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FUZZY STATISTICS

The aim of this article is to give a summary view of many
concepts, results, and methods to deal with statistical prob-
lems in which some elements are either fuzzily perceived, or
reported, or valued. Different handy approaches to model and
manage univariate problems are examined and a few tech-
niques from them are gathered. Multivariate statistics with
fuzzy elements are briefly discussed, and finally two examples
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illustrating the use of some models and procedures in the ar- values by associating with each outcome � �  a real (or
vectorial) value, so that the interest is not focused on the out-ticle are included.
comes but on the associated values. The rule formalizing this
association is referred to as a random variable, and it is as-INTRODUCTION
sumed to be Borel-measurable to guarantee that many useful
probabilities can be computed.Applications of statistics occur in many fields, and the general

The incorporation of a random variable to the formertheory of statistics has been developed by considering the
model induces a probability space, (�, B �, PX

� ), � � � (or incommon features of these fields. Three major branches of sta-
general (�k, B �k, PX

� ), � � �, with k 
 1), PX
� denoting thetistics are descriptive statistics, inferential statistics, and sta-

induced probability.tistical decision making.
The mechanism of the induced model can be summarizedAll of them, and especially the latter two, are closely re-

as follows:lated to the concept of uncertainty. In making inferential
statements or statistical decisions, the statistician or decision
maker is usually unsure of the certain characteristics of a
random experiment. Uncertainty involved in statistical prob-
lems is traditionally assumed to be due to randomness (or
unpredictability of the outcomes or events occurring in any
performance of the experiment). To deal with this type of un-

� → {Pθ , θ ∈ �} → � → R → B
R

θ

experimental
distribution−−−−−−−→ Pθ

experimental
performance−−−−−−−→ ω

random
variable−−−−−→ X (ω)

event of
interest−−−−→ [X ∈ B] (occurs if X (ω) ∈ B)

certainty, probability theory has become a well-developed
mathematical apparatus. The preceding two models could be enlarged if a Bayesian

However, in several fields of applications of statistics, context is considered. In this context � would behave as a ran-
other types of uncertainty often arise. Thus, in social sciences, dom variable, so that the parameter, state, or index would be
psychology, engineering, communications, and so on, statisti- specified in accordance with a prior distribution. Indeed, the
cal problems can include observed or reported data like very uncertainty involved in the preceding models corresponds to
long, quite fast, a few people, more or less in agreement, and randomness, which arises in the experimental performance
good yield. The entry of fuzzy set theory has allowed dealing (and in the specification of � if a Bayesian framework is con-
with the type of uncertainty referred to as fuzziness or sidered).
vagueness (or difficulty of defining sharply the elements— However, statistical problems can also involve fuzziness.
outcomes, events or data—in the problem). We are now going More precisely, either the numerical values associated with
to summarize the models and some relevant methods stated experimental outcomes can be fuzzily perceived or reported,
in the literature to manage and solve statistical decision prob- or the values associated with experimental outcomes can be
lems involving both randomness and fuzziness. fuzzy, or the events of interest can be identifiable with fuzzy

subsets of the sample space. We are now going to recall the
most well-developed approaches to model and handle prob-WHY DEVELOP FUZZY STATISTICS?
lems involving both fuzzy imprecision and probabilistic uncer-
tainty.The basic model in statistics is a mathematical idealization

which is used to describe a random experiment. This model is
given by a probability space (, A , P�), � � �, where

FUZZY STATISTICS BASED ON FUZZY PERCEPTIONS
OR REPORTS OF EXISTING NUMERICAL DATA•  is the sample space, which is defined so that each ele-

ment of  denotes an experimental outcome, and any ex-
In this section we consider situations in which the experimen-perimental performance results in an element of .
tal outcomes have been converted into numerical values, by

• A is a class of events of interest (which are assumed to
means of a classical random variable, but numerical data arebe identifiable with subsets of ), this class being a �-
fuzzily perceived or reported by the statistician or observer.field of , and
In this way, when we say that an item is expensive or a day

• P� is a probability measure defined on A (that is, a real is cool, there exist some underlying numerical values (the ex-
function from A which is nonnegative, normalized, and act price and temperature) so we are considering fuzzy per-
�-additive), which often involves some uncertain ele- ceptions or reports of some existing real-valued data.
ments that will be generically denoted by � (unknown The scheme of such situations is the following:
parameter value, unknown state of nature, or unknown
subindex), � being the parameter, state, or index space.

The mechanism of this model can be summarized as fol-
lows:

� → {Pθ , θ ∈ �} → � → R → F (R)

θ

experimental
distribution−−−−−−−→ Pθ

experimental
performance−−−−−−−→ ω

random
variable−−−−−→ X (ω)

perception
of report−−−−−−→ Ṽ

where F (�) means the class of fuzzy subsets Ṽ of �.

� → {Pθ , θ ∈ �} → � → A

θ

experimental
distribution−−−−−−−→ Pθ

experimental
performance−−−−−−−→ ω

event of
interest−−−−→ A (occurs if ω ∈ A)

To deal with these types of situations we can consider two
different approaches. The first one is based on the concept ofTo develop a more operational model to describe random

experiments, the outcomes can be ‘‘converted’’ into numerical fuzzy random variable, as intended by Kwakernaak (1,2), and
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Kruse and Meyer (3). The second one is based on the concept corresponding methods have been incorporated into the soft-
ware tool SOLD (Statistics on Linguistic Data) that offers sev-of fuzzy information [Okuda et al. (4), Tanaka et al. (5)].

The essential differences between these approaches lie in eral operations for analysing fuzzy random samples [Kruse
(25), Kruse and Gebhardt (26)].the nature of the parameters and in the probabilistic assess-

ments. Thus, parameters in the first approach are assumed In the following sections we introduce the concept of a
fuzzy random variable and outline how to use it for the devel-to be either fuzzy (fuzzy perceptions of unknown classical pa-

rameters) or crisp, whereas parameters in the second one are opment of a theory of fuzzy probability and fuzzy statistics.
Additionally, we show some implementation aspects and fea-always assumed to be crisp (the classical parameters of the

original random variable). On the other hand, in the approach tures of the mentioned software tool SOLD.
based on fuzzy random variables probabilities often refer to
fuzzy variable values and inferences are commonly fuzzy, Fuzzy Random Variables. Introducing the concept of a fuzzy

random variable means that we deal with situations in whichwhereas in the approach based on fuzzy information probabil-
ities are initially assessed to the underlying numerical values two different types of uncertainty appear simultaneously,

namely randomness and possibility. Randomness refers to theand inferences are crisp.
description of a random experiment by a probability space (,
A , P�), and we assume that the whole information that isApproach Based on Fuzzy Random Variables
relevant for further analysis of any outcome of the random

Whenever an extension of probability theory to nonstandard experiment can be expressed with the aid of a real number,
data is going to be established, the fundamental aim is to so that we can specify a mapping U :  � �, which assigns to
provide an appropriate concept of a generalized random vari- each outcome in  its random value in �, U being a random
able that allows one to verify the validity of essential limit variable.
theorems such as the strong law of large numbers and the Possibility as a second kind of uncertainty in our descrip-
central limit theorem. In the case of set-valued data, the gen- tion of a random experiment has to be involved whenever we
eralized random variable is a random set [Matheron (6), Ken- are not in the position to fix the random values U(�) as crisp
dall (7), Stoyan et al. (8)], for which a strong law of large numbers in �, but only to imperfectly specify these values by
numbers was proved in Artstein and Vitale (9). With regard possibility distributions on �. In this case, the random vari-
to fuzzy data and the basic notions of a fuzzy random variable able U :  � � changes into a fuzzy random variable X :  �
[Kwakcrnaak (1)], and random fuzzy set (which are also re- F (�) with F (�) � �Ṽ � Ṽ : � � [0, 1]� denoting the class of all
ferred to in the literature as fuzzy random variables) intro- fuzzy subsets (unnormalized possibility distributions) of the
duced by Puri and Ralescu (10), an analogous theorem can be real numbers.
formulated [Ralescu (11), Kruse (12), Miyakoshi and Shimbo A fuzzy random variable X :  � F (�) is interpreted as a
(13), Klement et al. (14), and Kruse and Meyer (3)]. It sup- (fuzzy) perception of an inaccessible usual random variable
ports the development of a fuzzy probability theory and thus, U0 :  � �, which is called the original of X . The basic idea
the laying down of the concepts for mathematical statistics on is to assume that the considered random experiment is char-
fuzzy sets. The monographs Kruse and Meyer (3), and Bande- acterized by U0, but the available description of its attached
mer and Näther (15) describe the theoretical and practical random values U0(�) is imperfect in the sense that their most
methods of fuzzy statistics in much detail. For comparable specific specification is the possibility distribution X � � X (�).
discussions and alternative approaches we mention, for in- In this case, for any r � �, the value X �(r) quantifies the
stance, Gil (16), Czogala and Hirota (17), Hirota (18), Viertl degree of possibility with which the proposition U0(�) 	 r is
(19,20), Tanaka (21), Kandel (22). regarded as being true.

