
FUZZY MODEL FUNDAMENTALS

The concept of the fuzzy set was introduced in 1965 by
Zadeh (1). After this important event, a large number of
theoretical contributions were proposed and the formal
framework of fuzzy set theory grew fast. For several years,
fuzzy models were mainly devoted to specific problems in
the areas of pattern recognition and decision-making (2, 3).
In the mid-1980s, the successful development of fuzzy con-
trollers opened up new vistas in the application of fuzzy
models to engineering problems. Rule-based approaches
emerged, in particular, as a powerful and general method-
ology for information processing. As a result, fuzzy systems
became very attractive and the number of applications in-
creased very rapidly in different fields (4–6). During the
first half of the 1990s, important relationships with artifi-
cial neural networks were established. Fuzzy and neural
techniques were presented from a common perspective (7),
and new structures able to combine the advantages of fuzzy
and neural paradigms were proposed (8–16).

Fuzzy set computing is now a well-established problem-
solving technology which aims at replacing (or improving)
classical methods in a growing number of research and ap-
plication areas including control systems, pattern recog-
nition, data classification, signal processing, and low-level
and high-level computer vision (17–28).

The aim of this article is not to provide a thorough de-
scription of all concepts of fuzzy models. There is a large
body of fuzzy literature devoted to this purpose. This article
rather aims at presenting an up-to-date selection of most
useful concepts from an electronic engineering perspective.
For this reason, theoretical aspects and mathematical for-
malism will be kept to a minimum.

FUZZINESS AND UNCERTAINTY

One of the key features of fuzzy models is their ability to
deal with the uncertainty which typically affects physical
systems and human activities. Unlike classical methods
which resort to a crisp Yes/No approach, fuzzy models adopt
a gradual approach which deals with degrees (or grades)
of certainty. Let us focus on a simple example. If we ob-
serve the object A depicted in Fig. 1, we can easily see that
it represents a square. How do we describe the object B
in the same figure? It is more or less a square. It does not
belong to the (crisp) class of squares, because it possesses
round corners. However, it may partially belong to a fuzzy
class of squares. Its degree of membership could be, for
example, 0.8 (where unity denotes full membership). Con-
versely, object D is more or less a circle. It does not belong
to the (crisp) class of circles, because it possesses straight
lines. However, it may belong to a fuzzy class of circles to
a certain extent. Depending on their shapes, all objects in
Fig. 1 possess degrees of membership to both fuzzy classes.
This simple example also highlights the difference between
fuzziness and probability. This important subject has been
addressed by different authors in the literature (3–17). It
suffices here to observe that probability is related to the
occurrence of events, whereas fuzziness is not. Again, let
us focus on the object B in Fig. 1. A sentence like “Is it

probably a square?” is quite inappropriate to address the
uncertainty which affects our process of characterizing the
object. The object is not exactly a square. It is more or less
a square.

Fuzzy concepts represent the basis of human thinking
and decision-making. Sentences are very often character-
ized by vagueness and linguistic imprecision. As an exam-
ple, if we are driving a car, we could act according to the
following statement: “If the speed is low and the vehicle
ahead is more or less far away, then moderately increase
the speed.” Despite their vague appearance, fuzzy concepts
represent a powerful way to condense information about
real life. The great success of fuzzy models is the result of
combination of the following key features:

1. Effectiveness in representing the knowledge about a
problem

2. Effectiveness in processing this knowledge by adopt-
ing a numerical framework

FUZZY SETS

A fuzzy set can be considered a generalization of a classical
(“crisp”) set. In classical set theory, the degree of member-
ship of an element to a set is either zero (no membership) or
unity (full membership). The membership of an element to
a crisp set, say A, is described by the characteristic function
χA :

No partial membership is allowed. Fuzzy set theory per-
mits us to deal with partial membership. A fuzzy set F is
indeed represented as a set of ordered pairs (2):

where U is the universe of discourse (i.e., the collection of
objects where the fuzzy set is defined) and µF (x) is the mem-
bership function that maps U to the real interval [0, 1]:

For each element x ∈ U, the function µF (x) yields a real
number which represents the degree (or grade) of member-
ship of x to the fuzzy set F (0 ≤ µF (x) ≤ 1). As an example,
let us consider the fuzzy set: F = numbers close to 4. A pos-
sible membership function µF describing this fuzzy set is
represented in Fig. 2.

