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FUZZY NEURAL NETS

There is no doubt that neurocomputing and fuzzy set technol-
ogy were dominant information technologies of the 1990s. The
dominant paradigm of neurocomputing (1) is concerned with
parallel and distributed processing realized by a vast number
of simple processing units known as (artificial) neurons. The
neural networks are universal approximators, meaning that
they can approximate continuous relationships to any desired
accuracy. This feature is intensively exploited in a vast num-
ber of applications of neural networks, in areas such as pat-
tern recognition, control, and system identification. The un-
derlying philosophy of fuzzy sets is that of a generalization of
set theory with an intent of formalization of concepts with
gradual boundaries (2). Through the introduction of fuzzy sets
one develops a suitable conceptual and algorithmic frame-
work necessary to cope with the most suitable level of infor-
mation granularity. All constructs arising from the ideas of
fuzzy sets hinge on the notion of information granularity and
linguistic nonnumeric information, in particular. It becomes
apparent that the technologies of fuzzy sets and neural net-
works are complementary: fuzzy sets deliver a suitable con-
ceptual framework while neural networks furnish us with all
necessary learning capabilities.

The fuzzy set–neural networks synergy has already led to
a number of interesting architectures that are usually re-
ferred to as fuzzy–neural systems or fuzzy neural networks.
These are the models, the development of which heavily de-
pends upon fuzzy sets and neurocomputing. The contribution
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of the two technologies could vary from case to case. In some • Preprocessing of training data that could easily lead to
the improvement in learning and/or enhanced ro-cases, we envision a significant dominance of fuzzy sets with

some additional learning slant supported by neural networks. bustness characteristics of the network
In other scenarios, one can witness structures that are essen- • Enhancements of specific training procedures through
tially neural networks with some structural enhancements knowledge-based learning schemes (including learning
coming from the theory of fuzzy sets. In a nutshell, the ex- metarules)
isting diversity of such approaches calls for their systematic • Linguistic interpretation of results produced by neural
treatment that definitely helps us understand the benefits of networks
the symbiosis and make the design of such systems more sys-
tematic. This study is organized in a way that unveils the Each of these areas have specific and highly representative
main architectural and learning issues of synergy between instances. We review them to expose the reader to the very
neural networks and fuzzy sets. The agenda of this article nature of some important functional links between fuzzy sets
is twofold: and neural networks.

• First, we propose a general taxonomy of hybrid fuzzy– Fuzzy Sets in the Preprocessing and Utilization of Training Data
neural topologies by studying various temporal and ar-

The function of fuzzy sets in this particular framework is tochitectural aspects of this symbiosis.
deliver an interface between the data (environment) and the• Second, our intent is to review some representative ex-
neural network regarded primarily as a processing vehicle.amples of hybrid structures that illustrate the already
As visualized in Fig. 1, the original data are transformedintroduced typology thoroughly.
within the framework of the fuzzy set interface: the resulting
format could be very different from the one encountered in

NEUROCOMPUTING IN FUZZY SET TECHNOLOGY the original environment.
The intent of the interface is to expose the network to the

Generally speaking, in the overall fuzzy set–neural network most essential features of the data that need to be captured
hybrid methodology, neural networks are providers of useful through the subsequent mechanisms of learning. These fea-
computational and learning facilities. Fuzzy sets, as based on tures are usually revealed as a part of the underlying domain
the mechanisms of set theory and multivalued logic, are knowledge. The notion of a cognitive perspective develops a
chiefly preoccupied with the variety of aspects of knowledge suitable learning environment. By selecting a collection of so-
representations. At the same time they tend to be somewhat called linguistic landmarks (2,3), one can readily meet several
weaker as far as their processing capabilities are concerned important objectives:
(interestingly enough, this claim becomes valid in the case of
all constructs originating from set theory). In particular, set-

• Performing a nonlinear normalization of the training
theoretic operations do not cope explicitly with repetitive in- data. By transforming any real data, any pattern x � �n

formation and cannot reflect this throughout their out- becomes converted into the corresponding element of a
comes—the most evident examples arises in terms of highly highly dimensional unit hypercube.
noninteractive maximum and minimum operations. Being

