinear method is applied to this data.data corrupted with known noise, and (2) real data obtained
The initialization algorithm, followed by five iterations of thefrom a calibration setup. The accuracy of each algorithm is
main algorithm is used. These results for � � 1, 5 and 10 areevaluated according to square root of the mean square errors
shown in Table 2.in both image components:

The results clearly show a significant improvement in all
parameters as well as image error due to the nonlinear algo-
rithm for all noise levels. As expected, a higher image error
is seen for larger quantization noise denoted by �. Table 3
shows the image error against iterations of the nonlinear al-
gorithm. Different amounts of quantization noise show that

Image Error

=
�

1
N

�
N∑

n=1

s−2(in − in(b, d, m))2 +
N∑

n=1

( jn − jn(b, d, m))2

�
(34) the image error, although better compared with the linear

method, increases with increasing noise �.where (in, jn) are points measured from the image and (in(b,
d, m), jn(b, d, m)) are computed from calibration parameters

Coplanar Case. Similar to the noncoplanar case, we esti-(b, d, m).
mate the calibration parameters first with the linear (Conven-
tional) method and then with the nonlinear method. In order

Experiments with Synthetic Data
to use the (Conventional) linear method, we need to compute
the image center (i0, j0) and scale factor (s) parameters by anThe synthetic data was generated for both noncoplanar and

coplanar cases with a known set of extrinsic and intrinsic off-line method. We used an algorithmic scheme given in (22)
to obtain s � 0.801860, i0 � 4.768148, and j0 � 8.37548, whencamera parameters. First a 10 � 10 (i.e., N � 100) grid of

points are generated to simulate the calibration target. (Xw, the true values are s � 0.8, i0 � 5, and j0 � 8. We used the
20 iterations of each algorithm. The results are given in Ta-Yw) components of the calibration points are uniformly spaced

in a rectangular grid within the range (�5, �5). For the non- ble 4.
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Table 2. Errors in Parameters and Image Due to the Linear and Nonlinear Methodsa (Noncoplanar)

Linear Nonlinear Linear Nonlinear Linear Nonlinear
Parameters (� � 1) (� � 1) (� � 5) (� � 5) (� � 10) (� � 10)

�r1 � r*1 �/�r*1 � 0.00130163 0.00001288 0.00137304 0.00002542 0.00153758 0.00007441
�r2 � r*2 �/�r*2 � 0.00019631 0.00000522 0.00017492 0.00003419 0.00022877 0.00007260
�r3 � r*3 �/�r*3 � 0.00131631 0.00001350 0.00148493 0.00004105 0.00174635 0.00010160
�t � t*�/�t*� 0.00117155 0.00002384 0.00125086 0.00014397 0.00153610 0.00031061
� f � f *�/� f *� 0.00081911 0.00002200 0.00082520 0.00014350 0.00100966 0.00030045
� i0 � i*0 �/�i*0 � 0.05657449 0.00056567 0.05788677 0.00202255 0.06279373 0.00523871
� j0 � j*0 �/� j*0 � 0.00353542 0.00016246 0.00377974 0.00099542 0.00552706 0.00201209
�s � s*�/�s*� 0.00005129 0.00000139 0.00006083 0.00001226 0.00007275 0.00002601
�d � d*�/�d*� 0.00697193 0.02037457 0.02843441
Image Error 0.03385128 0.00178726 0.03490645 0.00881193 0.03808799 0.01461288
� 0.00011293 0.00000596 0.00011644 0.00002936 0.00012704 0.00004869

a � � Multiple of quantization noise units added to the image points.

Table 3. Image Errors for Iterations of the Nonlinear Methoda

Linear Method Init. Alg. Iter. � 1 Iter. � 2 Iter. � 3 Iter. � 4 Iter. � 5

� � 1b 0.03463596 0.00206831 0.00179046 0.00178563 0.00178435 0.00178354 0.00178290
� � 2 0.03491059 0.00369134 0.00351634 0.00351403 0.00351345 0.00351306 0.00351273
� � 3 0.03527227 0.00540639 0.00525823 0.00525680 0.00525646 0.00525621 0.00525600
� � 4 0.03571836 0.00714753 0.00700423 0.00700324 0.00700302 0.00700285 0.00700270
� � 5 0.03624572 0.00889948 0.00875188 0.00875116 0.00875102 0.00875090 0.00875079

a � � Multiple of quantization noise units added to the image points.
b Iterations 1–5 are for the Main Alg.

