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FUZZY PATTERN RECOGNITION

Fuzzy sets were introduced by Zadeh (1) to represent nonsta-
tistical uncertainty. Suppose you must advise a driving stu-
dent when to apply the brakes of a car. Would you say ‘‘begin
braking 74.2 feet from the crosswalk’’? Or would you say
‘‘apply the brakes pretty soon’’? You would choose the second
instruction because the first one is too precise to be imple-
mented. So, precision can be useless, while vague directions
can be interpreted and acted upon. Fuzzy sets are used to
endow computational models with the ability to recognize,
represent, manipulate, interpret, and use (act on) nonstatisti-
cal imprecision.

Conventional (crisp) sets contain objects that satisfy pre-
cise properties. The set H � �r � ��6 � r � 8� is crisp. H can
be described by its membership function,

mH(r) =
{

1 6 ≤ r ≤ 8
0 otherwise

Since mH maps all real numbers onto the two points �0, 1�,
crisp sets correspond to 2-valued logic; every real number ei-
ther is in H or is not.

Consider the set F of real numbers that are close to seven.
Since ‘‘close to seven’’ is fuzzy, there is not a unique member-
ship function for F. Rather, the modeler must decide, based
on the potential application and imprecise properties of F,
what mF should be. Properties that seem plausible for this F
include: (1) normality (mF(7) � 1); (2) unimodality (only
mF(7) � 1); (3) the closer r is to 7, the closer mF(r) is to 1, and
conversely; and (4) symmetry (numbers equally far left and
right of 7 should have equal memberships). Infinitely many
functions satisfy these intuitive constraints. For example,
m1F(r) � e	(r	7)2 and m2F(r) � 1/(1 � (r 	 7)2). Notice that no
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physical entity corresponds to F. Fuzzy sets are realized only between 0 and 1 and are constrained to sum to 1. If y is a
label vector for some z � �p generated by, say, the fuzzy c-through membership functions, so it is correct to call mF the
means clustering method, y is a fuzzy label for z. If y camefuzzy set F, even though it is a function.
from a method such as maximum likelihood estimation inFormally, every function m: X � [0, 1] could be a fuzzy
mixture decomposition, it would be a probabilistic labelsubset of any set X, but functions like this become fuzzy sets
for z.when and only when they match some intuitively plausible

Npc � [0, 1]c 	 �0� is the unit hypercube in �c, excludingsemantic description of imprecise properties of the objects
the origin. Vectors such as y � (0.4, 0.2, 0.7)T are possibilisticin X.
label vectors in Np3. Labels in Npc. are produced, for example,A question that continues to spark much debate is whether
by possibilistic clustering algorithms (7) and neural net-or not fuzziness is just a clever disguise for probability. The
works (8).answer is no. Fuzzy memberships represent similarities of

Most pattern recognition models are based on statistical orobjects to imprecisely defined properties; probabilities convey
geometrical properties of substructure in X. Two key conceptsinformation about relative frequencies. Another common mis-
for describing geometry are angle and distance. Let A be anyunderstanding is that fuzzy models are offered as replace-
positive-definite p � p matrix. For vectors x, v � �p,ments for crisp or probabilistic models. But most schemes

that use fuzziness use it in the sense of embedding: Conven- 〈xxx,vvv〉A = xxxTAvvv (4)tional structure is preserved as a special case of fuzzy struc-
ture, just as the real numbers are a special case of the com- ‖xxx‖A =

√
xxxTAxxx (5)

plex numbers. Zadeh (2) first discussed models that had both
fuzziness and probability. A recent publication about this is and
special issue 2(1) of the IEEE Transactions on Fuzzy Sys-
tems, 1994. δA(xxx,vvv) = ‖xxx − vvv‖A =

√
(xxx − vvv)TA(xxx − vvv) (6)

are the inner product, norm (length), and norm metric (dis-
PATTERN RECOGNITION: DATA, LABEL tance) induced on �p by A. The most important instances of
VECTORS, AND MEASURES OF SIMILARITY Eq. (6), together with their common names and inducing ma-

trices, are
There are two major approaches to pattern recognition: nu-
merical (3) and syntactic (4). Discussed here are three areas ‖xxx − vvv‖I =

√
(xxx − vvv)T(xxx − vvv) Euclidean, A = I (7)

of numerical pattern recognition for object data: clustering,
classifier design, and feature analysis. The earliest reference
to fuzzy pattern recognition was Bellman et al. (5). Fuzzy

‖xxx − vvv‖D−1 =
√

(xxx − vvv)TD−1(xxx − vvv) Diagonal, A = D−1

(8)
techniques for numerical pattern recognition are now fairly
mature. Reference 6 is an edited collection of 51 papers on

‖xxx − vvv‖M−1 =
√

(xxx − vvv)TM−1(xxx − vvv) Mahalanobis, A = M−1

(9)this subject that span the development of the field from 1965
to 1991. In Eq. (7) I is the p � p identity matrix. Equations (8) and (9)

Object data are represented as X � �x1, . . ., xn�, a set of n use the covariance matrix of X, M � cov(X) � �n
k�1 (xk 	 v)

feature vectors in feature space �p. The jth object is a physi- (xk 	 v)T/n, where v � �n
k�1 xk/n. D is the diagonal matrix

cal entity such as a fish, medical patient, and so on. Column extracted from M by deletion of its off-diagonal entries. A sec-
vector xj is the object’s numerical representation; xkj is its kth ond family of commonly used lengths and distances are the
feature. There are four types of class labels—crisp, fuzzy, Minkowski norm and norm metrics:
probabilistic and possibilistic. Let integer c denote the num-
ber of classes, 1 � c � n. Define three sets of label vectors in
�c as follows: ‖xxx‖q =


 p∑

j=1

∣∣∣∣xj

∣∣∣∣
q1/q

, q ≥ 1 (10)

let [0,1]c = [0, 1] × · · · × [0, 1]︸ ︷︷ ︸
c times

,

Npc = {yyy ∈ �c:yi ∈ [0,1]∀ i, yi > 0∃ i} = [0, 1]c − {000} (1)
δq(xxx,vvv) = ‖xxx − vvv‖q =


 p∑

j=1

∣∣∣∣xj − vj

∣∣∣∣
q1/q

, q ≥ 1 (11)