• Defining a variable (as opposed to fixed) processing reso-more specific, the result of the minimum (or maximum) opera-
lution carried out within the resulting neural networks.tion relies on the extreme argument and does not tackle the

• Coping with uncertainty in the training data.remaining elements. Say min (0.30, 0.9, 0.95, 0.87, 0.96) is
the same as the one of the expression min (0.30, 0.41, 0.32,

Let us briefly elaborate on the nature of these enhancements.0.33, 0.31).
There are a number of instances in which neural networks

Nonlinear Data Normalization. For each coordinate (vari-are used directly to support or realize computing with fuzzy
able) we define c linguistic terms. These are denoted en blocksets. In general, in most of these cases, neural networks are

aimed at straightforward computing through the utilization
of membership values. Similarly, there are various ap-
proaches spearheaded along the line of the development of
neural networks with the intent of processing fuzzy informa-
tion. In this case there is not too much direct interaction and
influence originating from the theory of fuzzy sets. It is essen-
tially a way in which neural networks are aimed at the cali-
bration of fuzzy sets—the construction of their membership
functions is completed in the setting of numeric data avail-
able at hand.

Fuzzy Sets in the Technology of Neurocomputing

Fuzzy set
interface

Data

Neural
network

The key role of fuzzy sets is to enhance neural networks by
incorporating knowledge-oriented mechanisms. Generally Figure 1. Fuzzy sets in interfacing neural networks with data envi-
speaking, these knowledge-based enhancements of neural ronment: transforming data into a format assuring computational ef-

ficiency of neurocomputation.networks are threefold:
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as A � �A1,A2, . . .,Ac� for the first coordinate, B � �B1,B2, The partition of the variable through A assigns a high
. . .,Bc� for the second, etc. Then the linguistic preprocessing level of information granularity to some regions (say 
1 and
P carries out the mapping of the form 
2) and sensitizes the learning mechanism accordingly. On

the other hand, the data points falling under 
3 are regarded
P : Rn → [0, 1]nc (1) internally (at the level they are perceived by the networks) as

equivalent (by leading to the same numeric representation inMore specifically, a numeric input x invokes (activates) a se-
the unit hypercube).ries of linguistic terms A1,A2, . . ., Ac, B1,B2, . . ., etc. As we

are concerned with ‘‘n’’ dimensional inputs with ‘‘c’’ labels
Uncertainty Representation. The factor of uncertainty or im-(fuzzy sets) associated each of them, we end up with n � c acti-

precision can be quantified by exploiting some uncertaintyvation levels situated in the unit interval. Or, in other words,
measures as introduced in the theory of fuzzy sets. The un-the results of this nonlinear transformation are located in the
derlying rationale is to equip the internal format of informa-n � c-dimensional unit hypercube. Observe also that this pre-
tion available to the network with some indicators describingprocessing serves as a useful nonlinear data normalization.
how uncertain a given piece of data is. Considering possibilityIn contrast, the commonly exploited linear transformation de-
and necessity measures this quantification is straightforward:fined as
once Poss(X,Ak) � Nec(X,Ak), then X is regarded uncertain
(the notion of uncertainty is also context-sensitive and de-
pends on Ak) (6). For numerical data one always arrives at

x − xmin

xmax − xmin
(2)

the equality of these two measures that underlines the com-
(where xmin and xmax are the bounds of the variable) does not plete certainty of X. In general, the higher the gap between
exhibit any nonlinear effect. the possibility and necessity measures, Poss(X,Ak) � Nec

The positive effect of data normalization has often been (X,Ak) � �, the higher the uncertainty level associated withunderlined in many studies on neural networks. The normal-
X. The uncertainty gap attains its maximum for � � 1.ization is always recommended, especially if the ranges of the

