
FUZZY IMAGE PROCESSING AND RECOGNI-
TION

INTRODUCTION

Pattern recognition and machine learning form a major
area of research and development that encompasses the
processing of pictorial and other non-numerical informa-
tion obtained from interaction between science, technol-
ogy, and society. A motivation for this spurt of activity in
this field is the need for the people to communicate with
computing machines in their natural mode of communica-
tion. Another important motivation is that scientists are
also concerned with the idea of designing and making in-
telligent machines that can carry out certain tasks as we
human beings do, the most salient outcome of which is the
concept of future generation computing systems.

The ability to recognize a pattern is an essential require-
ment for sensory intelligent machines. Pattern recognition
is a must component of the so-called “Intelligent Control
Systems,” which involve processing and fusion of data from
different sensors and transducers. It is also a necessary
function providing “failure detection,” “verification,” and
“diagnosis task.” Machine recognition of patterns can be
viewed as a two fold task, consisting of learning the in-
variant and common properties of a set of samples char-
acterizing a class, and of deciding that a new sample is a
possible member of the class by noting that it has proper-
ties common to those of the set of samples. Therefore, the
task of pattern recognition by a computer can be described
as a transformation from the measurement space M to the
feature space F and finally to the decision space D.

When the input pattern is a gray tone image, some pro-
cessing tasks such as enhancement, filtering, noise reduc-
tion, segmentation, contour extraction, and skeleton ex-
traction are performed in the measurement space to ex-
tract salient features from the image pattern, which is
what is basically known as image processing.

The ultimate aim is to make its understanding, recog-
nition, and interpretation from the processed information
available from the image pattern. Such a complete image
recognition/interpretation system is called a vision system,
which may be viewed as consisting of three levels, namely,
low level, mid level, and high level, corresponding to M, F,
and D with an extent of overlapping among them.

In a pattern recognition or vision system, uncertainty
can develop at any phase of the aforesaid tasks resulting
from the incomplete or imprecise input information, the
ambiguity/ vagueness in input image, the ill-defined and/or
overlapping boundaries among the classes or regions, and
the indefiniteness in defining/extracting features and rela-
tions among them. Any decision taken at a particular level
will have an impact on all higher level activities. It is there-
fore required for a recognition system to have sufficient
provision for representing these uncertainties involved at
every stage, so that the ultimate output (results) of the sys-
tem can be associated with the least uncertainty (and not
be affected or biased very much by the earlier or lower level
decisions).

UNCERTAINTIES IN A RECOGNITION SYSTEM AND
RELEVANCE OF FUZZY SET THEORY

Some of the uncertainties that one encounters often while
designing a pattern recognition or vision (1, 2) system will
be explained in this section. Let us consider, first of all,
the problem of processing and analyzing a gray tone im-
age pattern. A gray tone image possesses some ambiguity
within the pixels because of the possible multivalued lev-
els of brightness. This pattern indeterminacy is because
of inherent vagueness rather than randomness. The con-
ventional approach to image analysis and recognition con-
sists of segmenting (hard partitioning) the image space
into meaningful regions, extracting its different features
(e.g., edges, skeletons, centroid of an object), computing the
various properties of and relationships among the regions,
and interpreting and/or classifying the image. As the re-
gions in an image are not always crisply defined, uncer-
tainty can occur at every phase of the aforesaid tasks. Any
decision taken at a particular level will have an impact on
all higher level activities. Therefore, a recognition system
(or vision system) should have sufficient provision for rep-
resenting the uncertainties involved at every stage (i.e., in
defining image regions, its features and relations among
them, and in their matching) so that it retains as much
as possible the information content of the original input
image for making a decision at the highest level. The ulti-
mate output (result) of the system will then be associated
with least uncertainty (and, unlike conventional systems,
it will not be biased or affected very much by the lower level
decisions).

For example, consider the problem of object extraction
from a scene. Now, the question is, “How can someone de-
fine exactly the target or object region in a scene when its
boundary is ill-defined?” Any hard thresholding made for
its extraction will propagate the associated uncertainty to
the following stages, which might affect its feature analy-
sis and recognition. Similar is the case with the tasks of
contour extraction and skeleton extraction of a region.

From the aforesaid discussion, it becomes therefore
convenient, natural, and appropriate to avoid commit-
ting ourselves to a specific (hard) decision (e.g., segmenta-
tion/thresholding, edge detection, and skeletonization) by
allowing the segments or skeletons or contours to be fuzzy
subsets of the image, with the subsets being characterized
by the possibility (degree) of a pixel belonging to them. Pre-
witt (3) first suggested that the results of image segmenta-
tion should be fuzzy subsets rather than ordinary subsets.

Similarly, for describing and interpreting ill-defined
structural information in a pattern, it is natural to define
primitives (line, corner, curve, etc.) and relations among
them using labels of fuzzy sets. For example, primitives
that do not lend them-selves to precise definition may be
defined in terms of arcs with varying grades of member-
ship from 0 to 1 representing its belonging to more than
one class. The production rules of a grammar may simi-
larly be fuzzified to account for the fuzziness in physical
relation among the primitives, thereby increasing the gen-
erative power of a grammar for syntactic recognition (4) of
a pattern.

J. Webster (ed.), Wiley Encyclopedia of Electrical and Electronics Engineering. Copyright © 2007 John Wiley & Sons, Inc.



2 Fuzzy Image Processing and Recognition

The incertitude in an image pattern may be explained in
terms of grayness ambiguity, spatial (geometrical) ambigu-
ity or both. Grayness ambiguity means “indefiniteness” in
deciding a pixel as white or black. Spatial ambiguity refers
to “indefiniteness” in shape and geometry (e.g., in defining
centroid, sharp edge, perfect focusing, etc.) of a region. An-
other kind of uncertainty exists that my derive from the
subjective judgment of an operator in defining the grades of
membership of the object regions. This process is explained
in the section on Flexibility in Membership Functions.

Let us now consider the problem of determining the
boundary or shape of a class from its sampled points or
prototypes. Various approaches (5–7) are described in the
literature that attempt to provide an exact shape of the pat-
tern class by determining the boundary such that it con-
tains (passes through) some of the sample points, which
need not be true. It is necessary to extend the boundaries
to some extent to represent the possible uncovered portions
by the sampled points. The extended portion should have
lower possibility to be in the class than the portions ex-
plicitly highlighted by the sample points. The size of the
extended regions should also decrease with the increase of
the number of sample points, which leads one to define a
multivalued or fuzzy (with continuum grade of belonging)
boundary of a pattern class (8, 9).

