
INFRARED IMAGING

In 1800 Sir William Herschel, Royal Astronomer to King
George III of England, wrote, “. . .There are rays coming
from the sun . . . invested with a high power for heating
bodies, but with none for illumination objects . . .The max-
imum of the heating power is vested among the invisible
rays” (1). During his search for a new lens filter material
to be used in telescopes for observing solar phenomena,
Herschel recorded that some samples of colored glass that
gave like reductions in brightness transmitted little of the
sun’s heat, whereas other samples transmitted so much
heat that he felt impending eye damage after only a few sec-
onds of observation. Herschel performed experiments with
prisms and sensitive thermometers to determine which col-
ors of the visible spectrum had the largest heating effect.
Herschel recorded that the heating effect increased as the
thermometer was moved from the violet to the red end of
the spectrum.He continued to move the thermometer be-
yond the visible red end of the spectrum and saw an even
greater temperature increase. The dark heat discovered by
Herschel is known today as the infrared part of the electro-
magnetic (EM) spectrum (7). The prefix infra in this case
refers to longer wavelengths, below or beneath (2) the red
part of the visible region of the EM spectrum. The wave-
lengths of the EM waves in an infrared image typically
range from 1 to 14 µm. Infrared radiation occupies the re-
gion of the electromagnetic spectrum between visible EM
waves and radio waves. The range from three to five mi-
crons is called the short-wavelength band and the region
from 8 to 12 µm is called the long-wavelength band.

The technology and science of infrared imaging have de-
veloped from Herschel’s discovery in 1800 into a worldwide
endeavor involving scientists and engineers from fields
such as medicine, astronomy, material science, and the mil-
itary. The technology of infrared imaging took a leap for-
ward in 1917 when Case invented a photoconductive detec-
tor material capable of more efficiently detecting infrared
radiation. Further improvements were made to the tech-
nology during World War II when it was discovered that the
spectral sensitivity of the detectors could be broadened by
cooling the photoconductive detector material below room
temperature (1). Currently, the majority of fielded military
IR imaging systems use similarly cooled detectors. Within
the past ten years, however, a new imaging technology
based on the pyroelectric effect has led to the development
of uncooled IR imaging systems.

The usefulness of infrared imaging devices is based on
a fundamental physical principle: heated objects emit in-
frared energy because of molecular agitation. The infrared
energy emitted by the material object is called thermal ra-
diance or radiation. The radiance or electromagnetic en-
ergy from the object itself is typically called the signature
of that particular object. Each object has a unique signa-
ture. In a later section, the quantities used to characterize
IR signatures are discussed. Several factors determine the
magnitude of the thermal radiance emitted by an object.
Some of these factors are the object’s temperature relative
to its environment, its surface reflectivity and its geometri-
cal properties. In nature infrared energy is exchanged be-

tween objects when they absorb and radiate solar and heat
energy from the atmosphere. Thermal energy from vehicles
is released from the combustion of fuel inside engines and
friction generated by moving parts. Heat from combustion
and frictional heat cause ground vehicles to emit IR energy
and hence have a signature in the IR spectrum unique to
the vehicle’s geometry and material characteristics. From a
military point of view, a large IR signature aids in detecting
a vehicle and is therefore usually to be avoided. Commer-
cially, large IR signatures indicate energy loss, such as heat
escaping through a region of poorly insulated ceiling or, in
the case of electrical transmission wire, a region of wire
nonuniformity that leads to increased ohmic resistance.

There are many applications of infrared imaging, such
as medical research, astronomy, and remote sensing. De-
tails of these areas can be found in books on these partic-
ular topics. The general principles involved in forming an
IR image are discussed below.

THEORY OF INFRARED IMAGING

The EM spectrum encompasses wavelengths that span
the range from very high-frequency gamma rays to low-
frequency radio waves. Infrared radiation has wavelengths
just beyond the red part of the spectrum. Most of the ob-
served phenomena in the visible region are related to the
reflected sunlight or artificial illumination. Most infrared
phenomena are related to radiation emitted from objects.
The radiation emitted is related to temperature. The well-
known relationship between temperature and radiation,
known as the Stefan–Boltzmann law of radiation, is ob-
tained by integrating Planck’s formula from λ = 0 to λ = ∞.
The total radiant exitance by a blackbody is given by

where σ is the Stefan–Boltzmann constant, 5.67 × 10−8

W/(m2K4). Every object in the universe is constantly emit-
ting and receiving IR radiation as thermal radiation from
every other object. The amount of radiated energy varies
depending on the temperature and emittance of its sur-
faces. The laws governing the radiation, transmission, and
absorption of infrared radiation are part of thermodynam-
ics and optics. This infrared radiation can be used for imag-
ing devices that convert an invisible infrared image into a
visible image. Human vision can be extended beyond the
visible red part of the EM spectrum with a thermal imag-
ing system.

Historically, after the emergence of television after
World War II, camera tube principles were applied to night-
vision systems. The source radiation for IR imaging may be
self-emitted from objects in the scene of interest or reflected
from other sources. Sunlight is the primary source of re-
flected radiation. Another may be from controlled sources,
such as lasers, used specifically as illuminators for the
imaging device. Those systems with sources that illumi-
nate part of the scene are called active, whereas those rely-
ing largely on radiation emitted from the scene are called
passive. A passive IR imager is an electrooptical system
that accomplishes the function of remote imaging of the
scene without active scene illumination. Figure 1 is a block
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Figure 1. Block diagram of a passive IR sensor.

diagram of a passive infrared imaging system. To describe
the electronic operation of IR sensors, it is often easier to
use the particle nature of light, that is, photons. A photon’s
path is through the sensor from the scene element source,
then on through the optics and detector which ends with
its conversion to an electronic signal at the focal-plane ar-
ray (FPA). The photon-generated signals are processed to
obtain useful information which is displayed as an image
by infrared image processing.

It will be helpful to the reader to begin a detailed dis-
cussion of a passive imaging system by clarifying signal
processing versus image processing. The division between
signal processing and image processing is blurred by the
applied architecture and end application. Signal process-
ing usually refers to the time stream of data coming from
a single detector, much like the line trace of a heartbeat
on an oscilloscope. Signal processing works on and looks at
the rise and fall of the trace to detect targets against the
background noise (5). Diagrams of IR signal processors are
given in Ref. 3. Infrared imaging has found application in
such diverse fields as medicine, nondestructive material
evaluation, astronomy, and robotics. As such, a large de-
gree of image processing is needed. The following describes
some of these steps for infrared image processing.

INFRARED IMAGE PROCESSING

Now we consider what happens after the sensor has con-
verted photons to representative signals. The output of the
focal plane’s multiplexer is analog electrical signals. The
signals may be amplified and converted into digital signals
and conditioned and processed to form images or targeting
information. The following are the special considerations
needed to create a clear image as given in (5):

1. Correction To smooth out the response of the indi-
vidual pixels that make up the FPA and make the re-
sponse more uniform is one of the most important sig-
nal processing functions. Most FPA’s require a two-
point correction that adjusts each pixel for both gain
and offset by recording the response of the FPA as it

stares at two known radiance sources of blackbodies
at two different temperatures.

2. Calibration When some radiometric applications
use three- and four-point correction, calibration is
needed. Calibration adjusts system parameters to
known standards which are the standard blackbody
sources.

3. Ac Coupling Ac coupling removes a pedestal of noise.
This allows identifying a smaller temporal spike
more easily on top of a large, constant signal plat-
form. This removes the constant amplitude compo-
nent of the scene and, in the temporal domain, passes
only changes.