The way of treating the linguistic term makes a real differ-individual variables are very distinct, say [0,0.05] vis-à-vis
ence between the architecture outlined above and the stan-[106,108]. The direct use of rough (unscaled) data could easily
dard RBF neural networks. The latter ones do not have anylead to a completely unsuccessful learning. The nonlinear ef-
provisions to deal with and quantify uncertainty. The formsfect conveyed by Eq. (1) stems from the nonlinear member-
of the membership function (RBFs) are very much a second-ship functions of the linguistic terms.
ary issue. In general, one can expect that the fuzzy sets usedThe linguistic preprocessing increases the dimensionality
therein can exhibit a variety of forms (triangular, Gaussian,of the problem; however, it could also decrease the learning
etc.), while RBFs are usually more homogeneous (e.g., all as-effort. The similar speedup effect in training is commonly ob-
sume Gaussian-like functions). Furthermore, there are noserved in radial basic function (RBF) neural networks (4,5).
specific restrictions on the number of RBFs used as well asThe improvement in the performance achieved in this setting
their distribution across the universe of discourse. For fuzzystems from the fact that the individual receptive fields mod-
sets one restricts this number to a maximum of 9 terms (moreeled by the RBFs identify homogeneous regions in the multi-
exactly, 7 � 2); additionally we make sure that the fuzzy setsdimensional space of input variables. Subsequently, the up-
are kept distinct and thus retain a clear semantic identitydates of the connections of the hidden layers are less
that supports their interpretation.demanding, as a preliminary structure has been already es-

tablished and the learning is oriented towards less radical
Knowledge-Based Learning Schemeschanges of the connections and practically embarks on some

calibration of the receptive fields. By modifying the form of Fuzzy sets influence neural networks as far as learning mech-
the RBFs themselves, some regions exhibiting a significant anisms and interpretation of the constructed networks are
variability of the approximated function are made smaller so constructed. The set of examples discussed in this section il-
that a single linear unit can easily adjust. Similarly, the re- lustrates this point.
gions over which the approximated function does not change

Metalearning and Fuzzy Setsdrastically can be made quite large by adapting radial basis
functions of lower resolution. In general, this concept leads to

Even though guided by detailed gradient-based formulas, thethe concept of multiresolutionlike (fractal-oriented) neural
learning of neural networks can be enhanced by making usenetworks.
of some domain knowledge acquired via intense experimenta-
tion (learning). By running a mixture of successful and unsuc-Variable Processing Resolution. By defining the linguistic
cessful learning sessions one can gain a qualitative knowl-terms (modeling landmarks) and specifying their distribution
edge on what an efficient leaning scenario should look like.along the universe of discourse we can orient (focus) the main

learning effort of the network. To clarify this idea, let us refer In particular, some essential qualitative associations can
to Fig. 2. be established by linking the performance of the learning pro-

cess and the parameters of the training scheme being utilized.
Two detailed examples follow.

The highly acclaimed backpropagation (BP) scheme used
in training multilevel neural networks is based upon the gra-
dient of the performance index (objective index) Q. The basic
update formula reads now asΩ3 Ω1 Ω2 Ω4

Figure 2. Fuzzy quantization (partition, discretization) delivered by
linguistic terms. Note a diversity of information granularity (variable
processing resolution) captured by the respective linguistic terms.

wij = wij − α
∂Q
∂wij
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where wij stands for a connection (weight) between the two As before, it is intuitively straightforward to set up a collec-
tion of the detailed learning rules. Summing up, we highlightneurons (i and j). The positive learning rate is denoted by �.

Similarly �Q/�wij describes a gradient of Q expressed with re- two crucial design issues:
spect to wij. Obviously, higher values of � result in more pro-
found changes (updates) of the connection. Higher values of � • The considered approach is fully experimental. The role

of fuzzy sets is to represent and to summarize the avail-could result in faster learning that, unfortunately, comes at
the expense of its stability (oscillations and overshoots in the able domain knowledge properly.
values of Q). Under such circumstances, one may easily end • While the control protocol (rules) seems to be universal,
up with the diverging process of learning. After a few learning the universes of discourse should be modified according
sessions one can easily reveal some qualitative relationships to the current application (problem). In other words, the
that could be conveniently encapsulated in the form of ‘‘if– basic linguistic terms occurring therein need to be ad-
then’’ rules (7). justed (calibrated). The realization of this phase calls for

some additional computational effort, which could some-
what offset the benefits originating from the availabilityif there are changes of Q(�Q), then there are changes in �α

of the domain knowledge.
A collection of such learning rules (metarules) is shown in