It can be observed that the maximum degree of member-
ship is obtained for x = 4: µF (4) = 1. The closer the number
to 4 the more is the membership to F. On the contrary,
a number very different from 4 is assigned a low (or zero)
membership degree,as it should be.The difference between
fuzzy and crisp sets is graphically highlighted in the same
figure which shows the characteristic function χA of the
crisp set A = real numbers between 3 and 5. According to
the “crisp” nature of set A, we observe a hard transition
from full membership to no membership and vice versa.

As a second example, let U = {0, 1, 2, . . . , 255} be the
set of integers ranging from 0 to 255. Such a universe may
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Figure 1. Example of crisp and fuzzy classes.

Figure 2. Example of membership and characteristic functions.

represent the set of possible gray levels (or luminances)
of a digitized image, as represented in Fig. 3 (0 = black,
255 = white). Let us define three fuzzy sets labeled dark
(DK), medium (MD), and bright (BR) by means of the mem-
bership functions µDK, µMD, and µBR depicted in the same
figure. It is worth pointing out that almost all pixel lumi-
nances possess a nonzero degree of membership to more
than one fuzzy set. For example, if we choose a pixel lumi-
nance x = 135 as shown in Fig. 3, we have µDK(x) = 0.08,
µMD(x) = 0.91 and µBR(x) = 0.24.

The concept of membership function plays a key role in
fuzzy modeling. Indeed, properties and operators dealing
with fuzzy sets can be easily defined in terms of member-
ship functions. The use of linguistic labels to identify fuzzy
sets is also quite common. Linguistic labels are often asso-
ciated with simple operations which change or modify the
“shape” of a fuzzy set.

Complement of a Fuzzy Set. The complement F̄ of
fuzzy set F is described by the membership function:

Figure 3. Example of fuzzy sets dark (DK), medium (MD), and
bright (BR).

The linguistic label which is usually adopted is
“NOT.” As an example, the membership function of
fuzzy set NOT DARK is represented in Fig. 4.

Union of Fuzzy Sets. The union Fun = F1 ∪ F2 of fuzzy
sets F1 and F2 is described by the membership func-
tion:

The commonly used linguistic label is “OR.” The
membership function of fuzzy set DARK OR
MEDIUM is shown in Fig. 5.

Intersection of Fuzzy Sets. The intersection Fint = F1

∩ F2 of fuzzy sets F1 and F2 is described by the mem-
bership function:
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Figure 4. Complement of fuzzy set DARK.

Figure 5. Union of fuzzy sets DK and MD.

Figure 6. Intersection of fuzzy sets DK and MD.

Figure 7. Examples of concentration and dilation.

The associated label is “AND.”The membership func-
tion of fuzzy set DARKAND MEDIUM is represented
in Fig. 6. It should be noted that the above definitions
are generalizations of the corresponding definitions
for crisp sets.

Linguistic Modifiers. Linguistic modifiers (also called
linguistic hedges) operate on membership functions
in order to modify the meaning of the corresponding
fuzzy set. Two popular modifiers are described here.

Concentration is a modifier that operates on the mem-
bership function of a fuzzy set F in order to decrease values
smaller than unity. A commonly used definition (2) is:

(Remember that 0 ≤ µF(x) ≤ 1.) The typical linguistic label
is “VERY.” The membership function of fuzzy set VERY
DARK is depicted in Fig. 7.

Dilation is a modifier that operates on the membership
function of a fuzzy set F in order to increase values smaller
than unity. A typical definition is yielded by the following
relationship:

The associated label is “MORE OR LESS.”The membership
function of fuzzy set MORE OR LESS DARK is represented

in Fig. 7 too. Other fuzzy modifiers can be found in Refs. 2
and 17.

We previously used Eq. (2) to generically represent a
fuzzy set F. When the universe U is continuous, the follow-
ing expression is also adopted in the fuzzy literature (17):

On the contrary, when U is discrete, fuzzy set F is often
expressed in the following form:

Of course, integral and summation symbols in the above
expressions do not mean integration and arithmetic addi-
tion. They are used to denote the collection of all elements x
∈ U. The slash symbol is also typically adopted to associate
x with the corresponding degree of membership.

Let us introduce some specific terminology.

Support. The support of a fuzzy set F on the universe
U is the crisp set S(F) formed by the elements having
nonzero degree of membership:

Crossover Point. The crossover point of a fuzzy set F is
an element xc with membership degree µF (xc ) = 0.5.

