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IMAGE RECONSTRUCTION

Computed tomography (CT) is an imaging technique that has revolutionized the field of medical diagnostics.
CT has also found applications in many other areas such as nondestructive evaluation of industrial and bio-
logical specimens, radioastronomy, light and electron microscopy, optical interferometry, X-ray crystallography,
petroleum engineering, and geophysical exploration. Indirectly, it has also led to new developments in its
predecessor techniques in radiographic imaging.

The fundamental principle behind CT, namely, image reconstruction from projections, has been known
for about 80 years, since the exposition of the topic by Radon (1) in 1917. More recent developments in the
subject arose in the 1950s and 1960s from work by a number of researchers in diverse applications. Some
important publications in this area are those by Cormack (2, 3) on the representation of a function by its line
integrals; by Bracewell and Riddle (4) on the reconstruction of brightness distributions of astronomical bodies
from fan-beam scans at various angles; by 5, 6) on the reconstruction of three-dimensional (3-D) images of
viruses from electron micrographs; by 7 on the convolution backprojection technique; and by Gordon et al. (8)
on algebraic reconstruction techniques. Pioneering work on the development of practical scanners for medical
applications was done by 9, 10, and 11. X-ray CT was well established as a clinical diagnostic tool by the early
1970s.

Mathematically, the main principle behind CT imaging is that of estimating an image (object) from its
projections (integrals) measured in different directions (1213141516171819–20). A projection of an image is
also referred to as the Radon transform of the image at the corresponding angle, after the main proponent of
the associated mathematical principles. In continuous space, the projections are ray integrals of the image,
measured at different ray positions and angles; in practice, only discrete measurements are available. The
solution to the problem of image reconstruction may be formulated variously as backprojecting and summing
the given projection data, completing the corresponding Fourier space, solving a set of simultaneous equations,
and so on. Each of these methods has its own advantages and disadvantages that determine its suitability to
a particular imaging application.

In this article, we describe the three basic approaches to image reconstruction from projections mentioned
above. Techniques for gathering the projection data as well as for display and processing of the reconstructed
images in a few specific application areas will be described briefly.

Projection Data Collection Methods

In ordinary radiography, a two-dimensional (2-D) shadow of a 3-D body is produced on film by irradiating the
body with X-ray photons [see Fig. 1(a).]. Each ray of X-ray photons is attenuated by a factor depending on
the integral of the linear attenuation coefficient along the path of the ray and produces a corresponding gray
level at the point hit on the film or the detecting device used. Let Ni denote the number of X-ray photons
incident upon the body being imaged within a specified time interval for a particular ray path. Let No be the
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Fig. 1. (a) An ordinary X-ray image or typical radiograph is a 2-D shadow of a 3-D object. The entire object is irradiated
with X rays. (b) In CT imaging, only the desired sectional plane of the body—labeled as the plane ABCD in the figure—is
irradiated. The measured data represent a 1-D projection of a 2-D cross-sectional plane of the object. The profile X–X ′ in
(a) and the projection X–X′ in (b) should be identical except for the effects of scattered radiation.

corresponding number of photons exiting the body. Then, we have

or

Ni and No are Poisson variables; it is assumed that they are very large for the above equations to be applicable.
µ(x, y) represents the linear attenuation coefficient at (x, y ), ds represents the elemental distance along the
ray, and the integral is along the ray path from the X-ray source to the detector. The value of µ(x, y) depends
on the density of the object or its constituents along the ray path, as well as the frequency (or wavelength or
energy) of the radiation used. Equation (1) assumes the use of monochromatic or monoenergetic X rays.

A measurement of the exiting X rays (i.e., No and Ni for reference) thus gives us only an integral of µ(x,
y) over the ray path. The internal details of the body along the ray path are compressed onto a single point on
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the film or a single measurement. Extending the same argument to all ray paths, we see that the radiographic
image so produced is a 2-D (X-ray) shadow of the 3-D object, where the internal details are superimposed.

The problem of obtaining details of the interior of the human body noninvasively had always been of
interest, and within a few years after the discovery of X rays by Röntgen in 1895, techniques were developed
to image sectional planes of the body. These methods, called laminagraphy, planigraphy, tomography, and so
on (21), used synchronous movement of the X-ray source and film in such a way as to produce a sharp image
of a single focal plane, with the images of all other planes being blurred; the methods had limited commercial
success. CT imaging as we know it today was developed during the late 1960s and the early 1970s, producing
images of cross sections of the human head and body as never seen before (noninvasively and nondestructively!).
While the fundamental radiographical equation is the same as Eq. (1), in most CT scanners, only the desired
cross section of the body is irradiated using a finely collimated ray of X-ray photons [see Fig. 1(b)], instead
of irradiating the entire body with a solid beam of X rays as in ordinary radiography. Such ray integrals are
measured at many positions and angles around the body, scanning the body in the process. The principle of
image reconstruction from projections is then used to compute an image of a section of the body, hence the
name computed tomography. [See 22 for an excellent review of the history of CT imaging; see also 23.]

Figure 2 depicts some of the scanning procedures employed: Figure 2(a) shows the translate–rotate
scanning geometry for parallel-ray projections, Fig. 2(b) shows the translate-rotate scanning geometry with a
small fan-beam detector array, Fig. 2(c) shows the rotate-only scanning geometry for fan-beam projections, and
Fig. 2(d) shows the rotate-only scanning geometry for fan-beam projections using a ring of detectors. A more
recently developed scanner specialized for cardiovascular imaging (24, 25) completely eliminates mechanical
scanning movement to reduce scanning time by employing electronically steered X-ray microbeams and rings
of detectors, as illustrated schematically in Fig. 3.

Once a sectional image is obtained, the process may be repeated to obtain a series of sectional images
of the 3-D body or object being investigated. Imaging a 3-D body is usually accomplished by reconstructing
one 2-D section at a time through the use of one-dimensional (1-D) projections. Exceptions to this are the
Dynamic Spatial Reconstructor developed at the Mayo Clinic (22, 26), where a series of 2-D projection images
are obtained via irradiation of the portion of the body of interest and a fluorescent screen, and single-photon
emission computed tomography (SPECT), where a series of 2-D projection images are obtained using a gamma
camera (17, 272829–30).

