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FUZZY SYSTEMS

There are many ways of representing knowledge in general;
we will consider here only the very basic aspects of knowledge
representation in a fuzzy expert system. Most basic is the rep-
resentation of data. Next is the idea of representing knowl-
edge about reasoning processes, usually represented in fuzzy
expert systems by fuzzy production rules which are discussed
later in this article. Fuzzy expert systems add two major ele-
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ments to knowledge representation in nonfuzzy expert sys-
Figure 1. A fuzzy set describing uncertainty that a value x is equaltems: (1) the addition of basic data types not found in conven-
to two.

tional systems and (2) an expanded rule syntax which
facilitates reasoning in terms of words rather than numbers
and permits approximate numerical comparisons. We will

ples of discrete fuzzy sets. Fuzzy set speed describes a nu-first consider the representation of data.
meric quantity. In Table 1 we see that speed could certainlyHowever, let us first explain the basic differences between
be described as Medium, but could also be described as Fastfuzzy expert systems and fuzzy control. Both systems have a
with almost equal certainty. This represents an ambiguity.fuzzy rule base, where fuzzy expert systems are designed to
Ambiguities such as these need not be resolved, because theymodel human experts in the areas of decision making and
add robustness to a fuzzy expert system. Also in Table 1, dis-fuzzy control models human operators in control of a process.
crete fuzzy set ‘‘fault,’’ whose members are words describingIn fuzzy control the inputs to the fuzzy rule base are usually
different possible faults, describes a nonnumeric categoricalreal numbers, representing measurements on the process,
quantity. We are certain that the fault is not in the fuel sys-and the outputs are also real numbers representing how to
tem; it is probably in the ignition or electrical systems, al-change certain variables in the process to achieve better per-

formance. In fuzzy expert systems the inputs are real num- though it just might be in the hydraulic system. Since these
bers, character strings, or fuzzy sets, representing data on the categories are mutually exclusive, we have not an ambiguity
decision problem, and the outputs are real numbers, charac- but a contradiction. Unlike ambiguities, contradictions must
ter strings, or fuzzy numbers representing possible actions by be resolved before our program is done.
the decision makers. Fuzzy control answers the question of Fuzzy numbers, like statistical distributions, represent un-
‘‘how much’’ to change process variables and fuzzy expert sys- certain numerical quantities. Fuzzy numbers may have any
tems answer the question ‘‘what to do?’’ or ‘‘what is it?’’ Since of several shapes; most common are piecewise linear (trian-
both systems are based on a fuzzy rule base, some techniques gles and trapezodoids), piecewise quadratic (s-shaped), and
useful in fuzzy control (discussed below) are presented be- normal (Gaussian). A typical fuzzy number is shown in Fig.
cause they are also useful in fuzzy expert systems. 1. From Fig. 1 we see that the confidence that 2.4 belongs to

Basic data types available for individual data items in- ‘‘fuzzy 2’’ is 0.6.
clude numbers and character strings. Some nonfuzzy expert Fuzzy production rules usually are of the IF . . . THEN
system shells include with the basic data types a measure of . . . types. The IF part of the rule, called the antecedent, spec-
the confidence that the value for the data is valid. Individual ifies conditions which the data must satisfy for the rule to be
data items are usually collected into named groups. Groups fireable; when the rule is fired, the actions specified in the
may be simple structures of several data items, lists, frames, THEN part, the consequent, are executed. Some simple fuzzy
or classes. antecedents follow.

Fuzzy expert systems include additional data types not
found in conventional expert systems: discrete fuzzy sets, and IF size is Small AND class is Box, THEN . . .
fuzzy numbers. A fuzzy set is similar to an ordinary set (a
collection of objects drawn from some universe), with one ma- In this antecedent, size and class are discrete fuzzy sets;
jor difference: to each member of the set is attached a grade Small is a member of size and Box is a member of class.
of membership, a number between zero and one, which repre-
sents the degree to which the object is a member of the set. IF weight is about 20, THEN . . .
In probability theory, all the probabilities must add to one.
However, in fuzzy set theory, all the grades of membership Here weight is a scalar number. ‘‘About’’ is an adjective
need not add to one. (called a hedge) which modifies the scalar 20, converting the

In general, the members of discrete fuzzy sets are words scalar 20 to a fuzzy number. The resulting fuzzy number
describing some real-world entity. Table 1 contains two exam- ‘‘about 20’’ could be triangular (as in Fig. 1) with base on the

interval [16, 24] and vertex at 20. The comparison between
weight and ‘‘about 20’’ is an approximate one, which can hold
with varying degrees of confidence depending on the precise
value for weight.