Three are commonly used:Nf c = {yyy ∈ Npc:
c∑

i=1

yi = 1} (2)

Nhc = {yyy ∈ Nf c: yi ∈ {0, 1}∀i} = {eee1,eee2, . . .,eeec} (3)

In Eq. (1) 0 is the zero vector in �c. Note that Nhc � Nfc �

‖xxx − vvv‖1 =

 p∑

j=1

∣∣∣∣xj − vj

∣∣∣∣

 City block (1-norm); q = 1

(12)
Npc. Nhc is the canonical (unit vector) basis of Euclidean c-
space.

eeei = (0,0, . . ., 1
f

i

, . . ., 0)T ,
‖xxx − vvv‖2 =


 p∑

j=1

∣∣∣∣xj − vj

∣∣∣∣
2

1/2

Euclidean (2-norm); q = 2

(13)

the ith vertex of Nhc, is the crisp label for class i, 1 � i � c.
Nfc, a piece of a hyperplane, is the convex hull of Nhc. The
vector y � (0.1, 0.6, 0.3)T is a label vector in Nf3; its entries lie

‖xxx − vvv‖∞ = max
1≤ j≤p

{∣∣∣xj − vj

∣∣∣}
Sup or Max norm; q → ∞ (14)
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Equations (7) and (13) both give the Euclidean norm metric, Crisp c-partitions of X obtained this way are denoted by
UH � [H(U1) . . . H(Un)].the only one in both of the inner product and Minkowski norm

metric families.
Example 1. Let O � �o1 � peach, o2 � plum, o3 � nectarine�,
and let c � 2. Typical 2-partitions of O are as follows:

FUZZY CLUSTER ANALYSIS

This field comprises three problems: tendency assessment,
clustering and validation. Given an unlabeled data set X, is
there substructure in X? This is clustering tendency—should
you look for clusters at all? Very few methods—fuzzy or oth-

Object o1 o2 o3 o1 o2 o3 o1 o2 o3

Peaches
Plums

[
1 0 0
0 1 1

] [
1 0.2 0.4
0 0.8 0.6

] [
1 0.2 0.5
0 0.8 0.8

]

U1 ∈ Mh23 U2 ∈ M f 23 U3 ∈ Mp23
erwise—address this problem. Jain and Dubes (9) discuss
some formal methods for assessment of cluster tendency, but The nectarine, o3, is labeled by the last column of each parti-
most users begin clustering without checking the data for pos- tion, and in the crisp case it must be (erroneously) given full
sible tendencies. Why? Because it is impossible to guess what membership in one of the two crisp subsets partitioning X. In
structure your data may have in p dimensions, so hypothesis U1, o3, is labeled plum. Noncrisp partitions enable models to
tests cast against structure that cannot be verified are hard (sometimes!) avoid such mistakes. The last column of U2 allo-
to interpret. The usefulness of tendency assessment lies with cates most (0.6) of the membership of o3 to the plums class
its ability to rule out certain types of cluster structure. but also assigns a lesser membership (0.4) to o3 as a peach.

Different clustering algorithms produce different parti- U3 illustrates a possibilistic partition, and its third column
tions of X, and it is never clear which one(s) may be most exhibits a possibilistic label for the nectarine. The values in
useful. Once clusters are obtained, how shall we pick the best the third column indicate that this nectarine is more typical
clustering solution (or solutions)? This is cluster validation of plums than of peaches.
(4,5,9,10). Brevity precludes a discussion of this topic here. Columns like the ones for the nectarine in U2 and U3 serve

Clustering (or unsupervised learning) in unlabeled X is the a useful purpose: Lack of strong membership in a single class
assignment of (hard or fuzzy or probabilistic or possibilistic) is a signal to ‘‘take a second look.’’ In this example the nectar-
label vectors to the �xk�. Cluster substructure is represented ine is a hybrid of peaches and plums, and the memberships
by a c � n matrix U � [U1 . . . Uk . . . Un] � [uik], where Uk shown for it in the last column of either U2 or U3 seem more
denotes the kth column of U. A c-partition of X belongs to one plausible physically than crisp assignment of o3 to an incor-
of three sets: rect class. Mpcn and Mfcn can be more realistic than Mhcn be-

cause boundaries between many classes of real objects are
badly delineated (i.e., really fuzzy). Mfcn reflects the degrees toMpcn = {U ∈ �cn: UUU k ∈ Npc∀k} (15)

which the classes share �ok� because of the constraint that
�c

i�1uik � 1. Mpcn reflects the degrees of typicality of �ok� with
respect to the prototypical (ideal) members of the classes.