The background of fuzzy statistics can be distinguished More particularly, X �(r) 	 0 means that there is no sup-
from two different viewpoints of modelling imperfect informa- porting evidence for the possibility of truth of U0(�) � r,
tion using fuzzy sets. The first one regards a fuzzy datum as whereas X �(r) 	 1 means that there is no evidence against
an existing object, for example a physical grey scale picture. the possibility of truth of U0(�) � r, so that this proposition
Therefore, this view is called the physical interpretation of is fully possible, and X �(r) � (0, 1) reflects that there is evi-
fuzzy data. The second view, the epistemic interpretation, ap- dence that supports the truth of the proposition as well as
plies fuzzy data to imperfectly specify a value that is existing evidence that contradicts it, based on a set of competing con-
and precise, but not measurable with exactitude under the texts for the specification of U0(�).
given observation conditions. Thus, the first view does not ex- Recent research activities in possibility theory have deliv-
amine real-valued data, but objects that are more complex. In ered a variety of different approaches to the semantic back-
the most simple case we need multivalued data, as they turn ground of a degree of possibility, similar to the several inter-
up in the field of random sets. pretations that have been proposed with respect to the

In this section we restrict ourselves to considering the sec- meaning of subjective probabilities [Shafer (27), Nguyen (28),
ond view (since the first view is considered in the next sec- Kampé de Fériet (29), Wang (30), Dubois et al. (31)]. A quite
tion), namely the extension of traditional probability theory promising way of interpreting a possibility distribution
and mathematical statistics from the treatment of real-valued X � : � � [0, 1] is that of viewing X � in terms of the context
crisp data to handling fuzzy data in their epistemic interpre- approach [Gebhardt (32), Gebhardt and Kruse (33,34)]. It is
tation as possibility distributions [Zadeh (23), Dubois and very important to provide such semantical underpinnings in
Prade (24)]. The statistical analysis of this sort of data was order to obtain a well-founded concept of a fuzzy random vari-
first studied by Kwakernaak (1,2). An extensive investigation able. On the other hand, the following results are presented
of relevant aspects of statistical inference in the presence of in a way that makes it sufficient for the reader to confine

himself to the intuitive view of a possibility distribution X �possibilistic data can be found in Kruse and Meyer (3). The
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as a gradual constraint on the set � of possible values [Za- fuzzy probability theory is based on the idea that a fuzzy ran-
dom variable is considered as a (fuzzy) perception of an inac-deh (23)].

The concept of a fuzzy random variable is a reasonable ex- cessible usual random variable U0 :  � �, which we referred
to as the unknown original of X.tension of the concept of a usual random variable in the many

practical applications of random experiments where the im- Let H � �U � U :  � � and U Borel-measurable w.r.t. (,
A )� be the set of all one-dimensional random variables w.r.t.plicit assumption of data precision seems to be an inappropri-

ate simplification rather than an adequate modelling of the (, A , P�).
If only fuzzy data are available, then it is of course notreal physical conditions. Considering possibility distributions

allows one to involve uncertainty (due to the probabilities of possible to identify one of the candidates in U as the true
original of X , but we can evaluate the degree of possibilityoccurrence of competing specification contexts) as well as im-

precision [due to the context-dependent set-valued specifica- OrigX (U) of the truth of the statement ‘‘U is the original of
X ,’’ determined by the following possibility distributiontions of U0(�)]. For this reason a frequent case in applications,

namely using error intervals instead of crisp points for mea- OrigX on U :
suring U0(�), is covered by the concept of a fuzzy random
variable. OrigX : H → [0, 1], U �→ infω∈�{Xω(U (ω))}

Note that fuzzy random variables describe situations
The definition of OrigX shows relationships to random setwhere the uncertainty and imprecision in observing a random

theory (Matheron (6)) in the way that for all � � [0, 1],value U0(�) is functionally dependent on the respective out-
(OrigX )� coincides with the set of all selectors of the randomcome �. If observation conditions are not influenced by the
set X � :  � B �, X �(�) � (X �)�.random experiment, so that for any �1, �2, � , the equality

Zadeh’s extension principle, which can be justified by theof random values U0(�1) and U0(�2) does not imply that their
context approach mentioned previously [Gebhardt and Kruseimperfect specifications with the aid of possibility functions
(33)], helps us to define fuzzifications of well-known probabil-are the same, then theoretical considerations in fuzzy statis-
ity theoretical notions. As an example, consider the general-tics become much simpler, since in this case we do not need
ization of characteristic parameters of crisp random variablesanymore a concept of a fuzzy random variable. It suffices to
to fuzzy random variables:generalize operations of traditional statistical inference for

If �(U) is a characteristic of a classical random variablecrisp data to operations on possibility distributions using the
U :  � �, thenwell-known extension principle [Zadeh (35)]. We reconsider

this topic later.
After the semantical underpinnings and aims of the con-

γ (X ) : R → [0, 1], t �→ sup
U∈U ,γ (U )=t

inf
ω∈�

{Xω(U (ω))}
cept of a fuzzy random variable have been clarified, we will
now present its full formal definition and show how to use it turns out to be the corresponding characteristic of a fuzzy
for a probability theory based on fuzzy sets. Let F N(�) be the random variable. For example, expected value and variance
class of all normal fuzzy sets of the real line. Moreover, let of a fuzzy random variable are defined as follows:
F c(�) denote the class of all upper semicontinuous fuzzy sets

DefinitionṼ � F N(�), which means that for all � � (0, 1], the �-cuts
Ṽ� � �x � � � Ṽ(x) 
 �� are compact real sets.

(a) Ẽ(X ) : � � [0, 1], t � sup�OrigX (U) � U � H , E(�U�) �
�, E(U) � t�, is called the expected value of X .Definition. Let (, A , P�) be a probability space. A function

X :  � F c(�) is called a fuzzy random variable, if and only (b) Var
�

(X ) : � � [0, 1], t � sup�OrigX (U) � U � H , E(�U
if 	 E(U)�2 � �, E[(U 	 E(U))2] � t� is the variance of X .

There are also definitions for a real-valued variance [see
Bandemer and Näther (15), Näther (36), and recently Körner
(37)], but they are introduced on the basis of the Fréchet ap-

inf Xα : � → R, ω �→ inf(X (ω))α

and
sup Xα : � → R, ω �→ sup(X (ω))α

proach and will be concerned in fact with random fuzzy sets.
In a similar way, other notions of probability theory andare Borel-measurable for all � � (0, 1).

descriptive statistics can be generalized to fuzzy data. Based
on the semantically well-founded concept of a fuzzy randomThe notion of a fuzzy random variable and the related no-
variable, the fuzzification step is quite simple, since it onlytion of a probabilistic set were introduced by several authors
refers to an appropriate application of the extension principle.in different ways. From a formal viewpoint, the definition in
The main theoretical problem consists in finding simplifica-this section is similar to that of Kwakernaak (1,2) and Miya-
tions that support the development of efficient algorithms forkoshi and Shimbo (13). Puri and Ralescu (10) and Klement
calculations in fuzzy statistics. It turns out that the hori-et al. (14) considered fuzzy random variables [which will be
zontal representation of fuzzy sets and possibility distribu-hereafter referred to as random fuzzy sets] as measurable
tions by using the family of their �-cuts is more appropriatemappings whose values are fuzzy subsets of �k, or, more gen-
than fixing on the vertical representation that attaches aerally, of a Banach space; this approach involves distances on
membership degree or a degree of possibility to each elementspaces of fuzzy sets and measurability of random elements
of the domain of the respective fuzzy set or possibility distri-valued in a metric space.
bution.

The horizontal representation has the advantage that itFuzzy Probability Theory and Descriptive Statistics. Our gen-
eralization of concepts of traditional probability theory to a reduces operations on fuzzy sets and possibility distributions
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to operations on �-cuts [Kruse et al. (38)]. Nevertheless, many K c(�), defined for A, B � K c(�) by
algorithms for efficient computations in fuzzy statistics re-
quire deeper theoretical effort. For more details, see Kruse dH (A,B) = max

{
sup
a∈A

inf
b∈B

|a − b|, sup
b∈B

inf
a∈A

|a − b|
}

and Meyer (3).
Complexity problems may also result from nontrivial with � � � denoting the euclidean norm in �.

structures of probability spaces. Tractability therefore often
The second approach to statistics with fuzzy data is notmeans that one has to confine oneself to the consideration of

based on the concept of a fuzzy random variable, but ratherfinite probability spaces or to use appropriate approximation
on the presupposition that there is a generic random variabletechniques[Kruse and Meyer (3)].
U :  � �, a crisp random sample U1, . . ., Un (that is, U1,The following theorem shows that a convenient representa-
. . ., Un are i.i.d. from the distribution of U), and a corre-tion of the fuzzy expected value as one example for a charac-
sponding realization (u1, . . ., un) imperfectly specified byteristic of a fuzzy random variable X is derived under certain
(Ṽ1, . . ., Ṽn) � [F c(�)]n.restrictions on X .