IF speed is Fast AND distance is Short, THEN . . .

This apparently simple antecedent is a little more complex
than it appears, since speed and distance are scalar numbers,
and Fast and Short are members of discrete fuzzy sets de-

Table 1. Discrete Fuzzy Sets

Speed Fault

Membership Membership
Member Degree Member Degree

Stop 0.000 Fuel 0.000
Slow 0.012 Ignition 0.923
Medium 1.000 Electrical 0.824
Fast 0.875 Hydraulic 0.232

J. Webster (ed.), Wiley Encyclopedia of Electrical and Electronics Engineering. Copyright # 1999 John Wiley & Sons, Inc.
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scribing speed and distance. Fuzzy numbers are used to de- possibly equal to) the old confidence value.
fine Fast and Short. When the truth value of the antecedent
is evaluated, the number speed must be converted into a action: class is Desk
grade of membership of Fast, and similarly for distance and

Here the confidence in member Desk of fuzzy set class willShort. This conversion is called fuzzification, and it requires
be set to the antecedent confidence, assuming that the newthat fuzzy numbers be assigned to each fuzzy set member.
confidence value exceeds any old confidence value.Membership functions for the members of the discrete fuzzy

set distance are shown in Fig. 2.
action: z is SmallThis type of rule antecedent is so common in fuzzy control

that a shorthand notation has evolved; Short, Medium, and
In fuzzy control systems, z would be a scalar number. In fuzzyLong are considered simply fuzzy numbers, the clause ‘‘dis-
reasoning systems, z is likely to be a discrete fuzzy set, oftance is Short’’ is considered a comparison for approximate
which ‘‘small’’ is a member. One or the other syntaxes may beequality between distance and Short, and the fuzzy set of
used depending on the particular fuzzy expert system shellwhich Short, Medium, and Long are members may not even
being used. The effect of this action is to store the antecedentbe named.
confidence as the grade of membership of ‘‘small’’. If z is aIn evaluating the truth value of an antecedent, the confi-
scalar number and Small is a fuzzy set member with its corre-dences that the individual clauses are true and that the rule
sponding fuzzy number, as is the case in fuzzy control, thisitself is valid are combined. We are using ‘‘truth value’’ and
consequent operation is complex. To begin with, there are al-‘‘confidence’’ to mean the same thing. Confidence is discussed
most invariably other rules fired concurrently with other con-more in the section on uncertainty. The most common way of
sequents such as z is Medium, z is Large, and so forth; thedoing this is to use the Zadeh operators: truth value of A AND
consequent z is Small cannot be applied except together withB � min(truth values of A and of B), truth value of A OR
the other rule consequents. Now the inverse operation to fuz-B � max(truth values of A and of B). There are many other
zification, called defuzzification, must be carried out. Therecombination rules. If the antecedent truth value exceeds an
are many ways of defuzzification used by fuzzy control engi-assigned threshold value and the rule is enabled for firing,
neers, which are beyond the scope of this article. Two ways ofthe rule is said to be fireable.
defuzzification are now described.The THEN part of a rule is called the consequent, and it

If the fuzzy numbers corresponding to Small, Medium, andconsists of instructions to be executed when the rule is fired.
Large are singletons (i.e., only a single value has a nonzeroThe truth value with which the consequent is asserted is usu-
grade of membership), defuzzification can be very simple; aally the truth value of the antecedent. Consequent actions
weighted average of these values can be taken, using the con-may be for input or output of data, information to the user,
fidences in Small, Medium, and Large assigned by the rulesand the like, but the most important consequent actions are
as weights.those which modify data. Some consequent actions are de-

If the fuzzy numbers are not singletons, the conclusions ofscribed below.
all rules which have fired are then aggregated (unioned) to
get the fuzzy conclusion of the whole system; it is then defuz-
zified to a real number. In control applications, this number

action: write ‘Hello, World!’

action: read x may then output to the controller or be used to compute the
new control value; in fuzzy reasoning applications, the num-The above two instructions need no explanation.
ber may be output to the user or used as input to succeeding
reasoning stages.