Similarly, the uncertainty in classification or clustering
of image points or patterns may develop from the overlap-
ping nature of the various classes or image properties. This
overlapping may result from fuzziness or randomness. In
the conventional classification technique, it is usually as-
sumed that a pattern may belong to only one class, which is
not necessarily true. A pattern may have degrees of mem-
bership in more than one class. It is therefore necessary
to convey this information while classifying a pattern or
clustering a data set.

In the following section, we explain various fuzzy set
theoretic tools for image analysis (which were developed
based on the realization that many of the basic concepts in
pattern analysis, for example the concept of an edge or a
corner, do not lend themselves to precise definition).

IMAGE AMBIGUITY AND UNCERTAINTY MEASURES

An L level image X (M × N) can be considered as an array
of fuzzy singletons, each having a value of membership de-
noting its degree of possessing some property (e.g., bright-
ness, darkness, edginess, blurredness, texture, etc.) In the
notation of fuzzy sets, one may therefore write that

where µX(xmn) or µmn denotes the grade of possessing such
a property µ by the (m, n)th pixel. This property µ of an
image may be defined using global information, local infor-
mation, or positional information, or a combination there
of, depending on the problem. Again, the aforesaid infor-
mation can be used in a number of ways (in their various
functional forms), depending on individuals opinion and/or
the problem to his hand, to define a requisite membership
function for an image property. Basic principles and oper-
ations of image processing and pattern recognition in the

light of fuzzy set theory are available in Reference 10.
Let us now explain the various image information mea-

sures (deriving from both fuzziness and randomness) and
tools as well as their relevance to different operations for
image processing and analysis. These measures are classi-
fied mainly in two groups, namely grayness ambiguity and
spatial ambiguity.

GRAYNESS AMBIGUITY MEASURES

The definitions of some of the measures that were formu-
lated to represent grayness ambiguity in an image X with
dimension M × N and levels L (based on individual pixel
as well as a collection of pixels) are listed below.

rth Order Fuzzy Entropy:

where sr
i denotes the ith combination (sequence) of r pixels

in X, k is the number of such sequences, and µ(sr
i ) denotes

the degree to which the combination sr
i , as a whole, pos-

sesses some image property µ.
Hybrid Entropy:

with

Here, µmn denotes the degree of “whiteness” of the
(m,n)th pixel; Pw and Pb denote probability of occurrences
of white (µmn = 1) and black (µmn = 0) pixels respectively;
and Ew and Eb denote the average likeliness (possibility)
of interpreting a pixel as white and black, respectively.

Correlation:

with

Here, µ1mn and µ2mn denote the degree of possessing the
properties µ1 and µ2, respectively, by the (m, n)th pixel and
C(µ1, µ2) denotes the correlation between two such prop-
erties µ1 and µ2 (defined over the same domain).

These expressions (eqs. 2–6) are the versions extended
to the 2-D image plane from those defined (ll,12) for a fuzzy
set. Hr(X) gives a measure of the average amount of diffi-
culty in taking a decision whether any subset of pixels of
size r possesses an image property. Note that no proba-
bilistic concept is needed to define it. If r = 1, Hr(X) re-
duces to (non-normalized) entropy as defined by De Luca
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and Termini (13). Hhy(X), on the other hand, represents
an amount of difficulty in deciding whether a pixel pos-
sesses a certain property µmn by making a prevision on its
probability of occurrence it is assumed here that the fuzzi-
ness occurs because of the transformation of the complete
white (0) and black pixels (1) through a degradation pro-
cess, thereby modifying their values to lie in the intervals
[0,0.5] and [0.5,1], respectively). Therefore, if µmn denotes
the fuzzy set “object region”, then the amount of ambigu-
ity in deciding µmn a member of object region is conveyed
by the term hybrid entropy depending on its probability of
occurrence. In the absence of fuzziness (i.e., with exact de-
fuzzification of the gray pixels to their respective black or
white version), Hhy reduces to the two-state classical en-
tropy of Shannon (14), the states being black and white.
As a fuzzy set is a generalized version of an ordinary set,
the entropy of a fuzzy set deserves to be a generalized ver-
sion of classical entropy by taking into account not only
the fuzziness of the set but also the underlying probability
structure. In that respect, µhy can be regarded as a general-
ized entropy such that classical entropy becomes its special
case when fuzziness is properly removed.

Note that equations (2) and (3) are defined using the
concept of logarithmic gain function. Similar expressions
using exponential gain function (i.e., defining the entropy
of an n-state system) have been given by Pal and Pal (15–
18).

All these terms, which give an idea of “indefiniteness”
or fuzziness of an image, may be regarded as the measures
of average intrinsic information that is received when one
has to make a decision (as in pattern analysis) to classify
the ensembles of patterns described by a fuzzy set.

Hr(X) has the following properties:

Pr 1: Hr attains a maximum if µi = 0.5 for all i.
Pr 2: Hr attains a minimum if µi = 0 or 1 for all i.
Pr 3: Hr > H∗r , where H∗r is the rth-order entropy of a

sharpened version of the fuzzy set (or an image).
Pr 4: Hr is, in general, not equal to H

r
, where H

r
is the

rth-order entropy of the complement set.

Pr 5: Hr ≤ Hr+1 when all µi ∈ [0.5,1].
Hr ≥ Hr+1 when all µi ∈ [0,0.5].
The “sharpened” or “intensified” version of X is such that

µx∗(xmn) ≥ µx(xmn) if µx(xmn) ≥ 0.5
and

µx∗(xmn) ≤ µx(Xmn) if µx(xmn) ≤ 0.5
(8)

When r = 1, the property Pr 4 is valid only with the equal
sign. The property Pr 5 (which does not occur for r = 1) im-
plies that Hr is a monotonically non-increasing function of
r for µi ∈ [0,0.5] and a monotonically nondecreasing func-
tion of r for µi ∈ [0.5,1] (when the “min” operator has been
used to get the group membership value).

When all µi values are the same, H1(X) = H2(X) = . . . =
Hr(X), which is because the difficulty in taking a decision
regarding possession of a property on an individual is the

same as that of a group selected therefrom. The value of
Hr would, of course, be dependent on the µi values.