Table 4. Errors in Parameters and Image Due to the Linear and Nonlinear Methods (Coplanar)

Linear Nonlinear Linear Nonlinear Linear Nonlinear
Parameters (� � 1) (� � 1) (� � 5) (� � 5) (� � 10) (� � 10)

�r1 � r*1 �/�r*1 � 0.23353182 0.00035990 0.23354564 0.00036719 0.23367292 0.00038140
�r2 � r*2 �/�r*2 � 0.00545535 0.00055831 0.00546050 0.00058498 0.00546703 0.00061839
�r3 � r*3 �/�r*3 � 0.01506598 0.00456795 0.01516991 0.00468768 0.01530110 0.00485197
�t � t*�/�t*� 0.03428311 0.00475897 0.03432293 0.00491331 0.03437303 0.00510839
� f � f *�/� f *� 0.02422284 0.00458828 0.02432405 0.00471164 0.02445051 0.00486651
� i0 � i*0 �/�i*0 � 0.04601510 0.04858865 0.05155711
� j0 � j*0 �/� j*0 � 0.04551644 0.04695227 0.04875117
�s � s*�/�s*� 0.00000293 0.00000865 0.00001538
�d � d*�/�d*� 0.18899921 0.01137128 0.18898312 0.05210049 0.18896301 0.10238679
Image Error 0.03688418 0.00165670 0.03898028 0.00817535 0.04290334 0.01533643
� 0.00012600 0.00000555 0.00013317 0.00002738 0.00014660 0.00005112

Table 5. Calibration Results for Real Data (Noncoplanar)

Parameters Linear Method Nonlinear Method

r1 0.9999482 0.0000020 �0.0101782 0.9999501 0.0000290 �0.0099916
r2 0.0001275 0.9999191 0.0127197 0.0000262 0.9999847 0.0055243
r3 0.0101774 �0.0127203 0.9998673 0.0099916 �0.0055243 0.9999348
t 5.0072589 �6.3714880 �509.2793659 4.8876372 �2.6923089 �507.3856448
f 4731.5257593 4724.5813533
i0 , j0 21.9558272 �12.4401193 19.9538046 �17.3227311
s 1.0005753
k1 , k2 1.0650 � 10�07 �4.6403 � 10�13

p1 , p2 3.0800 � 10�06 �2.1293 � 10�06

s1 , s2 1.1242 � 10�06 �5.6196 � 10�07

Image Error 0.24930409 0.14625769
� 0.00005269 0.00003096
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Table 6. Calibration Results for Real Data (Coplanar)

Parameters Linear Method Nonlinear Method

r1 0.9992172 �0.0000144 0.9996423 0.0000762
r2 0.0000175 0.9999982 0.0000371 0.9999910
r3 0.0016014 �0.0019229 0.0267438 �0.0042384
t �0.5774381 �0.8354928 �76.8508100 0.1626380 �1.7551208 �371.4850635
f 713.9534937 3464.3130475
i0 , j0 6.9151391 �8.6055953
s 0.9998891
k1 , k2 1.3643 � 10�07 �4.3674 � 10�12 2.1772 � 10�07 �2.4362 � 10�12

p1 , p2 �3.0989 � 10�06 �1.1376 � 10�06

s1 , s2 5.2088 � 10�06 �2.0617 � 10�06

Image Error 0.25422583 0.21395695
� 0.00035608 0.00006176

These results clearly show that all parameters are esti- We next estimated the image center (i0, j0) and scale factor
(s) parameters by an off-line method (22). We obtained s �mated with greater accuracy by the nonlinear method when