We have only discussed one rule; a fuzzy expert systemaction: MA = MA + X
T + DT

usually has multiple blocks of rules (rules grouped together
to perform a certain job) and a network of blocks of rules.Here a new value for MA is computed from values for vari-
With many blocks of rules the output from certain blocks be-ables assigned in the rule antecedent. The confidence in the
come input to other blocks of rules.new value for MA will be the antecedent confidence. The sys-

tem may provide that the old confidence value not be over-
written unless the new value has confidence greater than (or KNOWLEDGE ACQUISITION

Knowledge acquisition is the translation of information about
a system into fuzzy production rules and expert data bases
which are to model the system. Classically, this is done by a
domain expert, thoroughly familiar with the application field,
and a knowledge engineer, familiar with artificial intelligence
techniques and languages. In one of the first fuzzy expert sys-
tems (1) the authors generated fuzzy rules like ‘‘If size is
Large and vertical position is Low and region touches the bor-
der, then class is Lung.’’ These directly represent how an ex-
pert classifies regions seen in a medical echocardiogram, with
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Lung a member of the fuzzy set of region classifications.
The fuzzy expert system is to automatically classify theFigure 2. Three fuzzy sets describing uncertainty that a distance is

Short, Medium or Long. regions. However, the linguistic variables ‘‘Large,’’ ‘‘Low,’’ and
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so on, are all defined by fuzzy numbers. Unlike control appli- dence.’’ In fact, the confidence we place in a value is usually
itself subject to uncertainty, as are the precise values we de-cations, a well-written fuzzy expert system for classification

is usually insensitive to the precise values for the member- fine for a membership function. Most fuzzy expert system
shells can handle only one level of uncertainty; confidence,ship functions.

An alternative method of rule generation, sometimes use- grades of membership, and membership functions are usually
taken as accurate. While this is not intellectually satisfactory,ful when there are masses of historical numeric input data, is

to automatically generate the fuzzy rules from these data. in practice it poses few if any problems; providing for more
than one level of uncertainty would cause a giant increase inThese procedures may be useful in fuzzy control and also in

what has become known as ‘‘Data Mining.’’ Suppose we have system complexity, with little gain achieved.
Let us now have a look at the different methods that candata on input and output of a process which are in the form

of real numbers or fuzzy numbers. The procedures to auto- be used for uncertainty modeling. We will not discuss the dif-
ferences between probability and fuzzy set theory. For morematically generate the rules involve various techniques such

as gradient descent methods (2–5), least squares (6,7), genetic details on the ongoing debate on probabilities versus fuzzy
sets in uncertainty modeling see Refs. 17 and 18.algorithms (8,9), fuzzy c-means (10), fuzzy-neural methods

(11–14), heuristics (15), and other methods (16). We will Whatever method of modeling uncertainty is selected, you
will have the problem of deciding how the uncertainties arebriefly discuss two of the procedures to automatically gener-

ate the fuzzy rules. to be propagated through the system. For systems such as
FLOPS, which do not routinely combine fuzzy numbers, un-Perhaps the simplest method is the heuristic procedure

presented in Ref. 15 since it does not require iterative learn- certainty propagation is not usually a problem. If, however,
fuzzy numbers are combined (as in fuzzy control), it may be aing. Suppose we have data (xp, yp), 1 � p � m, where xp �

(x1p, x2p), on the process to be modeled. The inputs are xp and problem to be dealt with.
the outputs are yp. Assume that the x1p, x2p, yp are all in the
interval [0, 1]. We wish to construct rules of the form Probability Approach

Probability theory has been used from the very beginning toIf x1 is A1i and x2 is A2 j, Then y = bi j
handle uncertainty in expert systems. The goal of this ap-
proach is to find suitable probability distributions. There arefor 1 � i, j � K. In the consequent bij is a real number. The
two main and different interpretations of probability. First,A1i (A2j) are triangular fuzzy numbers which partition the in-
probability can be seen as a relative frequency. In this con-terval [0, 1]. Given inputs (x1p, x2p) the output from this block
text, probability describes an objective uncertainty. On theof rules is computed as follows:
other hand, probability can be interpreted as a measure of
belief. This way of interpreting probability leads to subjective
imprecision. The last interpretation seems to be more suitable
in knowledge-based systems. In order to define a probability

y =
∑K

i=1
∑K

j=1 Ai j (x1p, x2p)bi j∑K
i=1

∑K
j=1 Ai j (x1p, x2p)

distribution function, experts are asked about the numerical
where Aij(x1p, x2p) � A1i(x1p)A2j(x2p). The A1i(x1p) (and A2i(x2p)) de- value of some parameters. By specifying these quantities a
note the membership value of the fuzzy set A1i (A2i) at x1p suitable subjective probability distribution function can be
(x2p). The bij are defined as found. For combining individual uncertainties, Bayes’ theo-

rem has often been employed.

