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IMAGE ENHANCEMENT

Thirty years ago, the acquisition and processing of digital imagery belonged almost entirely in the domain of
military, academic, and industrial research laboratories. Today, elementary school students download digital
pictures from the World Wide Web, proud parents store photographs on a digital CD, business executives cut
deals via digital video teleconferencing, and sports fans watch their favorite teams on digital satellite TV. These
digital images are properly considered to be sampled versions of continuous real-world pictures. Because they
are stored and processed on digital computers, digital images are typically discrete domain, discrete range
signals. These signals can be conveniently represented and manipulated as matrices containing the light
intensity or color information at each sampled point.

When the acquired digital image is not fit for a prescribed use, image enhancement techniques may be used
to modify the image. According to Gonzales and Woods (1), “The principal objective of enhancement techniques
is to process an image so that the result is more suitable than the original image for a specific application.”
So, the definition of image enhancement is a fairly broad concept that can encompass many applications. More
usually, however, the image enhancement process seeks to enhance the apparent visual quality of an image or
to emphasize certain image features. The benefactor of image enhancement either may be a human observer
or a computer vision program performing some kind of higher-level image analysis, such as target detection or
scene understanding.

The two simplest methods for image enhancement involve simple histogram-modifying point operations
or spatial digital filtering. More complex methods involve modifying the image content in another domain, such
as the coefficient domain of a linear transformation of the image. We will consider all of these approaches in this
article. A wealth of literature exists on point operations, linear filters, and nonlinear filters. In this discussion,
we highlight several of the most important image enhancement standards and a few recent innovations. We
will begin with the simplest.

Image Enhancement Techniques

Denote a two-dimensional digital image of gray-level intensities by I. The image I is ordinarily represented in
software accessible form as an M × N matrix containing indexed elements I(i, j), where 0 ≤ i ≤ M − 1, 0 ≤ j ≤
N − 1. The elements I(i, j) represent samples of the image intensities, usually called pixels (picture elements).
For simplicity, we assume that these come from a finite integer-valued range. This is not unreasonable, since
a finite wordlength must be used to represent the intensities. Typically, the pixels represent optical intensity,
but they may also represent other attributes of sensed radiation, such as radar, electron micrographs, x rays,
or thermal imagery.

Point Operations. Often, images obtained via photography, digital photography, flatbed scanning, or
other sensors can be of low quality due to a poor image contrast or, more generally, from a poor usage of the
available range of possible gray levels. The images may suffer from overexposure or from underexposure, as
in the “mandrill” image in Fig. 1(a). In performing image enhancement, we seek to compute J, an enhanced
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2 IMAGE ENHANCEMENT

version of I. The most basic methods of image enhancement involve point operations, where each pixel in the
enhanced image is computed as a one-to-one function of the corresponding pixel in the original image: J(i,
j) = f [I(i, j)]. The most common point operation is the linear contrast stretching operation, which seeks to
maximally utilize the available gray-scale range. If a is the minimum intensity value in image I and b is the
maximum, the point operation for linear contrast stretching is defined by

assuming that the pixel intensities are bounded by 0 ≤ I(i, j) ≤ K − 1, where K is the number of available pixel
intensities. The result image J then has maximum gray level K − 1 and minimum gray level 0, with the other
gray levels being distributed in-between according to Eq. (1). Figure 1(b) shows the result of linear contrast
stretching on Fig. 1(a).