Some of the physical considerations in X-ray CT imaging are the effects of beam hardening, dual-energy
imaging, scatter, photon detection noise, and ray stopping by heavy implants (18, 28, 29, 31).

• Beam Hardening. The X rays used in radiographic imaging are typically not monoenergetic; that is, they
possess X-ray photons over a certain band of frequencies or electromagnetic energy levels. As the X rays
propagate through a body, the lower-energy photons get absorbed preferentially (depending on the length of
the ray path through the body and the attenuation characteristics of the material along the path). Thus the
X rays that pass through the object at longer distances from the source will possess relatively fewer photons
at lower-energy levels than at the point of entry into the object (and hence a relatively higher concentration
of higher-energy photons). This effect is known as beam hardening. The effect of beam hardening may be
reduced by prefiltering or prehardening the X-ray beam and narrowing its spectrum. Use of monoenergetic
X rays from a synchrotron or a laser could also obviate this problem.

• Dual-Energy Imaging. Different materials have different energy-dependent X-ray attenuation coefficients.
X-ray measurements or images obtained at multiple energy levels (also known as energy-selective imaging)
could be combined to derive information about the distribution of specific materials in the object or body
imaged. Weighted combinations of multiple energy images may be obtained to display soft-tissue and
hard-tissue details separately (29).

• Scatter. As an X-ray beam propagates through a body, photons are lost due to absorption and scattering
at each point in the body. The angle of the scattered photon at a given point along the incoming beam is



4 IMAGE RECONSTRUCTION

Fig. 2. Translate–rotate scanning geometry for parallel-ray projections; (b) translate–rotate scanning geometry with a
small fan-beam detector array; (c) rotate-only scanning geometry for fan-beam projections; and (d) rotate-only scanning
geometry for fan-beam projections using a ring of detectors. (Reproduced with permission from R. A. Robb, X-ray computed
tomography: An engineering synthesis of multiscientific principles, CRC Crit. Rev. Biomed. Eng., 7: 264–333, Mar. 1982.
Copyright c© 1982 CRC Press, Boca Raton, Florida.)

a random variable, and hence the scattered photon contributes to noise at the point where it strikes the
detector. Furthermore, scattering results in loss of contrast of the part of the object where photons were
scattered from the main beam. The noise effect of scattered radiation is significant in gamma-ray emission
imaging (SPECT) and requires specific methods to improve the quality of the image (27, 28). The effect of
scatter may be reduced by collimation or energy discrimination, as scattered photons usually have lower
energy levels.



IMAGE RECONSTRUCTION 5

Fig. 3. Electronic steering of an X-ray beam for motion-free scanning and CT imaging. (Reproduced with permission from
D. P. Boyd et al., Proposed dynamic cardiac 3-D densitometer for early detection and evaluation of heart disease, IEEE
Trans. Nucl. Sci., NS-26: pp. 2724–2727, 1979. Copyright c© 1979 IEEE. See also Ref. 22.)

• Photon Detection Noise. The interaction between an X-ray beam and a detector is governed by the same
rules as for interaction with any other matter: photons are lost due to scatter and absorption, and some
photons may pass through unaffected (undetected). The small size of the detectors in CT imaging reduces
their detection efficiency. Scattered and undetected photons cause noise in the measurement; for detailed
analysis of noise in X-ray detection, please refer to 29 and Cho et al. (28).

• Ray Stopping by Heavy Implants. If the body imaged contains extremely heavy parts or components that are
nearly X-ray opaque and stop entirely the incoming X-ray photons (such as metal screws or plates in bones
and surgical clips), no photons would be detected at the corresponding point of exit from the body. Effectively,
the attenuation coefficient for the corresponding path would be infinite. A reconstruction algorithm would
not be able to redistribute such an attenuation value over the pixels along the corresponding ray path in
the reconstructed image. This leads to streaking artifacts in CT images.

Other imaging modalities used for projection data collection are ultrasound (time of flight or attenua-
tion), magnetic resonance (MR), and nuclear emission (gamma rays or positrons) (12, 17, 28, 29, 3233–34).
Techniques using nonionizing radiation are of importance in imaging pregnant women and/or fetuses. While
the physical parameter imaged may differ between these modalities, once the projection data are acquired,
the mathematical image reconstruction procedure could be almost the same. A few special considerations in
imaging with diffracting sources are described in the section entitled “Imaging with Diffracting Sources.” The
nature of data acquired in MR imaging is described in the section entitled “Nature of Data Acquired in Magnetic
Resonance Imaging.”
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Image Reconstruction Techniques

Projection Geometry. Let us now consider the problem of reconstructing a 2-D image given parallel-
ray projections of the image measured at different angles. Referring to Fig. 4, let f (x, y) represent the density
distribution within the image. While in practice discrete images are used, the initial presentation here will be
in continuous space notations for easier comprehension. Consider a ray AB represented by the equation

[The derivations presented in this article follow closely those of 13; we thank them for their kind permission.
For further details, please refer to 17, 18) and Kak and Slaney (12).] The integral of f (x, y) along the ray path
AB is given by

where δ(·) is the Dirac delta function. When this integral is evaluated for different values of the ray offset t1,
we obtain the projection Pθ(t). The function Pθ(t) is known as the Radon transform of f (x, y). [Note that while
a single projection Pθ(t) of a 2-D image at a given value of θ is a 1-D function, a set of projections for various
values of θ could be seen as a 2-D function.] As the different rays within a projection are parallel to one another,
this is known as parallel-ray geometry.

Theoretically, we would need an infinite number of projections for all θ to be able to reconstruct the image.
Before we consider reconstruction techniques, let us take a look at the projection or Fourier slice theorem.

The Projection or Fourier Slice Theorem. The projection or Fourier slice theorem relates the three
spaces we encounter in image reconstruction from projections—the image, Fourier, and projection (Radon)
spaces. Considering a 2-D image, the theorem states that the 1-D Fourier transform (FT) of a 1-D projection of
the 2-D image is equal to the radial section (slice) of the 2-D FT of the 2-D image at the angle of the projection.
This is illustrated graphically in Fig. 5 and may be derived as follows.