Fuzzy Singleton. A fuzzy singleton is a fuzzy set whose
support is a single element x with µF (x) = 1.

Normal Fuzzy Set. A fuzzy set F is said to be normal
if maxx∈U {µF (x)} = 1.

α-Level Set. The α-level set (α-cut) of fuzzy set F is the
crisp set defined by the following relationship (2):

The strong α-level set is defined as:

A more general definition resorts to the concept of α-
level set. A fuzzy set is convex if all its α-level sets
are convex (as crisp sets).

Convex Fuzzy Set. A fuzzy set F is said to be convex
(4) if its support is a set of real numbers and the
following relation applies for all x ∈ [x1, x2] over any
interval [x1, x2]:

Extension Principle. The extension principle is com-
monly used to generalize crisp mathematical con-
cepts to fuzzy sets (2). Let F be a fuzzy set on U and
let y = f(x) denote a function from U to V (f:U → V).
By extending the function f, the fuzzy set f(F) of V is
defined as follows (4):
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Figure 8. Example of a fuzzy relation.

The fuzzy set f(F) is also expressed by

A simple example is depicted in Fig. 8.

ARITHMETIC OF FUZZY NUMBERS

Fuzzy Numbers. A fuzzy number is a normal and con-
vex fuzzy set such that (2):

1. Only one element (called the mean value) has
membership degree equal to unity.

2. Its membership function is piecewise continu-
ous.

In practice the above definition is often modified in order
to include trapezoid-shaped fuzzy sets.

Fuzzy arithmetic resorts to the extension principle in
order to extend algebraic operations from crisp to fuzzy
numbers. Since computational efficiency is an element of
paramount importance for many applications, a simplified
representation of a fuzzy number, called “LR representa-
tion,” is often adopted.

A fuzzy number is of LR type (2) if its membership func-
tion is defined by means of two reference functions L (left)
and R (right):

where xm is the mean value and α(α > 0) and β(β > 0) are
called the left and right spreads, respectively. A fuzzy num-
ber of LR type is symbolically denoted by (xm , α, β)LR . The
choice of functions L(u) and R(u) depends on the context.

A fuzzy interval of LR type is very similarly defined by
the membership function:

Figure 9. Example of extended addition.

Figure 10. (a) Signal corrupted by impulse noise. (b) Result of
fuzzy filtering.

A fuzzy interval is symbolically denoted by (x′
m , x

′′
m , α, β)LR .

As mentioned above, the extension principle is used to ex-
tend some algebraic operations to fuzzy numbers.

Let F1 and F2 be two fuzzy numbers of LR type: F1 =
(xm1, α1, β1)LR , F2 = (xm2, α2, β2)LR . The following relations
can be used to define extended addition and subtraction (2)

As an example, let us consider the fuzzy numbers: “about
5” = (5, 3, 3)LR and “about 10” = (10, 3, 3)LR . In order to give
fuzzy numbers a triangular shape, we adopt the following
reference functions: L(u) = R(u) = max{0, 1 − u}.

The result yielded by the extended addition (5, 3, 3)LR +
(10, 3, 3)LR = (15, 6, 6)LR is depicted in Fig. 9.
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FUZZY RELATIONS

A fuzzy relation R between sets U and V is a fuzzy set
characterized by a membership function µR :U × V → [0, 1]
and is expressed by (2):

As an example, let U = V be a set of real numbers. The
relation: “x is much larger than y” can be described by the
membership function:

If sets U and V represent finite sets U = {x1, x2, . . . , xm}
and V = {y1, y2, . . . , yn}, a fuzzy relation R can be described
by an m × n matrix (4):

where ai,j = µR (xi , yj ) represents the strength of association
between a pair of elements.