M f cn =
{

U ∈ Mpcn: UUU k ∈ Nf c∀k; 0 <

n∑
k=1

uik∀i

}
(16)

Finally, observe that U1 � UH
2 � UH

3 . Crisp partitions ofMhcn = {U ∈ M f cn: UUU k ∈ Nhc∀k} (17)
data do not possess the information content to suggest fine
details of infrastructure such as hybridization or mixing that

Equations (15)–(17) define, respectively, the sets of possibilis- are available in U2 and U3. Here, hardening U2 and U3 with
tic, fuzzy or probabilistic, and crisp c-partitions of X. Each H destroys useful information.
column of U in Mpcn(Mfcn, Mhcn) is a label vector from Npc(Nfc,
Nhc). Note that Mhcn � Mfcn � Mpcn. The reason these matrices The c-Means Clustering Models
are called partitions follows from the interpretation of uik. If

How can we find partitions of X such as those in Example 1?U is crisp or fuzzy, uik is the membership of xk in the ith parti-
The c-means models are used more widely than any othertioning fuzzy subset (cluster) of X. If U is probabilistic, uik is
clustering methods for this purpose. The optimization prob-

usually the (posterior) probability that, given xk, it came from lem that defines the hard (H), fuzzy (F), and possibilistic (P)
class i. When U is possibilistic, uik is the typicality of xk to c-means (HCM, FCM, and PCM, respectively) models is
class i.

Since definite class assignments are often the ultimate
goal, labels in Npc or Nfc are usually transformed into crisp
labels. Most noncrisp partitions are converted to crisp ones
using the hardening function H: Npc � Nhc, that is,

min
(U,VVV )

{
Jm(U,V ; wV ; wV ; w) =

c∑
i=1

n∑
k=1

um
ikDik(xxxk,vvvi)

+
c∑

i=1

wi

n∑
k=1

(1 − uik)m

}
(20)

HHH(yyy) = eeei ⇔ ‖yyy − eeei‖2 ≤ ‖yyy − eee j‖2 ⇔ yi ≥ yj; j �= i (18)

where
In Eq. (18), ties are broken randomly. H finds the crisp label
vector ei in Nhc closest to y. Alternatively, H finds the maxi-
mum coordinate of y and assigns the corresponding crisp label
to the object z that y labels. For fuzzy partitions, hardening
each column of U with Eq. (18) is called defuzzification by
maximum membership (MM):

UUUMM,k = HHH(UUUk) = eeei ⇔ uik ≥ ujk ∀ j �= i; 1 ≤ k ≤ n (19)

U ∈ Mhcn, M f cn or Mpcn, depending on the approach
V = (vvv1,vvv2, . . .,vvvc) ∈ �cp, vvvi specifies the ith point prototype
www = (w1, w2, . . ., wc)

T, wi ≥ 0 are user-specified penalty
weights

m ≥ 1 is a weighting exponent that controls the degree of fuzzi-
fication of U, and Dik(xxxk,vvvi) = Dik is the deviation of xxxk from
the ith cluster prototype.
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Optimizing Jm(U, V; w) when Dik is an inner product norm number of iterations. Justifying a choice of m in FCM or PCM
is a challenge. FCM-AO will produce equimembership parti-metric, Dik � �xk 	 vi�2

A, is usually done by alternating optimi-
zation (AO) through the first-order necessary conditions on tions that approach U � [1/c] as m � �; but in practice,

terminal partitions usually have memberships very close to(U, V):
(1/c) for values of m not much larger than 20. At the other
extreme, as m approaches 1 from above, FCM reduces toHCM: Minimize over Mhcn � �cp: m � 1: wi � 0 � i. (U, V)
HCM, and terminal partitions become more and more crisp.may minimize J1 only if
Thus, m controls the degree of fuzziness exhibited by the soft
boundaries in U. Most users choose m in the range [1.1, 5],
with m � 2 an overwhelming favorite.uik =

{
1; ‖xxxk − vvvi‖A ≤ ‖xxxk − vvvj‖A, j �= i
0, otherwise

∀i,k; ties are broken randomly (21)
Example 2. Table 1 lists the coordinates of 20 two-dimen-
sional points X � �x1, . . ., x20�. Figure 1(a) plots the data.
HCM, FCM, and PCM were applied to X with the followingvvvi =

( n∑
k=1

uikxxxk

/ n∑
k=1

uik

)
∀i (22)

protocols: The similarity and termination norms were both
Euclidean; c � p � 2; n � 20; � � 0.01, T � 50, m � 2 for

FCM: Minimize over Mfcn � �cp: assume �xk 	 vi�2
A � 0 � i, k: FCM and PCM; initialization for HCM and FCM was at the

m � 1 : wi � 0 � i. (U, V) may minimize Jm only if V0 shown below the columns labeled U10 and U20; initialization
for PCM was the terminal Vf from FCM shown below the
FCM columns labeled U1f and U2f; and the weights for PCM
were fixed at w1 � 0.15, w2 � 0.16.uik =

[ c∑
j=1

(‖xxxk − vvvi‖A/‖xxxk − vvvj‖A)2/(m−1)

]−1

∀i, k (23)

All three algorithms terminated in less than 10 iterations
at the partition matrices Uf (rows are shown transposed) and
point prototypes Vf shown in the table. HCM and FCM beganvvvi =

( n∑
k=1

um
ikxxxk

/ n∑
k=1

um
ik

)
∀i (24)

with the first 16 points in crisp cluster 1. HCM terminated
with 10 points in each cluster as indicated by the boundaries

PCM: Minimize over Mpcn � �cp : m � 1 : wi � 0 � i. (U, V) in Figure 1(b). FCM and PCM terminated at the fuzzy and
may minimize Jm only if possibilistic partitions of X shown in Table 1. The difference

between these two partitions can be seen, for example, by
looking at the memberships of point x7 in both clusters (theuik = [

1 + (‖xxxk − vvvi‖2
A/wi )