Dempster–Shafer Approach
bi j =

∑m
p=1 Wi j (x1p, x2p)yp∑m

p=1 Wi j (x1p, x2p)

Dempster–Shafer’s theory of evidence is another way of han-where Wij(x1p, x2p) � (A1i(x1p)A2j(x2p))�, for some � � 0. This sim-
dling uncertainty. It is motivated by Dempster’s theoremple heuristic appears to work well in the examples presented.
(19,20), and it is based on the assumption that a partial beliefAnother approach, also with no time-consuming iterative
in a proposition is quantified by a single number in the unitlearning procedures, was presented in Ref. 16. They proposed
interval. Furthermore, different beliefs can be combined intoa five-step procedure for generating fuzzy rules by combining
a new one. However, this method leads to exponential com-both numerical data on the process and linguistic information
plexity (21), and we refer the reader to Refs. 22, and 23 forfrom domain experts. They argued that the two types of infor-
more details.mation (numerical/linguistic) alone are usually incomplete.

They illustrated their method on the truck backer-upper con-
trol problem. Fuzzy Set Approach

The use of fuzzy sets for designing knowledge-based systems
was suggested by Zadeh (24). His intention was to (a) over-UNCERTAINTY REPRESENTATION
come the problem of vague concepts in knowledge-based sys-
tems being insufficiently described by only using zeros andThe term ‘‘uncertainty’’ itself is not well defined, and may
ones, and (b) use fuzzy sets for representing incompletehave several related definitions. Imprecision in a measure-
knowledge tainted with imprecision and uncertainty. Usingment causes uncertainty as to its accuracy. Vagueness is
fuzzy sets, uncertainty can easily be described in a naturallikely to refer to the uncertainty attached to the precise
way by membership functions which can take values in themeaning of descriptive terms such as small or fast. We have

lumped all these meanings together under the term ‘‘confi- whole unit interval [0, 1].
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Let us take a closer look at the representation of uncer- sess and then choose the operators that will give those prop-
erties. For a single rule system ‘‘If x is A, then y is B’’ we saytainty in a knowledge-based system using the fuzzy set ap-

proach. the inferencing is consistent if given input x � A, then the
conclusion is y � B. That is, A 
 (A � B) � B. If all the fuzzy

Real Numbers. In this approach real numbers, instead of sets are normalized (maximum membership is one), then
fuzzy sets, are used to describe uncertainty in the data. Let there are a number of ways to perform approximate reasoning
us assume that for the linguistic variable ‘‘human’s height’’ so that the rule is consistent (37). For FITA to be consistent
we have five terms: very short, short, medium, tall, and very we require B � Bk if A � Ak for some k, 1 � k � m. FATI is
tall. Each of these terms is defined by a fuzzy number Ai, consistent if Ak 
 R � Bk. In Ref. 38 the authors give a suffi-
where A1 defines very short, A2 defines short, and so on. Let x cient condition for FATI to be consistent, and in Ref. 39 the
be a number that can be the height of a person. If A1(x) � 0, authors argue that, in general, FATI is not consistent, but
A2(x) � 0.3, A3(x) � 0.8, A4(x) � 0.2, and A5(x) � 0, then we FITA can be consistent if you use a consistent implication
can express x as (0, 0.3, 0.8, 0.2, 0) showing the uncertainty from the single rule case and you also use a special method
about the height of this person. So, maybe the person’s height of aggregating the B�i into B. Demanding consistency will
is medium. greatly narrow down the operators you can use in approxi-

mate reasoning.
Fuzzy Numbers. Another way of modeling uncertainty is to An alternative method of rule-based inferencing is used in

use fuzzy sets where the membership functions have to be FLOPS (discussed below in the section on software). Here the
chosen according to an expert’s knowledge. Fuzzy numbers rules are used to construct discrete fuzzy sets and approxi-
with a limited menu of shapes can easily be used for this task mate reasoning is not applicable.
because they can be represented by only three or four values. Initially, numeric input variables are fuzzified to create
In order to minimize the amount of parameters, Gaussian discrete fuzzy sets. From there on, reasoning can be done with
fuzzy sets are used. The membership functions represent a fuzzy set member words such as Large (a member of discrete
Gaussian function which can be coded by a mean value (mem- fuzzy set size) and Left (a member of discrete fuzzy set hori-
bership degree one) and a variance value � (25). zontal position) rather than in terms of numerical values.

