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POSSIBILITY THEORY

In common use, the word possibility conveys two meanings.
One is physical and refers to the idea of feasibility. Then, pos-
sible means achievable, as in the sentence ‘‘it is possible for
Hans to eat six eggs for breakfast.’’ The other is epistemic and
refers to the idea of plausibility. There, possible means logi-
cally consistent with (i.e., not contradicting) the available in-
formation, as in the sentence ‘‘it is possible that it will rain
tomorrow.’’ These two meanings correspond to the difference
between realizability and plausibility and are mostly unre-
lated.

Moreover, the idea of attainment often occurs together
with the idea of preference: considering mutually exclusive
alternatives, the most feasible one (in some sense) is usually
preferred. Then we may view preference as subjective feasibil-
ity (physical realizability corresponds clearly to objective fea-
sibility). The epistemic understanding of possible as plausible
that was just mentioned is subjective and goes along with the
idea that something is possible insofar as it is not surprising
(because consistent) with respect to what is known. An inter-
pretation in terms of objective plausibility can be also encoun-
tered when possibility refers to (upper bounds of) frequencies,
as we shall see.

Although many people consider, mainly by habit, that pos-
sibility is always a binary notion (things are possible or are
not possible), it makes sense, both with the feasibility and the
plausibility interpretations, to consider that possibility may
be a matter of degree and that one thing may be estimated or
perceived as being more possible than another.

Possibility theory was coined by L. A. Zadeh (1) in the late
seventies as an approach to modeling flexible restrictions on
the value of variables of interest constructed from linguistic
pieces of information, described by fuzzy sets and represent-
ing the available knowledge. This approach offers a graded
modeling of the idea of possibility. Physical possibility has
been advocated by Zadeh (1) to justify the axiomatic rule of
possibility measures, expressing that the possibility of A OR B
should be equated to the maximum of the possibility of A and
of the possibility of B (because the degree of ease of some
action that produces A OR B is given by the easiest of two
actions which produce A and B, respectively). However, the
intended use of possibility theory as a nonclassical theory of
uncertainty, different from probability theory, and its applica-
tion to approximate reasoning advocated by Zadeh rather
agrees with the epistemic interpretation. In fact, as we advo-
cate, possibility theory can be especially useful for modeling
plausibility and preference.
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This brief introduction is organized in three main parts. of information given by the different sources. This is the prin-
ciple of minimum specificity. Particularly, it means that givenThe basic elements of the theory are given first. Then the re-

lationships and differences with the other uncertainty frame- a statement ‘‘x is E,’’ then any possibility distribution � such
that #u, �(u) � �E(u) is in accordance with ‘‘x is E.’’ However,works are discussed, and lastly applications to approximate

reasoning are presented. choosing a particular �, such that #u, �(u) � �E(u), to repre-
sent our knowledge about x, would be arbitrarily too precise.
Hence Eq. (1) is naturally adopted if ‘‘x is E’’ is the only avail-

FUNDAMENTALS OF POSSIBILITY THEORY able knowledge, and already embodies the principle of mini-
mum specificity.

Possibility Distribution

Possibility and Necessity MeasuresWhen a fuzzy set is used to express an incomplete piece of
information E about the value of a single-valued variable, the The extent to which the information ‘‘x is E’’ is consistent with
degree attached to a value expresses the level of possibility a statement like ‘‘the value of X is in subset A’’ is estimated
that this value is indeed the value of the variable. This is what by means of the possibility measure $, defined from #u,
happens if the available information is couched in words, for �x(u) � �E(u), by (1)
example, ‘‘Tom is young.’’ Here the fuzzy set young represents
the set of possible values of the variable x � ‘‘age of Tom.’’ The �(A) = supu∈Aπx(u) (2)
fuzzy set E is then interpreted as a possibility distribution (1),
which expresses the levels of plausibility of the possible val- where A is a classical subset of U. The value of $(A) corre-
ues of the ill-known variable x. If, rather, we are stating a sponds to the element(s) of A having the greatest possibility
requirement under the form of a flexible constraint, for exam- degree according to �x. In the finite case, ‘sup’ can be changed
ple, we are looking for a young person, then the possibility into ‘max’ in Eq. (2). $(A) � 0 means that x � A is impossible
distribution would represent our preference profile on the age knowing that ‘‘x is E.’’ $(A) estimates the consistency of the
of the person to be recruited. If the only available knowledge statement ‘x � A’ with what we know about the possible val-
about x is that ‘‘x lies in E’’ where E � U, then the possibility ues of x, as emphasized in Refs. 5 and 7. It corresponds to the
distribution of x is defined by Eq. (1) epistemic view of possibility. Indeed, if �x models a nonfuzzy

piece of incomplete information represented by an ordinary
πx(u) = µE (u),∀ u ∈ U (1) subset E, Eq. (2) reduces to

where E (with membership function �E) is interpreted as the
fuzzy set of (more or less) possible values of x and where �x

ranges on [0,1]. More generally, the range of a possibility dis-

�E (A) = 1 if A ∩ E �= � (x ∈ A and x ∈ E are consistent)
= 0 otherwise (A and E are mutually exclusive)