Several point operations utilize the image histogram, which is a graph of the frequency of occurrence of
each gray level in I. The histogram value HI(k) equals n only if the image I contains exactly n pixels with
gray level k. Qualitatively, an image that has a flat or well-distributed histogram may often strike an excellent
balance between contrast and preservation of detail. Histogram flattening, also called histogram equalization
in Gonzales and Woods (1), may be used to transform an image I into an image J with approximately flat
histogram. This transformation can be achieved by assigning

where P(i, j) is a sample cumulative probability formed by using the histogram of I:

The image in Fig. 1(c) is a histogram-flattened version of Fig. 1(a).
A third point operation, frame averaging, is useful when it is possible to obtain multiple images Gi, i = 1,

. . ., n, of the same scene, each a version of the ideal image I to which deleterious noise has been unintentionally
added:

where each noise “image” Ni is an M × N matrix of discrete random variables with zero mean and variance
σ2. The noise may arise as electrical noise, noise in a communications channel, thermal noise, or noise in the
sensed radiation. If the noise images are not mutually correlated, then averaging the n frames together will
form an effective estimate Î of the uncorrupted image I, which will have a variance of only σ2/n:

This technique is only useful, of course, when multiple frames are available of the same scene, when the
information content between frames remains unchanged (disallowing, for example, motion between frames),
and when the noise content does change between frames. Examples arise quite often, however. For example,
frame averaging is often used to enhance synthetic aperture radar images, confocal microscope images, and
electron micrographs.



IMAGE ENHANCEMENT 3

Fig. 1. (a) Original “Mandrill” image (low contrast). (b) “Mandrill” enhanced by linear contrast stretching. (c) “Mandrill”
after histogram equalization.

Linear Filters. Linear filters obey the classical linear superposition property as with other linear
systems found in the controls, optics, and electronics areas of electrical engineering (2). Linear filters can
be realized by linear convolution in the spatial domain or by pointwise multiplication of discrete Fourier
transforms in the frequency domain. Thus, linear filters can be characterized by their frequency selectivity and
spectrum shaping. As with 1-D signals, 2-D digital linear filters may be of the low-pass, high-pass or band-pass
variety.
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Much of the current interest in digital image processing can be traced to the rediscovery of the fast Fourier
transform (FFT) some 30 years ago (it was known by Gauss). The FFT computes the discrete Fourier transform
(DFT) of an N × N image with a computational cost of O(N2log2N), whereas naive DFT computation requires
N4 operations. The speedup afforded by the FFT is tremendous. This is significant in linear filtering-based
image enhancement, since linear filters are implemented via convolution:

where F is the impulse response of the linear filter, G is the original image, and J is the filtered, enhanced
result. The convolution in Eq. (6) may be implemented in the frequency domain by the following pointwise
multiplication (·) and inverse Fourier transform (IFFT):

where F0 and G0 are 2N × 2N zero-padded versions of F and G. By this we mean that F0(i, j) = F(i, j) for 0 ≤ i,
j ≤ N − 1 and F0(i, j) = 0 otherwise; similarly for G0. The zero padding is necessary to eliminate wraparound
effects in the FFTs which occur because of the natural periodicities that occur in sampled data.

If G is corrupted as in Eq. (4) and N contains white noise with zero mean, then enhancement means
noise-smoothing, which is usually accomplished by applying a low-pass filter of a fairly wide bandwidth.
Typical low-pass filters include the average filter, the Gaussian filter and the ideal low-pass filter. The average
filter can be supplied by averaging a neighborhood (an m × m neighborhood, for example) of pixels around G(i,
j) to compute J(i, j). Likewise, average filtering can be viewed as convolving G with a box-shaped kernel F in
Eq. (7). An example of average filtering is shown in Fig. 2(a)–(c). Similarly, a Gaussian-shaped kernel F may
be convolved with G to form a smoothed, less noisy image, as in Fig. 2(d). The Gaussian-shaped kernel has
the advantage of giving more weight to closer neighbors and is well-localized in the frequency domain, since
the Fourier transform of the Gaussian is also Gaussian-shaped. This is important because it reduces noise
“leakage” at higher frequencies. In order to provide an “ideal” cutoff in the frequency domain, the FFT of G0
can be zeroed beyond a cutoff frequency (this is equivalent to multiplying by a binary DFT F0 in Eq. (7)). This
result, shown in Fig. 2(e), reveals the ringing artifacts associated with an ideal low-pass filter.