Fuzzy Clustering in Revealing Relationships within DataTable 1.
These learning rules are fairly monotonic (yet not symmet- In the second approach the domain knowledge about learning

ric) and fully comply with our intuitive observations when it is acquired through some preprocessing of training data prior
comes to the representation of the supervisory aspects of the to running any specific learning scheme. This is the case in
learning procedures in neural networks. In general, any in- the construction known as a fuzzy perceptron (8). In an origi-
crease in Q calls for some decrease of �; when Q decreases, nal setting, a single-layer perceptron is composed of a series
then the increases in � need to be made more conservative. of linear processing units equipped with the threshold ele-
The linguistic terms in the corresponding rules are defined in ments. The basic perception-based scheme of learning is
the space (universe) of changes of Q (antecedents) and a cer- straightforward. Let us start with a two-category multidimen-
tain subset of [0,1] (conclusions). Similarly, the BP learning sional classification problem. If the considered patterns are
scheme can be augmented by taking into account a momen- linearly separable, then there exists a linear discriminant
tum term; the primary intent of this expansion is to suppress function f such that
eventual oscillations of the performance index or reduce its
amplitude. This makes the learning more stable, yet adds one
extra adjustable learning parameter in the update rule itself.

The learning metarules rules can be formulated at the
f(x,w) = wTx

{
> 0 if x is in class 1

< 0 if x is in class 2

level of some critical parameters of the networks. The essence
where x,w � �n�1. The dimensionality of the original space ofof the ensuing approach is to modify activation functions of
patterns (�n) has been increased due to a constant termthe neurons in the network. Consider the sigmoid nonlinear-
standing in the linear discriminant function, say f (x,w) �ity (that is commonly encountered in many neural architec-
wo � 1 � w1x1 � w2x2 � � � � � wnxn.tures)

After multiplying the class 2 patterns by 	1, we obtain the
system of positive inequalities

y = 1
1 + exp(−γ u) f(xk,w) > 0

We assume that the steepness factor of the sigmoid function where k � 1,2,. . .,N. The learning concerns a determination
(�) is modifiable. As the changes of the connections are evi- of the connections (w) so that all inequalities are made posi-
dently affected by this parameter (�), we can easily set up tive. The expression f (xk,w) � 0 defines a hyperplane parti-
metarules of the form: tioning the patterns; all class 1 patterns are located at the

same side of this hyperplane. Assume that xk’s are linearly
separable. The perception algorithm (shown as follows) guar-if the performance index is Qo then γ isγo

antees that the discriminating hyperplane (vector w) is found
in a finite number of steps.

do for all vectors xk, � 1,2,. . .,N
if wTxk � 0, then update the weights (connections)
w � w � cxk

c � 0
end;
the loop is repeated until no updates of w occur

The crux of the preprocessing phase as introduced by Keller
and Hunt (8) is to carry out the clustering of data and deter-
mine the prototypes of the clusters as well as compute the
class membership of the individual patterns. The ensuing
membership values are used to monitor the changes. Let uik

Table 1. BP-Oriented Learning Rules*

�Q ��

NB PB
NM PM
NS PS
Z Z
PS NM
PM NB
PB NB

*NB, negative big; NM, negative medium; NS, negative small; Z, zero; PS, posi-
tive small; PM, positive medium; PB, positive big.
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and u2k be the membership grades of the kth pattern. Defi-
nitely, u1k � u2k � 1. The outline of the learning algorithm is
the same as before. The only difference is that the updates of
the weights are governed by the expression

w = w + cxk|u1k − u2k|p

where p � 1. These modifications depend very much on the
belongingness of the current pattern in the class. If u1k �
u2k � 0.5, then the correction term is equal to zero and no
update occurs. On the other hand, if u1k � 1, then the updates
of the weights are the same as those encountered in the origi-
nal perceptron algorithm.

In comparison to the previous approaches, the methods

Ai
Bj

Ck
x3 x2

x1

j

i

interpretation

Kohonen map

Linguistic terms
(fuzzy sets)

stemming from this category require some extra computing
Figure 3. Self-organizing (Kohonen) map and its linguistic interpre-

(preprocessing) but relieve us from the calibration of the lin- tation produced by an additional interpretation layer. This layer is
guistic terms (fuzzy sets) standing in the learning metarules. activated by the predefined linguistic terms—fuzzy sets (Ai, Bj, Ck,

etc.) activated by the inputs of the map.