compared with the linear method. However, the overall esti- 1.001084, i0 � 6.912747, j0 � �8.601255. Note that the cam-
era settings for the coplanar case are different from the non-mation accuracy of parameters is lower in comparison with

the noncoplanar case. This is expected, since a smaller num- coplanar case, and the results are expectedly different.
Twenty iterations of both linear (Conventional) and nonlinearber of parameters are estimated and fewer constraints can

be imposed. However, the total image error is less with the algorithms are used. The results for the coplanar case are
summarized in Table 6.nonlinear method. The results also show an increase in the

image error due to higher quantization noise. As seen in Ta- As seen before, the image error improved with the nonlin-
ear method. Further note that the parameters computed byble 3, a similar pattern of image error against iterations is

obtained for the coplanar case. the nonlinear method are far more consistent with the actual
setup. For example, the linear method estimates focal length
f � 713.95, whereas the nonlinear method estimates f �Experiments with Real Data
3464.31 (see Table 6). In a similar setup for the noncoplanar

Real data is generated from test calibration points created by
case, we obtained f � 4724.58. Thus, the nonlinear estimate

accurately placing a set of 25 dots in a square grid of 5 � 5
of focal length is more consistent with the actual setup.

dots on a flat surface. The center to center distance between
In order to check the effects of the tangential lens distor-

the dots is 7.875 mm. The diameter of each dot is 3.875 mm.
tion model, we used just the radial model on the above data

The calibration pattern is mounted on a custom-made calibra-
and obtained a normalized image error of 0.00010177. This is

tion stand. The centroid pixel of each dot is obtained by image
compared with 0.00006176 obtained above with radial, tan-

processing to subpixel accuracy. Although we observed high
gential, and thin prism lens distortion models. This experi-

lens distortion for wide angle lenses, we used a 35 to 70 mm
ment shows that the decentering and thin prism distortion

zoom lens because of its frequent use in many applications,
models are effective in reducing the net normalized image er-

and a depth of field that can focus within a range of 0 to 60
ror. Similar results are obtained by others (1,11,20).

mm. We used an off-the-shelf camera in a monoview setup.
The camera resolution is 512 � 480 pixels and the digitizer
gives digital images with 16 bits/pixel. CONCLUDING REMARKS

For noncoplanar calibration, we placed the calibration tar-
get on a high precision stand that can move along the Zw axis In this article, we discuss several methods of noncoplanar and

coplanar camera calibration. The methods range in computa-of world coordinates with high accuracy by means of a mi-
crometer screw. Each 360� turn of the screw moves the target tional complexity, execution speed, robustness, and accuracy

of the estimates. The linear methods discussed in the sectionby 1 mm, and the positional accuracy is within 0.003 mm.
The calibration target is positioned at three positions, z � 0, entitled ‘‘Linear Methods of Camera Calibration’’ are compu-

tationally efficient and relatively uncomplicated, but theyz � �20 mm, and z � �40 mm. Image points are extracted
for all 25 dots in each location to obtain a total of 75 data lack the accuracy and robustness of the parameter estimates.

The nonlinear methods discussed in the section entitled ‘‘Non-points for calibration. A second image is acquired at all three
of the above z locations for testing. Second-order radial and linear Methods of Camera Calibration’’ are computationally

complex, but the parameter estimates are very accurate pro-first-order decentering and thin prism lens distortion models
are used. The linear (Grosky and Tamburino’s) and nonlinear vided that the calibration data are also accurate. The robust

methods discussed in the section entitled ‘‘Robust Methods of(Chatterjee, Roychowdhury, and Chong’s) methods are used
with five iterations of the nonlinear algorithm. The results for Noncoplanar Camera Calibration’’ can produce good parame-

ter estimates even if the control points are not so accurate.the noncoplanar case are shown in Table 5. As seen with the
synthetic data, image error has improved due the nonlinear However, the method cannot compute all calibration parame-

ters and is computationally complex. In the end, we havealgorithm.
In the coplanar case, we placed the calibration grid at a given three methods of coplanar camera calibration: Two are

computationally simple but produce suboptimal solutions,fixed z location and acquired the calibration and test images.
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