1/(m−1)
]−1 ∀i,k (25)

values are underlined in Table 1). The fuzzy memberships are
(0.96, 0.04), which sum to 1 as they must. This indicates that
x7 is a very strong member of fuzzy cluster 1 and is barely

vvvi =
( n∑

k=1

um
ikxxxk

/ n∑
k=1

um
ik

)
∀i (26)

related to cluster 2. The PCM values are (0.58, 0.06). These
numbers indicate that x7 is a fairly typical member of clusterThe HCM/FCM/PCM-AO Algorithms:
1 (on a scale from 0 to 1), while it cannot be regarded as typi-Inner Product Norms Case
cal of cluster 2. When hardened with Eq. (19), the FCM and

Store: Unlabeled Object Data X � �x1, . . ., xn� � �p PCM partitions coincide with the HCM result; that is,
Pick: Numbers of clusters: 1 � c � n. Rule of thumb: UHCM � UH

FCM � UH
PCM. This is hardly ever the case for data sets

Limit c to c � �n that do not have compact, well-separated clusters.
Maximum number of iterations: T Data point x13, partially underlined in Table 1, is more or
Weighting exponent: 1 � m � � (m � 1 for HCM) less in between the two clusters. Its memberships, the fuzzi-
Norm for similarity of data to prototypes in Jm: �x, est ones in the FCM partition (0.41, 0.59), point to this anom-

x�A � �x�2
A � xT Ax aly. The possibilities (0.22, 0.31) in the PCM partition are also

Norm for termination criterion: Et � �Vt 	 Vt	1�err low and roughly equal, indicating that x13 is not typical of
Termination threshold: 0 � � either cluster.
Weights for penalty terms: wi � 0 � i (w � 0 for Finally, note that HCM estimates of the subsample means

FCM/HCM) of the two groups (v2 for points 11–20 in Table 1 and Fig. 1)
Guess: Initial prototypes: V0 � (v10, . . ., vc0) � �cp �or ini- are exact. The FCM estimates differ from the means by at

tial partition U0 � Mpcn� most 0.07, and the PCM estimates differ from the means by
Iterate: For t � 1 to T: �reverse U and V if initializing with at most 0.10. In this simple data set then, all three algorithms

U0 � Mpcn� produce roughly the same results. The apples and pears in
Calculate Ut with Vt	1 and (21, 23, or 25) the first column of Table 1 and the point z in Fig. 1 are dis-
Update Vt	1 to Vt with Ut and (22, 24, or 26) cussed in the next section.
If Et � �, exit for loop; Else

Next t
(U, V) � (Ut, Vt)

FUZZY CLASSIFIER DESIGN
In theory, iterate sequences of these algorithms possess sub-
sequences that converge to either local minima or saddle A classifier is any function D: �p � Npc. The value y � D(z)

is the label vector for z in �p. D is a crisp classifier ifpoints of their objective functions (6). In practice they almost
always terminate at useful solutions within a reasonable D[�p] � Nhc. Designing a classifier means the following: Use
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Table 1. Example 2 Data, Initialization, and Terminal Outputs of HCM, FCM, and PCM

X Initialization HCM FCM PCM

ei xi x1 x2 U10 U20 U1 f U2 f U1 f U2 f U1 f U2 f

1 1.00 0.60 1 0 1 0 0.97 0.03 0.70 0.07
2 1.75 0.40 1 0 1 0 0.77 0.23 0.35 0.16
3 1.30 0.10 1 0 1 0 0.96 0.04 0.49 0.07
4 0.80 0.20 1 0 1 0 0.94 0.06 0.36 0.05
5 1.10 0.70 1 0 1 0 0.95 0.05 0.72 0.08
6 1.30 0.60 1 0 1 0 0.97 0.03 0.90 0.10
7 0.90 0.50 1 0 1 0 0.96 0.04 0.58 0.06
8 1.60 0.60 1 0 1 0 0.84 0.16 0.51 0.15
9 1.40 0.15 1 0 1 0 0.95 0.05 0.51 0.08

10 1.00 0.10 1 0 1 0 0.95 0.05 0.42 0.05

11 2.00 0.70 1 0 0 1 0.33 0.67 0.19 0.34
12 2.00 1.10 1 0 0 1 0.19 0.81 0.14 0.43
13 1.90 0.80 1 0 0 1 0.41 0.59 0.22 0.31
14 2.20 0.80 1 0 0 1 0.10 0.90 0.13 0.59
15 2.30 1.20 1 0 0 1 0.04 0.96 0.08 0.75
16 2.50 1.15 1 0 0 1 0.01 0.99 0.07 0.90
17 2.70 1.00 0 1 0 1 0.01 0.99 0.06 0.73
18 2.90 1.10 0 1 0 1 0.05 0.95 0.05 0.45
19 2.80 0.90 0 1 0 1 0.03 0.97 0.05 0.56
20 3.00 1.05 0 1 0 1 0.06 0.94 0.04 0.36

v1 v2 v10 v20 v1 f v2 f v1 f v2 f v1 f v2 f

1.22 2.43 1.57 2.85 1.22 2.43 1.21 2.50 1.23 2.45
0.40 0.98 0.61 1.01 0.40 0.98 0.41 1.00 0.50 1.02

X to find a specific D from a specified family of functions (or and the second 10 points are class 2 � pears as shown in
column 1 of Table 1, then the crisp labels for the 20 dataalgorithms). If the data are labeled, finding D is called super-
points are ei � e1 � (1, 0)T, i � 1, . . ., 10; ei � e2 � (0, 1)T,vised learning. Classifier models based on statistical, heuristic
i � 11, . . ., 20, and z is declared a pear by DV,E,�2