Linear filters are also useful when the goal of image enhancement is sharpening. Often, an image is
blurred by a novice photographer who moves the camera or improperly sets the focus. Images are also blurred
by motion in the scene or by inherent optical problems, such as with the famous Hubble telescope. Indeed, any
optical system supplies contributes some blur to the image. Motion blur and defocus can also be modeled as
a linear convolution of B∗I, where B, in this case, represents linear distortion. This distortion is essentially a
low-pass process; therefore, a high-pass filter can be used to sharpen or deblur the distorted image. The most
obvious solution is create an inverse filter B− 1 that exactly reverses the low-pass blurring of B. The inverse
filter is typically defined in the frequency domain by mathematically inverting each frequency component of
the Fourier transform of B, creating a high-pass filter B− 1. Let the complex-valued components of the DFT of
B be denoted by B̃(u,v). Then, the components of B− 1 are given by

The image can be sharpened by pointwise multiplying the (zero-padded) FFT of the blurred image by the (zero-
padded) FFT of B− 1, then performing the inverse FFT operation, which is why this enhancement is often called
deconvolution. It must be noted that difficulty arises when the Fourier transform of B contains zero-valued
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Fig. 2. (a) Original “Winston” image. (b) Corrupted “Winston” image with additive Gaussian-distributed noise (σ = 10).
(c) Average filter result (5 × 5 window). (d) Gaussian filter result (standard deviation σ = 2). (e) Ideal low-pass filter result
(cutoff = N/4). (f) Wavelet shrinkage result.

elements. In this case, a simple solution is the pseudo-inverse filter, which leaves the zeroed frequencies as
zeros in the construction of B− 1.

A challenging problem is encountered when both linear distortion (B) and additive noise (N) degrade the
image I:
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If we apply a low-pass filter F to ameliorate the effects of noise, then we only further blur the image. In
contrast, if we apply an inverse (high-pass) filter B− 1 to deblur the image, the high-frequency components of
the broadband noise N are amplified, resulting in severe corruption. This ill-posed problem of conflicting goals
can be attacked by a compromise between low-pass and high-pass filtering. The famous Wiener filter provides
such a compromise [see Russ (3)]. If η represents the noise power and N is white noise, then the frequency
response of the Wiener filter is defined by

where B̃(u,v) is the complex conjugate of B̃(u,v). The Wiener filter attempts to balance the operations of
denoising and deblurring optimally (according to the mean-square criterion). As the noise power is decreased,
the Wiener filter becomes the inverse filter, favoring deblurring. However, the Wiener filter usually produces
only moderately improved results, since the tasks of deconvolution (high-pass filtering) and noise-smoothing
(low-pass filtering) are antagonistic to one another. The compromise is nearly impossible to balance using
purely linear filters.

Nonlinear Filters. Nonlinear filters are often designed to remedy deficiencies of linear filtering ap-
proaches. Nonlinear filters cannot be implemented by convolution and do not provide a predictable modifica-
tion of image frequencies. However, for this very reason, powerful nonlinear filters can provide performance
attributes not attainable by linear filters, since frequency separation (between image and noise) is often not
possible.

Nonlinear filters are usually defined by local operations on windows of pixels. The window, or structuring
element, defines a local neighborhood of pixels such as the window of pixels at location (i, j):

where K is the window defining pixel coordinate offsets belonging to the local neighborhood of I(i, j). The
output pixels in the filtered image J can be expressed as nonlinear many-to-one functions of the corresponding
windowed sets of pixels in the image G:

So, the nonlinear filtering operation may be expressed as a function of the image and the defined moving
window: J = f (G, K). The windows come in a variety of shapes, mostly symmetric and centered. The size of the
window determines the scale of the filtering operation. Larger windows will tend to produce more coarse scale
representations, eliminating fine detail.