Composition. Let R1 and R2 be two fuzzy relations de-
fined in different product spaces:

The above relations can be combined by means of the
operation “composition.” A variety of methods have
been proposed in the literature (2). For example, we
could be interested in combining the relations R1 (pa-
tients, symptoms) and R2 (symptoms, diseases) in or-
der to discover relationships between patients and
diseases. The so-called max–min composition yields
a resulting fuzzy relation described as follows:

The max–∗ composition is a more general definition
of composition (2). It is defined by the following mem-
bership function:

FUZZY AGGREGATION CONNECTIVES

Minimum and maximum operators represent the simplest
way to aggregate different degrees of membership. More
sophisticated choices are available in the literature. They
resort to fuzzy aggregation connectives. Fuzzy aggregation
connectives are (possibly nonlinear) functions that map a
set of membership (or certainty) values µ1, µ2, . . . , µN to

the real interval [0, 1]. Fuzzy aggregation connectives can
be grouped into the following classes (13,16,29):

1. Union connectives
2. Intersection connectives
3. Compensative connectives

Union Connectives

The simplest aggregation connective of union type is the
mentioned“Max”operator.A useful generalization is repre-
sented by the family of union aggregators defined by Yager
(30):

It can be observed that limp→∞ yU (µ1, µ2, . . . , µn ) = max(µ1,
µ2, . . . , µn ). Thus, the range of this connective is between
max and unity. In this respect, this aggregation connective
is more optimistic than the MAX operator (13). By vary-
ing the value of parameter p from zero to +∞, different
aggregation strategies can be realized.

Intersection Connectives

The simplest aggregation connective of intersection type is
the very popular “min” operator. A useful generalization is
represented by the family of intersection aggregators de-
fined by (30)

It can be observed that limp→∞ yI (µ1, µ2, . . . , µn ) = min(µ1,
µ2, . . . , µn ). Thus, the range of this connective is between
min and zero. This aggregation connective is more pes-
simistic than the min operator. As in the previous case,
different aggregation strategies can be realized by suitably
varying the value of parameter p.

Compensative Connectives

Compensative connectives can be categorized into the fol-
lowing classes depending on their aggregation structure:

1. Mean operators
2. Hybrid operators

Mean Connectives. A mean connective is a mapping m:
[0, 1] × [0, 1] → [0, 1] such that

1. m(µ1, µ2) ≥ m(µ3, µ4) if µ1 ≥ µ3 and µ2 ≥ µ4

2. min(µ1, µ2) ≤ m(µ1, µ2) ≤ max(µ1, µ2)

A useful mean connective is the generalized mean (31). By
using this connective, different degrees of certainty (or cri-
teria) can be suitably weighted in order to take care of their
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relative importance:

where �n
i=1 wi = 1. It is worth pointing out that this con-

nective yields all values between min and max by varying
the parameter p between p → −∞ and p → +∞.

Hybrid Connectives. Hybrid connectives combine out-
puts of union and intesection operators (29). This combi-
nation is generally performed using a multiplicative or an
additive model as follows:

where yU and yI denote the outputs of union and intersec-
tion operators. The degree of compensation between these
components depends on the value of the parameter γ.

The multiplicative γ-model proposed by Zimmermann
and Zysno (32) adopts union and intersection components
based on products:

where �n
i=1 wi = n and 0 ≤ γ ≤ 1. The additive γ-model is

defined by

The additive γ-model adopting Yager’s union and intersec-
tion is defined by

LINGUISTIC VARIABLES AND FUZZY SYSTEMS

As mentioned in the section entitled “Fuzzy Set,” fuzzy
models permit us to express concepts in a way that is very
close to human thinking. In fact, linguistic labels can be as-
sociated with fuzzy sets in order to form sentences like “the
pixel luminance is very bright,” “the voltage is low,” “the
temperature is high,” and so on. In this respect, quanti-
ties such as pixel luminance, voltage, and temperature can
be interpreted as linguistic variables—that is, variables
whose values are words or sentences (17). For example,
the linguistic variable pixel luminance can be decomposed
into a set of terms such as dark, medium, and bright (Fig. 3)
which correspond to fuzzy sets in its universe of discourse.
Fuzzy rules permit us to express a processing strategy in
a form that mimics human decision making. For example:

If x is low and y is medium, then z is large. The typical
IF–THEN structure of a fuzzy rule includes a group of an-
tecedent clauses which define conditions and a consequent
clause which identifies the corresponding action. In gen-
eral, fuzzy systems adopt rules to map fuzzy sets to fuzzy
sets (7). Many engineering applications, however, require
techniques which map scalar inputs to scalar outputs. We
can address this issue by adding an input fuzzifier and
an output defuzzifier to the classical model (17). The re-
sult is a very important class of fuzzy systems which are
able to map scalar inputs to one (or more) scalar output(s).
Since the successful application of these systems is playing
a key role in the widespread diffusion of fuzzy techniques,
we shall decribe their structure in details. Let us consider
a fuzzy system which maps M input variables x1, x2, . . . , xM

to one output variable y by means of N fuzzy rules R1, R2,
. . . , RN. Such a system can be expressed in the following
form:

where Ai,j (1 ≤ i ≤ M, 1 ≤ j ≤ N) is the fuzzy set associated
with the ith input variable in the jth rule and Bj is the fuzzy
set associated with the output variable in the same rule.
The set of fuzzy rules as a whole is called a rulebase. Since
the fuzzy rulebase contains the necessary information to
process the data, it represents the knowledge base of the
system.