Again, the higher the similarity among singletons (sup-
ports), the quicker is the convergence to the limiting value
of Hr . Based on this observation, an index of similarity of
supports of a fuzzy set may be defined as S = H1 /H2 (when
H2 = 0, H1 is also zero and S is taken as 1). Obviously,
when µi ∈ [0.5,1] and the min operator are used to assign
the degree of possession of the property by a collection of
supports, S will lie in [0, 1] as Hr ≤ Hr+1. Similarly, when
µi ∈ [0,0.5], S may be defined as H2 /Hl so that S lies in [0,
1]. The higher the value of S, the more alike (similar) are
the supports of the fuzzy set with respect to the fuzzy prop-
erty µ. This index of similarity can therefore be regarded
as a measure of the degree to which the members of a fuzzy
set are alike. The details are available in Reference 19.

Therefore, the value of first order fuzzy entropy (H1 )
can only indicate whether the fuzziness in a set is low or
high. In addition, the value of Hr ,r > 1 also enables one
to infer whether the fuzzy set contains similar supports
(or elements). The similarity index thus defined can be
successfully used for measuring interclass and intraclass
ambiguity (i.e., class homogeneity and contrast) in pattern
recognition and image processing problems.

H1 (X) is regarded as a measure of the average amount of
information (about the gray levels of pixels) that has been
lost by transforming the classic pattern (two-tone) into a
fuzzy (gray) pattern X. Further details on this measure
with respect to image processing problems are available in
References 10 and 20–22. It is to be noted that H1(X) re-
duces to zero whenever µmn is made 0 or 1 for all (m, n ),
no matter whether the resulting defuzzification (or trans-
forming process) is correct. In the following discussion, it
will be clear how Hhy takes care of this situation.

Let us now discuss some of the properties of Hhy (X).
In the absence of fuzziness when MNPb pixels become
completely black (µmn = 0) and MNPW pixels become com-
pletely white (µmn = 1), then Ew = Pw , Eb = Pb and Hhy boils
down to the two-state classical entropy

the states being black and white. Thus Hhy reduces to Hc

only when a proper defuzzification process is applied to de-
tect (restore) the pixels. |Hhy − Hc| can therefore be treated
as an objective function for enhancement and noise reduc-
tion. The lower the difference, the less the fuzziness asso-
ciated with the individual symbol and the higher the ac-
curacy in classifying them as their original value (white or
black). (This property is lacking with the H1(X) measure
and the measure of Xie and Bedrosian (23), which always
reduces to zero or some constant value irrespective of the
defuzzincation process.) In other words, |Hhy − Hc| repre-
sents an amount of information that was lost by trans-
forming a two-tone image to a gray tone.

For a given Pw and Pb , (Pw + Pb = 1, 0 ≤ Pw , Pb , ≤ 1), of
all possible defuzzifica-tions, the proper defuzzification of
the image is the one for which Hhy is minimum.
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and

For example, Hhy takes a constant value and becomes
independent of Pw and Pb , which is logical in the sense
that the machine is unable to make a decision on the pixels
because all µmn values are 0.5.

Spatial Ambiguity Measures Based on Fuzzy Geometry of
Image

Many of the basic geometric properties of and relation-
ships among regions has been generalized to fuzzy sub-
sets. Such an extension, called fuzzy geometry (24–28), in-
cludes the topological concept of connectedness, adjacency
and surroundedness, convexity, area, perimeter, compact-
ness, height, width, length, breadth, index of area coverage,
major axis, minor axis, diameter, extent, elongatedness, ad-
jacency, and degree of adjacency. Some of these geometrical
properties of a fuzzy digital image subset (characterized by
piece-wise constant membership function µX(xmn), or sim-
ply µ are listed below with illustrations. These properties
may be viewed as providing measures of ambiguity in the
geometry (spatial domain) of an image.

Compactness (24):

where

and

Here, a(µ) denotes area of µ, and p(µ), the perimeter of µ,
is just the weighted sum of the lengths of the arcs A(i,j, k)
(24) along which the region µ(i) and µ(j) meet, weighted
by the absolute difference of these values. Physically, com-
pactness means the fraction of maximum area (that can be
encircled by the perimeter) actually occupied by the object.
In the non-fuzzy case, the value of compactness is maxi-
mum for a circle and is equal to 1/4π. In the case of the
fuzzy disc, where the membership value is only dependent
on its distance from the center, this compactness value is ≥
1/4π. Of all possible fuzzy discs, compactness is therefore
minimum for its crisp version.

Height and Width (24):

and

So, height/width of a digital picture is the sum of the max-
imum membership values of each row/column.

Length and Breadth (26, 27):

and

The length/breadth of an image fuzzy subset gives its
longest expansion in the column/row direction. If µ is crisp,
µmn = 0 or l, then length/breadth is the maximum number
of pixels in a column/row. Comparing equations 17 and 18
with 15 and 16, we notice that the length/breadth takes
the summation of the entries in a column/row first and
then maximizes over different columns/rows, whereas the
height/width maximizes first the entries in a column/row
and then sums over different columns/rows.

Index of Area Coverage (26, 27):

In the non-fuzzy case, the 10AC has a value of 1 for a rect-
angle (placed along the axes of measurement). For a cir-
cle, this value is πr2/(2r ∗ 2r) = π/4. 10AC of a fuzzy image
represents the fraction (which may be improper also) of
the maximum area (that can be covered by the length and
breadth of the image) actually covered by the image.

Again, note the following relationships.

and

When equality holds for equation (20), the object is ei-
ther vertically or horizontally oriented. Similarly, major
axis, minor axis, center of gravity, and density are also de-
fined in Reference 27.

Degree of Adjacency (27):
The degree to which two crisp regions S and T of an

image are adjacent is defined as

Here, d(p) is the shortest distance between p and q, q is
a border pixel (BP) of T, and p is a border pixel of S. The
other symbols have the same meaning as in the previous
discussion.

The degree of adjacency of two regions is maximum (= 1)
only when they are physically adjacent (i.e., d(p) = 0) and
their membership values are also equal [i.e., µ(p) = r(q)].
If two regions are physically adjacent, then their degree
of adjacency is determined only by the difference of their
membership values. Similarly, if the membership values
of two regions are equal, their degree of adjacency is de-
termined by their physical distance only. The readers may
note the difference between equation (22) and the adja-
cency definition given in Reference 24.