.and network structures are discussed elsewhere in this Ency-
The notation for DV,E,� emphasizes that there are threeclopedia. This section describes some of the basic (and often

ways to alter Eq. (27): We can change V, E, or �. As the mea-most useful) classifier designs that have fuzzy generaliza-
sure of distance � changes with V and E fixed, it is possibletions.
that the label assigned by Eq. (27) will too. If we use the 1-
norm distance at Eq. (12) instead of the 2-norm distance atThe Nearest Prototype Classifier
Eq. (13), then �z 	 v1�1 � 0.89 � �z 	 v2�1 � 0.91, so the

Synonyms for the word prototype include vector quantizer, decision is reversed: z is in class 1 � apples. Finally, if we
signature, template, codevector, paradigm, centroid, and ex- use Eq. (14), then �z 	 v1�� � 0.78 � �z 	 v2�� � 0.48, so the
emplar. The common denominator in all prototype generation label for z with this distance reverts to class 2 � pears. This
schemes is a mathematical definition of how well prototype shows why it is important to choose the distance carefully and
vi represents a set of vectors Xi. Any measure of similarity or understand the effect of changing it when using DV,E,� .
dissimilarity on �p can be used; the usual choice is one of the Second, we can change the prototype set V while holding
distances at Eqs. (7)–(9) or (12)–(14). E and � fixed. The crisp 1-np design can be implemented us-

ing prototypes from any algorithm that produces them. DV,E,�
Definition (1-np classifier). Given (V, E) � �(vi, ei): i � 1, is crisp because of E, even if V comes from a fuzzy, probabilis-
. . ., c� � �cp � Nc

hc, c crisply labeled prototypes (one per tic, or possibilistic algorithm. Table 1 shows four different
class) and any distance measure � on �p. The crisp nearest sets of prototypes for the data: the sample means v1 and v2,
prototype (1-np) classifier DV,E,� is defined, for z � �p, as which coincide with the HCM estimates, and the FCM and

PCM prototypes. Repeating the calculations of the last para-
graph with the FCM or PCM prototypes leads here to the
same labels for z using the three distances in Eqs. (12)–(14)

Decide zzz ∈ class i ⇔ DDDVVV ,EEE,δ (zzz) = eeei ⇔ δ(zzz,vvvi) ≤ δ(zzz,vvvj )

∀ j �= i (27)
because the sets of prototypes are nearly equal. But generally,

Equation (27) says: Find the closest prototype to z, and assign this is not the case.
its label to z. Ties are broken randomly. For example, the Third, the crisp labels E can be softened while holding V
Euclidean distances from the point ❖ � z � (2, 0.5)T to the and � fixed. In this case a more sophisticated approach based
subsample means (shown as dashed lines in Fig. 1) are �z 	 on aggregation of the soft label information possessed by sev-
v2� � 0.64 � �z 	 v1� � 0.79, so z acquires the label of v2; that eral close prototypes is needed. This is a special case of the

classifier we turn to next.is, z is in class 2. If the first 10 points are class 1 � apples
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5-nn rule with Euclidean distance for �. The disk captures
three neighbors—x11, x13, and x14—labeled pears in Table 1
and captures two neighbors—x2 and x8—labeled apples in Ta-
ble 1. This 5-nn rule labels z a pear, realized by Eq. (28) as
follows:

DDD(X ,Ucrisp),5,δ2
(zzz) =

∑5
j=1 UUU crisp( j)

5

=

(
1
0

)
+

(
1
0

)
+

(
0
1

)
+

(
0
1

)
+

(
0
1

)
5

=
(

0.4
0.6

)
(29)

HHH
(
DDD(X ,Ucrisp),5,δ2

(zzz)
) = HHH

(
0.4
0.6

)
=

(
0
1

)
= eee2 (30)

To see that k and � affect the decision made by (28), Table 2
shows the labeling that (28) produces for z using k � 1 to 5
and the three distances shown in Eqs. (12)–(14) with Ucrisp.

Distances from z to each of its five nearest neighbors are
shown in the upper third of Table 2. The five nearest neigh-
bors are ranked in the same order by all three distances,
x(1) � x11 being closest to z, and x(5) � x8 being furthest from
z, where x(k) is the kth ranked nearest neighbor to z. L(x(k)) is
the crisp label for x(k) from Table 1. The label sets—in order,
left to right—that are used for each of the 15 decisions (3
distances by 5 rules) are shown in the middle third of Table
2. Lq(z) in the lower third of Table 2 is the crisp label assigned
to z by each k-nn rule for the q � 1, 2, and � distances.

Whenever there is a tie, the label assigned to z is arbi-
trary. There are two kinds of ties: label ties and distance ties.
The 1-nn rule labels z a pear with all three distances. All
three rules yield a label tie using k � 2, so either label may

1.50

1.00

0.50

0.00

1.50

1.00

0.50

0.00

0.05     1.00         1.50            2.00           2.50            3.00

0.05    1.00        1.50            2.00            2.50           3.00

x2

x2

(a)

(b)

Euclidean
5-nn disk

z = (       )2.0
0.5

x1

x1

x7

x8

x2

x13
x14

x11

v2

v2

be assigned to z by these three classifiers. For k � 3 the 1
Figure 1. (a) The 20-point data set for Examples 2 and 3. (b) Cluster- and 2 norm distances label z a pear. The sup norm experi-
ing and classification results for Examples 2 and 3. ences a distance tie between x(3) and x(4) at k � 3, but both

points are labeled pear so the decision is still pear regardless
of how the tie is resolved. At k � 4 the 1 norm has a distance