(3)
tribution can be any bounded linearly ordered scale (which
may be discrete with a finite number of levels). Fuzzy sets, Any possibility measure $ satisfies the following max-decom-
viewed as possibility distributions, act as flexible constraints posability characteristic property
on the values of variables referred to in natural language sen-
tences. Equation (1) represents a statement of the form ‘‘x lies �(A ∪ B) = max[�(A),�(B)] (4)
in E’’ or more informally ‘‘x is E.’’ It does not mean, however,
that possibility distributions are the same as membership When U is not finite, the axiom in Eq. (4) is replaced by

$(�i�IAi) � supi�I $(Ai) for any index set I.functions. Equation (1) is an assignment statement because
it means that given that the only available knowledge is ‘‘x Among the features of possibility measures that contrast

with probability measures, let us point out the weak relation-lies in E,’’ the degree of possibility that x � u is evaluated by
the degree of membership �E(u). Note that distinct values ship between the possibility of an event A and that of its com-

plement A (‘not A’). Either A or A must be possible, that is,may simultaneously have a degree of possibility equal to 1.
�x(u) � 0 means that u is completely impossible as a value max[$(A), $(A)] � 1 due to A � A � U and $(U) � 1 (normal-

ization of $). In the case of total ignorance, both A and A arefor x.
If two possibility distributions �x and ��x pertaining to the fully possible: $(A) � 1 � $(A). Note that this leads to a rep-

resentation of ignorance (E � U and # A � 0	, $E(A) � 1)same variable x, are such that �x 
 ��x, �x is said to be more
specific than ��x in the sense that no value u is considered less which presupposes nothing about the number of elements in

the reference set U (elementary events), whereas the latterpossible for x according to ��x than to �x. This concept of speci-
ficity whose importance has been first stressed by Yager (2) aspect plays a crucial role in probabilistic modeling. The case

when $(A) � 1, $(A) � 0 corresponds to partial ignoranceunderlies the idea that any possibility distribution �x is provi-
sional in nature and likely to be improved by further informa- about A. Besides, $(�) � 0 is a natural convention since

$(A) � $(A � �) � max[$(A), $(�)] entails #A, $(A) � $(�).tion, when the available information is not complete. When
�x 
 ��x, the information ��x is redundant and can be dropped. Note that we have only $(A � B) � min [$(A), $(B)]. It

agrees with the fact that in the case of total ignorance aboutNumerical measures of (non) specificity have been introduced
(see Refs. 3 and 4). In possibility theory, specificity plays a A, for B � A, $(A � B) � 0 whereas $(A) � $(A) � 1.

The weak relationship between $(A) and $(A) forces us torole similar to entropy in probability theory.
When the available information stems from several consider both quantities to describe uncertainty about the oc-

currence of A. $(A) tells us about the possibility of ‘not A’,sources that are considered reliable, the possibility distribu-
tion that accounts for it is the least specific possibility distri- hence about the certainty (or necessity) of the occurrence of A

since, when ‘not A’ is impossible, then A is certain. Thus it isbution to satisfy the set of constraints induced by the pieces
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natural to use this duality and define the degree of necessity where I is an implication operation of the form I(a, b) � 1 �
[a � (1 � b)], which reduces to Eq. (5) when F � A is nonfuzzy.of A [Dubois and Prade (8), Zadeh (9)] as
This choice preserves the identity N(F) � 1 � $(F) for the
usual fuzzy set complementation [#u, �F(u) � 1 � �F(u)].N(A) = 1 − �(A) = infu /∈A1 − πx(u) (5)
Equation (8) has been proposed by (1) with � � min. Taking
� � min, the characteristic properties Eqs. (4) and (7) of possi-The duality relationship Eq. (5) between $ and N expresses
bility and necessity measures with respect to disjunction andthat A is all the more certain as A is less consistent with the
conjunction still hold. $(F) � N(F), #F still holds (if �x is nor-available knowledge. In other words, A is all the more neces-
malized).sarily true as ‘not A’ is more impossible. This is a gradual

The possibility of a fuzzy set (with � � min) is a remark-version of the duality between possibility and necessity in
able example of a Sugeno integral (10) sincemodal logic.