FLEXIBILITY IN MEMBERSHIP FUNCTIONS

As the theory of fuzzy sets is a generalization of the clas-
sic set theory, it has greater flexibility to capture faithfully
the various aspects of incompleteness or imperfection (i.e.,
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deficiencies) in information of a situation. The flexibility of
fuzzy set theory is associated with the elasticity property of
the concept of its membership function. The grade of mem-
bership is a measure of the compatibility of an object with
the concept represented by a fuzzy set.The higher the value
of membership, the less the amount (or extent) to which the
concept represented by a set needs to be stretched to fit an
object.

As the grade of membership is both subjective and de-
pendent on context, some difficulty of adjudging the mem-
bership value still remains. In other words, the problem
is how to assess the membership of an element to a set,
which is an issue where opinions vary, giving rise to un-
certainties. Two operators, namely “Bound Functions” (29)
and “Spectral Fuzzy Sets” (30), have been defined to an-
alyze the flexibility and uncertainty in membership func-
tion evaluation. These operators are explained below along
with their significance in image analysis and pattern recog-
nition problems.

Consider, for example, a “bright image,” which may be
considered as a fuzzy set. It is represented by an S-type
function that is a nondecreasing function of gray value.
Now, the question is, “can any such nondecreasing func-
tion be taken to represent the above fuzzy set?” Intuitively,
the answer is “no.” Bounds for such an S-type membership
function µ have been reported (29) based on the properties
of fuzzy correlation (11). The correlation measure between
two membership functions µ1 and µ2 relates the variation
in their functional values.

The significance of the bound functions in selecting an
S-type function µ for the image segmentation problem has
been reported in detail in Reference 31. It has been shown
that, for detecting a minimum in the valley region of a his-
togram, the window length w of the function µ: [0, w] →
[0,1] should be less than the distance between two peaks
around that valley region. The ability to make the fuzzy
set theoretic approach flexible and robust will be demon-
strated further in the next section.

The concept of spectral fuzzy sets is used where, in-
stead of a single unique membership function, a set of func-
tions reflecting various opinions on membership elements
is available so that each membership grade is attached to
one of these functions. By giving due respect to all the opin-
ions available for further processing, it reduces the diffi-
culty (ambiguity) in selecting a single function. A spectral
fuzzy subset F having n supports is characterized by a set
or a band (spectrum) of r membership functions (reflecting
r opinions) and may be represented as

where r, the number of membership functions, may be
called the cardinality of the opinion set. µi

F (xj) denotes the
degree of belonging of Xj to the set F according to the ith
membership function. The various properties and opera-
tions related to it have been defined by Pal and Das Gupta
(30). The incertitude or ambiguity associated with this set
is two-fold, namely ambiguity in assessing a membership
value to an element (d1) and ambiguity in deciding whether
an element can be considered to be a member of the set (d2).

The (dis)similarity between the concept of spectral fuzzy
sets and those of the other tool such as probabilistic fuzzy
set, interval-valued fuzzy set, fuzzy set, of type 2, or ultra
fuzzy set (32–36) (which have also considered the difficulty
in settling a definite degree of fuzziness or ambiguity), has
been explained in Reference 30.

The concept has been found to be significantly useful
(30) in segmentation of ill-defined regions where the selec-
tion of a particular threshold becomes questionable as far
as its certainty is concerned. In other words, questions may
develop like, “where is the boundary?” or “what is the cer-
tainty that a level 1, say, is a boundary between object and
background?”The opinions on these queries may vary from
individual to individual because of the differences in opin-
ion in assigning membership values to the various levels.
In handling this uncertainty, the algorithm gives due re-
spect to various opinions on membership of gray levels for
object region, minimizes the image ambiguity d(= d1 + d2)
over the resulting band of membership functions, and then
makes a soft decision by providing a set of thresholds (in-
stead of a single one) along with their certainty values.
A hard (crisp) decision obviously corresponds to one with
maximum d value (i.e. the level at which opinions differ
most). The problems of edge detection and skeleton ex-
traction (where incertitude occurs from ill-defined regions
and various opinions on membership values) and any ex-
pert system-type application (where differences in experts’
opinions leads to an uncertainty) may also be similarly
handled within this framework.

SOME EXAMPLES OF FUZZY IMAGE PROCESSING
OPERATIONS

Let us now describe some algorithms to show how the afore-
said information measures and geometrical properties can
be incorporated in handling uncertainties in various oper-
ations (e.g., gray level thresholding, enhancement, contour
detection and skeletonization by avoiding hard decisions,
and providing output in both fuzzy and nonfuzzy (as a spe-
cial case) versions). is to be noted that these low level op-
erations (particularly image segmentation and object ex-
traction) play a major role in an image recognition system.
As mentioned earlier, any error made in this process might
propagate to feature extraction and classification.

Enhancement in Property Domain

The objective of enhancement techniques is to process a
given image so that the result is more suitable than the
original for a specific application. The term “specific” is,
of course, problem-oriented. The techniques used here are
based on the modification of pixels in the fuzzy property
domain of an image (10, 20, 2l).

The contrast intensification operator on a fuzzy set A
generates another fuzzy set A′ = INT(A) in which the fuzzi-
ness is reduced by increasing the values of µA(xmn) that are
above 0.5 and decreasing those that are below it. Define
this INT operator by a transformation T1 of the member-
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ship function µmn as
T1(µmn) = T ′

1(µmn) = 2µ2
mn, 0 ≤ µmn ≤ 0.5

= T
′
1(µmn) = 1 − 2(1 − µmn)2

, 0.5 ≤ µmn

m = 1, 2, . . . M, n = 1, 2, . . . N
(21)

In general, each µmn in X (Eq. 1) may be modified to µ′
mn to

enhance the image X in the property domain by a transfor-
mation function Tr where

µ′
mn = Tr(µmn) = T ′

r (µmn), 0 ≤ µmn ≤ 0.5
= T

′
r (µmn), 0.5 ≤ µmn ≤ 1

r = 1, 2, . . .
(22)

The transformation function Tr is defined as successive ap-
plications of T1 by the recursive relationship (20)

and T1(Pmn ) represents the operator INT denned in equa-
tion (24).

As r increases, the enhancement function (curve) in
µmn − µ′

mn plane tends to be steeper because of the succes-
sive application of INT. In the limiting case, as r →∞, Tr

produces a two-level (binary) image. It is to be noted here
that, corresponding to a particular operation of T′, one can
use any of the multiple operations of T′′, and vice versa, to
attain a desired amount of enhancement. Similarly, some
other enhancement functions can be used independently
instead of those used in equation (24).