The Crisp k-Nearest Neighbor Classifier tie between x(4) and x(5). Since these two points have different
labels, the output of this classifier will depend on which pointAnother widely used classifier with fuzzy and possibilistic
is selected to break the distance tie. If the apple is selected,generalizations is the k-Nearest Neighbor (k-nn) rule, which
resolution of the distance tie results in a label tie, and a sec-requires labeled samples from each class. As an example, the
ond tie must be broken. If the distance tie breaker results insymbols in the first column of Table 1 enable each point in
the pear, there are three pears and one apple as in the otherthe data to serve as a labeled prototype. The crisp k-nn rule
two cases at k � 4. And finally, for k � 5 all three classifiersfinds the k nearest neighbors (points in X) to z, and then it
agree that z is a pear. Table 2 illustrates that the label as-aggregates the votes of the neighbors for each class. The ma-
signed by (28) is dependent on both k and �.jority vote determines the label for z. Only two parameters

must be selected to implement this rule: k, the number of
Equation (28) is well-defined for fuzzy and possibilistic la-nearest neighbors to z; and �, a measure of nearness (usually

bels. If, for example, we use the FCM labels from Table 1 fordistance) between pairs of vectors in �p.
the five nearest neighbors to z instead of the crisp labels used
in Example 3, we haveDefinition (k-nn Classifier). Given (X, U) � �(xk, Uk): k �

1, . . ., n� � �np � Nc
pc and any distance measure � on �p.

Let z � �p and let U(1) . . . U(k) denote the columns of U corre-
sponding to the k nearest neighbors of z. Aggregate votes (full
or partial) for each class in the label vector D(X,U),k,�(z) � �k

j�1

U(j)/k. The crisp k-nn classifier is defined as

Decide zzz ∈ i ⇔ HHH(DDD(X ,U ),k,δ (zzz)) = eeei (28)

Example 3. Figure 1(b) shows a shaded disk with radius
�x8 	 z�2 � 0.41 centered at z which corresponds to the k �

DDD(X ,UFCM ),5,δ2
(zzz)

=
∑5

j=1 UUU FCM( j)

5

=

(
0.33
0.67

)
+

(
0.77
0.23

)
+

(
0.41
0.59

)
+

(
0.10
0.90

)
+

(
0.84
0.16

)
5

=
(

0.49
0.51

)
(31)
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Table 2. The k-nn Rule Labels z for Three Distances and Five Sets
of Neighbors

Distances from z to the Ranked Neighbors

k x(k) L(x(k)) �1(z, x(k)) �2(z, x(k)) ��(z, x(k))

1 x11 0.20 0.20 0.20
2 x2 0.35 0.27 0.25
3 x13 0.40 0.32 0.30
4 x14 0.50 0.36 0.30
5 x8 0.50 0.41 0.40

Labels of the Ranked Neighbors

Ranked
k Neighbors �1 �2 ��

1 x11

2 x11 , x2 � Label tie � Label tie � Label tie
3 x11 , x2 , x13 � � tie
4 x11 , x2 , x13 , x14 � � tie
5 x11 , x2 , x13 , x14 , x8

Output Label for z

Ranked
k Neighbors L1(z) L2(z) L�(z)

1 x11

2 x11 , x2 Label tie Label tie Label tie
3 x11 , x2 , x13

4 x11 , x2 , x13 , x14 Label 	 � tie
5 x11 , x2 , x13 , x14 , x8

hardened in Eq. (28). Similarly, the input or argument of H
in (35) is properly regarded as the output of the possibilistic

HHH
(
DDD(X ,U ),5,δ2

(zzz)
) = HHH

(
0.49
0.51

)
=

(
0
1

)
= eee2 ⇒ zzz = pear (32)

k-nn rule, but some authors prefer to call the output of Eq.
Equation (32) is a crisp decision based on fuzzy labels, so it is (35) the possibilistic k-nn rule. The important point is that if
still a crisp k-nn rule. Possibilistic labels for these five points all 20 labels are used, the rule based on crisp labels is ambig-
from Table 1 would result in the same decision here, but this uous, while the fuzzy and possibilistic based rules both label
is not always the case. If all 20 sets of FCM and PCM mem- z an apple. This shows that the type of label also impacts the
berships from Table 1 are used in Eq. (28), the 20-nn rules decision made by Eq. (28).
based on the HCM, FCM, and PCM columns in Table 1 yield

The Crisp, (Fuzzy and Possibilistic) k-nn Algorithms

HHH

[
DDD(X ,UHCM),20,δ2

(zzz) =
∑20

j=1 UUU HCM( j)

20

]
= HHH

(
0.50
0.50

)
⇒ tie

(33)

HHH

[
DDD(X ,UFCM),20,δ2

(zzz) =
∑20

j=1 UUUFCM( j)

20

]
= HHH

(
0.52
0.48

)

=
(

1
0

)
= eee1 ⇒ zzz = apple

(34)

HHH

[
DDD(X ,UPCM),20,δ2

(zzz) =
∑20

j=1 UUUPCM( j)

20

]
= HHH

(
0.33
0.31

)

=
(

1
0

)
= eee1 ⇒ zzz = apple

(35)

Problem: To label zzz in �p

Store: Labeled object data X = {xxx1, . . .,xxxn} ⊂ �p and

label matrix U ∈ Nn
pc

Pick: k = number of nn’s and δ: �p × �p �→ �+ = any

metric on �p

Find: The n distances {δ j ≡ δ(zzz,xxx j ): j = 1,2, . . ., n}
Rank: δ(1) ≤ δ(2) ≤ · · · ≤ δ(k)︸ ︷︷ ︸

k−nn indices

≤ δ(k+1) ≤ . . .≤ δ(n)