Consider the following slightly simplified FLOPS rule:

RULE-BASED REASONING

We first discuss a very popular method of rule-based reason-

IF size is Small AND x-position is Center

AND y-position is Very-High, THEN class is Artifact;
ing called approximate reasoning. Then we present an alter-
native procedure used in the fuzzy expert system shell called The confidence that each clause in the antecedent is valid is
FLOPS. Consider a block of rules computed. For clauses such as ‘‘size is Small,’’ the confidence

is simply the grade of membership of Small in discrete fuzzy
set size. Other clauses might involve comparisons, Boolean orIf x is Ai, then y is Bi

fuzzy, between two data items; in this case, the confidence
for 1 � i � m. All the fuzzy sets will be fuzzy subsets of the that the clause is valid is the fuzzy AND (by default, mini-
real numbers. One can easily handle more clauses in the mum) of the confidences in the data items and the confidence
rule’s antecedent than simply ‘‘x is Ai,’’ but for simplicity we that the comparison holds. The minimum of the confidences
will only consider the single clause. Given an input x � A, the in the individual clauses (and the rule confidence, if less than
rules are executed and we obtain a conclusion y � B. There 1) is the confidence that the entire antecedent is valid. This
are two methods of obtaining y � B (26): (1) First infer, then confidence is stored as the grade of membership of Artifact
aggregate (FITA); and (2) first aggregate, then infer (FATI). in discrete fuzzy set class. Since there is no fuzzy set in the
Let us first consider FITA. There are three steps in FITA: (1) consequence of the above rule (Artifact is not fuzzy), the im-
First model the implication (Ai � (Bi) as a fuzzy relation Ri; plication cannot be modeled as a fuzzy relation and approxi-
(2) combine A with Ri, called the compositional rule of infer- mate reasoning is not applicable. FLOPS then reasons with
ence, as A 
 Ri � B�i ; and (3) then aggregate all the B�i into B. confidences in discrete entities in which there is placed a sin-
However, there are a tremendous number of different ways to gle scalar confidence; many of these are discrete fuzzy sets.
get B from A. Numerous papers have been published compar-
ing the various methods (see, for example, Refs. 27–34) and
guidelines for picking a certain procedure to accomplish spe- OPTIMIZATION
cific goals. In fact, 72 methods of modeling the implication
have been studied (35). The methods of computing A 
 Ri and Once a fuzzy expert system has been designed, it depends on

a large set of parameters such as the weights (confidence val-aggregating the B�i usually employ t-norms and/or t-conorms
(36), and we have plenty of more choices to make for these op- ues in the rules, etc.), the number of rules, the method of

inference, and the position and shape of the fuzzy sets whicherators.
FATI also has three steps: (1) Model the implication (Ai � define the linguistic variables in the rules. The optimization,

also called the tuning or calibration, of the fuzzy expert sys-(Bi) as a fuzzy relation Ri; (2) aggregate the Ri into one fuzzy
relation R; (3) compose A with R to get B as A 
 R � B. Again, tem is a process of determining a best value for these parame-

ters. ‘‘Best’’ is defined as those values of the parameters whichthere are many choices on how to compute the Ri, R, and B
from A and R. One solution to this dilemma of choosing the maximize, or minimize, some objective functions. At first, re-

searchers suboptimized with tuning some of the parametersright operators to perform approximate reasoning is to decide
on what properties you want your inferencing system to pos- while holding the rest fixed. A number of papers (5,40–44)
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presented various techniques to minimize the number of rules Fuzzy expert systems not used for control have not (in the
past) usually run on-line and do not need to be very fast.needed in the rule base. A basic method was the use of ge-

netic algorithms. However, with the dramatic increases in computer speed con-
tinually occurring, running online in real time is now possi-Another group of papers (8,9,45–50) was concerned with