When �x models a nonfuzzy piece of incomplete information
represented by an ordinary subset E, Eq. (5) reduces to �(F ) = supα∈(0,1] min[α,�(Fα )] (10)

where F� � 
u, �F(u) � ��. The same formula holds (6,11) for
the necessity measure N in place of $. It points out that these

NE (A) = 1 if E ⊆ A (information x ∈ E logically entails x ∈ A)

= 0 otherwise (6)
definitions are compatible with the �-cut view of a fuzzy set.

In the case of complete knowledge, that is E � 
u0� for some
u0, $E(A) � NE(A) � 1 if and only if u0 � A. Complete igno- Other Set Functions—Certainty and Possibility Qualification
rance corresponds to E � U, and then # A � �, $E(A) � 1

Apart from $ and N, two other set functions can be definedand # A � U, NE(A) � 0 (everything is possible and nothing
using sup or inf, namely, a measure of ‘‘guaranteed possibil-is certain).
ity’’ (12):In the general case, N(A) estimates to what extent each

value outside A, that is, in the complement A of A, has a low
�(A) = infu∈Aπx(u) (11)degree of possibility. Thus the values with the higher degrees

of possibility should be included among the elements of A,
which estimates to what extent all the values in A are actu-which makes us somewhat certain that, indeed, x belongs to
ally possible for x according to what is known, that is, eachA. It is easy to verify that N(A) � 0 implies $(A) � 1, that is
value in A is at least possible for x at the degree �(A). Clearlyan event is completely possible (completely consistent with
� is a stronger measure than $, that is, � � $, since $what is known) before being somewhat certain. This property
estimates only the existence of at least one value in A compat-ensures the natural inequality $(A) � N(A). N(A) � 0 corre-
ible with the available knowledge, whereas the evaluationsponds to the idea of (provisionally) accepting A as a belief.
provided by � concerns all the values in A. Note also that �The above definition of N from $ makes sense only if $, and
and N are unrelated. A dual measure of potential certainty,thus �x, are normalized, that is, supu�U �x(u) � 1. It means
�(A) � 1 � �(A), estimates to what extent there exists atthat U is fully consistent with the available knowledge, mean-
least one value in the complement of A which has a low de-ing that this knowledge itself is consistent if U is exhaustive
gree of possibility. � and � are monotonically decreasing setas a referential.
functions (in the wide sense) with respect to set inclusion, forNecessity measures satisfy an axiom dual of Eq. (4),
example �(A � B) � min[�(A), �(B)]. It contrasts with $ andnamely,
N which are monotonically increasing. � agrees with the idea
of explicit permission: if A or B is permitted, both A and BN(A ∩ B) = min[N(A),N(B)] (7)
are permitted.

The set function � plays an important role in the represen-It expresses that the conjoint event ‘A and B’ is all the more
tation of possibility-qualified statements, as we are going tocertain as A is certain and B is certain. This is the character-
see. A possibility distribution can be implicitly specifiedistic axiom of necessity measures. Mind that we have only
through the qualification of ordinary, or fuzzy, subsets of theN(A � B) � max[N(A), N(B)]. Indeed, we may be somewhat
referential U, in terms of either certainty or possibility. Let Acertain that x lies in A � B without knowing at all if x is in
be an ordinary subset of U (with characteristic function �A),A or is rather in B (at least for A � B � U, N(U) � 1).
namely,

Fuzzy Events
1. The statement ‘‘it is certain at least to the degree � thatPossibility and necessity measures naturally extend to fuzzy

the value of x is in A’’ will be interpreted as ‘‘any valueevents. Using the ideas of consistency and entailment as the
outside A is at most possible at the complementary de-basis for possibility and necessity, the following extensions
gree, namely 1 � �,’’ that is, #u � A, �x(u) � 1 � �,are obtained. If F is fuzzy set with membership function �F, which leads to the following (7):

�(F ) = supuµF (u) ∗ πx(u) (8)

where � is a monotonic conjunctive-like operation (such that

“A isα-certain for x” is translatedby

∀ u ∈ U, πx(u) ≤ max[µA(u),1 − α] (12)

1 � t � t and 0 � t � 0 to recover Eq. (2) when F � A is
nonfuzzy), and It can be verified that this is equivalent to N(A) � �.