The knowledge base is numerically processed by the
fuzzy inference mechanism. For a given set of input data,
the inference mechanism evaluates the degrees of activa-
tion of the component rules and then combines their result-
ing effects. More precisely, let λj be the degree of activation
(or satisfaction) of the jth rule. This degree can be evalu-
ated by using the following relation:

where µAi, j denotes the membership function of fuzzy set
Ai,j . It should be noticed that the choice of an intersection
connective to aggregate membership degrees depends on
the presence of the “AND” for combining the antecedent
clauses in each fuzzy rule. Of course, different aggrega-
tion connectives (see the section entitled “Fuzzy Aggrega-
tion Connectives”) can be adopted depending on the specific
problem.

The degree of activation λj yields the following effect on
fuzzy set Bj which identifies the consequent action of the
jth rule. A new fuzzy set B

′
j is generated, whose member-



Fuzzy Model Fundamentals 7

ship function is defined by

Two different inference schemes are commonly used. If
the correlation-product inference is adopted (7), symbol “∗”
denotes the product operator. If, on the other hand, the
correlation-minimum inference is chosen, symbol “∗” de-
notes the minimum operator.

Fuzzy sets B
′
j (j = 1, . . . , N) are then combined in order

to obtain a resulting fuzzy set B. If we resort to the union,
the corresponding membership function µB (u) is yielded by

If we adopt the additive model (7), on the contrary, we ob-
tain

where K is a scaling factor that limits the degree of mem-
bership to unity. As a final step, we want to derive a scalar
value from the fuzzy set B. A very popular technique is
the so-called “centroid” or “center of gravity” method which
yields the output y as follows:

where V denotes the support of fuzzy set B. (If this support
is discrete, summation should replace the integral symbol.
Of course, integral and summation symbols here denote in-
tegration and arithmetic addition.) Notice that if we adopt
the additive scheme,we can evaluate the output y by means
of the centroids y

′
j of the component fuzzy sets B

′
j :

where

Let us adopt correlation-product inference. Relations (42)
and (43) become:

Figure 11. Fuzzy sets positive (PO), zero (ZE), and negative (NE).

Thus, we can express relation (41) as follows:

Relation (46) is very attractive from the point of view of
computational efficiency. In fact, the component terms wj

and yj do not depend on λj . If all consequent fuzzy sets Bj

have the same shape, i.e., wj = w(j = 1, . . . , N), we finally
obtain

In this case, the final output only depends on the degrees of
activation of fuzzy rules and on the centroids of the original
consequent fuzzy sets.

Let us consider a simple example. Let {sk} be the digi-
tized signal in the range [0, L − 1] depicted in Fig. 10(a).
This signal represents a staircase waveform corrupted by
impulse noise. Suppose we want to design a filter able to
reduce (or possibly cancel) the noise pulses (33). Let sk be
the sample to be processed at the time k. Let �k−1 = sk −
sk−1 and �k+1 = sk − sk+1 be the amplitude differences be-
tween this element and the neighboring samples sk−1 and
sk+1, respectively. In order to estimate the noise amplitude
nk , we may use the following fuzzy system:

where PO (positive), ZE (zero), and NE (negative) are tri-
angular fuzzy sets represented in Fig. 11. The first fuzzy
rule (R1) aims at detecting a positive noise pulse (i.e., a
noise pulse whose amplitude is higher than the one of the
neighborhood). The second fuzzy rule (R2) aims at detect-
ing a negative noise pulse (i.e., a noise pulse whose ampli-
tude is lower than the one of the neighborhood). The third
fuzzy rule (R3) deals with the absence of any noise pulse
(i.e., with the case of an uncorrupted sample). Formally, we
have A1,1 = PO, A2,1 = PO, A1,2 = NE, A2,2 = NE, A1,3 = ZE,
A2,3 = ZE, B1 = PO, B2 = NE, B3 = ZE.