Order Statistic Filters and Image Morphology. Within the class of nonlinear filters, order statistic (OS)
filters encompass a large group of effective image enhancers. A complete taxonomy is given in Bovik and Acton
(4). The OS filters are based on an arithmetic ordering of the pixels in each window (local neighborhood). At
pixel location (i, j) in the image G, given a window K of 2m + 1 pixels, the set of order statistics is denoted by

where GOS
(1)(i, j) ≤ GOS

(2)(i, j) ≤ . . . ≤ GOS
(2m+1)(i, j). These are just the original pixel values covered by the

window and reordered from smallest to largest.
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Perhaps the most popular nonlinear filter is the median filter (5). It is an OS filter and is implemented by

assuming a window size of 2m + 1 pixels. The median smoothes additive white noise while maintaining
edge information—a property that differentiates it from all linear filters. Particularly effective at eliminating
impulse noise, the median filter has strong optimality properties when the noise is Laplacian-distributed (6).

An example of the smoothing ability of the median filter is shown in Fig. 3(a)–(c). Here, a square 5 × 5
window was used, preserving edges and removing the impulse noise. Care must be taken when determining
the window size used with the median filter, or streaking and blotching artifacts may result (7).

More general OS filters can be described by a weighted sums of the order statistics as follows:

where A is the vector that determines the weight of each OS. Several important enhancement filters evolve
from this framework. The L-inner mean filter or trimmed mean filter may be defined by setting A(k) = 1/(2L +
1) for (m + 1) ≤ (m + 1 + L) and A(k) = 0 otherwise. This filter has proven to be robust (giving close to optimal
performance) in the presence of many types of noise. Thus, it is often efficacious when the noise is unknown.
Weighted median filters also make up a class of effective, robust OS filters (8,9).

Other nonlinear filters strongly related to OS filters include morphological filters, which manipulate image
intensity profiles and thus are shape-changing filters in these regard. Image morphology is a rapidly exploding
area of research in image processing (10). Through the concatenation of a series of simple OS filters, a wide
scope of processing techniques emerge. Specifically, the basic filters used are the erosion of G by structuring
element K defined by

and the dilation of G by K defined by

The erosion of G by K is often represented by G�K, while the dilation is represented by G ⊕ K.
By themselves, the erode and dilate operators are not useful for image enhancement, because they are

biased and do not preserve shape. However, the alternating sequence of erosions and dilations is indeed useful.
The close filter is constructed by performing dilation and then erosion:

while the open filter is erosion followed by dilation:

Open and close filters are idempotent, so further closings or openings yield the same result, much like band-
pass filters in linear image processing. Although bias-reduced, the open filter will tend to remove small bright
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Fig. 3. (a) Original “Bridge” image. (b) “Bridge” image corrupted with 20% salt and pepper noise. (c) Median filter result
(B = 5 × 5 square). (d) Open–close filter result (B = 3 × 3 square).

image regions and will separate loosely connected regions, while the close filter will remove dark spots and will
link loosely connected regions.

To emulate the smoothing properties of the median filter with morphology, the open and close filters can
be applied successively. The open–close filter is given by (G ◦ K) · K, and the close–open filter is given by (G · K)
◦ K. Since open–close and close–open filters involve only minimum (erode) and maximum (dilate) calculations,
they offer an affordable alternative to the median OS filter, which requires a more expensive ordering of each
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windowed set of pixels. However, in the presence of extreme impulse noise, such as the salt and pepper noise
shown in Fig. 3(b), the open–close (or close–open) cannot reproduce the results of the median filter [see Fig.
3(d)].

Many variants of the OS and morphological filters have been applied successfully to certain image en-
hancement applications. The weighted majority with minimum range (WMMR) filter is a special version of the
OS filter (17) where only a subset of the order statistics are utilized (11). The subset used to calculate the result
at each pixel site is the group of pixel values with minimum range. The WMMR filters have been shown to have
special edge enhancing abilities and, under special conditions, can provide near piecewise constant enhanced
images.