Compute: DDD(X ,U ),k,δ (zzz) =
k∑

j=1

UUU ( j)

/
k

Do: Decide zzz ∈ i ⇔ HHH
(
DDD(X ,U ),k,δ (zzz)

) = eeei

Terminology. The output of Eq. (31) and the argument of
H in Eq. (34) are fuzzy labels based on fuzzy labels. Even FEATURE ANALYSIS
though the final outputs are crisp in these two equations,
some writers refer to the overall crisp decision as the fuzzy Methods that explore and improve raw data are broadly char-

acterized as feature analysis. This includes scaling, normal-k-nn rule. More properly, however, the fuzzy k-nn rule is the
algorithm that produces the fuzzy label which is subsequently ization, filtering, and smoothing. Any transformation
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follows: to improve the data for solving a particular problem;
to compress feature space to reduce time and space complex-
ity; and to eliminate redundant (dependent) and unimportant
(for the problem at hand) features.

Example 4. The center of Fig. 2 is a scatterplot of 30 two-
dimensional points X � �(x1, x2)� whose coordinates are listed
in Table 3. The data are indexed so that points 1–10, 11–20,
and 21–30 correspond to the three visually apparent clusters.
Projection of X onto the first and second coordinate axes re-
sults in the one-dimensional data sets X1 and X2; this illus-
trates feature selection. The one-dimensional data set (X1 �
X2)/2 in Fig. 2 (plotted to the right of X, not to scale) is made

X2      ¬…

X1     ¬…

 X  =  X1  x   X2     ¬2…

X1 + X2    

2

3

2

1

00             5            10            15 0 
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4 
   

5 
   

6 
   

7 
   

8

x2

x1

¬…

by averaging the coordinates of each vector in X. Geometri-
cally, this amounts to orthogonal projection of X onto the lineFigure 2. Feature selection and extraction on a 30 point data set.
x1 � x2; this illustrates feature extraction.

Visual inspection should convince you that the three clus-
ters seen in X, X1 and (X1 � X2)/2 will be properly detected by� : �p � �q does feature extraction when applied to X. Usu-

ally q � p, but there are cases where q 
 p too. Examples of most clustering algorithms. Projection of X onto its second
axis, however, mixes the data and results in just two clustersfeature extraction transformations include Fourier trans-

forms, principal components, and features such as the digital in X2. This suggests that projections of high-dimensional data
into visual dimensions cannot be relied upon to show muchgradient, mean, range, and standard deviation from intensit-

ies in image windows. about cluster structure in the original data.
The results of applying FCM to these four data sets withFeature selection consists of choosing subsets of the origi-

nal measured features. Here � projects X onto a coordinate c � 3, m � 2, � � 0.01, and the Euclidean norm for both
termination and Jm are shown in Table 3, which also showssubspace of �p. The goals of extraction and selection are as

Table 3. Terminal FCM Partitions (Cluster 1 Only) for the Data Sets in Example 4

Initialization
X X1 (X1 � X2)/2 X2

x1 x2 (x1 � x2)/2 U10 U20 U30 U1 U1 U1 U1

x1 1.5 2.5 2 1 0 0 0.99 1.00 1.00 0.00
x2 1.7 2.6 2.15 0 1 0 0.99 1.00 0.99 0.03
x3 1.2 2.2 1.7 0 0 1 0.99 0.99 0.98 0.96
x4 1.8 2 1.9 1 0 0 1.00 1.00 1.00 0.92
x5 1.7 2.1 1.9 0 1 0 1.00 1.00 1.00 0.99
x6 1.3 2.3 1.8 0 0 1 0.99 0.99 0.99 0.63
x7 2.1 2 2.05 1 0 0 0.99 0.99 1.00 0.92
x8 2.3 1.9 2.1 0 1 0 0.97 0.98 1.00 0.82
x9 2 2.4 2.2 0 0 1 0.99 1.00 0.98 0.17
x10 1.9 2.2 2.05 1 0 0 1.00 1.00 1.00 0.96

x11 6 1.2 3.6 0 1 0 0.01 0.01 0.01 0.02
x12 6.6 1 3.8 0 0 1 0.00 0.00 0.00 0.00
x13 5.9 0.9 3.4 1 0 0 0.02 0.02 0.07 0.02
x14 6.3 1.3 3.8 0 1 0 0.00 0.00 0.00 0.07
x15 5.9 1 3.45 0 0 1 0.02 0.02 0.05 0.00
x16 7.1 1 4.05 1 0 0 0.01 0.01 0.02 0.00
x17 6.5 0.9 3.7 0 1 0 0.00 0.00 0.00 0.02
x18 6.2 1.1 3.65 0 0 1 0.00 0.00 0.01 0.00
x19 7.2 1.2 4.2 1 0 0 0.02 0.02 0.03 0.02
x20 7.5 1.1 4.3 0 1 0 0.03 0.03 0.04 0.00

x21 10.1 2.5 6.3 0 0 1 0.01 0.01 0.01 0.00
x22 11.2 2.6 6.9 1 0 0 0.00 0.00 0.00 0.03
x23 10.5 2.5 6.5 0 1 0 0.01 0.01 0.00 0.00
x24 12.2 2.3 7.25 0 0 1 0.01 0.01 0.01 0.63
x25 10.5 2.2 6.35 1 0 0 0.01 0.01 0.01 0.96
x26 11 2.4 6.7 0 1 0 0.00 0.00 0.00 0.17
x27 12.2 2.2 7.2 0 0 1 0.01 0.01 0.01 0.96
x28 10.2 2.1 6.15 1 0 0 0.01 0.01 0.02 0.99
x29 11.9 2.7 7.3 0 1 0 0.01 0.01 0.01 0.09
x30 11.5 2.2 6.85 0 0 1 0.00 0.00 0.00 0.96
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3. R. Duda and P. Hart, Pattern Classification and Scene Analysis,the initialization used. Only memberships in the first cluster
New York: Wiley-Interscience, 1973.are shown. As expected, FCM discovers three very distinct