4. Dc Coupling Dc coupling works similarly for constant
radiation and staring sensors. A dc-coupled signal
with a low-pass filter reduces large fluctuations and
passes the constant background. This approach is of-
ten used with staring sensors.

5. Thresholding This technique compares a pixel value
with some threshold value. If the value is higher than
the threshold value, it will be identified as a possible
target pixel. Thresholding for focal-plane frames falls
into the category of image processing.

Image processing deals with the differences between
adjacent scene pixels in a two-dimensional arrangement
of detectors, and it generally includes the time-changing
components of signals. Usually, a level of signal process-
ing (such as nonuniformity correction) occurs before other
higher order image processing functions, such as edge de-
tection. A primary factor to remember is that signal pro-
cessing is single-detector element or pixel-related, whereas
image processing relates to multiple pixel configurations.
Image processing also refers to operations that transform
images into other images. Image recognition is the map-
ping of images into descriptions. Image transformations
convert matrix A into another matrix B called the trans-
form image. The image B is computed to extract features,
which are characteristic elements (geometrical, IR light in-
tensities) in the image, to classify objects or targets in the
scene. The following are some basic image processing tech-
niques and functions and their corresponding techniques
(5):

1. Spatial Filtering Spatial filtering removes false tar-
gets (reduction of clutter) using a weighted average
of the signal from neighboring pixels to determine a
localized mean. This localized mean sets an adaptive
threshold to determine whether the pixel belongs to
a targetlike object. Temporal filtering performs the
same in the time domain for each pixel. This process
is equivalent to a type of spatial filter for a scanning
system and a frame-to-frame subtraction for a star-
ing sensor. Morphological filtering is a spatial filter-
ing technique which uses a specific one-dimensional
or two-dimensional operator to detect objects of a
given spatial frequency.

2. Frame-to-Frame Subtraction In frame-to-frame sub-
traction, one frame is simply subtracted from another
taken at a different time.
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3. Streak Detection Streak detection is a higher order
form of frame subtraction indicating moving targets.
In streak detection, a pixel and its neighbors are com-
pared from frame-to-frame in the time domain.

4. Image Formation Image formation consists of taking
the FPA output and forms an image.

IR target features used for classification are character-
ized by the fact that some are geometric and others sta-
tistical in nature. The recognition process involves a tree-
type decision process adapted to each set of target classes.
Using those features by which each class is best discrimi-
nated from others, such a procedure first starts with well-
discriminated classes and ends with overlapping classes.
Such a hierarchical classification procedure, represented
by a tree structure, consists of specified feature extraction
and decision rules. The individual decisions in a classifi-
cation tree may rely on one or more of the following ap-
proaches (4):

1. Template matching of features derived, respectively,
from feature extraction and learning

2. Statistical pattern recognition
3. Syntactic pattern recognition
4. Hybrid pattern recognition and artificial intelligence

for scene understanding.

INFRARED SYSTEMS AND ARRAY GEOMETRIES

In order to form IR images, several array geometries are
possible. There are several established methods for design-
ing practical IR images. Table 1(10) summarizes the vari-
ous architectures used in infrared systems and the distin-
guishing features of each generation of system.

Focal-Plane Arrays

The focal plane is perpendicular to the optic axis where
the IR radiation is focused in an imaging system. An ar-
ray of detectors located there is a focal-plane array (FPA).
The focal-plane array consists of densely packed detector
elements numbering up to 106 or more. A FPA may con-
tain several FPA sections connected together. Occasionally,
a focal plane is curved about the Petzval surface (57) us-
ing more than one focal-plane array. A group of focal-plane
arrays is called a mosaic. The evolution of infrared detec-
tors suitable for forward-looking infrared (FLIR) systems
is shown diagrammatically in (11). FLIRs are IR images
that form an image of the scene directly in front of the
camera. Large arrays are usually made from photovoltaic
detectors. The photovoltaic detector lends itself more to
large arrays because of its lower thermal power dissipa-
tion. Photovoltaic operation also provides a square root of
two improvement in noise over a photoconductive detec-
tor, simpler biasing, and more accurately predictable re-
sponsivity. Most focal-plane assemblies are constructed by
using detector chips with, for example, 640 × 480 detector
elements. These can be monolithic (detector and signal pro-
cessor in a single semiconductor crystal) or hybrid (detector
and signal processor in separate materials interconnected

by solder bump bonds and/or evaporated fan-out patterns)
(5).

Uncooled Systems

Uncooled infrared focal planes are fundamentally differ-
ent from cryogenically cooled systems (55). Uncooled fo-
cal planes are two-dimensional arrays of infrared detectors
thermally isolated from their surroundings. The detectors
respond to incoming infrared radiation by changing their
temperature. The materials used for these detectors are
chosen for certain unique properties, such as resistance,
pyroelectric polarization, or dielectric constant that varies
sharply with temperature.

A pyroelectric material has an inherent electrical polar-
ization. The magnitude of the polarization is a function of
temperature (56). In a pyroelectric material polarization
vanishes at the Curie temperature. The pyroelectric coeffi-
cient p is defined as the gradient of electrical polarization
as a function of temperature. A simple pyroelectric detector
consists of a wafer of this material with metal electrodes
bonded on each face. The material is oriented so that the
polar axis is perpendicular to the electrodes. As the tem-
perature of the pyroelectric material is changed by incident
radiation, its polarization changes in direct proportion to
the magnitude of the temperature change. Charges accu-
mulate on the electrodes, and a voltage develops across the
faces of the pyroelectric material, just as in a capacitor. The
charge or voltage residing on the material is a function of
the incident irradiation by IR energy. An imaging sensor is
accomplished using this detector array by adding a “chop-
per” to introduce a known change in the incident radiation
and hence voltage across the material.

Currently, two different types of detector, one ferroelec-
tric and the other bolometric, are used for uncooled, focal-
plane arrays. The approach followed by Raytheon is to
use a ferroelectric material. An array of detectors is made
with a ferroelectric material having polarization and di-
electric constants that change with temperature, resulting
in a change in charge on a capacitor as the target scene
varies. The detectors are fabricated from the ceramic ma-
terial, barium strontium titanate (BST), and then bump
bonded to a silicon readout circuit. The approach uses a
two-dimensional array of bolometers, resistors whose re-
sistance changes approximately 2% per ◦C change. The
temperature-sensitive resistor material is vanadium ox-
ide, suspended on a bridge of silicon nitride that is isolated
thermally from the substrate containing the readout elec-
tronics.

These uncooled, focal-plane systems perform robustly
enough to make them suitable for many military and com-
mercial applications. An example of a road scene taken
with a pyroelectric device is shown in Fig. 19. One devel-
opment option is to reduce the detector size even further,
thus producing better resolution with the same optics. Sen-
sitivity improvements are also desirable and achievable.
For applications where the sensitivity is already satisfac-
tory, the increased sensitivity could be traded for slower
(i.e., smaller, lighter, and less expensive) optics. Additional
development is expected to result in decreased electrical
noise and smarter focal planes (3, 5).
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METRICS IN CLUTTERED IMAGE ENVIRONMENTS

Many perceptual measures used by the US Army (12, 13)
and other armed forces exist for assessing the visibility
of vehicles as seen by a human through an infrared sen-
sor and electronic display. These measures have a limited
range of applicability because the measures usually work
only for a restricted class of images. The focus of this ar-
ticle is algorithms for optimal measures of thermal con-
trast, target temperature minus background temperature
(�T), and clutter. The detection of vehicles by an IR sensor
is essentially the problem of detecting such vehicles in a
cluttered background. The purpose of defining and quan-
tifying clutter is to aid the development of more realistic
human detection models. In one way or another, most of
the work on clutter measures or metrics has depended on
or grown from a metric defined by Schmeider–Weathersby
(SW) (14). The SW clutter metric is written as follows:

where σi is the variance of the ith cell and N is the number
of cells. The SW clutter metric divides the image into a
number of cells, each of which are scaled to represent twice
the longest dimension of the target, and then the variance
of each cell is divided by the total number of cells.