Furthermore let U1, . . ., Un i.i.d. from the distribution
function Fu and T(u1, . . ., un) be a realization of a statisticalTheorem. Let X :  � F c(�) be a finite fuzzy random vari-
function T(U1, . . ., Un). The target is to calculate the corre-able such that X () � �Ṽ1, . . ., Ṽn� and pi � P(�� �  � X � sponding fuzzy statistical function T(Ṽ1, . . ., Ṽn).� Ṽi�), i � 1, . . ., n. Then, As an example consider the problem of computing fuzzy
parameter tests:

Suppose that FU depends on a parameter � � � of a prede-
fined parameter space � � �k, k � �. Let D be a class of

{[
n∑

i=1

pi inf(Ṽi)α,

n∑
i=1

pi sup(Ṽi)α

]}
α∈(0,1]

distribution functions, FU � D , D : � � D a mapping, and
�0, �1 � � two disjoint sets of parameters.is an �-cut representation of E(co(X )), where co(X ) :  �

A function � : �n � �0, 1� is called nonrandomized parame-F c(�) is defined by co(X )(�) � co(X �) with co(X �) denoting
ter test for (�, �0, �1) with respect to D based on a giventhe convex hull of X �.
significance level � � (0, 1), null hypothesis H0 : � � �0, and
alternative hypothesis H1 : � � �1, if and only if � is Borel-Fuzzy Statistics. When fuzzy sets are chosen to be applied
measurable and, for all � � �0, E(�(U1, . . ., Un)�P�) � �)in mathematical statistics we have to consider two conceptual
holds for U1, . . ., Un i.i.d. from FU.different approaches. The first one strictly refers to the con-

By application of the extension principle we obtain the cor-cept of a fuzzy random variable. It assumes that, given a ge-
responding fuzzy parameter test, where the calculation ofneric X :  � F c(�) and a fuzzy random sample X 1, . . ., X n
�(Ṽ1, . . ., Ṽn) often turns out to be a time-consuming task.independent and identically distributed from the distribution
For this reason we present one of the simple extensions,of X , the realization of an underlying random experiment is
which is the fuzzy chi-square test.formalized by a tuple (Ṽ1, . . ., Ṽn) � [F c(�)]n of fuzzy-valued

outcomes. Kruse and Meyer (3) verified that all important Theorem. Let N be the class of all normal distributions
limit theorems (e.g., the strong law of large numbers, the cen- N(�, �2) and U :  � � a N(�0, �̂2)-distributed random vari-
tral limit theorem, and the theorem of Gliwenko–Cantelli) re- able with given expected value �0, but unknown �̂ � � �
main valid in the more general context of fuzzy random vari- ��. Define D : � � N , D(�) � N(�0, �2), �0 � ��0�, �1 �
ables. From this it follows that the extension of mathematical ���0, and choose U1, . . ., Un i.i.d. from FU and � � (0, 1).
statistics from crisp to fuzzy data is well-founded. As an ex- Suppose � : �n � �0, 1� to be the nonrandomized double-sided
ample for the generalization of an essential theorem we pre- chi-square test for (�, �0, �1) with respect to D. If (Ṽ1, . . .,
sent a fuzzy data version of the strong law of large numbers. Ṽn) � [F c(�)]n, then �(Ṽ1, . . ., Ṽn) is the realization of the
More general versions can be found in Klement et al. (14), corresponding fuzzy chi-square test. For � � (0, 1] we obtain
Meyer (39), Kruse and Meyer (3).

Theorem. Let �X i�i�� be an i.i.d.-sequence on the probabil-
ity space (, A , P�) with the generic fuzzy random variable
X :  � F c(�). Let E(�(inf X i)0�) � � and E(�(sup X i)0�) � �.
Then there exists a null set N (i.e., a set with probability zero)
such that for all � � �N

�
�(Ṽ1, . . ., Ṽn)

�
α

=




{0} iff Iα (Ṽ1, . . ., Ṽn) > σ 2
0 χ2

δ/2(n)

and Sα (Ṽ1, . . ., Ṽn) < σ 2
0 χ2

1−δ/2(n)

{1} iff Sα(Ṽ1, . . ., Ṽn) ≤ σ 2
0 χ2

δ/2(n)

and Iα (Ṽ1, . . ., Ṽn) ≥ σ 2
0 χ2

1−δ/2(n)

{0, 1} otherwise

where �2
�/2(n) denotes the �/2-quantile of the chi-square distri-lim

n→∞ d∞

�
1
n

n∑
i=1

Xi(ω), Ẽ(X )

�
= 0

bution with n degrees of freedom, and

where d� is the so-called generalized Hausdorff metric [first
time introduced by Puri and Ralescu (40)], defined for Ṽ,
W̃ � F c(�) as follows:

d∞(Ṽ ,W̃ ) = sup
α∈(0,1]

dH (Ṽα,W̃α )

dH being the Hausdorff metric on the collection of nonempty
compact (and often assumed to be convex) subsets of �,

Iα (Ṽ1, . . ., Ṽn) =
n∑

i=1,inf(Ṽi )α ≥µ

�
inf(Ṽi)α − µ

�2

+
n∑

i=1,sup(Ṽi )α ≤µ

�
µ − sup(Ṽi)α

�2

Sα (Ṽ1, . . ., Ṽn) =
n∑

i=1

max
{�

inf(Ṽi)α − µ
�2

,
�

sup(Ṽi)α − µ
�2

}
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The SOLD-System: An Implementation. As an example for can be recognized already in the following example of de-
termining a fuzzy estimator for the variance.the application of many of the concepts, methods, and results

discussed here, we briefly present the software tool SOLD Let U :  � � be a random variable defined with respect
to a probability space (, A , P�) and FU its distribution func-(Statistics on Linguistic Data) [Kruse and Gebhardt (26)],

that supports the modelling and statistical analysis of linguis- tion. By a realization (u1, . . ., un) � �n of a random sample
(U1, . . ., Un) with random variables Un :  � �, n 
 2, thattic data, which are representable by fuzzy sets.

An application of the SOLD system consists of two steps, are completely independent and equally distributed according
to FU, the parameter Var(U) can be estimated with the helpwhich have to be considered separately with regard to their

underlying concepts. In the first step (specification phase) of the variance of the random sample, defined as
SOLD enables its user to create an application environment
(e.g., to analyze weather data), that consists of a finite set of
attributes (e.g., clouding, temperature, precipitation) with
their domains (intervals of real numbers, e.g., [0, 100] for the

Sn(U1, . . .,Un) = 1
n − 1

�
n∑

i=1

�
Ui − 1

n

n∑
j=1

Uj

�2
�

clouding of the sky in %). For each attribute A the user states
several (possibly parameterized) elementary linguistic values Sn(U1, . . ., Un) is an unbiased, consistent estimator for
(e.g., cloudy or approximately 75% as fuzzy degrees of the Var(U).
clouding of the sky) and defines for all of these values w the If (Ṽ1, . . ., Ṽn) � [F Dk

(�)]n is the specification of a fuzzy
fuzzy sets Ṽw, that shall be associated with them. For this observation of (u1, . . ., un) for a given k � �, then by
reason SOLD provides 15 different classes of parameterized applying the extension principle we obtain the following fuzzy
fuzzy sets of � (e.g., triangular, rectangular, trapezoidal, estimator for Var(U):
Gaussian, and exponential functions) as well as 16 logical and
arithmetical operators (and, or, not, �, 	, *, /, **) and func-
tions (e.g., exp, log, min, max), that are generalized to fuzzy
sets using the extension principle.

The application of context-free generic grammars GA per-

Ŝn : [FDk
(R)]n → [FDk

(R)]
Ŝn(Ṽ1, . . ., Ṽn)(y) = sup

{
min{Ṽ1(x1), . . ., Ṽn(xn)}|(x1, . . ., xn)

∈ Rn and Sn(x1, . . ., xn) = y
}

mits the combination of elementary linguistic values by logic
For � � (0, 1], this leads to the �-cutsoperators (and, or, not) and linguistic hedges (very, consider-

able) to increase or decrease the specificity of fuzzy data. By
this, formal languages L(GA) are obtained, which consist of
the linguistic expressions that are permitted to describe the
values of the attributes A (e.g., cloudless or fair as a linguistic
expression with respect to the attribute clouding).

In the second step (analysis phase) the application envi-
ronments created in the specification phase can be applied to
describe realizations of random samples by tuples of linguistic

�
Ŝn(Ṽ1, . . ., Ṽn)

�
α

= Sn
�
(Ṽ1)α, . . ., (Ṽn)α

�
=

{
y | ∃(x1, . . ., xn) ∈

n∏
i=1

(Ṽi)α : Sn(x1, . . ., xn) = y

}

=

y |∃(x1, . . ., xn) ∈

n∏
i=1

(Ṽi)α :
1

n − 1

n∑
i=1

�
xi − 1

n

n∑
j=1

xj

�2

= y




expressions. Since the random samples consist of existing nu-
meric values, that generally cannot be observed exactly, the It is
fuzzy sets, which are related to the particular linguistic ex-
pressions, are interpreted epistemically as possibility distri-
butions.