Note that for � � 1, the inequality #u, �x(u) � �A(u) is
N(F) = infuI[πx(u), µF (u)] (9) recovered. When � decreases from 1 to 0, our knowledge
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evolves from complete certainty in A to acknowledged simultaneously. Thus it expresses that B is believed in con-
text A independently of C. Letting A � U, it can be verifiedignorance about x.
that this notion is stronger than the condition $(B � C) �2. The statement ‘‘A is a possible range for x at least at
min[$(B), $(C)], which expresses a form of unrelatedness; seethe degree �’’ will be understood as #u � A, �x(u) � �,
Ref. 17.which leads to the following:

The previous definitions require only a purely ordinal view
of possibility theory. In the case of a numerical scale, we can
also use the product instead of min in the conditioning Eq.

“A isα-possible for x” is translatedby

∀ u ∈ U, min[µA(u), α] ≤ πx(u) (13)
(14). It leads to

It can be verified that this is equivalent to �(A) � �.
Note that for � � 1, Eq. (13) reduces to #u, �x(u) � ∀B, B ∩ A �= �,�(B|A) = �(A ∩ B)

�(A)
(16)

�A(u). When � decreases from 1 to 0, our knowledge
evolves from the certainty that A is the minimal range

provided that $(A) � 0. This is the Dempster rule of condi-of our ignorance to a total lack of information whatso-
tioning specialized to possibility measures, that is, consonantever. The representation of possibility-qualified fuzzy
plausibility measures of Shafer (18).statements by Eqs. (12) and (13), respectively, can be

still justified when A becomes a fuzzy set; see (12).
POSSIBILITY THEORY VERSUS OTHER UNCERTAINTY

Qualitative Versus Quantitative Possibility FRAMEWORKS
Theory—Conditioning

Relationships with Probabilities and Belief FunctionsBesides, an ordinal uncertainty scale is sufficient for defining
possibility (and necessity) measures, because possibility the- Formally speaking, possibility measures clearly depart from
ory uses only max, min, and the order-reversing operation of probability measures in various respects. The former are
the scale (1 � ( � ) on [0, 1]). This agrees with a rather qualita- max-decomposable for the disjunction of events, whereas the
tive view of uncertainty. Indeed it has been shown that possi- latter are additive (for mutually exclusive events). Dually, ne-
bility measures are the unique numerical counterparts of cessity measures are min-decomposable for conjunction. How-
qualitative possibility relationships, defined as nontrivial, re- ever, possibility (respectively, necessity) measures are not
flexive, complete, transitive binary relationships ‘‘B � A,’’ ex- compositional for conjunction (respectively, disjunction) or for
pressing that an event B is at least as possible as another negation (whereas probabilities are compositional only for ne-
event A and satisfying the characteristic requirement #A, B, gation). In possibility theory, the representation of the uncer-
C, B � A ⇒ B � C � A � C (13). Such relationships were tainty of A requires two weakly related numbers, namely,
introduced by Lewis in Ref. 14. $(A) and N(A) � 1 � $(A), which contrasts with probabilities.

Possibility theory can be interpreted either as a model of Thus a distinction can be made between the impossibility of
ordinal uncertainty based on a linear ordering (where state- A($(A) � 0 ⇔ N(A) � 1) and the total lack of certainty about
ments can be ranked only according to their levels of possibil- A(N(A) � 0), which is entailed by (but not equivalent
ity and their level of necessity in a given scale), or as a nu- to) the impossibility of A (whereas in probability theory,
merical model of uncertainty which can then be related to Prob(A) � 1 ⇔ Prob(A) � 0).
probability theory and other uncertainty frameworks. This Despite the difference between probability and possibility,
distinction affects how conditioning is defined. it is noteworthy that possibility measures can be given a

Conditioning in possibility theory can be defined similarly purely frequentist interpretation (19,20). Given any statisti-
to that in probability theory, namely, through an equation of cal experiment with outcomes in U, assume that a precise
the form $(A � B) � $(B�A) � $(A). Clearly, the choice for � observation of outcomes is out of reach for some reason. For
should be compatible with the nature of the scale which is instance, U is a set of candidates to an election, and the ex-
used. A possible choice for �, in agreement with an ordinal periment is an opinion poll where individuals have not yet
scale, is min (15), namely, made up their minds completely and are allowed to express

them by proposing a subset of candidates, containing their
future choice. Let F � 2U be the set of observed responses,∀B, B ∩ A �= �,�(A ∩ B) = min

[
�(B|A),�(A))

]
(14)

and m(E), E � F , be the proportion of responses of the form
This equation has more than one solution. Dubois and Prade of a crisp set E(�E�F m(E) � 1, m(Ø) � 0). (F , m) defines a
(7) proposed selecting the least specific one, that is (for basic probability assignment in the sense of Shafer (18). It
$(A)� 0), can be also viewed as a random set. In that case

P∗(A) = ∑
E∈F

�E (A) · m(E) = ∑
A∩E �=�m(E) (17)�(B|A) = 1 if �(A ∩ B) = �(A)