The degrees of activation λ(k)
1, λ(k)

2, λ(k)
3 of three rules

at the time k are evaluated by
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Figure 12. Fuzzy sets zero (ZE) and nonzero (NZ).

Suppose we adopt correlation-product inference and the
additive model. Since all fuzzy sets have the same shape,
the output is yielded by relation (47). We observe, in par-
ticular, that the centroids have the following values (Fig.
11): yPO = L − 1, yZE = 0 and yNE = −L + 1. Thus, we have

Let s
′
k = sk − nk be the output of the filter. The result of

the application is shown in Fig. 10(b).
As a second example, let us consider the digitized im-

age in Fig. 3. Let xi,j be the pixel luminance at location (i,
j). Let �i,j−1 = xi,j − xi,j−1 and �i−1,j = xi,j − xi−1,j be the
luminance differences between this element and the neigh-
boring pixels at locations (i, j − 1) and (i − 1, j), respectively.
Let us suppose we want to detect edges in the image—that
is, possible object borders (34). Our goal is to produce an-
other image (called “edge map”) where dark pixels denote
uniform regions and bright pixels denote possible object
contours. In order to perform this task, we define a pair of
fuzzy rules as follows:

where yi,j is the luminance of the pixel at location (i, j) in
the edge map. Zero (ZE) and nonzero (NZ) are fuzzy sets
in the interval [−L + 1, L − 1] (Fig. 12). White (WH) and
black (BL) are fuzzy singletons centered on L − 1 and zero.
We can evaluate the degrees of activation λ(i,j )

1 and λ(i,j )
2

by using simple intersection and union aggregators:

The output yi,j is yielded by

The result is shown in Fig. 13.
Fuzzy inference schemes different from that described

above are also possible. As an example, the well-known
Takagi–Sugeno Model (4, 35) found wide application in the
design of fuzzy controllers. More sophisticated approaches
are also available in the literature (36–38). In any case an
appropriate choice of fuzzy sets and rules plays a key role
in determining the desired behavior of a fuzzy system. If we
adopt parameterized membership functions, we can try to
acquire the optimal fuzzy set shapes from a set of training

Figure 13. Resulting edge map.

data. In general, neuro-fuzzy models can be successfully
adopted to find the most appropriate rulebase for a given
application.

PARAMETERIZED MEMBERSHIP FUNCTIONS

Fuzzy systems are powerful tools for data processing. How-
ever, it is not always necessary to express fuzzy reasoning
in form of rules. Sometime one (ore more) parameterized
fuzzy sets suffice. As an example, let us consider the filter-
ing of Gaussian noise in digital images. It is known that
noise having Gaussian-like distribution is very often en-
countered during image acquisition. Our goal is to reduce
the noise without (significantly) blurring the image details.
A simple idea is to adopt a fuzzy weighted mean filter for
this purpose (39, 40). Again, let us suppose we deal with
digitized images having L gray levels (typically L = 256).
Let xi,j be the pixel luminance at location (i, j) in the noisy
image and let �i+m,j+n = xi,j − xi+m,j+n be the luminance
difference between this element and the neighboring pixel
at location (i+m, j+n). The output yi,j of the fuzzy weighted
mean filter is defined by the following relationships:

yi, j =
N∑

m=−N

N∑

n=−N

wi+m, j+n xi+m, j+n (55)

wi+m, j+n = µSM(�i+m, j+n)
∑N

m=−N

∑N

n=−N
µSM(�i+m, j+n)

(56)

where µSM(u) is the membership function of fuzzy set
small. Let us define this set by resorting to a bell-shaped
parameterized function:

µSM(u) = exp{−(
u

c
)
2
} (57)

A graphical representation of µSM(u) is depicted in Fig. 14
for three different values of the parameter c (u≥0). Accord-
ing to (58–59), the algorithm performs a weighted mean of
the luminance values in a (2N+1) × (2N+1) window around
xi,j. The weights are chosen according to a simple fuzzy
model: small luminance differences (possibly) denote noise,
while large luminance differences denote object contours.
Thus, when �i+m,j+n is small, the corresponding wi+m,j+n is
large and vice versa. As a result, the processing gradually
excludes pixel luminances that are different from xi,j in
order to preserve image details. The value of the param-
eter c mainly depends upon the variance of the Gaussian
noise. Typically, this value is chosen so that a suitable per-
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Figure 14. Graphical representation of the membership function
µSM(u) for three different values of the parameter c.