tuning the membership functions of the fuzzy sets with the ble. A tremendous increase in speed can also be realized by
hard coding an expert system into (for example) the C or C��use of a genetic algorithm, a popular technique. Gradient

decent methods were also employed to tune the fuzzy sets. languages. A further increase in speed can be achieved by the
use of interval rather than fuzzy logic.The next step, possibly using a genetic algorithm, will be to

tune the whole fuzzy expert system. One would need to code
a whole rule, its weights, and all the fuzzy sets in the rule, as
part of one individual in a population of individuals evolving HARDWARE
toward the optimal solution. Using binary coding a single rule
will produce a fairly long vector of zeros and ones. Add to this For the development of knowledge-based systems, special

hardware is seldom needed. For this task a suitable softwarevector all the other rules so that an individual in the popula-
tion is the whole fuzzy expert system. Append to this vector tool is more important than fast hardware. However, as

knowledge-based systems become larger, it is no longer suit-the types of rule inferencing methods you wish to investigate.
If we are to have 2000 individuals in the population and we able to use a single processor. Therefore, the data collection

and the actions of the system should be logically and geo-wish to go through 10,000 generations in the genetic algo-
rithm, we see that the computation becomes enormous. Hence graphically distributed in order to speed up the computa-

tional expense (51). Special fuzzy hardware can overcomeresearchers have been content to attack only parts of the
whole optimization problem. Let us now briefly discuss two of this problem.

In Ref. 52 the authors present a fuzzy component networkthese methods of tuning a fuzzy expert system.
In Ref. 42 the authors tune the rules in a fuzzy expert which consists of fuzzy sensors, fuzzy actuators, and fuzzy in-

ference components. All these components can be configured.system designed for a classification problem. The problem has
two objectives: (1) Maximize the number of correctly classified However, a special language is needed for this task. In order

to take advantage of special hardware, this fuzzy hardwarepatterns, and (2) minimize the number of rules. A set of fuzzy
if-then rules is coded as one individual in the genetic algo- configuration language has to be integrated into a fuzzy ex-

pert system developing tool. Another way is to transform therithm. The fitness function for the algorithm is a convex com-
bination of the two objectives (maximize the number of cor- developed expert system into special hardware. However, this

approach seems to be unsuitable because modifications of therectly classified patterns and minimize the number of rules).
In Ref. 47 the authors optimize the fuzzy sets in a fuzzy system (which seem likely) can lead to needed changes in

the hardware.expert system used for control. They assume that there is a
data set available on the process, and the objective is to mini- Slowly, as fuzzy expert systems (and fuzzy controllers)

were developed and became more sophisticated, special hard-mize the squared error function defined from the input–
output data. The fuzzy if-then rules, the method of inference, ware was suggested to implement the various components of

these systems. Today there is much more interest in ob-and the defuzzifier are all held fixed. All the fuzzy sets are
trapezoidal fuzzy numbers. A member of the population is a taining hardware for fuzzy systems as evidenced by the re-

cent edited book devoted solely to fuzzy hardware (53).coded vector containing all the trapezoidal fuzzy numbers in
the fuzzy expert system. Their tuning method worked well in
the application (the inverted pendulum problem) presented
where the population size was small, and there were only SOFTWARE
seven if-then rules in the system.

While there are many excellent software packages available
for constructing fuzzy control systems, there are only a few
designed for more general fuzzy reasoning applications. Nota-VALIDATION AND IMPLEMENTATION
ble for being based in Artificial Intelligence technology are
FRIL, a fuzzy superset of PROLOG; FLOPS, a fuzzy supersetAn expert system is a model of how an expert thinks; like all

models, it must be tested before routine use (validation). It is of OPS5; and Fuzzy CLIPS, a fuzzy superset of CLIPS. While
not directly based in AI technology, METUS is highly devel-of the utmost importance to use different data sets for tuning

and validation. If the entire data set is gathered at one time, oped from a computer science viewpoint and has achieved
considerable success in noncontrol problems.it is common to split the data set into two: one for tuning, and

the other for validation. You may also employ a domain ex- All these systems are powerful, and they embody facilities
which are not possible even to enumerate let alone describepert to validate the fuzzy expert system. Suppose the system

was designed to classify regions seen in a medical echocardio- in detail. The descriptions furnished here are certainly incom-
plete. While all systems are capable of application in diversegram. To validate the system we compare how it classifies

regions to how an expert classifies the same regions on a new fields, the precise facilities furnished depend somewhat on the
fields in which they have had the most use. FRIL has proba-series of echocardiograms.