= �(A ∩ B) otherwise
(15)

is the expected possibility of A in the sense of logical possibil-
ity. Formally, P*(A) is mathematically identical to an upperThe conditional necessity function is defined by N(B�A) �

1 � $(B�A), by duality. Note that N(B�A) � 0 ⇔ $(A � B) � probability in the sense of Dempster (21) or to a plausibility
function in the sense of Shafer (18), and P*(A) � 1 � P*(A) �$(A � B), which expresses that B is an accepted belief in the

context A if and only if B is more plausible than B when A is �E�F NE(A) �m(E) � �E�A m(E) has the same property as a
Shafer belief function. To recover the max-decomposability (1)true. A notion of qualitative independence has been recently

introduced (16), namely, N(B�A) � 0 and N(B�A � C) � 0 hold for P*, it is necessary and sufficient to assume that F defines
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a nested sequence of sets (18). Then P* is a possibility mea- small probability with order of magnitude �n and B has also a
small probability of the form �m, then P(A � B) is of the ordersure. Moreover, the guaranteed possibility function is a spe-

cial case of the Shafer commonality function. Hence, possibil- of magnitude of �min(m,n). These remarks may lead to an inter-
pretation of possibility and necessity measures in terms ofity measures correspond to imprecise but coherent (due to the

nestedness property), statistical evidence, that is, an ideal sit- probabilities of rare events.
uation opposite to the case of probability measures (ideal, too)
where outcomes form a partition of �. More generally, neces- Rough Sets
sity (and possibility) measures provide inner and outer ap-

Rough set theory (32) captures the idea of indiscernibility. In-proximation of belief (and plausibility) functions; see (22).
discernibility means the lack of discriminatory power betweenPossibility measures can be also viewed as a particular
elements in a set. At a very primitive level, this aspect can betype of upper probability system. An upper probability P* in-
captured by an equivalence relationship R on the set U, suchduced by a set of lower bounds 
P(Ai) � �i, i � 1, . . ., n� (i.e.,
that u R u� means that u and u� cannot be told apart. ThenP*(B) � sup
P(B)�P � P � where P � 
P�P(Ai) � �i, i � 1,
R induces a partition on U, made of the elements of the quo-. . ., n�), is a possibility measure if the set 
A1, . . ., An� is
tient space U/R. As a consequence, any subset A of U can benested, that is, after a suitable renumbering A1 � A2 � � � ��
described only by means of clusters in U given here by theAn. Conversely, any possibility measure on a finite set can be
equivalence classes [u] of R, namely,induced by such a set of lower bounds with nested Ai’s; see

(23). This view leads to a definition of conditioning different
from Eqs. (15) or (16); see (24).

The problem of transforming a possibility distribution into

{
the lower image of A : A∗ = {[u]|[u] ⊆ A}
the upper image of A : A∗ = {[u]|A ∩ [u] �= �} (18)

a probability distribution and conversely is meaningful in the
scope of uncertainty combination with heterogeneous sources This aspect has been studied by Pawlak (32) under the name
(some supplying statistical data, other linguistic data, for in- ‘‘rough set’’ and is also studied by Shafer (18) when he consid-
stance). However, raising the issue means that some consis- ers coarsening, refinements, and compatibility relationships
tency exists between possibilistic and probabilistic represen- between frames. Although possibility and fuzzy set theory are
tations of uncertainty. The basic question is whether this is a not directly concerned with indistinguishability, A� and A*
mere matter of translation between languages ‘‘neither of can easily be interpreted in terms of necessity and possibil-
which is weaker or stronger than the other’’ (25). Adopting ity: [u] � A� ⇔ N[u](A) � 1, and [u] � A* ⇔ $[u](A) � 1, where
this assumption leads to transformations that respect a prin- E � [u] (using the notations of Eqs. (3) and (6)). [u] belongs
ciple of uncertainty and information invariance. However, if to A� (respectively, A*) if and only if it is certain (respectively,
we accept the fact that possibility distributions are weaker possible) that any (respectively, some) element close to u (in
representations of uncertainty than probability distributions, the sense of R) belongs to A.
the transformation problem must be stated otherwise. Going It is possible to extend the rough set framework with
from possibility to probability increases the informational (fuzzy) similarity relationships or fuzzy partitions (33). Indis-
content of the considered representation, whereas going the cernibility, which is also linked to Poincaré’s paradox of math-
other way around means an informational loss. Hence the ematical continuum, is clearly an important issue in knowl-
principles behind the two transformations are different, and edge representation, where information appears in a granular
asymmetric transformations are obtained (26): From possibil- form whereas partial belief is measured on a continuous
ity to probability, a generalized Laplacean indifference princi- scale. This question is clearly orthogonal to that of modeling
ple is adopted. From probability to possibility, the rationale is partial belief, because it affects the definition and the struc-
to preserve as much information as possible which leads to ture of frames of discernment. The coarsening of the referen-
selecting the most specific upper approximation of the proba- tial U into the quotient space U/R (where R is a classical
bility. equivalence relationship) thus induces lower and upper ap-