The membership plane µmn for enhancing contrast
around a cross-over point may be obtained from References
11 and 20.

where the position of cross-over points bandwidth, and
hence the symmetry of the curve, are determined by the
fuzzifiers Fe and Fd . When ªx = xmax (maximum level in
X), µmn represents an S-type function. When ªx = any ar-
bitrary level l,µmn represents a π-type function.

After enhancement in the fuzzy property domain, the
enhanced spatial domain x′

mn may be obtained from

where α is the value of µmn when xmn = 0.
Note that the aforesaid method provides a basic mod-

ule of fuzzy enhancement. In practice, one may use it with
other smoothing, noise cleaning, or enhancement opera-
tions Tor resulting in desired outputs. An extension of this
concept to enhance the contrast among various ill-defined
regions using multiple applications of π and (1 − π) func-
tions has been described in References 21 and 37 for edge
detection of X-ray images. The edge detection operators in-
volve max and min operations. Reference 38 demonstrates,
in this regard, an attempt to use a relaxation (iterative) al-
gorithm for fast image enhancement using various orders
of S functions; convergence has also been analyzed.

Fuzzy image enhancement technique has been applied
by Krell et al. (39) for enhancing the quality of images
taken by electronic postal imaging device needed by clini-
cians to verify the shape and the location of “therapy beam”
with respect to the patients anatomy. Lukac et al. (40)
performed cDNA microarray image processing using fuzzy
vector filtering framework. Various other fuzzy enhance-
ment operators have been developed to reduce degradation

in images (41–48). Reference 49 uses a fuzzy regularization
approach to carry out blind image deconvolution. Recently,
fuzzy techniques have also been used in impulse noise de-
tection and reduction (50). Furthermore, the concept fuzzy
transformation has been developed for low level image pro-
cessing applications (51).

Optimum Enhancement Operator Selection

When an image is processed for visual interpretation, it is
ultimately up to the viewers to judge its quality for a spe-
cific application and how well a particular method works.
The process of evaluation of image quality therefore be-
comes subjective, which makes the definition of a well-
processed image an elusive standard for comparison of al-
gorithm performance. Again, it is customary to have an it-
erative process with human interaction to select an appro-
priate operator for obtaining the desired processed output.
For example, consider the case of contrast enhancement
using a nonlinear functional mapping. Not every kind of
nonlinear function will produce a desired (meaningful) en-
hanced version. The questions that automatically develop
are “Given an arbitrary image, which type of nonlinear
functional form will be best suited without prior knowl-
edge on image statistics (e.g., in remote applications like
space autonomous operations where frequent human in-
teraction is not possible) for highlighting its object?” and
“Knowing the enhancement function, how can one quantify
the enhancement quality for obtaining the optimal one?”
Regarding the first question, even if the image statistics
are given, it is possible only to estimate approximately the
function required for enhancement and the selection of the
exact functional form still needs human interaction in an
iterative process. The second question, on the other hand,
needs individual judgment, which makes the optimum de-
cision subjective.

The method of optimization of the fuzzy geometrical
properties and entropy has been found (52) to be success-
ful, when applied on a set of different images, in providing
quantitative indices to avoid such human iterative inter-
action in selecting an appropriate nonlinear function and
to make the task of subjective evaluation objective.

Threshold Selection (Fuzzy Segmentation)

Given an L level image X of dimension M × N with mini-
mum and maximum gray values lmin and lmax , respectively,
the algorithm for its fuzzy segmentation into object and
background may be described as follows:

Step 1: Construct the membership plane using the
standard S function as

or

(depending on whether the object regions pos-
sess higher or lower gray values) with cross-over
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point b and band width �b = b − a = c − b.
Step 2: Compute the parameter I(X) where I(X) repre-

sents either grayness ambiguity or spatial am-
biguity, as stated earlier, or both.

Step 3: Vary b between lmin and lmax and select those
b for which I(X) has local minima or maxima
depending on I(X). (Maxima correspond to the
correlation measure only.) Among the local min-
ima/maxima, let the global one have a cross-over
point at s.

The level s, therefore, denotes the cross-over point of
the fuzzy image plane µmn, which has minimum grayness
and/or geometrical ambiguity. The µmn plane then can be
viewed as a fuzzy segmented version of the image X. For
the purpose of nonfuzzy segmentation, we can take s as
the threshold (or boundary) for classifying or segmenting
an image into object and background.

Faster methods of computation of the fuzzy parameters
are explained in Reference 27. Note that w = 2�b is the
length of the window (such that [0, w] → [0,1]). that was
shifted over the entire dynamic range. As w decreases, the
possibility of detecting some undesirable thresholds (spu-
rious minima) increases because of the smaller value of
�b. On the other hand, an increase in w results in a higher
value of fuzziness and thus leads toward the possibility of
losing some of the weak minima.

The criteria regarding the selection of membership func-
tions and the length of window (i.e., w) have been reported
in References 29 and 31 assuming continuous functions for
both histogram and membership function. It is shown that
µ should satisfy the bound criteria derived based on the
correlation flexibility in membership functions (section).
Another way of handling this uncertainty using spectral
fuzzy sets for providing a soft decision is explained in Ref-
erece 30.

Let us now describe another way of extracting an ob-
ject by minimizing higher order entropy (Eq. 2) of both ob-
ject and background regions using an inverse π function
as shown by the solid line in Fig. 1. Unlike the previous
algorithm, the membership function does not need any pa-
rameter selection to control the output.

Suppose s is the assumed threshold so that the gray
level ranges [1, s] and [s + 1,L] denote, respectively, the
object and background of the image X. The inverse π-type
function to obtain µmn values of X is generated by taking
the union of S[x;s − (L −s),s,L] and 1 − S(x; l,s, (s + s + s −1)],
where S denotes the standard S function. The resulting
function as shown by the solid line makes µ lie in [0.5,1]. As
the ambiguity (difficulty) in deciding a level as a member of
the object or the background is maximum for the boundary
level s, it has been assigned a membership value of 0.5.
Ambiguity decreases as the gray value moves away from s
on either side. The µmn thus obtained denotes the degree
of belonging of a pixel xmn to either object or background.
As is not necessarily the mid point of the entire gray scale,
the membership function may not be a symmetric one.

Therefore, the task of object extraction is to:

Step 1: Compute the rth-order fuzzy entropy of the
object Hr

O and the background Hr
B considering

only the spatially adjacent sequences of pixels
present within the object and background, re-
spectively. Use the “min” operator to get the
membership value of a sequence of pixels.