Let F(u, v) represent the 2-D FT of f (x, y), given by

Let Sθ(w) represent the 1-D FT of the projection Pθ(t); that is,

where w represents the frequency variable corresponding to t . (Note: if x, y, s, and t are in centimeters, the
units for u, v, and w will be cycles/cm.) Let f (t, s) represent the image f (x, y) rotated by angle θ, with the
transformation given by
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Fig. 4. Illustration of a ray path AB through a sectional image f (x, y). The (t, s) axis system is rotated by angle θ with
respect to the (x, y ) axis system. ds represents the elemental distance along the ray path AB. Pθ (t1) is the ray integral
of f (x, y ) for the ray path AB . Pθ (t ) is the parallel-ray projection (Radon transform or integral) of f (x, y) at angle θ.
(Adapted with permission from A. Rosenfeld and A. C. Kak, Digital Picture Processing, 2nd ed., New York: Academic Press.
Copyright c© 1982 Academic Press.)

Then
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Fig. 5. Illustration of the Fourier slice theorem. F (u, v ) is the 2-D FT of f (x, y). F (w, θ1) = Sθ1 (w) is the 1-D FT of Pθ1
(t). F (w, θ2) = Sθ2 (w) is the 1-D FT of Pθ2 (t).

Transforming from (t, s) to (x, y), we get

which expresses the projection theorem. Note that dxdy = dsdt.
It immediately follows that if we have projections available at all angles from 0◦ to 180◦, we can take their

1-D FTs, fill the 2-D Fourier space with the corresponding radial sections or slices, and take an inverse 2-D FT
to obtain the image f (x, y). The difficulty lies in the fact that, in practice, only a finite number of projections will
be available, measured at discrete angular positions or steps. Thus some form of interpolation will be essential
in the 2-D Fourier space (5, 6). Extrapolation may also be required if the given projections do not span the
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entire angular range. This method of reconstruction from projections, known as the Fourier method, succinctly
relates the image, Fourier, and projection (Radon) spaces.

Backprojection. Let us now consider the simplest reconstruction procedure—backprojection (BP). As-
suming the rays to be ideal straight lines (rather than strips of finite width) and the image to be made of
dimensionless points rather than pixels or voxels of finite size, it can be seen that each point in the image
f (x, y) contributes to only one ray integral per parallel-ray projection Pθ(t), with t = x cos θ + y sin θ. We may
obtain an estimate of the density at a point by simply summing (integrating) all the rays that pass through
it at various angles, that is, by backprojecting the individual rays. In doing so, however, the contributions to
the various rays of all other points along their paths are also added up, causing smearing or blurring; yet this
method produces a reasonable estimate of the image. Mathematically, simple BP can be expressed as (13)

This is a sinusoidal path of integration in the (θ, t) Radon space. In practice, only a finite number of projections
and a finite number of rays per projection will be available—that is, the (θ, t) space will be discretized—hence
interpolation will be required.

Considering a point source as the image to be reconstructed, it can be seen that BP produces a spoke-
like pattern with lines at all projection angles, intersecting at the position of the point source. This may be
considered to be the point spread function (PSF) of the reconstruction process, which is responsible for the
blurring of details (please see the section entitled “Examples of Reconstructed Images” for illustrations of
the PSF of the BP process). Because the BP procedure is linear, the reconstructed version of an unknown
image may be modeled as the convolution of the unknown image with the PSF. Knowing the PSF, we may
attempt deconvolution. Deconvolution is implicit in the filtered (convolution) backprojection technique, which
is described next.

Filtered Backprojection. Consider the inverse FT relationship

Changing from (u, v) to polar coordinates (w, θ ), we get
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Here, u = wcosθ, v = wsinθ, and dudv = wdwdθ . Since F(w, θ + π) = F(−w, θ), we get

where again t = x cos θ + y sin θ. If we now define

we get

It is now seen that a perfect reconstruction of f (x, y) may be obtained by backprojecting filtered projections
Qθ(t) instead of backprojecting the original projections Pθ(t)) hence the name filtered backprojection (FBP). The
filter is represented by the |w| function, known as the ramp filter.

Note that the limits of integration in Eq. (2) are (0, π) for θ and (−∞, ∞) for w. In practice, a smoothing
window should be applied to reduce the effects of high-frequency noise. Furthermore, the integrals change to
summations in practice due to the finite number of projections available, as well as the discrete nature of the
projections themselves and the FT computations employed. (Details of the discrete version of FBP are provided
in the section entitled “Discrete Filtered Backprojection.”)

An important feature of the FBP technique is that each projection may be filtered and backprojected
as other projections are being acquired, which was of help in online processing with the first-generation
scanners. Furthermore, the inverse FT of the filter |w| (with modifications to account for the discrete nature
of measurements, smoothing window, etc.) could be used to convolve the projections directly in the t space (7)
using fast array processors. FBP is the most widely used procedure for image reconstruction from projections;
however, the procedure provides good reconstructed images only when a large number of projections spanning
the full angular range of 0◦ to 180◦ are available.

Discrete Filtered Backprojection. The filtering procedure with the |w| function, in theory, must be
performed over −∞ ≤ w ≤ ∞. In practice, the signal energy above a certain frequency limit will be negligible,
and |w| filtering beyond the limit increases noise. Thus we may consider the projections to be bandlimited to
±W cycles/cm. Then, using the sampling theorem, Pθ(t) can be represented by its samples at the sampling rate
2W cycles/cm as
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Then

If the projections are of finite order, that is, they can be represented by a finite number of samples N + 1, then

Assume that N is even, and let the frequency axis be discretized as

Then

This represents the discrete FT (DFT) relationship and may be evaluated using the fast Fourier transform
(FFT) algorithm.

The filtered projection Qθ(n τ) may be obtained as

If we want to evaluate Qθ(t) for only those t at which Pθ(t) has been sampled, we get
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In order to control noise enhancement by the |(m(2W/N)| filter, it may be beneficial to include a filter window
such as the Hamming window; then

with

Using the convolution theorem, we get

where denotes circular (periodic) convolution, and φ(k/2W) is the inverse DFT of |m(2W/N)| G(m(2W/N)), m
= −N/2, . . ., 0, . . ., N/2. Butterworth or other lowpass filters may also be used instead of the Hamming
window.