4. K. S. Fu, Syntactic pattern recognition and applications, Engle-fuzzy clusters in X, X1, and (X1 � X2)/2. Table 3 shows the
wood Cliffs, NJ: Prentice Hall, 1982.three clusters blocked into their visually apparent subsets of

5. R. E. Bellman, R. Kalaba, and L. A. Zadeh, Abstraction and pat-10 points each. For X, X1, and (X1 � X2)/2, all memberships
tern classification, J. Math. Anal. Appl., 13: 1–7, 1966.for the first 10 points are 
 0.97, and memberships of the

6. J. C. Bezdek and S. K. Pal, Fuzzy Models for Pattern Recognition,remaining 20 points in this cluster are � 0.07. For X2, how-
Piscataway, NJ: IEEE Press, 1992.ever, this cluster has eight anomalies with respect to the orig-

7. R. Krishnapuram and J. Keller, A possibilistic approach to clus-inal data. When column U1 of X2 is hardened, this cluster con-
tering, IEEE Trans. Fuzzy Syst., 1 (2), 98–110, 1993.tains the 12 points (underlined in Table 3) numbered 3, 4, 5,

8. Y. H. Pao, Adaptive Pattern Recognition and Neural Networks,6, 7, 8, 10, 24, 25, 27, 28, and 30; the last five of these belong
Reading, MA: Addison-Wesley, 1989.to cluster 3 in X, and the points numbered 1, 2, and 9 should

9. A. Jain and R. Dubes, Algorithms for Clustering Data, Englewoodbelong to this cluster, but do not.
Cliffs, NJ: Prentice Hall, 1988.

10. J. C. Bezdek, Pattern Recognition with Fuzzy Objective Function
Algorithms, New York: Plenum, 1981.

REMARKS ON APPLICATIONS OF
FUZZY PATTERN RECOGNITION

Reading List

G. Klir and T. Folger, Fuzzy Sets, Uncertainty and Information, Engle-Retrieval from the Science Citation Index for years 1994–1997
wood Cliffs, NJ: Prentice Hall, 1988.on titles and abstracts that contain the keyword combinations

D. Dubois and H. Prade, Fuzzy Sets and Systems: Theory and Applica-‘‘fuzzy’’ and either ‘‘clustering’’ or ‘‘classification’’ yield 460 pa-
tions, New York: Academic Press, 1980.pers. Retrievals against ‘‘fuzzy’’ and either ‘‘feature selection’’

H. J. Zimmermann, Fuzzy Set Theory—and Its Applications, 2nd ed.,or ‘‘feature extraction’’ yield 21 papers. This illustrates that
Boston: Kluwer, 1990.the literature contains some examples of fuzzy models for fea-

D. Schwartz, G. Klir, H. W. Lewis, and Y. Ezawa, Applications ofture analysis, but they are widely scattered because this disci-
fuzzy sets and approximate reasoning, Proc. IEEE, 82: 482–498,pline is very data-dependent and, hence, almost always done
1994.on a case-by-case basis.

A. Kandel, Fuzzy Techniques in Pattern Recognition, New York: Wiley-A more interesting metric for the importance of fuzzy mod-
Interscience, 1982.els in pattern recognition lies in the diversity of applications

S. K. Pal and D. K. Dutta Majumder, Fuzzy Mathematical Approachareas represented by the titles retrieved. Here is a partial
to Pattern Recognition, New York: Wiley, 1986.sketch:

B. Kosko, Neural Networks and Fuzzy Systems: A Dynamical Approach
to Machine Intelligence, Englewood Cliffs, NJ: Prentice Hall, 1991.Chemistry. Analytical, computational, industrial, chroma-

tography, food engineering, brewing science.
JournalsElectrical Engineering. Image and signal processing, neu-
IEEE Transactions on Fuzzy Systems, IEEE Transactions on Neuralral networks, control systems, informatics, automation,

Networks, IEEE Transactions on Systems, Man Cybernetics, Fuzzyrobotics, remote sensing and control, optical engi-
Sets and Systems, International Journal of Approximate Reasoning,neering, computer vision, parallel computing, net-
International Journal of Intelligent Systems, Intelligent Automationworking, dielectrics, instrumentation and measure-
and Soft Computing, Uncertainty, Fuzziness and Knowledge Basedment, speech recognition, solid-state circuits.
Systems, Journal of Intelligent and Fuzzy Systems

Geology/Geography. Photogrammetry, geophysical re-
search, geochemistry, biogeography, archeology. JAMES C. BEZDEK

Medicine. Magnetic resonance imaging, diagnosis, tomog- University of West Florida
raphy, roentgenology, neurology, pharmacology, medical LUDMILA KUNCHEVA
physics, nutrition, dietetic sciences, anesthesia, ultra- University of Wales, Bangor
microscopy, biomedicine, protein science, neuroimaging,
pharmocology, drug interaction.

Physics. Astronomy, applied optics, earth physics. FUZZY QUERYING. See FUZZY INFORMATION RETRIEVAL
Environmental Sciences. Soils, forest and air pollution,

AND DATABASES.
meteorology, water resources.

Thus, it seems fair to assert that this branch of science and
engineering has established a niche as a useful way to ap-
proach pattern recognition problems.
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