Clutter

The clutter and temperature difference between the target
and background (�T) metrics are discussed first because
together, clutter and �T metrics form the signal-to-noise
ratio (SNR) used in evaluating the probability of detection
(Pd). A large part of the framework for the present method-
ology for calculating Pd is based on signal detection theory
(SDT). The use of SDT in an area of modeling requires a
clear distinction between what is to be the signal and what
is to be the noise. The delineation of the target in an image
constitutes deciding what the signal is to be. Everything
else is taken as the noise. As described further in this arti-
cle, clutter is considered a noise term. Objects in the image
which distract the observer from the target or get attention
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because they are similar to the target are called clutter.

Clutter Metrics

Objects and background regions in an image that look sim-
ilar to or that distract from the actual target(s) are known
as clutter. To date there has been a lot of work to de-
velop a quantitative measure of background clutter (15–
30). Reynolds et al. (17) analyzed many scenes of north-
ern rural Michigan and calculated the aforementioned SW
clutter in those scenes as a function of field measured en-
vironmental variables, such as wind speed, humidity, in-
solation, and temperature. For groups like the US Army,
who are concerned with how vehicles appear in open ter-
rain, the difficulty of controlling the parameters measured
in the field motivates the use of computer modeling. Hence
a large part of clutter research is geared toward finding
insights to understand the interaction of environmental
variables and clutter with the aid of computer modeling so
as to reduce the need for taking field data. The goal is to
link clutter with human perception and the probability of
detection. There are many definitions of clutter currently
used in the literature of image processing and target ac-
quisition modeling (18, 19). Some of these metrics follow:

(mean target) − (mean background) radiance or �T
metric

1. Statistical vari-
ance metric (SW
clutter)

2. Probability of
edge (POE) met-
ric

3. Complexity met-
rics

There is presently no definition available which is
clearly the best in all cases or images. One primary ob-
ject of this section is a unified definition of clutter which
takes into account the different definitions available in the
literature. Many of the images used for study in this article
were obtained from the US Army’s Night Vision Lab (NVL)
terrain board simulator. The terrain board simulator is a
large room painted entirely black which has a scaled-down
version of the terrain of a certain part of the world at the
center of the room. Genuine infrared and visual sensors
are then placed at certain positions. On the terrain board
are placed scaled-down vehicles painted with an emissive
coating to emulate the actual appearance of the vehicles as
seen through night vision cameras. Pictures are then taken
with the mounted night-vision cameras and displayed on
monitors in target perception experiments. As part of the
review of the phenomenology associated with clutter met-
rics, a few of these metrics are described here. Currently
used clutter and image metrics are the following: Der met-
ric, POE metric, the Schmieder–Weathersby metric, and
texture-based clutter metrics.

Der Clutter Metric. Originally the Der metric was de-
vised as a method to predict the false alarm rate of a given
algorithm. The approach was the following: a double win-

dow was convolved one pixel at a time over the image. The
size of the inner window was the maximum size of the
largest target used at the time. These two features, mini-
mum and maximum, were chosen arbitrarily. At each pixel
location, the algorithm decides whether the new pixel is in
the same intensity space as the one previously examined
and then also whether it fits into the inner window. When
an intense region of the image of approximate target size
is found, that region is catalogued. The principle behind
the Der method then is to multiply the distribution of the
target like areas by the probability-of-detection distribu-
tion. Then the result should give the predicted false alarm
rate for an algorithm with a given probability-of-detection
distribution. Now if one simply counts the number of Der
objects in the image, that number should indicate the num-
ber of targetlike objects in the scene, and hence, a measure
of clutter (18).

POE Metric. The probability of edge (POE) metric is
meant to determine the relationship between the human
visual detection system and the statistics of the color or
black and white images. First, the image under consid-
eration is processed with a difference-of-offset-Gaussian
(DOOG) filter and is thresholded. This procedure emulates
the early vision part of a human observer (20), basically
just the retinal part of human color vision. Then the num-
ber of edge points are counted and are used as the raw met-
ric. The calculation proceeds as follows. First, the image is
divided into blocks twice the apparent size of the target in
each dimension. Then, a DOOG filter, as described in (21),
is applied to each block to emulate one of the channels in
preattentive vision. The net effect is to enahance the edges.
As discussed by Rotman et al. (22), the histogram of the
processed image is normalized and then a threshold T is
chosen on the basis of the histogram. The number of points
exceeding the threshold in the ith block are computed as
POEi,T . Then the POE metric is computed similarly to the
statistical variance technique:

Marr (20) and other vision researchers have recognized
that preattentive vision is highly sensitive to edges.

Schmieder and Weathersby (SW) Metric. Schmieder and
Weathersby (14) have proposed the concept of a root-mean-
square (rms) clutter metric of the spatial-intensity proper-
ties of the background. It is one of the most commonly used
clutter measures. The Schmieder and Weathersby clutter
metric, shown in Eq. (2), is computed by averaging the vari-
ance of contiguous square cells over the whole scene.

Typically N is defined as twice the length of the largest
target dimension. The signal-to-clutter ratio (SCR) of the
image is then given by the average contrast of the target
divided by the clutter computed in Eq. (2).
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Reynolds (15) showed that the variance in Eq. (2) is
equivalent to the following:

where N is the number of cells, k is the number of pixels
per cell, xij is the radiance of the jth pixel in the ith cell,
and ui is the ith cell mean radiance. Doll (23) compared Eq.
(2) with experimental detection times for observers looking
at computer-generated images of rural scenes with embed-
ded targets. Good correlation between the average detec-
tion time and SCR value was found. One of the fundamen-
tal problems of computer-based vision is that the contrast
metrics are valid only for a limited group of images.

Texture-Based Clutter. As mentioned previously, the pur-
pose of defining and quantifying clutter is to aid the devel-
opment of more realistic human-detection models. Clutter
is sometimes defined in the sense that areas of similar tex-
ture contribute to the distractive capability or clutter of a
scene. Textural measures of a scene are potentially very
powerful metrics for extracting fine-level, contrast differ-
ences in an image and play a crucial role in modeling hu-
man visual detection. The scene used for this study of tex-
ture and clutter was from the standard scene collections of
the Keewenaw Research Center of Michigan Technological
University, KRC83-1-1.dat. The thermal image contains
an M60 tank in a field with a tree background. The basic
scene was altered with the Geographics ResourcesAnalysis
Support System (GRASS) software package so that there
were three scenes with different amounts of clutter, low,
medium, and high, respectively. Low, medium, and high
clutter were defined as equal to one, three, or nine false
targets in the field of view (FOV) containing the vehicle
(23).

In Fig. 2, pictures A through C are the original in-
put cluttered IR scenes, and pictures D through F are
the computer-modeled IR sensor field of views of the low,
medium, and high cluttered scenes, respectively. The three
images mentioned were read into the TARDEC Thermal
Image Model (TTIM) (24). TTIM is a graphics workstation
model that uses measured or simulated target-in-scene IR
imagery as input. TTIM has been used to simulate the im-
age degradation introduced by atmospheric and sensor ef-
fects (25, 26) at a specified range. TTIM transforms the
degraded radiance values on a pixel-by-pixel basis to gray-
scale values for display on a workstation for observer in-
terpretation and/or further processing.