Step 2: Compute the total rth-order fuzzy entropy of the
partitioned image as Hr

s = Hr
O + Hr

B.
Step 3: Minimize Hr

s with respect to s to get the thresh-
old for object background classification.

Referring back to the section on Grayness Ambigu-
ity Measures, it is seen that H2 reflects the homogeneity
among the supports in a set in a better way than H1 does.
The higher the value of r, the stronger is the validity of this
fact. Thus, considering the problem of object–background
classification, the improper selection of the threshold is
more strongly reflected by Hr than Hr−1.

The methods of object extraction (or segmentation) de-
scribed above are all based on gray level thresholding. An-
other way of doing this task is by pixel classification. The
details on this technique, using fuzzy c-means, fuzzy iso-
data, fuzzy dynamic clustering, and fuzzy relaxation, are
available in References (2, 10, and 53–60). The fuzzy c-
means (FCM) algorithm is a well-known clustering algo-
rithm used for pixel classification. Here, we describe it in
brief.

Fuzzy segmentation results in fuzzy partitions of X =
{x1, x2, . . . , xn}, where X denotes a set of n unlabeled column
vectors in RP (i.e., each element of X is a p-dimensional
feature vector). A fuzzy c-partition (c is an integer, 1 ≤ c ≤
n) is the matrix U = [µik], i = 1, 2, . . . , c, k = 1, . . . , n that
satisfies the following constraints:

Here, the kth column of U represents membership values
of xk to the c fuzzy subsets and µik = µi(xk) denotes the
grade of membership of xk in the ith fuzzy subset.

The FCM algorithm searches the local minimum of the
following objective function:

where U isafuzzy c-partition of X,‖ · ‖A is any inner product
norm, V = {v1, v2, . . . , vc} is a set of cluster centers, vi ∈ Rp,
and m ∈ [1, ∞] is the weighting exponent on each fuzzy
membership. For m > 1 and xk 	= vi for all i, k, it has been
shown that Jm (U, V) may be minimized only if

and

The FCM algorithm, when Euclidian distance norm is con-
sidered, can only be used for hyperspherical clusters with
approximately equal dimensions. To cope with clusters
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having large variability in cluster shapes, densities, and
the number of data points in each cluster, Gustafson and
Kessel (61) used the scaled Mahalanobis distance in the
FCM algorithms. By the use of a distance measure derived
from maximum likelihood estimation methods, Gath and
Geva (62) obtained an algorithm that is eifective even when
the clusters are ellipsoidal in shape and unequal in dimen-
sion.

As the value of c (i.e., the number of clusters) is not
always known, several cluster validity criteria have been
suggested in the literature to find the optimum number of
clusters. These criteria include partition coefficient, clas-
sification entropy, properties coefficient, total within-class
distance of clusters, total fuzzy hyper volume of clusters,
and partition density of clusters (60–63).

Generalizing the FCM algorithm further, Dave (64) pro-
posed the fuzzy c shells (FCS) algorithm to search for clus-
ters that are hyper ellipsoidal shells. One of its advanced
versions is believed to be better than Hough transforma-
tion (in terms of memory and speed of computation) when
used for ellipse detection. It is also shown (64) that the use
of fuzzy memberships improves the ability to attain global
optima compared with the use of hard membership. For the
same purpose, Krishnapuram et al. (65) proposed another
algorithm that is claimed to be less time consuming than
that of Dave.

For further information, readers may consult Refer-
ences 66–69. The article in Reference 66 describes a mod-
ified version of the FCM, which incorporates supervised
training data. The article of Cannon et al. (67) describes
an approach that reduces the computation required for the
FCM, by using look up tables, by a factor of six. Another
simplified form of FCM in this line is mentioned in Ref-
erence 68. The authors in Reference (69) have proposed a
new heuristic fuzzy clustering technique and have referred
to it as the Fuzzy J-Means (FJM).

Soft decision making has been used to develop many
other segmentation algorithms for various applications
such as document image processing, ultrasound image
processing, satellite image analysis, MR image analysis,
and remote sensing (70–78). Algorithms for applications
such as classification of MR brain images (79) and mi-
crocalcification detection (80) have been succesfully imple-
mented.using fuzzy techniques. Before leaving this section,
we mention the work in Reference (81), which defines the
concept of fuzzy objects and describes algorithms for their
extraction.

Contour Detection

Edge detection is also an image segmentation technique
where the contours/boundaries of various regions are ex-
tracted based on the detection of discontinuity in grayness.
Here we present a method for fuzzy edge detection using
an edginess measure based on H1 (Eq. 2), which denotes
an amount of difficulty in deciding whether a pixel can be
called an edge (19). Let N3

xy be a 3× 3 neighborhood of a
pixel at (x,y). The edge–entropy HE

xy of the pixel (x,y), giving
a measure of edginess at (x,y), may be computed as follows.
For every pixel (x,y), compute the average, maximum, and
minimum values of gray levels over N3

xy. Let us denote the
average, maximum, and minimum values by Avg, Max, and
Min, respectively. Now define the following parameters.

A π-type membership function (Fig. 2) is then used to
compute µxy for all (x, y) ∈ N3

xy such that µ(A) = µ(C) = 0.5
and µ(B) = 1. It is to be noted that µxy ≥ 0.5. Such a µxy,
therefore, characterizes a fuzzy set “pixel intensity close
to its average value,” averaged over N3

x,y. When all pixel
values over N3

x,y are either equal or close to each other (i.e.,
they are within the same region), such a transformation
will make all µxy = 1 or close to 1. In other words, if no
edge exists, pixel values will be close to each other and
the µ values will be close to one (1); thus resulting in a
low value of H1. On the other hand, if an edge does exist
(dissimilarity in gray values over N3

x,y), then the µ values
will be more away from unity; thus resulting in a high value
of H1. Therefore, the entropy H1 over N3

x,y can be viewed as
a measure of edginess (HE

x,y) at the point (x,y). The higher
the value of HE

x,y, the stronger the edge intensity and the
easier its detection. Such an entropy plane will represent
the fuzzy edge detected version of the image.

The proposed entropic measure is less sensitive to noise
because of the use of a dynamic membership function based
on a local neighborhood. The method is also not sensitive
to the direction of edges. Other edginess measures and al-
gorithms based on fuzzy set theory are available in Refer-
ences 10, 21, and 37.

Figure 1. Inverse π function (solid line) for computing object and background entropy.
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Figure 2. π Function for computing edge entropy.