A LINGUISTIC INTERPRETATION OF
COMPUTING WITH NEURAL NETWORKS description (descriptors)

This style of the usage of fuzzy sets is advantageous in some Ai and Bj and Ck and . . .
topologies of neural networks, especially those having a sub-
stantial number of outputs and whose learning is carried out

‘‘covers’’ (activates) the data space. The higher the activationin unsupervised form. Fuzzy sets are aimed at the interpreta-
level of the region the more visible the imposed linguistic pat-tion of results produced by such architectures and facilitates
tern within the data set. By performing an analysis of this

processes of data mining.
type for several linguistic data descriptors one can develop a

To illustrate the idea, we confine ourselves to self-organiz- collection of the descriptors that cover the entire data space.
ing maps. An important property of such architecture is their We may eventually require that this collection should cover
ability to organize multidimensional patterns in such a way the entire map to a high extent, meaning that
that their vicinity (neighborhood) in the original space is re-
tained when the patterns are mapped onto a certain low-di-
mensional space so that the map attempts to preserve the

∃
a>0

∀
i, j=1,2,n

⋃
c∈C

N(i, j, c) ≥ α

main topological properties of the data set. Quite often, the
maps are considered in the form of the two-dimensional where N(i, j,c) is the response of the neuron located at the
arrays of regularly distributed processing elements. The (i, j) and considered (placed) in context c from a certain family
mechanism of self-organization is established via competitive of contexts C . Some other criteria could be also anticipated;
learning; the unit that is the ‘‘closest’’ to the actual pattern is for example, one may request that the linguistic descriptions
given an opportunity to modify its connections and follow the are well separated, meaning that their corresponding activa-
pattern. These modifications are also allowed to affect the tion regions in the map are kept almost disjoint.
neurons situated in the nearest neighborhood of the winning
neuron (node) of the map.

FUZZY NEURAL COMPUTING STRUCTURESOnce the training has been completed, the map can locate
any multidimensional pattern on the map by identifying the

The examples discussed in the preceding section have re-most active processing unit. Subsequently, the linguistic la-
vealed a diversity of approaches taken towards building neu-bels are essential components of data mining by embedding
ral network–fuzzy architectures. Taking this into account, wethe activities of the network in a certain linguistic context.
distinguish between two key facets one should take into ac-This concept is visualized in Fig. 3. Let us consider that for
count in any design endeavor:each variable we have specified a particular linguistic term

(context) defined as a fuzzy set in the corresponding space,
• Architecturalnamely A1,A2, . . . and An1 for x1, B1,B2, . . . and Bn2 for x2, etc.
• TemporalWhen exposed to any input pattern, the map responds with

the activation levels computed at each node in the grid. The
logical context leads to an extra two-dimensional grid, the ele- These properties are exemplified in the sense of the plasticity
ments of which are activated based on the corresponding acti- and explicit knowledge representation of the resulting neural
vation levels of the nodes located at the lower layer as well as network–fuzzy structure. The strength of the interaction it-
the level of the contexts assumed for the individual variables. self can vary from the level at which the technology of fuzzy
These combinations are of the AND form—the upper grid is sets and neurocomputing are loosely combined and barely co-
constructed as a series of the AND neurons. The activation exist to the highest one where there emerges a genuine fusion

between the technologies.region obtained in this way indicates how much the linguistic
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Architectures of Fuzzy–Neural Network Systems Classes of Fuzzy Neurons

The essence of the architectural interaction of fuzzy sets and We elaborate on the three models that are representative of
most of the existing hybrid architectures as developed in theneural networks is visualized in Fig. 4. This point has already

been made clear through the studies in the previous section. setting of fuzzy sets and neurocomputing.
The first fuzzy set–oriented construct proposed by Lee andBy and large, the role of fuzzy sets gets more visible at

the input and output layers of any multilayer structure of the Lee (11) was contrasted with the generic model of the neuron
as discussed by McCulloch and Pitts as a binary device. Letnetwork. The input and output layers are much more oriented

toward the capturing the semantics of data rather than focus- us recall that the basic binary neuron has n excitatory inputs
(e1,e2,. . .,en) and m inhibitory inputs (i1,i2,. . .,im). The firinging on pure numeric processing.
of the neuron is binary: y is set to 1 if all inhibitory inputs
are set to 0 and the sum of all excitatory inputs exceeds aTemporal Aspects of Interaction in
threshold level,Fuzzy–Neural Network Systems