Taking advantage of the inequalities inf
P(A�b), b � B� � proximations �* and �* for a possibility distribution �, defined
P(A�B) � sup
P(A�b), b � B�, it is possible to see a possibility by
measure (respectively, a � function) as the upper (respec-
tively, lower) envelope of a family of likelihood functions (27).
Several authors have previously suggested viewing likelihood

∀ω ∈ U/R, π∗(ω) = infu∈ωπ(u)

π∗(ω) = supu∈ωπ(u)
(19)

functions as possibility distributions [e.g., (28,29)].
Lastly, Spohn (30) has proposed a theory of epistemic Here what is fuzzified is the subset A to be approximated,

states with strong similarities to possibility theory, with agreeing with Eq. (18). Indeed letting �F(u) � �(u), Eq. (19)
which it shares the idea of ordering between possible worlds. corresponds to the necessity and the possibility of the fuzzy
What he calls an ordinal conditional function is a mapping event F based on the nonfuzzy possibility distribution ��.
from a finite set of events to the set of positive integers, de- These lower and upper approximations can be generalized by
noted % such that %(A � B) � min[%(A), %(B)]. %(A) expresses using fuzzy equivalence classes based on similarity relation-
a degree of disbelief in A and grows as A becomes less plausi- ships instead of the crisp equivalence classes ��. See Ref. 33.
ble. Moreover, there is an elementary event 
u� such that
%(
u�) � 0. It is easy to check that for any real number c � 1,
1 � c�%(A) is a degree of necessity [see (31)]. A probabilistic APPROXIMATE REASONING
interpretation of %(A) has been suggested by Spohn (30).
%(A) � n is interpreted as a small probability of the form �n, The theory of approximate reasoning, whose basic principles

have been formulated by Zadeh (34) can be viewed as a directthat is, the probability of a rare event. Indeed, if A has a
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application of possibility theory. Indeed, it is essentially a compound requirements of the form ‘A and B’ or ‘A or B’ are
matched again fuzzy data pertaining only to different attri-methodology for representing fuzzy and incomplete informa-

tion in terms of unary or joint possibility distributions and butes x.
inferring the values of variables of interest by applying the

Representing Fuzzy Rulesrules of possibility theory. What Zadeh’s representation and
approximate reasoning theory mainly provides is a powerful A general approach to modeling fuzzy statements has been
tool for interfacing symbolic knowledge and numerical vari- outlined by Zadeh (36) via the representation language
ables that has proved very useful in applications where quali- PRUF. Of particular interest are fuzzy rules, which are rules
tative knowledge pertains to numerical quantities (e.g., fuzzy whose conditions and/or conclusions have the form x is F.
logic controllers where precise input values are matched Simple fuzzy rules have the generic form ‘‘if x is F, then y is
against the fuzzy conditions of rules). Neither classical rule- G’’ and express a fuzzy link between x and y. Several interpre-
based systems nor classical logic are fully adapted to properly tation of fuzzy rules exist (37). An immediate application of
handling the interface between numbers and symbols without possibility and certainty qualification is the representation of
resorting to arbitrary thresholds for describing predicate ex- two kinds of fuzzy rules, called certainty and possibility rules
tensions. (12). The fuzzy rule ‘‘the more x is F, the more certain y is

G’’ can be represented by
Joint Possibility Distributions

Let x and y be two variables (on U and V, respectively) linked πx,y(u,v) ≤ max[µG(v),1 − µF (u)] (23)

together through a fuzzy restriction on the Cartesian product
and the fuzzy rule ‘‘the more x is F, the more possible y isU � V, encoded by a possibility distribution �x,y, called a joint
G’’ bypossibility distribution (the following can be easily extended

to more than two variables). The unary possibility distribu-
πx,y(u,v) ≥ min[µG(v), µF (u)] (24)

tion �x, representing the induced restriction on the possible
values of x, can be calculated as the projection of �x,y on U Indeed, letting � � �F(u) and changing �A(u) into �G(v) in the
defined in Refs. 34 and 35 by expressions of certainty qualification [Eq. (12)] and possibility

qualification [Eq. (13)], these rules can be understood as ‘‘if
x � u, then y is G is �F(u)-certain’’ (respectively, �F(u)-possi-