Equation (2) was used to calculate the variance-
based clutter in the images, also known as the
Schmieder–Weathersby (SW) clutter. The cell size chosen
was twice the maximum target dimension which was al-
ways the length in pixels of the vehicle. The clutter and
textural data were then input into statistical and graph-
ing tools for further analysis. The standard clutter SW def-
inition of clutter was modified to include image texture by
calculating the gray-scale texture for each cell and then
using that texture in place of the variance. The method of
calculating texture was based on the equation given in (27).

To compute the SW variance-based clutter, the image is di-
vided into cells twice the maximum target dimension. Then
the variance is computed for each cell and aggregated, as
described by (30). At a given resolution, a block of pixel val-
ues is recorded and the variance of the gray-scale values is
formed. Then the rms is taken over the entire image. The
equation modified for the digital computation of textural
clutter is shown in Eq. (5):

where a and b are any two gray-scale values at any pixel
(j, k) in the image matrix, r is the step size, and θ is the
direction of the steps (θ equals 0 means stepping horizon-
tally). P is the fraction of the total number of steps whose
end points are the gray-scale values a and b, respectively.
The mean texture is defined as follows:

Defined in the above manner, texture is considered the
spread about the diagonal of the cooccurrence matrix (28).
As the clutter in the image increases, the spread of the
wings of the central region in the textural plot increases,
indicating an increase in texture which would be expected
if the clutter in the image increases. The modified clutter
equation that includes mean texture follows:

The performance of the textural metric as a function of
several variables has been described by (28). The first data
set consisted of four variables: (1) wind speed, (2) turbu-
lence, (3) humidity, and (4) temperature difference between
the target and background. The second data set included
spectral bandpass, turbulence, rain rate, and temperature
difference between the target and the background. The ex-
perimental design was chosen to include all of the variables
so that the least amount of simulations would be required.
A fifth variable, texture, was computed for each point in
the experimental design. Clutter was modeled as a second-
order response surface in the original five variables. Step-
wise regression was used to build the model and residual
analysis was done to check the assumptions of the model.

Some general remarks concerning the nature of the im-
ages generated by the sensor and atmospheric models used
are appropriate. For the second parameter set, gray-scale
levels of the output images were manually scaled. In other
words, for each clutter class, the minimum and maximum
temperature values for the extreme parametric cases were
recorded in advance to provide a temperature/gray-scale
range for the entire image set. Otherwise, the autoscale
function would be used and the image contrast would al-
ways be maximized for each image rather than having a
gray scale appropriate to the entire range of pixel temper-
atures for the parameter variations. The clutter and tex-
tural calculations all used the gray-scale values written
from the screen to the hard disk. For all clutter classes, low,
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Figure 2. A, B, C: original images with low, medium, and high clutter and TTIM. D, E, and F:
simulations.

medium, and high, the calculated clutter values decreased
as the parameters increased. The modeled sensor scene be-
came more homogenous or lower in contrast, and the tar-
get was more difficult to distinguish. Thus the probability
of detection can decrease even while the clutter, defined as
a variance of gray-scale values in a cell, is decreasing.

The results of the simulations showed that for the SW
clutter metric, temperature difference, rain rate, and tex-
ture were the most important parameters. For the texture-
based clutter metric, temperature difference, rain rate, and
spectral bandpass were important. When the SW clutter
was plotted versus the texture-based clutter metric, the re-
sult was a straight line. This result is unexpected because
the two methods of calculating clutter are very different.
The SW clutter metric is a variance of the pixel gray-scale
values in the image and the texture-based clutter metric
involves the cooccurrence matrices of the gray-scale values
in the image. These two measures may give nearly similar
results when the amount of texture in the scene is small.
Perhaps by increasing a feature in the scene, such as the
periodicity or scene complexity, the two texture measures
would generate more different results. A representative
graph of the two measures for the highly cluttered scene is
shown in Fig. 3.

Relative Metrics in the Probability of Detection

Rotman et al. (29) reviews the NVL model for computing
the probability of detection Pd and suggests a way to in-
clude clutter in the algorithm for Pd . However, no mention
is made of how to compute the properly scaled clutter fac-
tors alluded to in the paper. A method for obtaining clutter
factors based on other validated clutter measures that can

Figure 3. Plot of textured clutter versus SW clutter.

be used in this equation is described next. As described by
Rotman et al. (29) and Gerhart et al. (34), the probability
of acquisition of a target as a function of time is given by
the following:

or

In Eq. (9), ρ is an estimate of the target acquisition prob-
ability over an infinite amount of time when the target is
in the field of view, and
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where n is the number of resolvable cycles across the target,
n50 is the number of cycles required for P∞ to equal 0.5,
E is equal to 2.7 + 0.7 (n/n50), and CF is a clutter factor.
Clutter is a term that refers to the psychophysical task
of perceiving objects in a scene in the presence of similar
objects (15). Clutter factor refers to the number used to
represent how many target-like objects there are in the
image which confuse the viewer as to the location of the
target. Rotman (29) has shown that

Hence, Eq. (9) can be written as a function of �T and the
clutter factor CF. Or the probability of detection P(t) can
now be computed as a function of �T, the range from the
target to the sensor, the atmospheric condition, and the
sensor system parameters. Figure 4, courtesy of Dr. Bar-
bara O’Kane of Night Vision Electrooptic Sensor Direc-
torate (NVESD), is one of the images used in this study.
The target is in the foreground.

EQUIPMENT AND EXPERIMENTAL METHODS

Throughout this section, reference has been made to exper-
imental values of Pd . A discussion is now given of what this
entails. The experimental determination of the Pd for a tar-
get in a cluttered image is determined by using displayed
images on a rear-projection screen or computer monitor.
Basically, the observer sits at a distance of 1 meter away
from a large, high-resolution display monitor in a darkened
room or area and glimpses the images for about 1 s. The
subject is given training before the tests and is told what
to expect in the way of imagery and targets. All of the vi-
sual detection tests test foveal detection, that is, detection
of an object in a scene directly in the line of sight of the
subject. Foveal detection is important for static scene de-
tection, whereas peripheral viewing is often important for
detecting motion. The observers are then asked whether
they did or did not see a target of interest (military or oth-
erwise), and/or if the observers are not sure and would like
to see the image(s) again. This is called a forced-choice ex-
perimental design. The images in a particular data set are
displayed at random, and the responses of the individual
subjects are tallied electronically and used to calculate a
probability of detection and of false alarm of the target of
interest for the given experiment and for that particular
subject. A typical collection of subjects is 10 to 15 and a
typical number of images is 15 to 100. The separate sub-
jects’ responses, or Pd ’s, for each target are also used to
calculate a population mean probability of detection and
probability of false alarm for each target. Psychophysical
detection experiments have been performed, using this pi-
lot test lab, for part of the US Army’s visual acquisition
model validation and verification programs and for a Coop-
erative Research And Development Agreement (CRADA)
between TARDEC and an automobile company on vehicle
conspicuity. Throughout the tests mentioned, a small cu-

bicle was used as the experimental area. A schematic of
the test setup is shown in Fig. 5. Recently at TARDEC, a
visual perception laboratory (VPL) large enough to enclose
vehicles and three large rear projection screens has been
built to perform visual and infrared detection tests. A later
section describes and shows the TARDEC VPL.