formance index is maximized, for example, the well-known
peak signal-to-noise ratio (PSNR), which is defined as:

PSNR = 10log10(

∑
i

∑
j
(L − 1)2

∑
i

∑
j
(yi, j − si, j)

2 ) (58)

where si,j and yi,j denote the pixel luminances of the orig-
inal noise-free image and the filtered image, respectively,
at location (i,j). This procedure is briefly depicted in Fig.
15. An example of processed data is also reported in Fig.
16. We generated the picture in Fig. 16a by adding Gaus-
sian noise with variance σ2=100 to the original noise-free
image. The result of the application of the fuzzy filter is
reported in Fig. 16b (N=2). Details of the noisy and the
processed images are respectively depicted in Fig 16c and
16d for visual inspection. The noise reduction is apparent,
especially in the uniform regions of the image. According
to our previous observation, we chose the parameter value
that gives the maximum PSNR (Fig. 17). Larger values
would increase the image blur, smaller values would leave
some noise unprocessed.

It is worth pointing out that we can define the same
filtering operation by resorting to the concept of fuzzy re-
lation. In an equivalent way, we can formally define the
weights of the filter as follows:

wi+m, j+n = µEQ(xi, j, xi+m, j+n)
∑N

m=−N

∑N

n=−N
µEQ(xi, j, xi+m, j+n)

(59)

where mEQ(u,v) is the parameterized membership function
that describes the fuzzy relation “u is equal to v”:

µEQ(u, v) = exp{−(
u − v

c
)
2

} (60)

A graphical representation of mEQ(u,v) is shown in Fig. 18
(c=40).

The fuzzy weighted mean filter is not the only available
scheme for reducing Gaussian noise. Other approaches are
possible (40). For example, we can adopt fuzzy models to
estimate the noise amplitude gi,j and then subtract it from

Figure 16. (a) Image corrupted by Gaussian noise, (b) filtered
image, (c) detail of the noisy image, (d) detail of the filtered image.
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Figure 15. Block diagram of the procedure for parameter tuning.

Figure 17. Filtering performance.

the pixel luminance xi,j, as follows:

gi, j = 1
8

1∑

m=−1

1∑

n=−1

(xi, j − xi+m, j+n) µSI (xi, j, xi+m, j+n) (61)

yi, j = xi, j − gi, j (62)

where µSI(u,v) is the parameterized membership function
of fuzzy relation “u is similar to v”. A possible definition is
given by the following relationship (Fig. 19):

µSI (u, v) = {
1
5c − |u − v|

4|u − v|
0

|u − v|<c

c ≤ |u − v|<5c

|u − v| ≥ 5c

(63)

Often, more parameters can increase the effectiveness of
the fuzzy processing. For example, let us define the fuzzy
relation “u is different from v” by adopting the following
two-parameters function:

µDI (u, v) = {
0

1 − exp{−(
|u − v| − b

c
)
2

}
|u − v|<b

|u − v| ≥ b
(64)

This relation is graphically depicted in Fig. 20 (b=30, c=60).
Again, let us focus on the problem of edge detection. We
can exploit relation (67) to design a simple operator whose
behavior can easily be controlled by two parameters b and
c. For example (41):

yi, j = (L − 1) MAX{µDI (xi, j, xi, j−1), µDI (xi, j, xi−1, j)} (65)

The operation is very simple. In the presence of an object
border, at least one of the following inequalities occurs: xi,j

> xi,j−1, xi,j > xi−1,j, xi,j < xi,j−1, xi,j < xi−1,j.As a result,µDI(xi,j,
xi,j−1) ≈1 and/or µDI(xi,j, xi−1,j) ≈1, and the output of the
edge detector is yi,j ≈ L−1. Conversely, in the presence of
an uniform region, we have xi,j ≈ xi,j−1 and xi,j ≈ xi−1,j. Thus
the output becomes yi,j=0, as it should be. The parameters
b and c control the actual behavior of the edge detector.
Large values of these parameters can be chosen to decrease
its sensitivity to fine details and to noise.
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Figure 19. Graphical representation of the membership function µSI(u,v) describing the fuzzy relation “u is similar to v”.



12 Fuzzy Model Fundamentals

Figure 20. Graphical representation of the membership function µDI(u,v) describing the fuzzy relation “u is different from v”.
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