Note that the inverse FT of |w| does not exist as |w| is not square integrable. However, if we consider the
inverse FT of |w| exp(−εverbar;w|) as ε → 0, we get the function (13)

For large t, pε(t) � −1/(2πt)2 .
The reconstructed image may be obtained as

where the K angles θi are those at which projections Pθ(t ) are available.
For practical implementation of discrete FBP, let the projections be sampled with an interval of τ cm

with no aliasing error. Each projection Pθ(kτ) is thus limited to the frequency band ( −W, W ), with W = (1/2τ)
cycles/cm. The continuous versions of the filtered projections are
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where the filter H(w) = |w|bW(w), with bW(w) as defined earlier in Eq. (3). The impulse response of the filter
H(w) is (13)

Since we require h(t) only at integral multiples of the sampling interval τ, we have

The filtered projection Qθ(t) may be obtained as

where N is the finite number of samples in the projection Pθi(kτ) . Note that h(nτ) is required for n = −(N − 1),
. . ., 0, . . ., N − 1 . When the filter is implemented as a convolution, the FBP method is also referred to as
convolution backprojection.

The procedure for FBP may be expressed in algorithmic form as:

(1) Measure projection Pθi(n τ).
(2) Compute the filtered projection Qθi(nτ).
(3) Backproject the filtered projection Qθi(nτ).
(4) Repeat Steps 1 to 3 for all projection angles θi, i = 1, 2, . . . , K .

Severe artifacts arise if sampling in the ( θ, t ) space is inadequate or incomplete. The FBP algorithm
is suitable for online implementation in a translate–rotate CT scanner as each parallel-ray projection may
be filtered and backprojected as soon as it is acquired, while the scanner is acquiring the next projection.
The reconstructed image is ready as soon as the last projection is acquired, filtered, and backprojected. When
the projections are acquired using fan-beam geometry, one could either re-bin the fan-beam data to compose
parallel-ray projections, or use reconstruction algorithms specifically tailored to fan-beam geometry (12, 13).

Algebraic Reconstruction Techniques. In the absence of complete projection data spanning the full
angular range of 0◦ to 180◦, the algebraic reconstruction technique (ART) (19, 20) could yield better results than
FBP or the Fourier method. ART is related to the Kaczmarz method of projections for solving simultaneous
equations [see Rosenfeld and Kak (13) for an excellent discussion on this topic].

The Kaczmarz method takes an approach that is completely different from that of the Fourier or FBP
methods: the available projections (ray sums in the discrete case) are seen as a set of simultaneous equations,
with the unknown quantities being discrete pixels of the image. The large sizes of images encountered in
practice preclude the use of the usual methods for solving simultaneous equations. Furthermore, in many
practical applications, the number of available equations may be far less than the number of pixels in the
image to be reconstructed; the set of simultaneous equations is then underdetermined. The Kaczmarz method
of projections is an elegant iterative method, which may be implemented easily.
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Fig. 6. ART treats the image as a matrix of discrete pixels of finite size (�x, �y). Each ray has a finite width. The fraction
of the area of the jth pixel crossed by the ith ray is represented by the weighting factor wij . wij = Area of ABCD/(�x �y)
for the jth pixel in the figure. (Adapted with permission from A. Rosenfeld and A. C. Kak, Digital Picture Processing, 2nd
ed., New York: Academic Press. Copyright c© 1982 Academic Press.)

Let the image to be reconstructed be divided into N cells, f i denoting the value in the jth cell (the image
density or intensity is assumed to be constant within each cell). Let M ray sums be made available, expressed
as

where wij is the contribution factor of the jth image element to the ith ray sum, equal to the fractional area of
the jth cell crossed by the ith ray path, as illustrated in Fig. 6. Note that for a given ray i, most of the wij will
be zero, as only a few elements of the image contribute to the corresponding ray sum. Then

A grid representation with N cells gives the image N degrees of freedom. Thus an image represented by
(f1, f2, . . ., fN ) may be considered to be a single point in an N-dimensional hyperspace. Thus each of the above
ray sum equations will represent a hyperplane in this hyperspace. If a unique solution exists, it is given by the
intersection of all the hyperplanes at a single point. To arrive at the solution, the Kaczmarz method takes the
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approach of successively and iteratively projecting an initial guess and its successors from one hyperplane to
the next.

Let us, for simplicity, consider a 2-D version of the situation, as illustrated in Fig. 7. Let f (0) represent
vectorially the initial guess to the solution, and let w1 represent vectorially the series of weights (coefficients)
in the first ray equation. The first ray sum may then be written as

The hyperplane represented by this equation is orthogonal to w1 . With reference to Fig. 8, Eq. (4) says that for
the vector OC corresponding to any point C on the hyperplane, its projection onto the vector w1 is of a constant
length. The unit vector OU along w1 is given by

The perpendicular distance of the hyperplane from the origin is

Now, f (1) = f (0) − GH, and

Since the directions of GH and OU are the same, GH = |GH| OU. Thus

Therefore

In general, the jth estimate is obtained from the (j − 1 )th estimate as
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Fig. 7. Illustration of the Kaczmarz method of solving a pair of simultaneous equations in two unknowns. The solution
is f = [3, 4]′. The weight vectors for the two ray sums (straight lines) are w1 = [2, −1]′ and w2 = [1, 1]′ . The equations of
the straight lines are w1·f = 2 f 1 − f 2 = 2 = p1 and w2·f = f 1 + f 2 = 7 = p2 . The initial estimate is f (0) = [4, 1]′ . The
first updated estimate is f (1) = [2, 2]′ ; the second updated estimate is f (2) = [3.5, 3.5]′ . As two ray sums are given, two
corrections constitute one cycle (or iteration) of ART. The path of the second cycle of ART is also illustrated in the figure.

That is, the current (jth − 1)th estimate is projected onto the jth projection hyperplane and the deviation
from the true ray sum pj is obtained. This deviation is normalized and applied as a correction to all the pixels
according to the weighting factors w . When this process is applied to all the M ray sum hyperplanes given,
one cycle or iteration is completed.