The SOLD system allows one to determine convex fuzzy
Sn
�
(Ṽ1)α, . . ., (Ṽn)α

� ⊆ 1
n − 1

n∑
i=1

�
(Ṽi)α − 1

n

n∑
j=1

(Ṽj )α

�2

estimators for several characteristic parameters of the ge-
neric random variables for the considered attributes (e.g., for and equality does not hold in general, so that Sn[(Ṽ1)�, . . .,

(Ṽn)�] cannot be determined by elementary interval arith-the expected value, variance, p-quantile, and range). In addi-
tion SOLD calculates fuzzy estimates for the unknown pa- metics.

Therefore, the creation of SOLD had to be preceded by fur-rameters of several classes of given distributions and also de-
termines fuzzy tests for one- or two-sided hypotheses with ther mathematical considerations that were helpful to the de-

velopment of efficient algorithms for the calculation of fuzzyregard to the parameters of normally distributed random
variables. estimators. Some results can be found in Kruse and Meyer (3)

and Kruse and Gebhardt (41).The algorithms incorporated in this tool are based on the
original results about fuzzy statistics that were presented in The fuzzy set � calculated during the analysis phase by

statistical inference with regard to an attribute A (e.g., fuzzythe monograph Kruse and Meyer (3). For reasons of efficiency,
in SOLD only fuzzy sets of the classes F Dk

(�) are employed, estimation for the variance of the temperature) is not trans-
formed back to a linguistic expression by SOLD, as might benamely the subclasses of F N(�) that consist of the fuzzy sets

with membership degrees out of �0, 1/k, . . . 1�, and �-cuts expected at first glance. The fundamental problem consists in
the fact that in general no w � L(GA) can be found, for whichthat are representable as the union of a finite number of

closed intervals. In this case the operations to be performed � 	 Ṽw holds. Consequently one is left to a linguistic approxi-
mation of �, that is, to find those linguistic expressions w ofcan be reduced to the �-cuts of the involved fuzzy sets [Kruse

et al. (38)]. Nevertheless the simplification achieved by this L(GA), whose interpretations Ṽw approximate the fuzzy set �
under consideration as accurately as possible. The distancerestriction does not guarantee that we gain an efficient imple-

mentation, since operations on �-cuts are not equivalent to between two fuzzy sets is measured with the help of the gen-
eralized Hausdorff metric d�.elementary interval arithmetics. The difficulties that arise
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The aim of this linguistic approximation is to determine a able X, and the perceptions or reports from X are fuzzy, the
sample fuzzy information (Ṽ1, . . ., Ṽk) is often intended aswopt � L(GA) that satisfies for all w � L(GA) that
the element of F (�k) given by the product aggregation of Ṽ1,
. . ., and Ṽk (that is, (Ṽ1, . . ., Ṽk)(x1, . . ., xk) � Ṽ1(x1) � . . . �d∞(Ṽwopt

, ν) ≤ d∞(Ṽw, ν)

Ṽk(xk) for all (x1, . . ., xk) � �k).
Eventually, the class C of the available fuzzy perceptions/Since this optimization problem in general is very difficult

reports should be assumed to be a fuzzy partition [in Ruspini’sand can lead to unsatisfactory approximations, if L(GA) is cho-
sense (45)], that is, �Ṽ�C Ṽ(x) � 1 for all x � �, which issen unfavorably (Hausdorff distance too large or linguistic ex-
usually referred to as a fuzzy information system associatedpressions too complicated), SOLD uses the language L(GA)
with the random experiment (�, B �, PX

� ), � � �. Of course, ifonly to name the fuzzy data that appear in the random sam-
C is a fuzzy information system, then �Ṽ�C PX

� (Ṽ) � 1 for allples related to A in an expressive way. SOLD calculates the
� � �.Hausdorff distance d�(Ṽw, �) between � and a fuzzy set Ṽw,

On the basis of the model we have just presented, severalprovided by the user as a linguistic expression w � L(GA),
statistical problems involving fuzzy experimental data can bethat turns out to be suitable, but does not carry out a linguis-
formulated and solved. We are now going to summarize mosttic approximation by itself, since the resulting linguistic ex-
of the methods developed in the literature to deal with thesepression would not be very useful in order to make a decision
problems, and we will describe in more detail a few of them.making in consequence of the statistical inference.

Before concluding this section, it should be mentioned that
Parameter Estimation from Fuzzy Information. The aim of theaddition and product by a real number of fuzzy numbers

point parameter estimation problem on the basis of fuzzy ex-based on Zadeh’s extension principle (in fact, intervals arith-
perimental data is to make use of the information containedmetics) do not preserve all the properties of the real-valued
in these data to determine a single value to be employed ascase, so that in most situations
an estimate of the unknown value of the nonfuzzy parameter
�. To this purpose, the classical maximum likelihood method
has been extended by using Zadeh’s probabilistic definition

1
n − 1

n∑
i=1

�
(Ṽi)α − 1

n

n∑
j=1

(Ṽj )α

�2

[see Gil and Casals (46), Gil et al. (47,48)], and properties of
this extension have been examined. Another technique which

is not equivalent to has been suggested to solve this problem has been introduced
[Corral and Gil (49), Gil et al. (47,48)] to supply an opera-
tional approximation of the extended maximum likelihood es-
timates. This technique is defined as follows:

1
n − 1

�
n∑

i=1

�
(Ṽi)α

�2 − 1
n

�
n∑

j=1

(Ṽj )α

�2

Definition. Let (�, B �, PX
� ), � � �, be a random experimentApproach Based on Fuzzy Information

in which �PX
� , � � �� is a parametric family of probability mea-

If a random experiment involving a classical (one-dimen- sures dominated by the counting or the Lebesgue measure, �.
sional) random variable X is formalized by means of the in- Assume that the set �n � �(x1, . . ., xn)� L(x1, . . ., xn; �) � 0�
duced probability space (�, B �, PX

� ), � � �, in which � means does not depend on �. If we consider the sample fuzzy infor-
a (real or vectorial) parameter value, then in accordance with mation (Ṽ1, . . ., Ṽn) from the experiment, then the value
Okuda et al. (4), and Tanaka et al. (5) we have the following �*(Ṽ1, . . ., Ṽn) � �, if it exists, such that
definition.

Definition. An element Ṽ � F (�) such that Ṽ is a Borel- I
�
Ṽ1, . . ., Ṽn; θ∗(Ṽ1, . . ., Ṽn)

� = inf
θ∈�

I (Ṽ1, . . ., Ṽn; θ
�

measurable function from � to [0, 1] and supp Ṽ � X() is
withcalled fuzzy information associated with (�, B �, PX

� ), � � �.

As we have mentioned previously, the approach based on
fuzzy information considers that the available probabilities
refer to the distribution of the classical random variable. Za-

I (Ṽ1, . . ., Ṽn; θ ) = −
∫

X n
|(Ṽ1, . . ., Ṽn)|(x1, . . ., xn )

log L(x1, . . ., xn; θ ) dλ(x1) . . . dλ(xn)
deh (42) suggested a probabilistic assessment to fuzzy infor-
mation from the probability distribution of the original ran- which is the Kerridge inaccuracy between the membership
dom variable, which can be described as follows: function of the ‘‘standardized form’’ [Saaty (50)] of (Ṽ1, . . .,

Ṽn), that will be denoted by �(Ṽ1, . . ., Ṽn)�( � ), and the likeli-
Definition. The probability of the fuzzy information Ṽ in- hood function of �, L( � ; �), is called minimum inaccuracy esti-
duced from PX

� is given by the Lebesgue–Stieltjes integral mate of � for the sample fuzzy information (Ṽ1, . . ., Ṽn).

Some of the most valuable properties of the precedingP X
θ (Ṽ ) =

∫
R

Ṽ (x) dPX
θ (x)

method [see Corral and Gil (49), Gil et al. (47,48), Gebhardt
et al. (51)] are those concerning the existence and uniqueness(which can be considered as a particularization of LeCam’s
of the minimum inaccuracy solutions:probabilistic definition (43,44), for single stage experiments).

When the induced probability space corresponds to a ran- Theorem. Let (�, B �, PX
� ), � � �, be a random experiment

in which �PX
� , � � �� is a parametric family of probability mea-dom sample of size k from a one-dimensional random vari-



188 FUZZY STATISTICS

sures dominated by the counting or the Lebesgue measure. simple hypotheses [Casals et al. (53), Casals and Gil (54)],
and the likelihood ratio test [Gil et al. (48)] for fuzzy dataAssume that the experiment satisfies the following regularity

conditions: (i) � is a real interval which is not a singleton; (ii) have been developed.
On the other hand, some significance tests, like the chi-the set �n does not depend on �; (iii) PX

� is associated with a
parametric distribution function which is regular with respect square and the likelihood ratio test for goodness of fit, have

also been extended to deal with fuzzy sample information [seeto all its second �-derivatives in �. Suppose that the sample
fuzzy information (Ṽ1, . . ., Ṽn) satisfies the following regular- Gil and Casals (46), Gil et al. (47,48)].