WAVELET TRANSFORMS OF IR IMAGES

Introduction

There are many important characteristics of wavelets that
make them more flexible than Fourier analysis. Fourier
basis functions are localized in frequency but not in time.
Small frequency changes in a FT cause changes every-
where in the time domain. Wavelets can be localized in both
frequency position and in scale by dilation and in time by
translations.This ability to perform localization is useful in
many applications (31). Another advantage of wavelets is
the high degree of coding efficiency or, in other words, data
compression available. Many classes of functions and data
can be represented very compactly by wavelets. Typically
the wavelet transforms are computed at a faster rate than
the fast Fourier transforms (FFTs). The data is basically
encoded into the coefficients of the wavelets. The compu-
tational complexity of the FFT is of the order of n log n,
where n is the number of coefficients, whereas for most
wavelets, the order of complexity is of the order n. Many
data operations, such as multiresolution signal processing,
can be done by processing the corresponding wavelet coeffi-
cients (31). The basic flow of processing in wavelet analysis
is shown in Fig. 6.

Wavelet Transforms and Their Use with Clutter Metrics

Wavelets and wavelet transforms are essentially an ele-
gant tool that can be applied to image processing. Wavelets
are used for removing noise or unwanted artifacts from
IR images as well as acoustic data (31, 32) or for local-
izing certain target cue features. There are many defini-
tions of clutter currently used at the moment (30). How-
ever, none take into account the multiresolution capability
of wavelets. A way to do this is by using edge points deter-
mined by wavelets (30, 33). The Pd can be computed using
the signal-to-clutter ratio (SCR) as in the classical theory.
Then the computed Pd values can be correlated to the ex-
perimentally determined Pd for the target. As discussed
in (22, 34), the classical algorithm for the determination
of the Pd of a target in an image is shown in Eqs. (8), (9),
(10), and (11). The idea proposed by (30) is to use wavelets
in the clutter factor so that the noise term is replaced by
an interference term that includes noise plus clutter. The
wavelet probability of the edge (WPOE) algorithm was ap-
plied to many IR images with a combination of a personally
developed code and the software package XWAVE2 (35) in-
stalled on a Silicon Graphics Indigo2 workstation running
IRIX 5.03. For input images, Night Vision Lab’s (NVL) ter-
rain board images, developed and shared by Dr. B. O’Kane,
C. Walters, and B. Nystrom (12) were used. A sample of this
data from the NVL set is shown in Fig. 4. The image was
segmented by cell, and a wavelet transform was applied to
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Figure 4. NVESD terrain board image (from Dr. O’Kane).

Figure 5. Pilot perception test setup.

Figure 6. Flow of processing in wavelet
analysis of IR images.

Figure 7. NVESD image level 1.

find the number of edge points at a particular scale. Fig-
ures 7,8, and 9 are the wavelet transforms of the entire IR
image. After processing the image with the wavelet filters,
what is required is the number of edge points above a cer-
tain threshold in each of the cells of the wavelet image and
at a particular resolution level. A cell is composed of an
array of pixels taken together generally forming a square
or rectangular figure. With the number of edge points per
cell and the total number of points or pixels in the cell, the

WPOE can be computed. The WPOE clutter metric is used
in the denominator of the SNR to compute the probability
of detection of the target. For the IR case, the signal is the
difference of the mean temperature of the target and back-
ground, and the noise term is a clutter metric, such as the
POE,WPOE, or RMS clutter. A new metric, the WPOE met-
ric, and an algorithm for computing clutter in infrared and
visual images was used in (30). There are some problems
that must be resolved, such as thresholding and further re-
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Figure 8. NVESD image level 2.

Figure 9. NVESD image level 3.

duction of the cell size, but the method of the WPOE metric
is of potential use in image analysis.

FUZZY LOGIC AND DETECTION METRICS FOR IR
IMAGES

It has been three decades since L. A. Zadeh first proposed
fuzzy set theory (logic) (36). Following Mamdani and Assil-
ian’s pioneering work in applying the fuzzy logic approach
(FLA) to a steam engine in 1974 (37), the FLA has been
finding a rapidly growing number of applications. These
applications include transportation (subways, helicopters,
traffic control, and air control for highway tunnels), auto-
mobiles (engines, brakes, transmission, and cruise control
systems), washing machines, dryers,TVs,VCRs, video cam-
eras, and other industries including steel, chemical, power
generation, aerospace, medical diagnosis, and data analy-
sis (38–42). Although fuzzy logic encodes expert knowledge
directly and easily using rules with linguistic labels, it usu-
ally takes some time to design and tune the membership
functions which quantitatively define these linguistic la-
bels. Neural network learning techniques can automate
this process and substantially reduce development time
and cost while improving performance. To enable a sys-
tem to deal with cognitive uncertainties in a manner more

like humans, researchers have incorporated the concept of
fuzzy logic into the neutral network modeling approach. A
new approach to computing the probability of target de-
tection in infrared and visual scenes containing clutter by
fuzzy logic is described in Ref. 30.

At present, target acquisition models based on the the-
ory of signal detection are not mature enough to robustly
model the human detection of targets in cluttered scenes
because our awareness of the visual world is a result of
perceiving, not merely detecting, the spatiotemporal, spec-
trophotometric stimuli transmitted onto the photorecep-
tors of the retina (43). The computational processes in-
volved with perceptual vision can be considered the process
of linking generalized ideas or concepts to retinal, early vi-
sual data (43). These ideas or concepts may be various clut-
ter or edge metrics and luminance attributes of a military
vehicle or automobile. From a systemic theoretical view-
point then, perceptual vision involves mapping early visual
data into one or more concepts and then inferring meaning
of the data based on prior experience and knowledge. Even
in the case of IR images, the observer is looking at a picture
of the scene displayed on some form of a monitor or display.
The approaches of fuzzy and neuro-fuzzy systems will pro-
vide a robust alternative to complex semiempirical models
for predicting observed responses to cluttered scenes. The
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fuzzy-based approaches have been used to calculate the Pd

of vehicles in different infrared scenes.

Probability of Detection (Pd ) for Ground Targets

The development of the software that models the relation-
ships among the various factors that affect the determi-
nation of the probability of detection is currently undergo-
ing development. Some of these modeling factors are in-
troduced in (57) to demonstrate the capability of the fuzzy
and neuro-fuzzy approaches in predicting Pd with a 0.9
correlation to experimental values. The Pd value can be
determined with the FLA using input parameters for the
images shown in Fig. 4. The one output parameter is Pd .
Figure 10 shows the FLA computed Pd ’s and the experi-
mental Pd ’s for comparison. The correlation of the exper-
imental Pd to the FLA-predicted Pd is 0.99. This result
indicates the power of using the FLA to model highly com-
plex data for which there would be many interrelated equa-
tions if one tried to model the detection problem as shown
in Eqs. <xref target="W4110-mdis-0008 W4110-mdis-0009
W4110-mdis-0010 W4110-mdis-0011"/>.

APPLICATIONS OF INFRARED IMAGING SENSORS

Uncooled Pyroelectric IR Sensors for Collision Avoidance

Collision avoidance and vision enhancement systems are
seen as an integral part of the next generation of active au-
tomotive safety devices (44, 45). Automotive manufactur-
ers are evaluating the usefulness of a variety of imaging
sensors in such systems (44). One potential application for
automobiles is a driver’s vision-enhancement system (53).
This use of night-vision sensors as a safety feature would
allow drivers to see objects at a distance of about 450 m,
far beyond the range of headlights. Obstacles in the driver’s
peripheral visual field of view could be seen and recognized
much sooner. Sensors that operate at wavelengths close to
the electromagnetic frequency band of human vision (such
as video cameras) provide images with varying degrees of
resolution. However, the quality of the images (in terms of
relative contrast and spatial resolution) acquired by such a
camera degrades drastically under conditions of poor light,
rain, fog, smoke, etc. One way to overcome such poor condi-
tions is to choose an imaging sensor that operates at longer
(than visual) wavelengths. The relative contrast in images
acquired from such sensors does not degrade as drastically
with poor visibility. However, this characteristic comes at a
cost. The spatial resolution of the image provided by such
sensors is less than that provided by an inexpensive video
camera. Passive infrared sensors operate at a wavelength
slightly longer than the visual spectrum. (The visual spec-
trum is between 0.4 and 0.7 µm, and the commonly used
portions of the infrared spectrum are in the atmospheric
“windows” that reside between 0.7 and 14 µm.) Hence the
IR sensors perform better than video cameras (in terms
of relative contrast) when visibility is poor. Also, because
their wavelength of operation is only slightly longer, the
quality of the image provided by an infrared sensor is com-
parable to that of a video camera (in terms of spatial reso-
lution). As a result, infrared sensors have much potential

for use in automotive collision avoidance systems (44, 46).
Of all the different types of infrared detector technologies,
this article considers two state-of-the-art infrared detec-
tors that offer beneficial alternatives to an infrared sensor
system for automotive and surveillance applications. The
first alternative is based on a cooled FPA of CMOS PtSi
infrared detectors that operate in the 3.4 to 5.5 µm wave-
length band.