The temporal aspects of interaction arise when dealing with
the various levels of intensity of learning, Fig. 4. Again the

∑
i=1

ei > T

updates of the connections are much more vigorous at the hid-
den layers—we conclude that their plasticity (that is an abil- The main generalization proposed by Lee and Lee (11) was to
ity to modify the values of the connections) is higher than the consider that an activity of the neuron is continuous. More
others situated close to the input and output layers. specifically, the output of the neuron is one of the positive

numbers ui in [0, 1], i � 1,2, . . ., p, which means that the
output (y) reads asFUZZY NEUROCOMPUTING—AN ARCHITECTURAL FUSION

OF FUZZY AND NEURAL NETWORK TECHNOLOGY

In this section we concentrate on a certain category of hybrid y =
{

ui if the neuron is firing

0 otherwise
processing in which the neurons combine a series of features
that are essential to neural networks and symbolic pro-

The firing rules are also restated accordingly:cessing. In fact, this is one of the approaches among these
reported in the literature (9,10,11). Very often these basic

1. All inhibitory inputs are set to 0.constructs (fuzzy neurons) are exploited as generic building
blocks in the development of fuzzy–neural network architec- 2. The sum of excitatory inputs must be equal or greater

than a threshold T.tures.

Figure 4. Architectural and temporal synergy of
fuzzy set constructs and neural networks. Archi-
tectural level: fuzzy sets contribute to the construc-
tion of preprocessing and postprocessing modules
(input and output layer) and are aimed at knowl-
edge representation whereas numeric processing
and learning occurs at the level of the hidden lay-
ers of the entire architecture. Temporal interac-
tions: most parametric learning occurs at the level

Knowledge
representation

Knowledge
representation

Numeric processing
and learning

Fuzzy sets Fuzzy setsNeurocomputing

Preprocessing Postprocessing

Plasticity

Number of layer of hidden layers which exhibit high plasticity.
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The original study (11) illustrates the application of such The n-input OR processing unit is governed by the expression
fuzzy neurons to a synthesis of fuzzy automata.

An idea proposed by Buckley and Hayashi (12) is to de- y = OR(x;w)

velop a fuzzy neuron in the sense that its connections are
namelyviewed as fuzzy sets (more precisely, fuzzy numbers); simi-

larly we consider the inputs to be fuzzy numbers. The under-
lying formula of the neuron generalizes from the pure nu-
meric neurons and is expressed as y =

n

S
i=1

(witxi )

The inputs of the neuron are described by x while the vector
w summarizes its connections. The computations of the out-

Y = f

�
n∑

i=1

WiXi + �

�
put (y) rely on the use of some triangular norms (s and t
norm). Observe that if w � 1 then y � OR(x1,x2,. . .,xn) soHere the connections and bias and inputs are fuzzy numbers.
that the neuron reduces to a standard OR gate encounteredMoreover, the operations (summation and product) are
in digital logic. The AND neuron is described in the followingviewed in terms of fuzzy set operations. Here that the output
formof the neuron is a fuzzy number. All the operations in the

expression that follows are carried out via the extension prin- y = AND(x; w)
ciple. To illustrate the relevant calculations, let us consider
the fuzzy neuron with two inputs (X1 and X2). In light of the

or equivalentlyextension principle, the output of the fuzzy neuron reads as

Y(y) = sup{min[X1(x1),X2(x2),W1(w1),W2(w2),�(ϑ)]} y =
n

T
i=1

(wisxi )

where the supremum in the above expression is taken over
Note that the composition operation used here uses the s andall the arguments satisfying the nonlinear constraint
t norm in a reversed order.