To improve the efficiency of OS filters, stack filters were introduced by Wendt et al. (12). Stack filters exploit
a stacking property and a superposition property called the threshold decomposition. The filter is initialized by
decomposing the K-valued signal (by thresholding) into binary signals, which can be processed by using simple
Boolean operators. “Stacking” the binary signals enables the formation of the filter output. The filters can be
used for real-time processing.

One limitation of the OS filters is that spatial information inside the filter window is discarded when
rank ordering is performed. A recent group of filters, including the C, Ll, and permutation filters, combine the
spatial information with the rank ordering of the OS structure (13). The combination filters can be shown to
have an improved ability to remove outliers, as compared to the standard OS design, but have the obvious
drawback of increased computational complexity.

Diffusion Processes. A newly developed class of nonlinear image enhancement methods uses the
analogy of heat diffusion to adaptively smooth the image. Anisotropic diffusion, introduced by Perona and
Malik (14), encourages intraregion smoothing and discourages interregion smoothing at the image edges. The
decision on local smoothing is based on a diffusion coefficient which is generally a function of the local image
gradient. Where the gradient magnitude is relatively low, smoothing ensues. Where the gradient is high and
an edge may exist, smoothing is inhibited. A discrete version of the diffusion equation is

where t is the iteration number, λ is a rate parameter (λ ≤ 1/4), and the subscripts N, S, E, W represent the
direction of diffusion. So, ∇IN(i, j) is the simple difference (directional derivative) in the northern direction [i.e.,
∇IN(i, j) = I(i − 1, j) − I(i, j)], and cN(i, j) is the corresponding diffusion coefficient when diffusing image I and
location (i, j). One possible formation of the diffusion coefficient (for a particular direction d) is given by

where k is an edge threshold. Unfortunately, Eq. (21) will preserve outliers from noise as well as edges. To
circumvent this problem, a new diffusion coefficient has been introduced that uses a filtered image to compute
the gradient terms (15). For example, we can use a Gaussian-filtered image S = I ∗ G(σ) to compute the gradient
terms, given a Gaussian-shaped kernel with standard deviation σ. Then the diffusion coefficient becomes
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Fig. 4. (a) Original “Cameraman” image. (b) “Cameraman” image corrupted with additive Laplacian-distributed noise. (c)
After eight iterations of anisotropic diffusion with diffusion coefficient in Eq. (21). (d) After eight iterations of anisotropic
diffusion with diffusion coefficient in Eq. (22).

and can be used in Eq. (20). A comparison between the two diffusion coefficients is shown in Fig. 4 for an image
corrupted with Laplacian-distributed noise. After eight iterations of anisotropic diffusion using the diffusion
coefficient of Eq. (21), sharp details are preserved, but several outliers remain [see Fig. 4(c)]. Using the diffusion
coefficient of Eq. (22), the noise is eradicated but several fine features are blurred [see Fig. 4(d)].

Anisotropic diffusion is a powerful enhancement tool, but is often limited by the number of iterations
needed to achieve an acceptable result. Furthermore, the diffusion equation is inherently ill-posed, leading



IMAGE ENHANCEMENT 11

to divergent solutions and introducing artifacts such as “staircasing.” Research continues on improving the
computational efficiency and on developing robust well-posed diffusion algorithms.

Wavelet Shrinkage. Recently, wavelet shrinkage has been recognized as a powerful tool for signal
estimation and noise reduction or simply de-noising (16). The wavelet transform utilizes scaled and translated
versions of a fixed function, which is called a “wavelet,” and is localized in both the spatial and frequency
domains (17). Such a joint spatial-frequency representation can be naturally adapted to both the global and
local features in images. The wavelet shrinkage estimate is computed via thresholding wavelet transform
coefficients:

where DWT and IDWT stand for discrete wavelet transform and inverse discrete wavelet transform, respectively
(17), and f [ ] is a transform-domain point operator defined by either the hard-thresholding rule

or the soft-thresholding rule

where the value of the threshold t is usually determined by the variance of the noise and the size of the image.
The key idea of wavelet shrinkage derives from the approximation property of wavelet bases. The DWT

compresses the image I into a small number of DWT coefficients of large magnitude, and it packs most of
the image energy into these coefficients. On the other hand, the DWT coefficients of the noise N have small
magnitudes; that is, the noise energy is spread over a large number of coefficients. Therefore, among the DWT
coefficients of G, those having large magnitudes correspond to I and those having small magnitudes correspond
to N. Apparently, thresholding the DWT coefficients with an appropriate threshold removes a large amount of
noise and maintains most image energy.