Once the fuzzy expert system has been validated, it is bly had the most diverse applications, ranging from aircrew
modeling to vision understanding. FLOPS has been appliedready for use. If it is to be used for control, then it will usually

run on-line and have to be very fast and is now ready to be primarily to medical and technical fields. Fuzzy CLIPS has
found its greatest use in engineering, and METUS has beenimplemented in hardware. That is, to get the speed to be used

on-line you may need to obtain hardware for the system. used primarily in the financial world.
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FRIL rule is fired we check only after each block of rules is fired.
This typically reduces system overhead by roughly a factor

Created originally by James F. Baldwin, FRIL offers the ad-
of six.

vantages of Prolog plus those of fuzzy systems theory. Prolog
A simple basic blackboard system is employed to transfer

has been one of the two dominant AI languages (the other
data between external programs (for example, C��) and

being LISP) and has been especially popular in Europe. FRIL
FLOPS. A standardized simple relational database format is

provides the critical data types of discrete fuzzy sets, whose
used for this purpose. FLOPS can call external programs for

members may be symbols or numbers, and continuous fuzzy
special purposes when a rule-based system is inappropriate,

sets such as fuzzy numbers. FRIL’s fundamental data struc-
or it can call other FLOPS programs. Internally, FLOPS pro-

ture is a list, each term of which can be a data item or a list.
grams are organized by rule blocks, with metarules to control

Rules in FRIL reverse the IF (antecedent) THEN (conse-
rule block fireability and activation of external non-AI pro-

quent) construction discussed above. The first element of a
grams and other FLOPS programs. Recursion can be used for

FRIL rule corresponds to the consequent; the second element
problems where its use is indicated, ranging from the toy

corresponds to the antecedent. For example, the rule
problem Tower of Hanoi through solution of ordinary differen-
tial equations. A special command is furnished for real-time
on-line applications.

((illness of X is flu)(temp of X is high)

(strength of X is weak)(throat of X is sore)): (0.9,1) To reduce the number of rules in an application, FLOPS
programs may shift expert knowledge from rules to a data-

corresponds to the following IF-THEN rule: base of expert knowledge, with rules written to interpret that
database, or to generate rules automatically from the expert
knowledge database. Program learning may involve writing
rules to generate other rules.

A program development environment TFLOPS is fur-
nished for creating FLOPS programs. Debugging facilities in-

rule rconf 0.9 IF temp of X is high

AND strength of X is weak

AND throat of X is sore,

THEN illness of X is flu clude (a) inspection of data and fireable rule stacks and (b)
a simple explain facility for tracing data backwards throughIn the first case, the symbols : (0.9,1) mean that if the ante-
modification and creation and checking why rules are or arecedent clauses are true, we are at least 0.9 sure that the con-
not fireable.sequent clause (illness of X is flu) is true. Similarly, in the

second case the symbols rconf 0.9 mean that we are 0.9 con-
Fuzzy Clipsfident that the rule is valid—that is, that if the antecedent

holds, the consequent is true. Inspired by Robert Lea of NASA and created by the National
Being constructed as a superset of a powerful AI language, Research Council of Canada under the direction of Robert Or-

FRIL in turn can be very powerful, but is not an easy lan- chard, this language is a fuzzy superset of CLIPS, a nonfuzzy
guage to learn unless one has previous experience with Pro- expert system shell developed by the NASA Johnson Space
log. Fortunately there is excellent documentation in the form Flight Center. Its availability on the Internet without charge
of a text which includes a demonstration diskette (54). is certainly an added plus (56).