In particular, the last technique can be presented as fol-ity conditions: (iv) �(Ṽ1, . . ., Ṽn) � 

�

n �(Ṽ1, . . ., Ṽn)�(x1, . . .,
xn) d�(x1) . . . d�(xn) � � and I (Ṽ1, . . ., Ṽn; �) � �, for all � lows [see Gil et al. (48)]:
� �; (v) the product function �(Ṽ1, . . ., Ṽn)�( � ) log L( � ; �) is
‘‘regular’’ with respect to all its first and second �-derivatives Theorem. Let (�, B �, PX

� ), � � �, be a random experiment
in �, in the sense that and let C be a finite fuzzy information system associated with

it. Consider the null hypothesis H0 : PX
� 	 Q. Then, the test

rejecting H0 if, and only if, the sample fuzzy information (Ṽ1,
. . ., Ṽn) satisfies that

∂

∂θ
I (Ṽ1, . . ., Ṽn; θ ) = −

∫
Xn

|(Ṽ1, . . ., Ṽn)|(x1, . . ., xn)
∂

∂θ

log L(x1, . . ., xn; θ ) dλ(x1) . . . dλ(xn)

and �(Ṽ1, . . ., Ṽn) = 2
∑
Ṽ ∈c

ν(Ṽ ) log
ν(Ṽ )

nQ(Ṽ )
> c∗

where � (Ṽ) is the observed absolute frequency of Ṽ in (Ṽ1,
. . ., Ṽn), Q(Ṽ) � 


�
Ṽ(x) dQ(x) is the (induced) expected prob-

∂2

∂θ2 I (Ṽ1, . . ., Ṽn; θ ) = −
∫
Xn

|(Ṽ1, . . ., Ṽn)|(x1, . . ., xn)
∂2

∂θ2

log L(x1, . . ., xn; θ ) dλ(x1) . . . dλ(xn)
ability of Ṽ if Q is the experimental distribution, and c* is the
1 	 � fractile of the chi-square distribution with r 	 1 degreesUnder the regularity conditions (i)–(v), if there is an estima-
of freedom (r being the cardinality of C ), is a test at a signifi-tor of � for the (nonfuzzy) simple random sample Xn 	 (�n,
cance level approximately � for large n. More precisely, un-

B �n, PX
� ), � � �, whose variance attains the Fréchet–

der H0 the statistic � is asymptotically distributed as a �2
r	1.Cramér–Rao bound, then the inaccuracy equation, �/�� I (Ṽ1,

. . ., Ṽn; �) � 0, admits a solution minimizing the inaccuracy
In Gil et al. (48), the last test has been generalized to dealI (Ṽ1, . . ., Ṽn; �) with respect to � in �.

with composite parameter hypotheses.Moreover, under the regularity conditions (i)–(v), let T(Xn)
be an estimator of � for the (non-fuzzy) simple random sam-

Statistical Decision Making from Fuzzy Information. The aimple Xn, attaining the Fréchet–Cramér–Rao lower bound for
of the problem of statistical decision making from fuzzy exper-the variance, and whose expected value is given by E�(T) �
imental data is to make use of the information contained inh(�), (h being a one-to-one real-valued function on �). Then,
these data to make a choice from a set of possible actions,for the sample fuzzy information (Ṽ1, . . ., Ṽn) the inaccuracy
when the consequences of choosing a decision are assumed toequation admits a unique solution minimizing the inaccuracy
depend on some uncertainties (states).I (Ṽ1, . . ., Ṽn; �) and taking on the value �*(Ṽ1, . . ., Ṽn) � �

If a Bayesian context is considered, so that a prior distribu-such that
tion associated with the state space is defined, the extension
of the Bayes principle of choice among actions has been devel-
oped [see Okuda et al. (4), Tanaka et al. (5), Gil et al. (55),
Gil (56)].

h
�
θ∗(Ṽ1, . . ., Ṽn)

� =
∫
Xn

|(Ṽ1, . . ., Ṽn)|

(x1, . . ., xn)T(x1, . . ., xn) dλ(x1) . . . dλ(xn)
In Gebhardt et al. (51) the extensive and normal forms of

Bayesian decision analysis have been described, and condi-The aim of the interval estimation problem on the basis of
tions for their equivalence have been given. As particulariza-fuzzy experimental data is to make use of the information
tions of the Bayes principle for statistical decision makingcontained in these data to determine an interval to be em-
from fuzzy data, the Bayes point estimation and hypothesisployed as an estimate of the unknown value of the nonfuzzy
testing techniques have been established [see Gil et al. (57),parameter �. To this purpose, Corral and Gil (52) have stated
Gil (56), Casals et al. (53,58). In addition, studies on thea procedure to construct confidence intervals.
Bayesian testing of fuzzy statistical hypotheses and on se-
quential tests from fuzzy data can be found in the literatureTesting Statistical Hypotheses from Fuzzy Information. The
[see Casals and Salas (59), Pardo et al. (60), Casals (61), Ca-aim of the problem of testing a statistical hypothesis on the
sals and Gil (62)].basis of fuzzy experimental data is to make use of the infor-

As an instance of these studies, we can recall the Bayesianmation contained in these data, either to conclude whether or
test of two simple fuzzy hypotheses, which has been statednot a given assumption about the experimental distribution
[Casals (61)] as follows:could be accepted, or to determine how likely or unlikely the

fuzzy sample information is if the hypothesis is true (de-
pending on the fact that either we use a concrete significance Theorem. Let (�, B �, PX

� ), � � �, be a random experiment
and let 	 be a prior distribution on a measurable space (�,level, or we compute the p-value, respectively).

To this purpose, techniques based exactly or asymptoti- D ) defined on �. Let �̃0 be a fuzzy subset on �, and let �̃c
0 be

its complement (in Zadeh’s sense). If A � �a0, a1� is the actioncally on the Neyman–Pearson optimality criterion have been
extended. More precisely, the Neyman–Pearson test of two space, with a0 � accepting the hypothesis ‘‘� is �̃0’’ and a1 �
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accepting the hypothesis ‘‘� is �̃c
0’’, and we consider the real- informative on the average as a (nonfuzzy) random sample of

size m from X is given byvalued loss function L : ��̃0, �̃c
0� � A such that L(�̃0, a0) �

L(�̃c
0, a1) � 0, L(�̃c

0, a0) � c0 � 0 and L(�̃0, a1) � c1 � 0, then
there exists a Bayes test with respect to the prior distribution
	 which chooses a0 if, and only if, (Ṽ1, . . ., Ṽn) satisfies that n = sup

θ∈�

mIF
X (θ )

IF
C (θ )

]

with ] denoting the greatest integer part.

FUZZY STATISTICS BASED ON
EXISTING FUZZY-VALUED DATA

∫
�

∫
Rn

�̃c
0(θ )(Ṽ1, . . ., Ṽn)(x1, . . ., xn) dPX

θ (x1) . . .

dP X
θ (xn) dπ(θ ) >

c1

c0

∫
�

∫
Rn

�̃0(θ )(Ṽ1, . . ., Ṽn)(x1, . . ., xn)

dPX
θ (x1) . . . dP X

θ (xn)dπ(θ )

In this section we consider situations in which the experimen-and a1 otherwise.
tal outcomes have been (directly) converted into fuzzy values,
by associating with each outcome � �  a fuzzy number or,On the other hand, and still in a Bayesian context, some
more generally, an element of F c(�k), k 
 1, where F c(�k) willcriteria to compare fuzzy information systems have been de-
denote henceforth the class of fuzzy subsets Ṽ of �k such thatveloped. In this sense, we can refer to the criterion based on
for each � � [0, 1] the �-cut Ṽ� is compact (that is, Ṽ is upperthe extension of the Raiffa and Schlaifer EVSI [expected
semicontinuous), V1 � 0�, Ṽ0 � cl[co(supp Ṽ)] is compact, andvalue of sample information (63)] [see Gil et al. (55)], and to
often Ṽ� is assumed to be convex for all � � [0, 1].that combining this extension with an informational measure

In these situations random fuzzy sets, as defined by Puri[see Gil et al. (64)].
and Ralescu (10) [see also Klement et al. (14), Ralescu (74)]

Quantification of the Information Contained in Fuzzy Experi- and originally and most commonly called in the literature
mental Data. The quantification of the information contained fuzzy random variables, represent an appropriate model.
in data about the experimental distribution is commonly car- The scheme of such situations is the following:
ried out through a measure of the amount of information as-
sociated with the experiment.