An important class of fuzzy neural networks concerns an
approximation of mappings between the unit hypercubes
(namely, from [0,1]n to [0,1]m or [0,1] for m � 1). These map-

y = f

�
2∑

i=1

wixi − i + ϑ

�

pings are realized in a logic-based format. To fully compre-
hend the fundamental idea behind this architecture, let usThe idea developed by Bortolan (13) makes the previous con-

cept of the fuzzy neuron more computationally attractive by note some very simple yet powerful concepts form the realm
of two-valued systems. The well-known Shannon’s theoremrestricting the form of the input fuzzy sets as well as the con-

nections of the neuron to trapezoidal fuzzy sets T (x;a,b,c,d), states that any Boolean function �0,1�n � �0,1� can be
uniquely represented as a logical sum (union) of minterms (asee Fig. 5. Such piecewise membership functions represent

uncertain variables. so-called SOM representation) or, equivalently, a product of
some maxterms (known as a POM representation). By mint-This drastically reduces computational overhead. The per-

tinent version of a well-known � learning algorithm is covered erm we mean an AND combination of all the input variables
of this function; they could appear either in a direct or com-in Ref. 13.
plemented (negated) form. Similarly, the maxterm consists of
the variables that now occur in their OR combination. A com-Fuzzy Logic Neurons
plete list of minterms and maxterms for Boolean functions of

The main rationale behind this choice (14,15,16) is that the two variables consists of the expressions
resulting neural networks effortlessly combine learning capa-
bilities with the mechanism of knowledge representation in x1 AND x2, x1 AND x2, x1 AND x2, x1 AND x2 for minterms
its explicit manner. The neurons are split into two main cate-

x1 OR x2, x1 OR x2, x1 OR x2, x1 OR x2 for maxtermsgories, namely aggregative and referential processing units.
We discuss here aggregative neurons. In what follows, we de-

From a functional point of view, the minterms can be identi-note t-novus by t (or T). S-novus will be denoted by s (or S).
fied with the AND neurons while the OR neurons can be used
to produce the corresponding maxterms. It is also noticeable
that the connections of these neurons are restricted to the
two-valued set �0,1�, therefore making these neurons two-val-
ued selectors. Taking into account the fundamental represen-
tation of the Boolean functions, two complementary (dual) ar-
chitectures are envisioned. In the first case, the network
includes a single hidden layer that is constructed with the aid
of the AND neurons and the output layer consisting of the ORb c da

neurons (SOM version of the network). The dual type of theFigure 5. An example of a trapezoidal fuzzy number: a and d denote
network is of the POM type in which the hidden layer consistsa lower and upper bound of the linguistic concept. The elements situ-
of some OR neurons while the output layer is formed by theated in-between b and c belong to the concept at degree 1 and are

indistinguishable. AND neurons.
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lence of the POM and SOM types of the obtained logic tional Conference on Artificial Neural Networks, London: Springer-
processors is not guaranteed at all. Moreover, the ap- Verlag, 1994, pp. 181–184.
proximation exhibits an inherent logical flavor not nec- 14. W. Pedrycz, Fuzzy neural networks and neurocomputations.
essarily leading to the same approximation accuracy as Fuzzy Sets Systems 56:1–28, 1993.
achieved for ‘‘classic’’ neural networks. This should not 15. W. Pedrycz, Fuzzy Sets Engineering. Boca Raton, FL: CRC, 1995.
be regarded as a shortcoming, as in return we obtain

16. W. Pedrycz and A. F. Rocha, Fuzzy-set based models of neurons
some essential transparency of the neural architecture and knowledge-based networks, IEEE Trans. Fuzzy Systems,
that could be easily interpreted in the form of ‘‘if–then’’ 1:254–266, 1993.
statements—the most evident enhancement of the ar-
chitecture in an attempt to alleviate the black box na- WITOLD PEDRYCZ
ture inherent of most of the neural networks. University of Manitoba

CONCLUSIONS

Fuzzy sets and neurocomputing are two supplementary tech-
nologies. The two-way integration is not only possible but
highly beneficial. The knowledge-based faculties are well han-
dled by the technology of fuzzy sets, while the learning activi-
ties are chiefly addressed by neural networks. Interestingly,
there are a number of new constructs combining the ideas
stemming from fuzzy sets and neural networks. We have in-
vestigated various levels of synergy and proposed a consistent
classification of the systems emerging as an outcome of the
symbiosis of these two technologies.
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