Depending on the initial guess and the arrangement of the hyperplanes, a number of iterations may have
to be completed in order to obtain the solution (if it exists). The following characteristics of ART are worth
noting:

• ART proceeds ray-by-ray and is iterative.
• If the hyperplanes of all the given projections are mutually orthogonal, we may start with any initial guess

and reach the solution in only one cycle (if it exists). On the other hand, if the hyperplanes subtend very
small angles with one another, a large number of iterations will be required. The number of iterations
required may be reduced by using optimized projection access schemes (35).
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Fig. 8. Illustration of the algebraic reconstruction technique. f (1) is an improved estimate computed by projecting the
initial estimate f (0) onto the hyperplane (the straight line AG in the illustration) corresponding to the first ray sum given
by the equation w1·f − p1 . (Reproduced with permission from A. Rosenfeld and A. C. Kak, Digital Picture Processing, 2nd
ed., New York: Academic Press. Copyright c© 1982 Academic Press.)

• If the number of ray sums is greater than the number of pixels, that is, M ≥ N, but the measurements are
noisy, no unique solution exists—the procedure will oscillate in the neighborhood of the intersections of the
hyperplanes.

• If M < N, the system is underdetermined and an infinite number of solutions will exist. It has been shown
that unconstrained ART converges to the minimum-variance estimate (36).

• The major advantage of ART is that any a priori information about the image may be introduced easily
into the iterative procedure (e.g., upper or lower limits on pixel values, spatial boundaries of the image).
This may help in obtaining a useful “solution” even if the system is underdetermined.
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Approximations to the Kaczmarz Method. We could rewrite the reconstruction step in Eq. (5) at the
pixel level as

where qj = f (i − 1) ·wj = 	N
k = 1f (j − 1)

k wjk . This equation says that when we project the (j − 1 )th estimate onto
the jth hyperplane, the correction factor for the mth cell is

Here, pj is the given (true) ray sum for the jth ray, and qj is the computed ray sum for the same ray for the
estimated image on hand. (pj − qj ) is the error in the estimate, which may be normalized and applied as a
correction to all the pixels with appropriate weighting. In one of the approximations (19, 20), the wjk are simply
replaced by 0’s or 1’s depending on whether the center of the jth image cell is within the ith ray (of finite
width) or not. Then the coefficients need not be computed and stored: we may instead determine the pixels to
be corrected for the ray considered during the reconstruction procedure. Furthermore, 	N

k = 1 w2jk
jk> = Nj, the

number of pixels crossed by the jth ray. The correction to all pixels in the jth ray is then (pj − qj)/Nj . Thus

Because the corrections may be negative, negative pixel values may be encountered. Since negative values
are not meaningful in most imaging applications, the constrained (and thereby nonlinear) version of ART is
defined as

The corrections could also be multiplicative (8):

In this case no positivity constraint is required. Furthermore, the convex hull of the image is almost guaranteed
(subject to approximation related to the number of projections available), as a pixel once set to zero will remain
so during subsequent iterations. It has been shown that the multiplicative version of ART converges to the
maximum-entropy estimate of the image (18, 37).

A generic ART procedure may be expressed in the following algorithmic form:

(1) Prepare an initial estimate of the image. All of the pixels in the initial image could be zero for additive
ART; however, for multiplicative ART, pixels within at least the convex hull of the object in the image must
be nonzero.

(2) Compute the projection (or ray sum) qj for the first ray path for the initial estimate of the image.
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(3) Obtain the difference between the true ray sum pj and the computed ray sum qj, and apply the correction to
all the pixels belonging to the ray according to one of the ART equations [e.g., Eq. (6), (7), (8) or (9)]. Apply
constraints, if any, based on a priori information available.

(4) Perform Steps 2 and 3 for all rays available.
(5) Steps 2 to 4 constitute one cycle or iteration (over all available projections or ray sums). Repeat Steps 2 to

4 as many times as required. If desired, compute a measure of convergence, such as

Stop if the error is less than a prespecified limit; else, go back to Step 2.

For improved convergence, a simultaneous correction procedure [simultaneous iterative reconstruction
technique—SIRT (38)] has been proposed, where the corrections to all pixels from all the rays are first computed,
and the averaged corrections are applied at the same time to all the pixels (i.e., only one correction is applied per
pixel per iteration). Guan and Gordon (35) proposed different projection access schemes to improve convergence,
including consecutive use of projections in mutually orthogonal directions.

Imaging with Diffracting Sources. In some applications of CT imaging, such as imaging pregnant
women, X-ray imaging might not be advisable. Imaging with nonionizing forms of radiation, such as acoustic
(ultrasonic) (12, 32) and electromagnetic (optical or thermal) imaging (34), is then a valuable alternative. X-ray
imaging is also not suitable when the object to be imaged has no (or poor) contrast in density or atomic number
distribution. An important point to note in acoustic or electromagnetic imaging is that these forms of energy
do not propagate along straight-line ray paths through a body due to refraction and diffraction. When the
dimensions of inhomogeneities in the object being imaged are comparable to or smaller than the wavelength of
the radiation used, geometric propagation concepts cannot be applied; it becomes necessary to consider wave
propagation and diffraction-based methods.

When the body being imaged may be treated as a weakly scattering object in the 2-D sectional plane
and invariant in the axial direction, the Fourier diffraction theorem is applicable (12). This theorem states
that the FT of a projection including the effects of diffraction gives values of the 2-D FT of the image along
a semicircular arc. Interpolation methods may be developed in the Fourier space taking this property into
account for reconstruction of images from projections obtained with diffracting sources. Backpropagation and
algebraic techniques have also been proposed for the case of imaging with diffracting sources (12). Detailed
discussion of these methods is beyond the scope of the present article.

Nature of Data Acquired in Magnetic Resonance Imaging. MR imaging is based on the principle of
nuclear magnetic resonance (NMR)—the behavior of nuclei under the influence of externally applied magnetic
and electromagnetic (radio-frequency or RF) fields (28, 33, 39). A nucleus with an odd number of protons or
an odd number of neutrons has an inherent nuclear spin and exhibits a magnetic moment; such a nucleus is
said to be NMR active. The commonly used modes of MR imaging rely on hydrogen1H (proton), carbon13C,
fluorine19F, and phosphorus31P nuclei.