A program development environment is furnished which
permits editing, running, and viewing programs. While dis-FLOPS
crete fuzzy sets are not available as data types, the use of

FLOPS was created by Douglas Tucker, William Siler, and certainty factors attached to character strings creates fuzzy
James J. Buckley (55) to solve a pattern recognition problem facts, which can be used individually in much the same man-
involving very noisy images. FLOPS is a fuzzy superset of ner as members of discrete fuzzy sets.
OPS5, a well-known AI production system for constructing A simple control rule, written in Fuzzy Clips, is
expert systems. FLOPS added fuzzy sets, fuzzy numbers, and
approximate numerical comparisons to OPS5’s capabilities.
Most FLOPS applications have been medical or technical, as

(defrule rule pos pos (error positive)(rate positive)

�⇒ (assert (output negative)))distinct from business or control applications. Two rule-firing
modes are offered: sequential and parallel. Suppose (as is of-

where rule_pos_pos is the name of the rule. We require thatten the case) that more than one rule is concurrently fireable.
the error and rate both be positive; if these are true, thenIn sequential mode, one rule is selected for firing; the rest are
the confidence that output is negative is set to the antecedentstacked for backtracking—that is, for firing if the path chosen
confidence. A debugging facility is provided by a flexibledoes not work out. In parallel mode, all concurrently fireable
WATCH command, amounting to a sophisticated trace of arules are fired effectively in parallel; any resulting conflicts
program run.for memory modification are then arbitrated by the inference

engine.
METUS

Like OPS5, FLOPS is a forward-chaining system; however,
backward chaining is easily emulated. As is usually the case METUS, written by Earl Cox (57,58), is a powerful tool for

fuzzy reasoning even though it is not based on an existing AIwith production systems, there is a lot of system overhead in
checking which rules are newly fireable. FLOPS employs the system. Its use has been primarily in business and financial

applications, in a client–server environment. Its origin is inpopular RETE algorithm to reduce this overhead. The paral-
lel mode of FLOPS also considerably reduces system over- Reveal, a fuzzy expert system by Peter Llewellyn Jones of the

United Kingdom. Metus provides both forward and backwardhead, since instead of checking for rule fireability after each
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16. L. X. Wang and J. M. Mendel, Generating fuzzy rules by learningchaining, a sophisticated blackboard system, and program de-
from examples, IEEE Trans. Syst. Man Cybern., 22: 1414–1427,velopment facilities. METUS employs a flexible if-then-else
1992.rule syntax and is especially notable for its advanced use of

17. D. Dubois and H. Prade, Fuzzy sets—A convenient fiction forhedges, which are modifying adjectives applied to fuzzy sets.
modeling vagueness and possibility, IEEE Trans. Fuzzy Syst., 2:Simple METUS rules are:
16–21, 1994.

18. G. J. Klir, On the alleged superiority of probabilistic representa-
tion of uncertainty, IEEE Trans. Fuzzy Syst., 2: 27–31, 1994.

19. A. P. Dempster, Upper and lower probabilities induced by multi-
valued mapping, Ann. Math. Stat., 38: 325–339, 1967.

20. G. Shafer, Constructive probability, Synthese, 48: 1–60, 1981.

IF costs are High, THEN margins are Weak;

else margins are Strong

and

if speed is very Fast, then stopping time is Increased.
21. P. Orponen, Dempster’s rule of combination is #P-complete, Artif.

Intell., 44: 245–253, 1990.
Also provided are time lags for a time sequence of numerical

22. I. R. Goodman and H. T. Nguyen, Uncertainty Models for Knowl-
data, as in edge-Based Systems, New York: Elsevier, 1985.

23. R. Kruse, E. Schwecke, and J. Heinsohn, Uncertainty and
Vagueness in Knowledge Based Systems, Berlin: Springer-Ver-
lag, 1991.

if sales [t − 1] are Low but inventory [t] is Moderate,

then buying risk is Elevated.

24. L. Zadeh, A theory of approximate reasoning, in D. Michie, J.
METUS supplies a number of multivalued logics in addition Hayes, and L. Mickulich (eds.), Machine Intelligence, Amsterdam:
to the well-known Zadeh max–min operators, along with a Elsevier, 1979, Vol. 9, pp. 149–194.
number of defuzzification techniques. Metarules permit exe- 25. D. Cayrac, D. Dubois, and H. Prade, Handling uncertainty with
cuting external non-METUS programs, executing other possibility theory and fuzzy sets in a satellite fault diagnosis ap-

plication, IEEE Trans. Fuzzy Syst., 4: 251–269, 1996.METUS programs (called policies), and enabling rules or lists
of rules. 26. I. B. Turksen and Y. Tian, Constraints on membership functions

of rules in fuzzy expert systems, Proc. 2nd IEEE Int. Conf. Fuzzy
Syst., San Francisco, 1993, pp. 845–850.
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