The second alternative is based on a staring, uncooled,
barium strontium titanate (BST) FPA of ceramic sensors
that operate in the 7.5 to 13.5 µm wavelength band. Under
clear atmospheric conditions and at ranges less than 500
m, the 3.4 to 5.5 µm systems generate images with less
contrast than the 7.5 to 13.5 µm systems. Dual-band field
data show that the 3.4 to 5.5 band systems present more
contrast between temperature extremes, whereas the 7.5
to 13.5 band systems show more detail in the overall pic-
ture. The TACOM Thermal Image Model (TTIM) is a com-
puter model that simulates the appearance of a thermal
scene seen through an IR imaging system (24). The TTIM
simulates the sampling effects of the older single-detector
scanning systems and more modern systems that use focal-
plane, staring arrays. The TTIM also models image inten-
sifiers. A typical TTIM simulation incorporates the image
degrading effects of several possible atmospheric condi-
tions by using low-resolution transmission (LOWTRAN), a
computer model of the effects of atmospheric conditions on
thermal radiation that was developed at the United States
Air Force’s Geophysics Laboratory. A particularly attrac-
tive feature of the TTIM is that it produces a simulated
image for the viewer, not a set of numbers as some of the
other simulations do. We refer the reader to Fig. 11 for a
schematic representation of the TTIM. Examples of the us-
age of the TTIM are shown in Figs. 12,13, and 14. In Fig.
12, a CAD file of a tank is shown at the top, and the two
lower images show the scene as seen through a TOW IR Im-
ager at a certain range and then with rain added. Figure
13 shows how the TTIM compares different metrics used to
quantify the visibility of a target. Figure 13 shows that sim-
ple metrics that assume a uniform target and background
do not work. Figure 14 shows how the TTIM compares the
performance of short and longwave IR imagers in the pres-
ence of rain. The TTIM has been used to simulate cooled
and uncooled IR imaging systems and to compare their per-
formance from the standpoint of automotive applications.
Analogous comparisons exist in the current literature (47,
48).

The TTIM and NAC-VPM together allow comparing the
performance of the two IR systems in terms of how good
the quality of their images is for subsequent human per-
ception/interpretation. Given that we have two images of
the same scene, captured by using the two different in-
frared systems, we use the NAC-VPM to assess which of
the two is better. The NAC-VPM is a computational model
of the human visual system (49). Within the functional
area of signature analysis, the unclassified model consists
of two parts: early human vision modeling and signal de-
tection. The early visual part of the model itself is made
up of two basic parts. The first part is a color separation
module, and the second part is a spatial frequency decom-
position module. The color separation module is akin to
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Figure 10. Graph of expected versus FLA predicted
detection probabilities.

Figure 11. Schematic of the TTIM computer model.

the human visual system. The spatial frequency decom-
position system is based on a Gaussian–Laplacian pyra-
mid framework. Such pyramids are special cases of wavelet
pyramids, and they represent a reasonable model of spatio-
frequency channels in early human vision (50). See Fig.
15 for a schematic representation of NAC-VPM. Figure 16
shows how the TTIM and NAC-VPM together are used to
determine which spatial frequencies and features of a ve-
hicle are the most visible.

Simulation of Infrared Sensors

This section presents the simulation of cooled and un-
cooled infrared imaging systems using the TTIM. Specif-
ically, the input to the TTIM was the actual thermal im-
ages of commercial vehicles in a typical road scene, which
were resampled using the TTIM. The initial infrared im-
ages were taken at TARDEC with the pyroelectric sensor
from Raytheon. Examples of the way rain affects the qual-

ity of the sensor displayed image are presented. Target is
synonymous with the object of interest in the scene and no
target means the image with the object of interest removed.
This type of simulation is a substantial first step to provid-
ing a means for comprehensively evaluating and compar-
ing sensor systems. The ability to simulate the sensors pro-
vides a means for exactly repeating imaging experiments
and measurements, difficult to achieve in field trials. Also,
the ability to simulate the sensors provides the ability to
exercise control over the imaging conditions. In the cooled
infrared systems, for example, it is important to provide
proper temperature shielding during field trials. Other-
wise, the quality of the images acquired from the infrared
system is badly affected, and it negatively affects the va-
lidity of subsequent comparisons between sensor systems.
By simulating cooled infrared systems, such difficulties can
be avoided. Figure 17 shows simulated infrared images of
typical commercial vehicles when the viewing distance (the
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Figure 12. CAD image of tank and simulated range and rain degradation using TTIM.

Figure 13. Comparison of thermal target metrics using TTIM.

distance between the vehicle and the sensor) is fixed and
the amount of rainfall under which the image is acquired
increases. This is done for both the cooled and uncooled
cases by inputting into the TTIM the thermal image con-
taining the target and no-target image. The images have
been resampled according to the specific sensor and then
degraded by rain and fog. The uncooled images are in the

left column and the cooled images are in the right column.
The top row is the clear case with and without the object of
interest, which is the car at the center of the picture. The
range for all the pictures is 70 m. The second row is for the
case of fog. As one goes down the columns of images, the
rain rate is 1, 12.5, 25, 37.5, and 50 mm/h, respectively. The
images show that the longwave, uncooled camera provides
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Figure 14. Dual-band study using TTIM.

a higher contrast picture under all conditions. The system
(courtesy of Mr. Sam McKenney of Raytheon) used by the
authors to take the original data is shown in Fig. 18. Fig-
ure 19 shows simulated images from the uncooled sensor
that were resampled to represent ranges at 30 to 90 m.