In the absence of an external magnetic field, the vectors of magnetic moments of active nuclei have random
orientations, resulting is no net magnetism. When a strong external magnetic field H0 is applied, the nuclear
spins of active nuclei align with the field (either parallel or antiparallel to the field). The axis of the magnetic
field is referred to as the z axis. Parallel alignment corresponds to a lower energy state than antiparallel
alignment, and hence there will be more nuclei in the former state. This state of forced alignment results in a
net magnetization vector.
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The magnetic spin vector of each active nucleus precesses about the z axis at a frequency known as the
Larmor frequency, given by ω0 = −γH0, where γ is the gyromagnetic ratio of the nucleus considered. This form
of precession is comparable to the rotation of a spinning top’s axis around the vertical.

MR imaging involves controlled perturbation of the precession of nuclear spins and measurement of
the RF signals emitted when the perturbation is stopped and the nuclei return to their previous states. MR
imaging is an intrinsically 3-D imaging procedure. The traditional CT scanners require mechanical scanning
and provide 2-D cross-sectional or transversal images in a slice-by-slice manner. Slices at other orientations, if
required, have to be computed from a set of 2-D slices covering the required volume. In MR imaging, however,
images may be obtained directly at any transversal, coronal, sagittal, or oblique section by using appropriate
gradients and pulse sequences. Furthermore, no mechanical scanning is involved: slice selection and scanning
are performed electronically by the use of magnetic field gradients and RF pulses.

The main components and principles of MR imaging are (33):

• A magnet that provides a strong, uniform field of the order of 0.5 to 4 T. This causes all active nuclei to
align in the direction of the field (parallel or antiparallel) and precess about the axis of the field. The rate
of precession is proportional to the strength of the magnetic field H0 . The stronger the magnetic field, the
higher will be the signal-to-noise ratio of the data acquired.

• An RF transmitter to deliver an RF electromagnetic pulse H1 to the body being imaged. The RF pulse
provides the perturbation: it causes the axis of precession of the spin vectors to deviate or “flip” from the
z axis. In order for this to happen, the frequency of the RF field must be the same as that of precession of
the active nuclei, such that the nuclei can absorb energy from the RF field (hence the term “resonance”).
The frequency of RF-induced rotation is given by ω1 = −γH1 . When the RF perturbation is removed, the
active nuclei return to their unperturbed states (alignment with H0 ) through various relaxation processes,
emitting energy as RF signals.

• A gradient system to apply to the body a controlled, spatially varying and time-varying magnetic field
h(x) = G· x, where x is a vector representing the spatial coordinates and G is the gradient applied. The
components of G along the z direction as well as in the x and y directions (the plane orthogonal to the z
axis) are controlled individually. The gradient causes nuclei at different positions to precess at different
frequencies and provides for spatial coding of the signal emitted from the body. The Larmor frequency
at x is given by w′(x) = −γ(H0 + G·x) . Nuclei at specific positions or planes in the body may be excited
selectively by applying RF pulses of specific frequencies. The combination of the gradient fields and the RF
pulses applied is called the pulse sequence.

• An RF detector system to detect the RF signals emitted from the body. The RF signal measured outside
the body represents the sum of the RF signals emitted by active nuclei from a certain part or slice of the
body, as determined by the pulse sequence. The spectral spread of the RF signal provides information on
the location of the corresponding source nuclei.

• A computing and imaging system to reconstruct images from the measured data, as well as process and
display the images. Depending on the pulse sequence applied, the RF signal sensed may be formulated as
the 2-D or 3-D FT of the image to be reconstructed (28, 33, 39). The data measured correspond to samples of
the 2-D FT of a sectional image at points on concentric squares or circles (28). The Fourier or backprojection
methods described in the preceding sections may then be used to obtain the image.

The image obtained is a function of the nuclear spin density in space and the corresponding parameters
of the relaxation processes involved.
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Fig. 9. A synthetic 2-D image (phantom) with 101 × 101 8-bit pixels, representing a cross section of a 3-D object.

Examples of Reconstructed Images

Figure 9 shows a synthetic 2-D image (phantom), which we will consider to represent a cross section of a 3-D
object. The objects in the image were defined on a discrete grid and hence have step and/or jagged edges. Figure
10(a) is a plot of the projection of the phantom image computed at 90◦; note that the values are all positive.
Figure 10(b) is a plot of the filtered projection using only the ramp filter (|w|) required in the FBP algorithm;
note that the filtered projection has negative values.

Figure 11 shows the reconstruction of the phantom obtained using 90 projections from 2◦ to 180◦ in steps
of 2◦ with the simple BP algorithm. While the objects in the image are visible, the smearing effect of the BP
algorithm is obvious. Figure 12 shows the reconstruction of the phantom obtained using 90 projections with the
FBP algorithm; only the ramp cfilter essential for the FBP process was used with no other smoothing or lowpass
filter function. The contrast and visibility of the objects are better than those in the case of the simple BP result;
however, the image is noisy due to the increasing gain of the ramp filter at higher frequencies. The reconstructed
image also exhibits artifacts related to computation of the projections on a discrete grid; please refer to 18, 36,
and 12 for discussions on this topic. The use of additional filters could reduce the noise and artifacts: Fig. 13
shows the result of reconstruction with the FBP algorithm including a fourth-order Butterworth filter with the
3 dB cutoff at 0.2 times the sampling frequency. The Butterworth filter has suppressed the noise and artifacts
at the expense of blurring the edges of the objects in the image.

Figure 14 shows the reconstruction of the phantom obtained using 90 projections with three iterations
of ART, as in Eq. (8). Projections for use with ART were computed from the phantom image data using an
angle-dependent ray width, given by max ( |sin θ|, |cos θ| ) (19, 40). The quality of the reconstruction is better
than that given by the BP or FBP algorithms.

The Radon transform may be interpreted as a transformation of the given image from the (x, y) space to
the (t, θ) space. In practical CT scanning, the projection or ray integral data are obtained as samples at discrete
intervals in t and θ . Just as we encounter the (Nyquist or Shannon) sampling theorem in the representation of
a 1-D signal in terms of its samples in time, we now encounter the requirement to sample adequately along both
the t and θ axes. A major distinction lies in the fact that the measurements made are discrete to begin with, and
the signal (the body or object being imaged) cannot be prefiltered to prevent aliasing. Undersampling in either
axis will lead to aliasing errors and poor reconstructed images. Figures 15, 16, and 17 show reconstructed
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Fig. 10. (a) Projection of the phantom image in Fig. 9 computed at 90◦. (b) Filtered version of the projection using only
the ramp filter required in the FBP algorithm.