πx(u) = �({u} × V )

= supvπx,y(u,v)
(20)

ble). Note that Eq. (24) is the representation of a fuzzy rule
originally proposed by Mamdani (38) in fuzzy logic control-

Generally, �x,y � min(�x, �y). When equality holds, �x,y is then lers. The principle of minimal specificity leads to representing
said to be min-separable, and the variables are said to be non- the certainty rules by �x,y(u, v) � �F(u) � �G(v), where a � b
interactive (35). It is in accordance with the principle of mini-

� max(1 � a, b) is known as the Dienes implication. The prin-
mal specificity, since �x(u) is calculated from the highest pos- ciple of minimal specificity cannot be applied to Eq. (24). On
sibility value of pairs (x, y) where x � u. When modeling the contrary, the rule expresses that the values v, for in-
incomplete information, noninteractivity expresses a lack of stance, in the core of G (such that �G(v) � 1) are possible at
knowledge about the links between x and y. If we start with least at the degree � � �F(u). This does not forbid other val-
the two pieces of knowledge represented by �x and �y and if ues outside G from being possible also. The inequality in Eq.
we do not know whether or not x and y are interactive that (24) explains why conclusions are combined disjunctively in
is, �xy is not known, we can use the upper bound min(�x, �y) Mamdani’s treatment of fuzzy rules (and not conjunctively as
instead, which is less informative (but which agrees with the with implication-based representations of fuzzy rules). Here a
available knowledge). This is minimal specificity again. maximal informativeness principle consists in considering

Note that whereas in probability theory, independence that only the values in G are possible and only at the degree
plays the same role as noninteractivity in possibility theory �F(u) (for the values in the core of G). This leads to �x,y(u, v)
(probabilistic variables can be assumed to be stochastically

� min[�G(v), �F(u)], that is, only what is explicitly stated as
independent by virtue of the principle of maximum entropy), possible is assumed possible.
stochastic independence does not lead to bounding properties Another type of fuzzy rule, which is of interest in interpola-
as noninteractivity does because stochastic independence as- tive reasoning, is gradual rules. They are of the form ‘‘the
sumes an actual absence of correlation whereas noninterac- more x is F, the more y is G.’’ This translates into a constraint
tivity expresses a lack of knowledge. on �x,y acknowledging that the image of ‘x is F’ by �x,y (defined

The noninteractivity of variables implies that the possibil- by combination and projection) is included in G, that is,
ity and necessity measures become decomposable with respect
to Cartesian products (A � B) and the associated coproducts ∀u, supu min[µF (u), πx,y(u,v)] ≤ µG(v) (25)
(A � B � A�B), respectively:

Then the principle of minimal specificity leads to a represen-
tation by �x,y(u, v) � 1 if �F(u) � �G(v). When �F(u) � �G(v),�(A × B) = min

[
�x(A),�y(B)

]
(21)

�x,y(u, v) can be taken equal to 0 or �G(v) depending whetherN(A + B) = max[Nx(A),Ny(B)] (22)
or not the relationship between x and y is fuzzy.

where A and B are subsets of the universes U and V (the
The Approximate Reasoning Methodology

ranges of x and y) and $x and Nx are possibility and necessity
measures based on the normalized possibility distribution �x. Inference in the framework of possibility theory is based on a

combination/projection principle stated by Zadeh (35) forThis is useful in fuzzy pattern matching evaluation where
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fuzzy constraints, namely, given a set of n statements S1 . . . provides a target language in which plausible inference from
generic knowledge can be achieved in the face of incompleteSn that form a knowledge base, inference proceeds in three

steps: evidence. In possibility theory, ‘‘p generally entails q’’ is un-
derstood as ‘‘p ∧ q is a more plausible situation than p ∧

1. Translate S1, . . ., Sn into possibility distributions re- ¬q.’’ It defines a constraint of the form $(p ∧ q) � $(p ∧
stricting the values of involved variables. Facts of the ¬q) that restricts a set of possibility distributions. Given a set
form ‘x is F’ translate into �x � �F, and rules of the form S of generic knowledge statements of the form ‘‘pi generally
‘‘if x is F, then y is G’’ translate into possibility distribu- entails qi,’’ a possibilistic base can be computed as follows. For
tions �x,y � �R where �R derives from the semantics of each interpretation � of the language, the maximal possibility
the rule, as discussed previously. degree �(�) is computed that obeys the set of constraints in