Fuzzy Skeleton Extraction

Let us now explain two methods for extracting the fuzzy
skeleton (skeleton having an ill-defined boundary) of an ob-
ject from a gray tone image without getting involved into
its (questionable) hard thresholding. The first one is based
on minimization of the parameter 1OAC (Eq. 19) or com-
pactness (Eq. 12) with respect to α-cuts (α-cut of a fuzzy set
A comprises all elements of X whose membership value is
greater than or equal to α, 0 < α ≤ 1) over a fuzzy “core line”
(or skeleton) plane. The membership value of a pixel to the
core line plane depends on its property of possessing max-
imum intensity, and property of occupying vertically and
horizontally middle positions from the ε-edges (pixels be-
yond which the membership value in the fuzzy segmented
image becomes less than or equal to ε, ε > 0) of the object
(82). If a nonfuzzy (or crisp) single-pixel-width skeleton is
deserved, it can be obtained by a contour tracing algorithm
(83) that takes into account the direction of contour. Note
that the original image cannot be reconstructed, like the
other conventional techniques of gray skeleton extraction
(2–85) from the fuzzy skeleton obtained here.

The second method is based on fuzzy medial axis trans-
formation (FMAT) (28) using the concept of fuzzy disks. A
fuzzy disk with center P is a fuzzy set in which member-
ship depends only on the distance from P. For any fuzzy set
f, a maximal fuzzy disk gP f ≤ f exists centered at every
point P, and f is the sup of the gP f ′s. (Moreover, if f is fuzzy
convex, so is every gP f , but not conversely.) Let us call a
set Sf of points f-sufficient if every gP f ≤ gQ f for some
set of Q in Sf ; evidently f is then the sup of the gQ f ′s. In
particular, in a digital image, the set of Q’s at which gf is a
(non-strict) local maximum is f-sufficient. This set is called
the fuzzy medial axis of f, and the set of gQ f ′s is called
the fuzzy medial axis transformation (FMAT) of f. These
definitions reduce to the standard one if f is a crisp set.

For a gray tone image X (denoting the non-normalized
fuzzy “bright image” plane), the FMAT algorithm com-
putes, first of all, various fuzzy disks centered at the pixels
and then retains a few (as small as possible) of them, as
designated by gQ’s, so that their union can represent the
entire image X. That is, the pixel value at any point t can
be obtained from a union operation, as t has membership
value equal to its own gray value (i.e., equal to its non-
normalized membership value to the bright image plane)
in one of those retained disks.

Note that the above representation is redundant (i.e.,
some more disks can further be deleted without affecting
the reconstruction). The redundancy in pixels (fuzzy disks)
from the fuzzy medial axis output can be reduced by consid-
ering the criterion gP f (t) ≤ sup gQ

f

i (t), i = 1, 2, . . . instead
of gP f (t) ≤ gQ f (t). In other words, eliminate many other

gP f ′s for which there exists a set of gQ f ′s whose sup is
greater than or equal to gP f .

Let RFMAT denote the FMAT after reducing its redun-
dancy. The fuzzy medial axis is seen to provide a good skele-
ton of the darker (higher intensity) pixels in an image apart
from its exact representation. FMAT of an image can be
considered as its core (prototype) version for the purpose of
image matching. It is to be mentioned here that such a rep-
resentation may not be economical in a practical situation.
The details on this feature and the possible approximation
to make it practically feasible are available in Reference
(86)

Note that the membership values of the disks contain
the information of image statistics. For example, if the im-
age is smooth, the disk will not have abrupt change in its
values. On the other hand, it will have abrupt change in
case the image has salt and pepper noise or edginess. The
concept of fuzzy MAT can therefore be used as spatial fil-
tering (both high pass and low pass) of an image by ma-
nipulating the disk values to the extent desired and then
putting them back while reconstructing the processed im-
age. A gray-scale thinning algorithm is described in Refer-
ences 60 and 87 based on the concept of fuzzy connected-
ness between two pixels; the dark regions can be thinned
without ever being explicitly segmented.

SOME APPLICATIONS

Here we provide a few applications of the methodologies
and tools described before.

Motion Frame Analysis and Scene Abstraction

With rapid advancements in multimedia technology, it is
increasingly common to have time-varied data like video
as computer data types. Existing database systems do not
have the capability of search within such information.
It is a difficult problem to automatically determine one
scene from another because no precise markers exist that
identify where they begin and end. Moreover, divisions of
scenes can be subjective, especially if transitions are subtle.
One way to estimate scene transitions is to approximate
the change of information between each of two successive
frames by computing the distance between their discrimi-
natory properties.

A solution is provided in Reference 88 to the problem
of scene estimation/abstraction of motion video data in the
fuzzy set theoretic framework. Using various fuzzy geomet-
rical and information measures (see image Ambiguity and
uncertainty measures section) as image features, an algo-
rithm is developed to compute the change of information
in each of two successive frames to classify scenes/frames.
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Frame similarity is measured in terms of weighted dis-
tance in fuzzy feature space. This categorization process of
raw input visual data can be used to establish structure for
correlation. The investigation not only attempts to deter-
mine the discrimination ability of the fuzziness measures
for classifying scenes, but also enhances the capability of
nonlinear, frame-accurate access to video data for applica-
tions such as video editing and visual document archival
retrieval systems in multimedia environments. Such an in-
vestigation is carried out in NASA Johnson Space Center,
Texas (88).

A set of digitized videos of previous space shuttle mis-
sions obtained from NASA/JSC was used (Fig. 3). The
scenes were named payload deployment, onboard astro-
naut, remote manipulator arm, and mission control room.
Experiments were conducted for various combinations of
uncertainty, orientation, and shape measures. As an illus-
tration, Fig. 4 shows a result when entropy, compactness,
length/height was considered as a feature set for computing
distance between two successive frames. Here the abscissa
represents the total number of frame distances in the sam-
pled time series, and the ordinate is the compound distance
value between two successive images. Each scene consists
of six frames. Therefore, a change of scene occurs at every
sixth index on the abscissa.The scene separation is denoted
with vertical grid lines. The effectiveness of the aforesaid
fuzzy geometrical parameter is also demonstrated (89) for
recognizing overlapping fingerprints with a multilayer per-
ceptron.