Sensor Image Comparison

The NAC-VPM was used to compare the quality of images
acquired from the cooled and the uncooled, infrared imag-
ing systems through rain and fog. With the NAC-VPM one
may obtain the SNR and a psychophysical measure of de-
tectability d′ (58) in each of the images for a vehicle of in-
terest. The input to the TVM was the target and no-target
images, corresponding to the infrared systems (54). In Fig.
20 the highest SNR of all frequency channels is plotted as
a function of the rain rate. The curve in Fig. 20 with the
higher whole image SNR is that of the uncooled pyroelec-
tric FPA. The image with the higher SNR has a greater
contrast and is easier to interpret. The object of interest in
a scene with the higher d′ has a higher conspicuity and is
therefore easier to see. Figure 21 shows the predicted visi-
bility of the vehicles when viewed through the sensors and
atmosphere. The two curves in Fig. 21 are the detectabil-
ities of the target vehicle predicted by the visual model.
For this particular case, the conspicuity of the target seen
through the uncooled 7.5 to 13.5 band has the higher pre-
dicted conspicuity. Using the TTIM, one may successfully
simulate both infrared imaging systems. The 7.5 to 13.5
band has more background radiance in the scenes which

tends to add more gray to the image as the rain-rate in-
creases, whereas, the 3.4 to 5.5 band gets grayer with in-
creasing rain rate primarily because of radiance loss due
to scattering. These model predictions are consistent with
infrared field images of test patterns through both bands in
the rain. Scattering losses are compounded by the shape of
the Planck blackbody distribution. The shape of the black-
body curves at a temperature of 300 K show that the 7.5 to
13.5 band has almost a factor of 2 more energy. By using
the NAC-VPM, the two sensors were compared. In each of
the spatial frequency channels found in early vision among
humans, a measure of detectability for an object and back-
ground of interest is found. The SNR versus rain rate for
both the sensors can be plotted, and the variation in the
SNR, as the amount of rainfall under which the images
are acquired increases, is obtained. Simulations show that
(1) because the 7.5 to 13.5 band has more excitance than
the 3.4 to 5.5 band and (2) the transmittance is nearly a
factor of 1.5 better in rain than the 7.5 to 13.5 band, (3) cou-
pled with the fact that the uncooled imagery was excellent
in quality, the 7.5 to 13.5 band, uncooled pyroelectric sen-
sor is the better multipurpose sensor. In addition, the unit
used for data collection was in fact several years old, and
there has since been a 50% increase in detector sensitivity
along with improvements in the detector uniformity and
system implementation. Sensor comparisons are one as-
pect of collision avoidance and vision enhancement. There
are a number of other human factors and social issues as-
sociated with the science of collision avoidance, as pointed
out in (45).
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Figure 15. Schematic of NAC-VPM computer model.

Figure 16. Use of TTIM and NAC-VPM to determine spatial fre-
quencies of greatest visibility of a baseline vehicle.

TARDEC Visual and Infrared Perception Laboratory (VPL)

The TARDEC National Automotive Center (NAC) is de-
veloping a dual-need visual and infrared perception lab-
oratory as part of a Cooperative Research and Develop-
ment Agreement (CRDA) between Army Materiel Com-
mand (AMC) and local auto companies. Dual use has be-
come an important term which means that the technology

developed by the US Army could be used by the civilian
sector, and vice versa. There are many applications of IR
imagers; in particular, they are used for defense and civil-
ian collision avoidance applications. As part of the perfor-
mance assessment of the imagers, a perception laboratory
can be used to determine the performance of various sen-
sors in terms of enhancing the scene in the field-of-view of
an observer. TARDEC researchers are using this facility
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Figure 17. Cooled and uncooled sensor images at fixed range.

Figure 18. Texas Instrument uncooled thermal imager.

to calibrate and validate human performance models for
evaluating visual collision avoidance countermeasures for
commercial and military vehicles on the nation’s highways.
The laboratory is also being used to collect baseline data
on the human visual perception of various types of ground
vehicles and treatments to those vehicles.

Figure 22 shows a schematic of the fully automated data
acquisition and analysis hardware used in the laboratory.
A unique capability of the laboratory is the magnetic head
tracker attached to the observer which relays signals to
the control computer for the correct image display at an

appropriate time during the intersection search scenario.
Additional recently upgraded capabilities include a combi-
nation headtracker and eyetracker to record instantaneous
foveal fixation relative to the scene. The existing laboratory
configuration could also be used to present infrared images
to observers. The laboratory experiments have several ad-
vantages over field-test exercises including better control
over observer stimuli, larger sample sizes, and lower cost.
In particular, laboratory perception tests offer a viable and
economic way of augmenting and complementing field test
data by using image simulation techniques to extend the
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Figure 19. Uncooled imager simulation at four ranges.

Figure 20. Image SNR versus rain rate.

Figure 21. Conspicuity versus rain rate.

range of conditions and target/background signatures be-
yond the original field test conditions. These techniques are
particularly useful for virtual prototyping of military and
civilian applications. An example of dual-need functional-
ity of the VPL is that the recent calibration of the NAC-
VPM in the laboratory for automotive use also worked well
for camouflaged vehicles.

Visual Perception Laboratory Facilities

Figure 23 shows a view of the main test area viewed
through the control room window in the laboratory. The
entire facility consists of a 2500 ft2 area which can ac-
commodate vehicles ranging in size up to the Bradley IFV.
This scene also shows that a half-car mock-up used in a
perception experiment surounded by the three video pro-
jection screens which display the driver’s front, left, and
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Figure 22. Current equipment setup
for the visual perception laboratory.

Figure 23. TARDEC VPL.

Figure 24. Visual scene in TARDEC VPL as seen by driver.

right views of the intersection traffic. Figure 24 shows a
visual scene containing camouflaged targets located along
a tree line depicted from behind the driver’s head position
through the front windshield of a HMMWV. Visual per-
ception experiments conducted with such scenes will al-
low Army researchers to study a wide field-of-regard (FOR)

search-and-target-acquisition (STA) strategies for military
vehicles.

Further upgrades to the VPL scheduled to occur dur-
ing the next year will be the addition of three screens and
LCD projectors to provide a five-screen wraparound effect
and wide field-of-regard as required for search and target
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acquisition performance assessment of ground vehicle sys-
tems.

Infrared Imaging for Ice Detection and Situational
Awareness

Following are two examples of the use of different parts
of the infrared spectrum, near and far, for remote non-
destructive testing and increased situational awareness.
The first example describes an infrared system for remote
detection of ice and the second example describes an in-
frared and visible fused system for situational awareness.

As part of a Space Act Agreement between NASA-
Kennedy Space Center (KSC) and the U.S. Army Tank
Automotive Research Development and Engineering Cen-
ter (TARDEC), members of TARDEC’s Visual Perception
Lab (VPL) performed a technology search and laboratory
evaluation of potential electro-optical systems capable of
detecting the presence and determining the thickness of
ice on Space Transportation System (STS) External Tank
(ET) Spray-On-Foam Insulation (SOFI), see Figure 25. The
SAA and subsequent evaluation activity resulted from dis-
cussions between NASA-KSC and the Army following the
Columbia Shuttle accident. NASA sought a fresh approach
to seemingly intractable ice accumulation and assessment
problems that had plagued them since the earliest days of
the STS Program. The VPL team, having expertise in imag-
ing sensors, desired to contribute in some way to NASA’s
Return to Flight planning and accomplishment.

Previous research by VPL investigators, following ear-
lier NASA inquiries, indicated that it might be possible
to detect and image ice-covered areas with an infrared
(IR) camera. In addition it was realized that methods were
needed to detect clear ice (transparent to the naked eye),
and to discriminate between ice, frost, and water on ET
SOFI surfaces. A technology search followed by members
of the VPL resulted in a selection of two electrooptical sys-
tems using infrared as candidates for further investiga-
tion. The VPL comparison of these systems, testing, and
analyses was the subject of the first report submitted to
NASA-KSC in June 2004. As a result of that report, VPL
investigators and NASA engineers determined that a sys-
tem developed by MacDonald, Dettwiler and Associates
Ltd. (MDA–formally known as MDR) of Canada offered
the greatest potential to support T-3 hour ice debris team
detection and evaluation activities on the launch pad prior
to STS launches.

NASA’s initial desire was that the system be capable of
detecting ice with a thickness and the diameter of a U. S.
quarter (approximately, 1/16 inch thick [0.0625 inch] and
one inch in diameter)–in essence the Launch Commit Cri-
teria (LCC) for safe vehicle ascent. In addition, the system
was to be passive (without emissions), portable for use by
the NASA ice debris detection team on access platforms
at T-3 hours, and able to meet launch complex safety re-
quirements (i.e. be explosion proof and within EMI/EMC
limits).