S. This is done by virtue of the principle of minimal specificity2. Combine the various possibility distribution conjunc-
(or commitment) that assumes each situation as possible inso-tively to build a joint possibility distribution expressing
far as it has not been ruled out. Then each generic statementthe meaning of the knowledge base, that is,
is turned into a material implication ¬pi ∨ qi, to which
N(¬pi ∨ qi) is attached. It comes down, as shown by Benferhatπ = min(π1, . . ., πn)

et al. (44), to rank ordering the generic rules giving priority
3. Project � on the universe corresponding to some vari- to the most specific ones, as done in Pearl’s system Z (45). A

able of interest. very important property of this approach is that it is excep-
tion-tolerant. It offers a convenient framework for implement-

The combination/projection principle is an extension of classi- ing a basic form of nonmonotonic system called rational clo-
cal deduction. For instance, if S1 � ‘‘x is F� ’’ and S2 � ‘‘if x is sure (46) and addresses a basic problem in the expert system
F, then y is G’’, literature, that is, handling exceptions in uncertain rules.

πx,y(u, v) = min[µF (u),µR(u,v)]
Computing with Fuzzy Numbers

where �R represents the rule S2. Then, the fact ‘‘y is G�’’ is Another important application of the combination/projection
inferred such that �G�(v) � supu min[�F�(u), �R(u, v)]. This is principle is computation with ill-known quantities. Given two
called the generalized modus ponens and was proposed by Za- ill-known quantities represented by the possibility distribu-
deh (39). This approach has found applications in many sys- tions �x and �y on the real line, the possibility distribution
tems implementing fuzzy logic and in possibilistic belief net- restricting the possible values of f (x, y) where f is some func-
works, such as POSSINFER (40). tion (e.g., f (x, y) � x � y), is given by

Possibilistic Logic and Nonmonotonic Reasoning

An important particular case of approximate reasoning con-

π f (x,y) (w) = �[ f −1(w)]

= sup
(u,v)∈ f −1 (w)

min[πx(u), πy(v)]
(26)

siders only necessity-qualified classical propositions. It gives
birth to possibilistic logic (41). A possibilistic knowledge base where f�1(w) � 
(u, v)�f (u, v) � w� and x and y are assumed to
K is a set of pairs (p, s) where p is a classical logic formula be noninteractive. This is the basis for extending arithmetic
and s is a lower bound of a degree of necessity (N(p) � s). It operations to fuzzy numbers and their application to mathe-
can be viewed as a stratified deductive data base where the matical programming. Simple formulas exist for practically
higher s is, the safer is the piece of knowledge p. Reasoning computing the sum of parameterized fuzzy intervals and
from K means using the safest part of K to make inference, other arithmetic operations; see (47–49). It also applies in
whenever possible. Denoting K� � 
p, (p, s) � K, s � ��, the flexible constraint satisfaction problems. Constraint satisfac-
entailment K � (p, �) means that K� � p. K can be inconsistent tion problems, which are a basic paradigm in artificial intelli-
and its inconsistency degree is inc(K) � sup
�, K � (�, �)� gence, can be extended to flexible and prioritized constraints
where � denotes the contradiction. In contrast with classical in the setting of possibility theory. In this case, possibility
logic, inference in the presence of inconsistency becomes non- distributions model preferences about the way constraints
trivial. This is the case when K � (p, �) where � � inc(K). have to be satisfied. Ill-known parameters in the description
Then it means that p follows from a consistent and safe part of the problems can be also dealt with. Thus preferences and
of K (at least at level �). Moreover, adding p to K and nontriv- uncertainty are handled in the same framework (50).
ially entailing q from K � 
p� corresponds to revising K upon
learning p and having q as a consequence of the revised Defuzzification
knowledge base. This notion of revision is exactly that studied

Fuzzy-set-based approximate reasoning usually yields conclu-by Gärdenfors (42) at the axiomatic level (31). This kind of
sions in the form of possibility distributions. Then to makesyntactic nontrivial inference is sound and complete with re-
them more easy to interpret for the end user, we may approxi-spect to a so-called preferential entailment at the semantic
mate them linguistically in terms of fuzzy sets which repre-level. p is said to preferentially entail q if all the preferred
sent terms in a prescribed vocabulary. We may also defuzzifyinterpretations, which make p true, make q true also. A pre-
these conclusions. A well-known method, often used in fuzzyferred interpretation is one which maximizes the possibility
control applications, is the center of gravity method whichdistribution �K, the least specific possibility distribution satis-
computes the scalar valuefying the set of constraints N(p) � s where (p, s) � K; see (43).

Possibilistic logic does not allow for directly encoding
pieces of generic knowledge, such as ‘‘birds fly.’’ However, it defuzz(π ) = ∫

u · π(u)du/
∫

π(u) du (27)
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