To this purpose, the expected Fisher amount of informa-
tion, the Shannon information, the Jeffreys invariant of the

� → {Pθ , θ ∈ �} → � → Fc(R
k )

θ

experimental
distribution−−−−−−−→ Pθ

experimental
performance−−−−−−−→ ω

random
variable−−−−−→ Ṽ

Kullback–Leibler divergence, and the Csiszár parametric and
nonparametric information, have been extended for fuzzy in- where � now represents a subindex.
formation systems and their properties have been examined To formalize the concept of random fuzzy set in Puri and
[see Gil et al. (65,66), Pardo et al. (67), Gil and Gil (68), Gil Ralescu’s sense, we have first to remark that F c(�k) can be
and López (69)]. Several criteria to compare fuzzy information endowed with a linear structure with the fuzzy addition and
systems have been developed on the basis of these measures, product by a real number based on Zadeh’s extension princi-
and the suitability of these criteria, along with their ple (35) (although F c(�k) is not a vector space with these oper-
agreement with the extension of Blackwell’s sufficiency com- ations), and it can be endowed with the d� metric, defined as
parison [introduced by Pardo et al. (70)], has been analyzed. indicated in the first approach in the previews section, and � � �

The preceding measures and criteria have been addition- denoting the Euclidean norm in �k. (F c(�k), d�) is a complete
ally employed to discuss the loss of information due to fuzzi- nonseparable metric space [see Puri and Ralescu (10), Kle-
ness in experimental data [see Gil (16,56), Okuda (71)]. This ment et al. (14)]. Then,
discussion has been used to examine the problem of choosing
the appropriate size of the sample fuzzy information to guar- Definition. Given the probability space (, A , P�), and the
antee the achievement of a desirable level of information, or metric space (F c(�k), d�), a random fuzzy set associated with
the increasing of the fuzzy sample size with respect to the this space is a Borel measurable function X :  � F c(�k). A
nonfuzzy one, to compensate the loss of information when random fuzzy set X is said to be integrably bounded if �X 0�
only fuzzy experimental data are available. � L1(, A , P�) (i.e., �X 0� is integrable with respect to (, A ,

The main conclusion in this last study for the well-known P�)), where �X 0(�)� � dH(�0�, X(�)) � supx�X(�)�x� for all � � .
Fisher information measure [Fisher (72,73)] is gathered in
the following result [Gil and López (69)]: If X is a random fuzzy set in Puri and Ralescu’s sense, the

set-valued mapping X � :  � K c(�k) defined by X �(�) �
Theorem. Let X 	 (�, B �, PX

� ), � � �, be a random experi- (X (�))� for all � �  is a compact (often convex) random set
ment and let C be a fuzzy information system associated with for all � � [0, 1] (i.e., a Borel-measurable function from  to
it. The value of the Fisher information function associated K c(�k)).
with X, IF

X(�), is greater than or equal to that associated with When X is a random fuzzy set, an average value of X
C , IF

C(�), for all � � �, where should be essentially fuzzy. In this sense, for an integrably
bounded random fuzzy set, the fuzzy expected value has been
introduced by Puri and Ralescu (10) as follows:IF

C (θ ) =
∑
Ṽ∈c

[
∂

∂θ
log P X

θ (Ṽ )

]2

P X
θ (Ṽ )

Definition. If X is an intregably bounded random fuzzy set
associated with the probability space (, A , P�), then theOn the other hand, the smallest size n of the sample fuzzy

information from C which can be guaranteed to be at least as fuzzy expected value of X is the unique fuzzy subset of �k,
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Ẽ(X ), satisfying that (Ẽ(X ))� � 



X � dP� for all � � (0, 1], On the other hand, Li and Ogura (86–90) have studied set-
valued functions and random fuzzy sets whose �-cut functions



X � dP� being the Aumann’s integral of the random set X �

(75), that is, 



X � dP� � �E( f)�f � L1(, A , P�), f � X � are closed rather than compact. The completeness of the
space of these random fuzzy sets and the existence theorema.s.[P�]�, where E( f) is the (classical) expected value of the

(real-valued) L1(, A , P�)-random variable f . of conditional expectations have been obtained. Furthermore,
regularity theorems and convergence theorems in the Kura-
towski–Mosco sense have been proven for both, closed set-Zhong and Zhou (76) have proven that in the case in which
and fuzzy-valued martingales, sub- and super-martingales, byk � 1 and mappings are F c(�)-valued (although the assump-
using the martingale selection method instead of the embed-tion of compactness for X 0(�) is not presupposed), Puri and
ding method, which is the usual tool in studies for compactRalescu’s definition coincides with Kruse and Meyer’s one. On
ones.the basis of the last model [whose mathematical background

has been also examined in Diamond and Kloeden (77)], sev-
eral studies have been developed. We are now going to sum- Inferential Statistics from Random Fuzzy Sets
marize most of them.

Several inferential problems (point estimateion, interval esti-
mation, and hypothesis testing), concerning fuzzy parametersProbabilistic Bases of Random Fuzzy Sets
of random fuzzy sets, have been analyzed (see, for instance,

Several studies based on Puri and Ralescu’s definition have Ralescu (11,74,91,92), Ralescu and Ralescu (83,93).
been devoted to establish proper probabilistic bases to develop Some useful results in traditional statistics, like the
statistical studies. Brunn–Minkowski and the Jensen inequality, have been ex-

Among these bases, we can point out the following: the tended for random fuzzy sets [see Ralescu (74,92)].
characterization of random fuzzy sets and integrably bounded The one extending the well-known and valuable Jensen in-
random fuzzy sets, as dH- and d�-limits of sequences and dom- equality can be presented as follows:
inated sequences, respectively, of certain operational types of
random fuzzy sets [see López-Dı́az (78), López-Dı́az and Gil Theorem. Let (, A , P�) be a probability space and let X :
(79,80)]. As a consequence of this characterization, two practi-  � F c(�k) be an integrably bounded random fuzzy set associ-
cal ways for the computation of the fuzzy expected value of ated with (, A , P�). If � : F c(�k) � � is a convex function
an integrably bounded random fuzzy set exist. (that is, �((� � Ṽ) � ((1 	 �) � W̃)) � ��(Ṽ) � (1 	 �)�(W̃)

In this way, the following characterizations of integrably for all Ṽ, W̃ � F c(�k)), then
bounded random fuzzy sets have been presented in detail in
López-Dı́az and Gil (79,80): ϕ

�
Ẽ(X )

� ≤ E(ϕ ◦◦◦X )

Theorem. Let (, A , P�) be a probability space. A fuzzy-val- The problem of quantifying the relative inequality associ-
ued mapping X :  � F c(�k) is an integrably bounded random ated with random fuzzy sets has been studied [see Corral et
fuzzy set associated with (, A , P�) if, and only if, there exists al. (94), López-Garcı́a (95), Gil et al. (96)]. This study intro-
a sequence of simple (that is, having finite image) random duces some measures of the extent or magnitude of the in-
fuzzy sets, �X m�m, X m :  � F c(�k), associated with (, A , equality associated with fuzzy-valued variables (like some lin-
P�), and a function h :  � �, h � L1(, A , P�), such that guistic or opinion variables, and so on), which could not be
�(X m)0(�)� � h(�) for all � �  and m � �, and such that quantified by means of classical indices [like those given by

Gastwirth (97)]. As a consequence, the class of fields the mea-lim
m→∞ dH ((Xm)α(ω), Xα (ω)) = 0

surement of inequality can be applied to will significantly in-
crease (so that, not only economics and industry, but psychol-

for all � �  and for each � � (0, 1]. ogy, social sciences, engineering, medicine, etc., will benefit
On the other hand, X is an integrably bounded random from the conclusions of this study). Main properties of the

fuzzy set associated with (, A , P�) if, and only if, there exists classical inequality indices, like the mean independence, the
a sequence of random fuzzy sets associated with (, A , P�), population homogeneity, the principles of transfers, the
�X m�m, X m :  � F c(�k), with simple �-cut functions, (X m)�, Schur-convexity, the symmetry, and the continuity (in terms
and a function h :  � �, h � L1(, A , P�), such that of d�), are preserved for the fuzzy-valued indices introduced
�(X m)0(�)� � h(�) for all � �  and m � �, and such that in López-Garcı́a (95) and Gil et al. (96)

In López-Garcı́a (95), a convenient software to compute the
fuzzy expected value and the fuzzy inequality indices haslim

m→∞ d∞((Xm)(ω), X (ω)) = 0

been developed. This software permits an easy graphical rep-
for all � � . resentation of the computed values by integrating it in com-

mercial applications.
In López-Dı́az and Gil (81,82), conditions are given to com- The problem of measuring the mean dispersion of a ran-

pute iterated fuzzy expected values of random fuzzy sets, irre- dom fuzzy set with values in F c(�) with respect to a concrete
spectively of the order of integration. element in F c(�) (and, in particular, with respect to the fuzzy

Some limit theorems, as a strong law of large numbers and expected value of the random fuzzy set) has been examined
a central limit theorem (in which the notion of normal ran- in Lubiano et al. (98). The suggested measure, which will be

referred to as the �
�
-mean square dispersion is real-valued,dom fuzzy set is introduced) have been obtained for these ran-

dom fuzzy sets [see Ralescu and Ralescu (83), Klement et al. since it has been introduced not only as a summary measure
of the extent of the dispersion, but rather with the purpose of(14,84), Negoita and Ralescu (85), Ralescu (74)].
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comparing populations or random fuzzy sets when necessary. By using the concepts of random fuzzy set and its fuzzy
expected value, and the ranking of fuzzy numbers given byThe approach to get the extension of the variance for a ran-

dom fuzzy set differs from that by Näther (36) and Körner Campos and González (109) (the �-average ranking method),
(37), although coincides with it for a particular choices of �

�
. the concept of fuzzy utility function in the fuzzy expected util-

Another statistical problem which has been discussed is ity approach has been introduced [Gil and López-Dı́az (101),
that of estimating some population characteristics associated López-Dı́az (78)]. Gil and López-Dı́az (101) [see also Gebhardt
with random fuzzy sets (like the fuzzy inequality index) in et al. (51)] have developed Bayesian analyses (in both, the
random samplings from finite populations [see López-Garcı́a normal and the extensive form) of the statistical decision
(95), López-Garcı́a et al. (99)]. problem with fuzzy utilities, and conditions have been given

As an example of the results obtained in the last discus- for the equivalence of these two forms of the Bayesian
sions, the following result has been stated [see López-Garcı́a analysis.
(95), López-Garcı́a et al. (99): An interesting conclusion obtained in this study indicates

that the axiomatic developments establishing the fundamen-
tals of the real-valued utility functions in the expected utilityTheorem. In the simple random sampling of size n from a
approach, also establishes the fundamentals of the fuzzy util-population of N individuals or sampling units, an unbiased
ity function in the fuzzy expected utility approach. Thus, [see[up to additive equivalences, ��, Mareš (100)] fuzzy estimator
Gil and López-Dı́az (101), López-Dı́az (78), Gebhardt et al.of the fuzzy hyperbolic population index is that assessing to
(51)]:the sample [�] the fuzzy value

Theorem. Consider a decision problem with reward space R

and space of lotteries P . If S is a set of axioms guaranteeing
the existence of a bounded real-valued utility on R , which is
unique up to an increasing linear transformation, then S also

[
�ĨH (X )

]s
([τ ]) =
1

(n − 1)N
�[�

n(N−1)� ĨH (X [τ ])
�⊕�

(n−N)� Ĩwv
H (X [τ ])

�]
ensures the existence of a class of fuzzy utility functions
on R .where X [�] means the random fuzzy set X as distributed on

[�], ĨH(X [�]) is the sample fuzzy hyperbolic index in [�], which An analysis of the structure properties of the last class of
fuzzy utility functions has been stated by Gil et al. (110).is given by the fuzzy value such that for each � � (0, 1]

Finally, a criterion to compare random experiments in the
framework of a decision problem with fuzzy utilities has been
developed [Gil et al. (111)].

(ĨH (X [τ ])α

=
[
E
�E(inf(X [τ ])α )

sup(X [τ ])α

− 1
�

, E
�E(sup(X [τ ])α )

inf(X [τ ])α

− 1
�]

OTHER STUDIES ON FUZZY STATISTICSand ĨH(X [�]) is the expected within-values hyperbolic inequal-
ity in sample [�], that is,

The last two sections have been devoted to univariate fuzzy
statistics. Multivariate fuzzy statistics refers to descriptive
and inferential problems and procedures, to manage situa-Ĩwv

H (X [τ ]) = 1
n

� [
ĨH (X [Uτ1]) ⊕ . . . ⊕ ĨH (X [Uτn])

]
tions including several variables and involving either fuzzy
data or fuzzy dependences.with X [U�i] denoting the random fuzzy set degenerate at the

The problems of multivariate fuzzy statistics which havefuzzy value of X on the i-th individual of sample [�], i � 1,
received a deeper attention are fuzzy data and fuzzy regres-. . ., n.
sion analyses. We are now going to present a brief review of
some of the best known problems and methods.

Statistical Decision Making with Fuzzy Utilities
Studies on fuzzy data analysis are mainly focused on clus-

ter analysis, which is a useful tool in dealing with a largeA general handy model to deal with single-stage decision
problems with fuzzy-valued consequences has been presented amount of data. The aim of the fuzzy cluster analysis is to

group a collection of objects, each of them described by means[Gil and López-Dı́az (101), López-Dı́az (78), Gebhardt et al.
(51)], the model being based on random fuzzy set in Puri and of several variables, in a finite number of classes (clusters)

which can overlap and allow graduate membership of objectsRalescus’s sense.
This problem was previously discussed in the literature of to clusters. Fuzzy clustering supplies solutions to some prob-

lems (like bridges, strays, and undetermined objects amongfuzzy decision analysis [see Watson et al. (102), Freeling
(103), Tong and Bonissone (104), Dubois and Prade (105), the clusters) which could not be solved with classical tech-

niques.Whalen (106), Gil and Jain (107), Lamata (108)]. Gil and Ló-
pez-Dı́az’s model has a wider application than the previous The first approach to fuzzy clustering was developed by

Ruspini (45,112), and this approach is based on the conceptones (in the case of real-valued assessments of probabilities).
The aim of the problem of statistical decision making with of fuzzy partition and an optimization problem where the ob-

jective function tends to be small as a close pair of objectsfuzzy utilities on the basis of real-valued experimental data
is to use the information contained in these data to help the have nearly equal fuzzy cluster membership. The optimal

fuzzy partition is obtained by using an adapted gradientdecision maker in taking an appropriate action chosen from a
set of possible ones, when the consequence of the choice is method.

Another well-known method of fuzzy clustering is the so-assumed to be the interaction of the action selected and the
state which actually occurs. called fuzzy k-means, which has been developed by Dunn
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(113) and Bezdek (114), and it is based on a generalization of nential distribution with unknown parameter �. To get infor-
mation and obtain conclusions about the parameter value, athe within-groups sum of squares and the use of a norm (usu-

ally a euclidean one) to compute distances between objects psychologist considers the experiment in which the time of
attention to a game chosen at random by a four-year-old child,and ‘‘centres’’ of clusters. The solution of the optimization

problem in this method is obtained by employing an algo- �, is observed. The mathematical model for this random ex-
periment is the probability space X 	 (�, B �, PX

� ), � � �,rithm, which has been recently modified (Wang et al. (115))
by considering a bi-objective function. where � � �� and P� is the exponential distribution �(1, �).

Assume that as the loss of interest in a game does not usu-The classical clustering procedure based on the maximum
likelihood method, has been extended to fuzzy clustering by ally happen in an instantaneous way, the psychologist pro-

vides us with imprecise data like Ṽ1 � a few minutes, Ṽi �Trauwaert et al. (116) and Yang (117). These extensions do
not force clusters to have a quite similar shape. around 10i minutes (i � 2, . . ., 8), and Ṽ9 � much more than

1 hour. These data could easily be viewed as fuzzy informa-Finally, we have to remark that a divisive fuzzy hierarchi-
cal clustering technique which does not require a previous tion associated with the random experiment and can be de-

scribed by means of the triangular/trapezoidal fuzzy numbersspecification of the number of clusters has been also devel-
oped [Dimitrescu (118)]. with support contained in [0, 120] in Fig. 1.

The set C � �Ṽ1, . . ., Ṽ9� determines a fuzzy informationA general review of many techniques in fuzzy data analy-
sis based on distances or similarities between objects and system, so that we can consider methods of statistics in the

approach based on fuzzy information. In this way, if the psy-clusters can be found in Bandemer and Náther (15) [see also,
Bandemer and Gottwald (119)]. chologist wants to estimate the unknown value of �, and for

that purpose he selects at random and independently a sam-The aim of the fuzzy regression analysis is to look for a
suitable mathematical model relating a dependent variable ple of n � 600 four-year-old children, and observes the time

of attention to a given game, and the data reported to thewith some independent ones, when some of the elements in
the model can be fuzzy. Tanaka et al. (120–122) considered a statistician are Ṽ1, . . ., and Ṽ9, with respective absolute fre-

quencies n1 � 314, n2 � 114, n3 � 71, n4 � 43, n5 � 24, n6 �possibilistic approach to linear regression analysis, which
leads to the fuzzy linear regression in which experimental 18, n7 � 10, and n8 � 6, then since the experimental distribu-

tion is �(1, �), the minimum inaccuracy estimate would bedata are assumed to be real-valued, but parameters of the
linear relation are assumed to be fuzzy-valued, and they are given by
determined such that the fuzzy estimate contains the ob-
served real value with more than a given degree, the problem
being reduced to a linear programming one. Some additional

θ∗ = 600∑8
i=1 ni,

∫
R

x|Ṽi|(x) dx
= 0.05

studies on this problem have been also developed by Mosko-
witz and Kim (123). Bárdossy (124) extended the preceding Example. A neurologist has to classify his most serious pa-
study by considering the fuzzy general regression problem tients as requiring exploratory brain surgery (action a1), re-
(the fuzzy linear regression being a special case), and also quiring a preventive treatment with drugs (action a2), or not
incorporating more general fuzzy numbers. requiring either treatment or surgery (action a3). From medi-

Another interesting approach to fuzzy regression is that cal databases, it has been found that 50% of the people exam-
based on extending the least squares procedure of the classi- ined needed the operation (state �1), 30% needed the preven-
cal case by previously defining some suitable distances be- tive treatment (state �2), while 20% did not need either
tween fuzzy numbers. In this approach, we must refer to the treatment or surgery (state �3).
Diamond (125,126) and the Bárdossy et al. (127) studies, The utilities (intended as opposite to losses) of right classi-
which consider the fuzzy linear regression problem involving fications are null. The utilities of wrong classifications are di-
real- or vectorial-valued parameters and fuzzy set data. Salas verse: an unnecessary operation means resources are wasted
(128) and Bertoluzza et al. (129) have studied fuzzy linear and the health of the patient may be prejudiced; a preventive
and polinomial regression based on some operational dis- treatment means superfluous expenses and possible side ef-
tances between fuzzy numbers [see Salas (128), Bertoluzza et fects, if the patient does not require either preventive treat-
al. (130)]. Näther (36) presents an attempt to develop a linear
estimation theory based on the real-valued variance for ran-
dom fuzzy sets mentioned in the previous two sections. Other
valuable studies on fuzzy regression are due to Yager (131),
Heshmaty and Kandel (132), Celminš (133), Wang and Li
(134), Savic and Pedrycz (135,136), Ishibuchi and Tanaka
(137,138), and Guo and Chen (139).