Fig. 11. Reconstruction of the phantom in Fig. 9 obtained using 90 projections from 2◦ to 180◦ in steps of 2◦ with the
simple BP algorithm.

images obtained using only 10 projections spanning the 0◦ to 180◦ range in sampling steps of 18◦ and using the
BP, FBP, and ART algorithms, respectively. The advantage of ART due to the use of the positivity constraint
(a priori knowledge imposed) and the ability to iterate is seen in the improved quality of the result.
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Fig. 12. Reconstruction of the phantom in Fig. 9 obtained using 90 projections from 2◦ to 180◦ in steps of 2◦ with the FBP
algorithm; only the ramp filter essential for the FBP process was used.

Fig. 13. Reconstruction of the phantom in Fig. 9 obtained using 90 projections from 2◦ to 180◦ in steps of 2◦ with the FBP
algorithm; the ramp filter essential for the FBP process was used along with a Butterworth lowpass filter.

Figures 18,19, and 20 show reconstructed images obtained using 10 projections but spanning only the
angular range of 40◦ to 130◦ in steps of 10◦. The limited angular coverage provided by the projections has
clearly affected the quality of the image. Again, ART has provided the best possible reconstruction among the
algorithms used in the study.

The use of limited projection data in reconstruction results in geometric distortion and streaking artifacts.
The distortion may be modeled by the PSF of the reconstruction process (if it is linear and shift invariant, as
BP, FBP, and unconstrained ART are). The PSFs of the simple BP method are shown as images in Fig. 21,
for the case with 10 projections over 180◦, and in Fig. 22, for the case with 10 projections from 40◦ to 130◦.
The reconstructed image is given by the convolution of the original (unknown) image with the PSF. Limited
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Fig. 14. Reconstruction of the phantom in Fig. 9 obtained using 90 projections from 2◦ to 180◦ in steps of 2◦ with three
iterations of constrained additive ART.

Fig. 15. Reconstruction of the phantom in Fig. 9 obtained using 10 projections from 18◦ to 180◦ in steps of 18◦ with the
simple BP algorithm.

improvement in image quality may be obtained by applying deconvolution filters to the reconstructed image
(41424344454647–48).

Display of ct Images

X-ray CT is capable of producing images with very good density resolution, on the order of 1 part in 1000. For
display purposes, the attenuation coefficients are normalized with respect to that of water and expressed as H
= 1000(µ/µw − 1) Hounsfield units, where µ is the measured attenuation coefficient, and µw is the attenuation
coefficient of water. The CT number is expressed in Hounsfield units, named after the inventor of the first
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Fig. 16. Reconstruction of the phantom in Fig. 9 obtained using 10 projections from 18◦ to 180◦ in steps of 18◦ with the
FBP algorithm; the ramp filter essential for the FBP process was used along with a Butterworth lowpass filter.

Fig. 17. Reconstruction of the phantom in Fig. 9 obtained using 10 projections from 18◦ to 180◦ in steps of 18◦ with three
iterations of constrained additive ART.

commercial medical CT scanner (10). This scale results in values of about +1000 for bone, 0 for water, about
−1000 for air, 20 to 80 for soft tissue, and about −800 for lung tissue (22).

The dynamic range of CT values is much wider than those of common display devices and the human
visual system at a given level of adaptation. Furthermore, detailed diagnosis requires visualization of small
density differences. For these reasons, presentation of the entire range of values available in a CT image in a
single display is neither practically feasible nor desirable. In practice, small “windows” of the CT number scale
are chosen and linearly expanded to occupy the capacity of the display device. The window width and level
(center) values may be chosen interactively to display different density ranges with improved perceptibility of
details within the chosen density window. (Values above or below the window limits are displayed as totally



26 IMAGE RECONSTRUCTION

Fig. 18. Reconstruction of the phantom in Fig. 9 obtained using 10 projections from 40◦ to 130◦ in steps of 10◦ with the
simple BP algorithm.

Fig. 19. Reconstruction of the phantom in Fig. 9 obtained using 10 projections from 40◦ to 130◦ in steps of 10◦ with the
FBP algorithm; the ramp filter essential for the FBP process was used along with a Butterworth low-pass filter.

white or black, respectively.) This technique, known as windowing or density slicing, may be expressed as

where f (x, y) is the original image in CT numbers, g(x, y) is the windowed image to be displayed, (m, M ) is the
range of CT values in the window to be displayed, and (n, N ) is the range of the display values. The window
width is (M − m ) and the window level is (M + m)/2 ; the display range is typically n = 0 and N = 255 with
8 bit display systems. Figure 23 shows a set of two CT images of a patient with head injury, with each image
displayed with two sets of window level and width. The effects of the density window chosen on the features
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Fig. 20. Reconstruction of the phantom in Fig. 9 obtained using 10 projections from 40◦ to 130◦ in steps of 10◦ with three
iterations of constrained additive ART.

Fig. 21. Point spread function of the simple BP procedure using 10 projections spread evenly over 180◦.

of the image displayed are clearly seen in the figure: either the fractured bone or the brain matter are seen in
detail in the windowed images, but not both in the same image.

A dramatic visualization of details may be achieved by pseudocolor techniques. Arbitrary or structured
color scales could be assigned to CT values by look-up tables or gray-scale-to-color transformations. Some of the
popular color transforms are the rainbow (VIBGYOR) and the heated metal color (red–yellow–white) sequences.
Difficulties may arise, however, in associating density values with different colors if the transformation is
arbitrary and not monotonic in intensity or total brightness. A look-up table linking the displayed colors to CT
numbers or other pixel attributes may assist in improved visual analysis of image features in engineering and
scientific applications.
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Fig. 22. Point spread function of the simple BP procedure using 10 projections from 40◦ to 130◦ in steps of 10◦.

Fig. 23. A set of two CT images of a patient with head injury, with each image displayed with two sets of window level
and width. One of the windows displays the skull, the fracture, and the bone segments, but the brain matter is not visible;
the other window displays the brain matter in detail, but the fracture area is saturated. (Courtesy of Dr. W. Gordon, Health
Sciences Centre, Winnipeg, MB, Canada.)