Description of the MDA System

The MDA system uses a low power near-infrared Xenon
strobe to illuminate a surface on which there may be ice–

in this case, ET SOFI. After illumination of the SOFI sur-
face, electromagnetic energy is reflected back and focused
on to an IR (1.1 to 1.4 micron, [Gregoris, 60] ) sensor.
An un-cooled focal plane array sensor provides inputs to
a linked computer. Based on the electromagnetic theory
of reflection of light at the surface of a dielectric (ice in
this case), the computer estimates the thickness of ice, if
present. Various ice thickness ranges are color-coded (e.g.,
blue = 0.020–0.029 inch, green = 0.030–0.039 inch, yellow =
0.040–0.049 inch, red ≥0.050 inch) [59] on the system mon-
itor to help the operator interpret values quantitatively. A
circular “bulls-eye” is shown on the system display to align
a small -target area. The average measured ice thickness
from pixels located in the bulls-eye (64 pixels 8 × 8), is
displayed on-screen in a field labeled “tkns in” (i.e. thick-
ness inches). The system and its components (sensor, VHS
recorder, and battery power supply) are contained in N2

purged enclosures, and are mounted on a two wheeled cart
provided by NASA as shown in Figure 26 below.

Referring to Figure 27 below, as light is incident on a
thin dielectric (e.g. ice), a fraction of the light is reflected
at the air/dielectric interface, and the rest of the light is
transmitted through the dielectric. The transmitted frac-
tion propagates through the dielectric until it reflects off
the substrate. The light reflected off the substrate returns
through the dielectric until it reaches the dielectric/air in-
terface, where it is again partially reflected into the di-
electric and the air. Some absorption of the light occurs
as it travels through the dielectric. The internal reflection
continues until all the light is absorbed completely by the
dielectric.

For a dielectric of thickness d, the effective reflectance,
Re (λ, θ), of the dielectric layer is given by Equation 12
below,

Re(λ, θi) = R(λ, θi) + [
Rw(λ)(1 − R(λ, θi))2e−2a(λ)d

1 − (Rw(λ)R(λ, θi))2e−2a(λ)d
], (12)

where,

Re (λ, θi ) is the effective reflectance
R(λ, θ) is the dielectric spectral reflectance
a (λ) is the spectral absorptivity
Rw (λ) is the substrate spectral reflectance.

Using specific sub-bands within the near IR region of
1.1–1.4 microns, the spectral contrast is defined by,

C = [
Rl − Ru

Rl + Ru

], (13)

where l, and u are the lower and upper bands respectively
in Equation 13. Measurement of the reflected energy and
the computation of the spectral contrast allows for the de-
tection of ice on a surface and the estimation of the thick-
ness d, of the ice on that surface. Below in Figure 28, (chart
from U.S. Patent # 5,500,530 [60]), the reflectance is plot-
ted versus wavelength for 0.5 mm ice and water layers with
light incident normal to the surface. It is clear from Figure
28 that the IR reflectance of water and ice is very different
and linear over a long range.

During the year 2006, VPL and NASA ice debris team
members tested the MDA ice camera in a hanger at the
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Figure 25. Frost and ice on the space shuttle ET SOFI (Courtesy of
NASA KSC).

Figure 26. MDA ET Inspection System Cart (courtesy of MDA Corp.).

Selfridge Air National Guard Base (SANG) in southeast-
ern Michigan. A sample image of the display of the camera
is shown below in Figure 29. Future tests and system mod-
ifications are being planned at the time of this article.

The images below in Figure 30 are an example of the
use of image fusion to show surface and subsurface defects
in a thermal protective tile used on the shuttle orbiter. The
top image is the IR image, the second image is the visible
image, and the bottom most image is the fused image of
the IR and visible. The type of fusion performed was con-
trast, Laplacian pyramid, and the imaging was done using
cameras in the TARDEC Visual Perception Lab.

INFRARED IMAGING AND IMAGE FUSION USED FOR
SITUATIONAL AWARENESS

A requirement for armored vehicles of the future is to
have a system that is able to provide close-in situational
awareness and understanding to the crew within the whole
360 degree hemisphere (Figure 31) of the vehicle. TACOM,
Ford and Sarnoff Laboratories are partnering to develop,
test and evaluate prototype systems to provide situational
awareness.

Elmo QN42 visual cameras (Figure 32) are used in the
present system because of their small size and excellent
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Figure 27. Reflection of light from a thin ice layer.

Figure 28. Computed spectral reflectance of ice and water versus
wavelength [60].

Figure 29. MDA Ice camera display of ice covered SOFI panel (picture from SANG tests) Red areas indicate ice thickness of 0.0625 in.
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Figure 30. IR, visible and fused image of thermal protective tile.

Figure 31. 360 degree panoramic fusion concept picture.
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Figure 32. Elmo QN42 Camera used in TARDEC system.

color fidelity. The cameras have a field of view of approxi-
mately 53 degrees by 39 degrees. The Elmo cameras have a
410,000 pixel color CCD that results in 786 (V) X 470 lines
(H) resolution with simultaneous Y/C and composite video
outputs.

Indigo Omega infrared cameras (Figure 33) were also
selected because of their small size and clear image and
have an image array resolution of 160 by 120 pixels, with a
51 by 51 micron pixel size. The detector is an uncooled mi-
cro bolometer. The infrared cameras are fitted with 8.5 mm
lenses that provide a field of view of approximately 55 by
40 degrees. The Indigo Omega cameras are sensitive to the
7.5 to 13.5 micron band of the electromagnetic spectrum.

There are four visible cameras and four IR cameras in
each of the housings in the front and rear of the vehicle,
hence a total of eight visible and infrared cameras. The
output of the eight cameras are combined using multiplex-
ers and with the Sarnoff stitching and image registration
software provide a panoramic view that is scrollable and
adjustable in magnification. The imagery from the cameras
is combined, registered, and fused to provide a real-time
panoramic stitched view of the world around the vehicle
onto which they are mounted. Figure 34 shows the sensor
systems attached to the Lincoln Navigator. The sensors are
in the open configuration for testing and characterization.
Future plans for hardening include the use of transparent
covers and lenses and a smaller housing.

A Lincoln Navigator was used as a test vehicle prototype
for of several reasons: 1) such a test platform for the cam-
eras is practical for driving around and testing the cam-
era system in the metropolitan areas, and 2) the Navigator
platform has ample space in the back and permits a con-
venient platform to demonstrate the system.

APPENDIX A

Abbreviations

ET: External Tank
FOV: Field of View
FSS: Fixed Service Structure
IR: Infrared
LCC: Launch Commit Criteria
LH2: Liquid Hydrogen
LN2: Liquid Nitrogen
LO2: Liquid Oxygen
MDA: MacDonald, Dettwiler and Associates Ltd.
SAA: Space Act Agreement between NASA and

TARDEC
SOFI: Spray-on Foam Insulation
SOW: Statement of Work
STS: Space Transportation System
SWIR: Shortwave infrared
TARDEC: Tank Automotive Research, Development,and

Engineering Center
VPL: Visual Perception Laboratory at TARDEC

SUMMARY

Infrared imaging is playing an increasingly important role
in several application areas in the US Army and in the
automobile companies for collision avoidance, nondestruc-
tive evaluation of materials, medical diagnostic imaging,
and astronomy.
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Figure 33. Indigo Omega IR camera used in TARDEC system.

Figure 34. Front and rear camera as-
semblies mounted on a TARDEC Lin-
coln Navigator with prototype 360 de-
gree image fusion system.
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