SOME EXAMPLES OF FUZZY STATISTICS

The models and methods of fuzzy statistics in this article can
be applied to many problems. In this section we present two
examples which illustrate the practical use of some of these
methods.

1
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Example. The time of attention (in minutes) to the same Figure 1. Time of attention to the same game of four-year-old
children.game of four-year old children is supposed to have an expo-
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tion which is defined by

V λ
L (Ã) =

∫
(0.1]

[λ inf Ãα + (1 − λ) sup Ãα] dα

for all Ã � F c(�), and � � [0, 1] being a previously fixed opti-
mism–pessimism parameter [see Campos and González (109)
for a graphical interpretation of this function]. This model
will lead us to conclude that if we apply the V.5

L ranking func-
tion we get that

Step 1:–1 –.8

U(   2, a3)θ U(   3, a1)θ U(   2, a1)θ U(   3, a2)θ

–.7 –.6 –.5

1

Figure 2. Fuzzy utilities of wrong classifications.

ment or surgery, and may be insufficient if the surgery is re-
ally required; if a patient requiring surgery does not get it on

V .5
L (U (θ1, a1)) = V .5

L (U (θ2, a2)) = V .5
L (U (θ3, a3)) = 0

V .5
L (U (θ1, a2)) = −0.922967,V .5

L (U (θ1, a3)) = −0.930410

V .5
L (U (θ2, a1)) = −0.6,V .5

L (U (θ2, a3)) = −0.903334

V .5
L (U (θ3, a1)) = −0.7,V .5

L (U (θ3, a2)) = −0.193333
time and no preventive treatment is applied, the time lost
until clear symptoms appear may be crucial.

Step 2: The values of V.5
L for the prior fuzzy expected utili-

ties of a1, a2, and a3, are given by
The preceding problem can be regarded as a single-stage

decision problem in a Bayesian context, with state space � �
��1, �2, �3�, action space A � �a1, a2, a3�, and prior distribution
	 with 	(�1) � 0.5, 	(�2) � 0.3, and 	(�3) � 0.2. Problems of
this type usually receive in the literature a real-valued as-
sessment of utilities [see, for instance, Wonnacott and Won-

V .5
L ◦◦◦ Ẽ(Ua1

|π) = −0.32

V .5
L ◦◦◦ Ẽ(Ua2

|π) = −0.50

V .5
L ◦◦◦ Ẽ(Ua3

|π) = −0.74

nacott (140) for a review of similar problems].
whence a1 is the Bayes action of the problem.However, a real-valued assessment seems to be extremely

rigid, in view of the nature of the elements in this problem, Step 3: The ‘‘value’’ of the decision problem in a prior
but rather a more realistic utility evaluation to describe the Bayesian analysis is then given by Ẽ(U a1

�	), which is
neurologist preferences would be the following: the fuzzy number given by the PI curve �(0.05, 	0.32)

(Fig. 3).

ADDITIONAL REMARKS

The development of statistics involving fuzzy data or ele-

U (θ1, a1) = U (θ2, a2) = U (θ3, a3) = 0

U (θ1, a2) = very dangerous, U (θ1, a3) = extremely dangerous

U (θ2, a1) = inconvenient, U (θ2, a3) = dangerous

U (θ3, a1) = excessive, U (θ3, a2) = unsuitable
ments is often based on the extension of classical procedures

The values assessed to the consequences of this decision from mathematical statistics. Several of these extensions do
problem cannot be represented on a numerical scale, but they not keep their properties in the nonfuzzy case. Thus, the
could be expressed in terms of fuzzy numbers as, for in- fuzzy chi-square test in the approach based on fuzzy random
stances, U (�2, a1) � �(0.1, 	0.6), U (�3, a1) � �(0.1, 	0.7) (� variables is in general not a test with significance level �. In
being the well-known Pi curve, cf. Zadeh (141), Cox (142)), the same way, the extended maximum-likelihood methods in

the approach based on fuzzy information cannot be applied to
obtain a maximum-likelihood estimator for a parameter of a
random fuzzy set, since maximum-likelihood methods are tied
to a density of the underlying random fuzzy set, and charac-
terization by densities does not exist for random sets/fuzzy
random sets.

U (θ2, a3)(t) =




1 − 12(t + 1)2 if t ∈ [−1,−0.75]
20t2 + 24t + 7 if t ∈ [−0.75,−0.7]
0 otherwise

U (θ3, a2)(t) =




5t2 + 8t + 3 if t ∈ [−0.6,−0.5]
1 − 3t2 if t ∈ [−0.5,0]
0 otherwise

and U (�1, a2) and U (�1, a3) are both obtained from U (�2, a2)
by applying the linguistic modifiers very and extremely [see
Zadeh (141), Cox (142)], that is U (�1, a2) � [U (�2, a3)]2 and
U (�1, a3) � [U (�2, a3)]3 (Fig. 2).

Doubtless, the situation in this problem is one of those
needing a crisp choice among actions a1, a2, and a3. The model
and extension of the prior Bayesian analysis developed by Gil

–.37 –.32 –.27

E
~

(Ua1  )π
1

and López Dı́az (101) is based on Campos and González (109)
�-average ranking criterion using the �-average ranking func- Figure 3. Value of the decision problem.
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82. M. López-Dı́az and M. A. Gil, Reversing the order of integration59. M. R. Casals and A. Salas, Sequential Bayesian test from fuzzy
in iterated expectations of fuzzy random variables, and someexperimental information, Uncertainty and Intelligent Sys-
statistical applications, Tech. Rep. University of Oviedo, Janu-tems—IPMU’88, Lecture Notes in Computer Science, 313: 314–
ary 1997.321, 1988.

83. A. Ralescu A and D. A. Ralescu, Probability and fuzziness, In-
60. L. Pardo, M. L. Menéndez, and J. A. Pardo, A sequential selec- form. Sci., 17: 85–92, 1984.

tion method of a fixed number of fuzzy information systems
84. E. P. Klement, M. L. Puri, and D. A. Ralescu, Law of large num-based on the information energy gain, Fuzzy Sets Syst., 25: 97–

bers and central limit theorem for fuzzy random variables. In R.105, 1988.
Trappl (ed.), Cybernetics and Systems Research, 2: Amsterdam:

61. M. R. Casals, Bayesian testing of fuzzy parametric hypotheses North-Holland, 1984, pp. 525–529.
from fuzzy information, R.A.I.R.O.-Rech. Opér., 27: 189–199,

85. C. V. Negoita and D. A. Ralescu, Simulation, Knowledge-based1993.
Computing, and Fuzzy Statistics, New York: Van Nostrand Rein-

62. M. R. Casals and P. Gil, Bayesian sequential test for fuzzy para- hold, 1987.
metric hypotheses from fuzzy information, Inform. Sci., 80: 283–

86. S. Li and Y. Ogura, Fuzzy random variables, conditional expec-298, 1994.
tations and fuzzy martingales, J. Fuzzy Math., 4: 905–927, 1996.

63. H. Raiffa and R. Schlaifer, Applied Statistical Decision Theory, 87. S. Li and Y. Ogura, Convergence of set valued and fuzzy valued
Boston: Harvard University, Graduate School of Business, 1961. martingales, Fuzzy Sets Syst., in press, 1997.

64. M. A. Gil, M. T. López, and J. M. A. Garrido, An extensive-form 88. S. Li and Y. Ogura, Convergence of set valued sub- and super-
analysis for comparing fuzzy information systems by means of martigales in the Kuratowski–Mosco sense, (preprint), 1997.
the worth and quietness of information, Fuzzy Sets Syst., 23:

89. S. Li and Y. Ogura, A convergence theorem of fuzzy valued mar-239–255, 1987.
tingales, Proc. FUZZ-IEEE’96, New Orleans: 1996, pp. 290–294.
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MARÍA ANGELES GILwith fuzzy model, IEEE Trans. Syst., Man, Cybern., 12: 903–

907, 1982. University of Oviedo