Though the wavelet shrinkage techniques were originally proposed for the attenuation of image-
independent white Gaussian noise, they work as well for the suppression of other types of distortion such
as the blocking artifacts in JPEG-compressed images (18,19). In this case, the problem of enhancing a com-
pressed image may be viewed as a de-noising problem where we regard the compression error as additive
noise.

We applied the wavelet shrinkage to enhancing the noisy image shown in Fig. 2(b) and show the de-noised
image in Fig. 2(f), from which one can clearly see that a large amount of noise has been removed, and most
of the sharp image features were preserved without blurring or ringing effects. This example indicates that
wavelet shrinkage can significantly outperform the linear filtering approaches.

Figure 5 illustrates an example of the enhancement of JPEG-compressed images (20). Figure 5(a) shows
a part of the original image. Fig. 5(b) shows the same part in the JPEG-compressed image with a compression
ratio 32:1, where blocking artifacts are quite severe due to the loss of information in the process of compression.
Figure 5(c) reveals the corresponding part in the enhanced version of Fig. 5(b), to which we have applied wavelet
shrinkage. One can find that the blocking artifacts are greatly suppressed and the image quality is dramatically
improved.
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Fig. 5. (a) Original “Lena” image. (b) “Lena” JPEG-compressed at 32:1. (c) Wavelet shrinkage applied to Fig. 5b.

Homomorphic Filtering. To this point, we have described methods that only deal with additive noise.
In several imaging scenarios, such as radar and laser-based imaging, signal-dependent noise is encountered.
The signal-dependent noise can be modeled as a multiplicative process:
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for noise values N(i, j) ≥ 0 (“·” is again pointwise multiplication). Applying the traditional low-pass filters or
nonlinear filters is fruitless, since the noise is signal dependent. But we can decouple the noise from the signal
using a homomorphic approach.

The first step of the homomorphic approach is the application of a logarithmic point operation:

Since log[G(i, j)] = log[N(i, j)] + log[I(i, j)], we now have the familiar additive noise problem of Eq. (4). Then
we can apply one of the filters discussed above, such as the median filter, and then transform the image back
to its original range with an exponential point operation.

Applications and Extensions

The applications of image enhancement are as numerous as are the sources of images. Different applications,
of course, benefit from enhancement methods that are tuned to the statistics of physical processes underlying
the image acquisition stage and the noise that is encountered. For example, a good encapsulation of image
processing for biological applications is found in Häder (21).

With the availability of affordable computing engines that can handle video processing on-line, the en-
hancement of time sequences of images is of growing interest. A video data set may be written as I(i, j, k), where
k represents samples of time. Many of the techniques discussed earlier can be straightforwardly extended to
video processing, using three-dimensional FFTs, 3-D convolution, 3-D windows, and 3-D wavelet transforms.
However, a special property of video sequences is that they usually contain image motion, which is projected
from the motion of objects in the scene. The motion often may be rapid, leading to time-aliasing of the moving
parts of the scene. In such cases, direct 3-D extensions of many of the methods discussed above (those that are
not point operations) will often fail, since the processed video will often exhibit ghosting artifacts arising from
poor handling of the aliasing data. This can be ameliorated via motion-compensated enhancement techniques.
This generally involves two steps: motion estimation, whereby the local image motion is estimated across the
image (by a matching technique), and compensation, where a correction is made to compensate for the shift of
an object, before subsequent processing is accomplished. The topic of motion compensation is ably discussed in
Tekalp (22).
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