Industrial Applications

The phenomenal success of CT in diagnostic medicine attracted interest from many other disciplines in re-
cent years (4950515253545556–57). The petroleum industry has demonstrated significant interest, with the
objective of determining physical properties of porous rocks and fluid saturations during multiphase flow phe-
nomena associated with petroleum and natural gas production (49, 50, 52). Most major oil companies possess
some form of an in-house CT system, although a considerable number of exploratory projects have been per-
formed in hospitals after patient-imaging hours. Recently, the term “process tomography” has been identified
with the development and use of tomographic imaging techniques for industrial applications (51, 53). The
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Fig. 24. X-ray CT images of multiphase flow in porous media.

possibility of identifying elements of different density and/or different atomic number within a study sample
gives a wide potential for industrial applications, some of which are described in the following paragraphs.

The characterization of cores from oil and gas reservoirs using CT is based on the following principles.
The normalized X-ray attenuation numbers of a CT image are proportional to the bulk density of the sample
under study for the energies at which commercial medical X-ray CT scanners operate (49, 50). The atomic
number effect in samples consisting of elements of atomic number up to 20 is negligible. A linear relationship
between CT number and bulk density can be established through a simple calibration process. In reservoir
rock characterization studies, density variations can be translated into porosity maps and specific feature maps
(such as vugs and fractures). Density contrast can also be used to identify the distribution of up to two fluids
within reservoir rocks, such as oil/water, oil/gas, or water/gas (50, 52). However, the density contrast is often not
enough to show quantitative fluid saturation distribution. Contrast enhancement may be achieved by “doping”
one of the fluid phases with a high-contrast agent (such as iodide salts). Several attempts have been made to
quantify three-phase saturation distribution through selected doping agents and dual-energy scanning, but
with limited success (58).

Figure 24 shows a typical example of the application of X-ray CT in reservoir rock characterization. The
first image shows a typical cross section of a relatively uniform sand pack that contains water. The second
image shows the same cross section after a polymer solution was injected into the sand pack; the image clearly
identifies the area in which the solution has displaced oil and water.

59 developed a portable X-ray and gamma-ray minitomograph for application in soil science; in particular,
they used the scanner to measure water content and bulk density of soil samples. Soil-related studies may
address identification of features (such as fractures, wormholes, and roots) and flow of various contaminants
in soil. Some exotic applications have also appeared in the literature, such as the use of CT to determine the
quality of turf in golf courses.
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Recently, numerous applications of CT have appeared in projects related to monitoring of multiphase flow
phenomena in pipes and in models of chemical reactors (53, 54). In these cases, the objective is to determine flow
phenomena associated with modeling of specific chemical reactor problems. Pipe-flow studies were published
first, and fluidized-bed problems and trickle-bed problems began appearing in the literature in the 1990s. In
many of the chemical reactor problems studied via CT, new custom-made CT systems have been described in
the literature, such as gamma-ray CT devices and a variety of electrical CT systems that utilize capacitance,
resistivity, or impedance variability in the systems under study (51, 53).

Forestry applications of CT have appeared in the literature in the form of scanning of live trees to measure
growth rings and detect decay using a portable X-ray CT scanner (60), and monitoring tree trunks or logs in
the timber industry.

Applications of CT for characterization of other materials has had limited success. Studies on polymer
characterization have shown that CT can be used to study structural defects and other heterogeneities in poly-
mer objects (61). Algorithms for material characterization based on atomic number differences have also been
presented in the literature; multiple-energy imaging has been used for such studies. Imaging of steel objects
has been performed with high-energy gamma-ray scanners for studies on structural failure and corrosion (62).
CT scanners have been custom-built for inspection of turbine engines and rocket boosters.

The resolution of CT devices used in industrial applications can vary significantly, reaching down to 200
µm by 200 µm pixels in cross section. Special systems have been built to image small samples (less than 1
cm3 in volume) with resolutions of about 5 µm by 5 µm in cross section (63, 64). Such an imaging procedure
is called microtomography, being a hybrid of tomography and microscopy. Most microtomography studies are
performed with finely focused radiation beams produced by a particle accelerator. Porous media studies (63)
and polymer characterization studies (64) have been reported using microtomography.

Application of CT imaging in geotechnical engineering is promising. Published examples of geotechnical
CT imaging include pipeline–soil interactions, modeling of tectonic plate movements, and determining stress–
strain relationships and stress effects in various media (65).

Industrial applications of SPECT have been limited in scope. The major application of SPECT in chemical
engineering is for real-time tracer work and radioactive particle tracking. Radio-pharmaceuticals are used to
tag either a fluid phase or a solid particle and to follow the trajectories in real time. Applications include flow
in porous media and fixed-bed reactors. Radioactive particle tracking has also been used to monitor solid flow
in fluidized beds and solid handling systems (66).

Figure 25 shows an example of a solid circulation map in a laboratory fluidized-bed column. The map is
depicted as a probability density function of a given particle being at a location in the column. Maps such the
one in Fig. 25 can be used for modeling flow phenomena in fluidized-bed reactors.

Figure 26 shows two sets of MR images of samples of a sandstone reservoir (67). Longitudinal and
transversal images are shown for each sample. The core at the top is a layered sandstone sample: distinct
bedding planes are visible. The sample at the bottom exhibits large pores as bright spots.

Concluding Remarks

The 1980s and 1990s have brought out many new developments in CT imaging. Continuing development of
versatile imaging equipment and image processing algorithms has been opening up newer applications of CT
imaging. Three-dimensional imaging of moving organs such as the heart is now feasible. Three-dimensional
display systems and algorithms have been developed to provide new and intriguing displays of the interior of
the human body. Three-dimensional images obtained by CT are being used in surgery and radiation therapy,
creating the new fields of image-guided surgery and treatment. Practical realization of portable scanners has
also made possible field applications in agricultural sciences and other areas. CT is a truly revolutionary
investigative imaging technique—a remarkable synthesis of many scientific principles.
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Fig. 25. Probability density function of the position of a solid particle in a fluidized-bed obtained by SPECT imaging.

Fig. 26. MR images of reservoir cores obtained by using a Bruker Biospec MR scanner operating at 2.35 T and 100 MHz.
Top: layered sandstone; bottom: sandstone with fairly large pores. Bright areas correspond to high proton concentration.
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