In the last decade, substantial advancement has oc-
curred in video and motion analysis using fuzzy sets. Re-
cently, a new video shot boundary detection technique us-
ing fuzzy logic has been proposed in Reference 90. The au-
thors in Reference 91 used fuzzy C-planes clustering to
propose a motion estimation technique, which is an impor-
tant block in most of the video processing systems. Other
applications such as traffic handling (92) in video process-
ing have also been implemented using fuzzy techniques.

Handwritten Character Recognition

Handwritten characters, like all patterns of human origin,
are examples of ill-defined patterns. Hence, the recogni-
tion of handwritten characters is a very promising field
for the application of pattern recognition techniques using
the fuzzy approach. It has been claimed that the concept
of vagueness underlying fuzzy theory is more appropri-
ate for describing the inherent variability of such systems
than the probabilistic concept of randomness. An impor-
tant application of handwriting recognition is to build effi-
cient man-machine interface for communicating with the
computer by human beings. Several attempts have been
made for handwritten character recognition in different
languages. Here we mention a pioneering contribution of
Kickert and Koppelaar (93), the subsequent developments
based on their work, and then an attempt made for fuzzy
feature description in this context.

The 26 capital letters of the English alphabet constitut-
ing the set

are seen to be composed of the elements of the following
set of “ideal” elements (93)

where ∈ is a null segment whose use will be explained
shortly. Also, a set P exits of 11 ordered recognition rou-
tines capable of recognizing the “ideal” segments. Each el-
ement of P can be considered as a portion of a context-free
grammar having productions of the form

with Vn being the non-terminal elements of the grammar.
Each of the 11 recognition routines is applied sequen-

tially to any unknown pattern S to be recognized as one
of the members of L. Each routine attempts to recognize a
given segment in a given structural context. If successful,
the application of the rules in P results in a parsing of S as
a vector of segments S = (x1, x2, . . . , xn), where xi ∈ VT .

Each letter, then, is defined by its vector of segments. Let
us assume that the vectors are padded out with null seg-
ments ∈ so that all letters are defined by vectors of equal
length. Each letter, therefore, can be defined as follows:

where

The element of fuzziness is introduced by associating with
each segment ai ∈ VT a fuzzy set on the actual pattern space.
With each ai is associated a fuzzy membership function
µai so that, given a segment xi of a pattern S, µa j(xi) is a
measure of the degree to which the segment xi corresponds
to the ideal segment aj .

The recognition procedure is now simply explained. The
sequence of recognition rules is executed, evaluating all
possible parsings of the input pattern. For each letter Hk

for which a parse can be made, the result is a sequence
(xi, x2, . . . , xn) of segments. The membership of S in Hk is
the intersection in the sense of fuzzy sets of the member-
ships of the segments xi

Finally, the pattern is recognized as letter Hm if

This approach was criticized by Stallings (94), who devel-
oped a Bayesian hypothesis-testing scheme for the same
problem. Given a pattern S, hypothesis Hk is that the
writer intended letter Hk Associated with each decision is
a cost Cij , which is the cost of choosing Hi when Hj is true.
The parsing of the pattern is performed as before. Only a
probability is associated with each segment for a given let-
ter. Regarding unknown densities, stallings (94) suggests
the use of maximum likelihood tests. As both membership
function and probability density functions are maps into
the interval [0,1], the only difference is the use of min/max
operators, where, the author argues, the “min” operator
loses a lot of information and is drastically affected by one
low value. The author claims that a though frequentistic
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Figure 3. A payload deployment sequence of four scenes as input data.

Figure 4. Distances between successive frames with feature set (entropy, compactness, length/height).

probabil-ity is not appropriate in dealing with pattern vari-
ability, subjective probability is perfectly suitable and more
intuitively obvious than “grade of membership.”

In a rejoinder (95), it is argued that fuzzy set theory is
more flexible than is assumed in Reference 94, where all
arguments are directed against a particular case (93). Re-
calling the idea of collectives (from property sets), where
the arithmetic average replaces “min,” there remains little
difference between the schemes in References 93 and 94.
In a reply, Stalling insisted that the Bayesian approach is
superior because offers a convenient way for assignment of
costs to errors and gains to correct answers. For the recog-
nition of handwritten English capital letters, the readers
may also refer to the work described in Reference 96.

Existing computational recognition methods use fea-
ture extraction to assign a pattern to a prototype class.
Therefore, the recognition ability depends on the se-
lection procedure. To handle the inherent uncertain-
ties/imprecision in handwritten characters, Malaviya and

Peters (97) have introduced fuzziness factor in the defini-
tion of selected pattern features. The fuzzy features are
confined to their meaningfulness with the help of a multi-
stage feature aggregation, which can be combined in a set
of linguistic rules that form the fuzzy rule-base for hand-
written information recognition. Note that the concept of
introducing fuzziness in the definition and extraction of
features and in their relations is not new. A detailed dis-
cussion is available in Reference 61 and 98 by Pal and oth-
ers, for extraction of primitives for X-ray identification and
character recognition in terms of gentle, fair, and sharp
curves. A similar interpretation of the shape parameters
of triangle, rectangle, and quadrangle in terms of mem-
bership for “approximate isosceles triangles,”“approximate
equilateral triangles,” “approximate right triangle,” and so
on has also been made (99) for their classification in a color
image. However, the work in Reference (97) is significant
from the point that it has described many global,positional,
and geometral features to account for the variabilities in
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patterns, which are supported with experimental results.
To represent the uncertainty in physical relations

among the primitives, the production rules of a formal
grammar are fuzzified to account for the fuzziness in re-
lation among the primitives, thereby increasing the gener-
ative power of a grammar. Such a grammar is called fuzzy
grammar (100–102).

It has been observed (98) that the incorporation of the
element of fuzziness in defining “sharp,” “fair,” and “gentle”
curves in the grammars enables one to work with a much
smaller number of primitives. By introducing fuzziness in
the physical relations among the primitives, it was also
possible to use the same set of production rules and non-
terminals at each stage, which is expected to reduce, to
some extent, the time required for parsing in the sense that
parsing needs to be done only once at each stage, unlike the
case of the non-fuzzy approach, where each string has to be
parsed more than once, in general, at each stage. However,
this merit has to be balanced against the fact that the fuzzy
grammars are not as simple as the corresponding nonfuzzy
grammars.

In recent times, the use of fuzzy theory in various kinds
of recognition tasks has increased significantly. Complex
fuzzy systems have been designed to recognize gestures
(103) and describe relative positions in images (104). The
authors in Reference (105) have extended the application
of fuzzy logic to recognize olfactory (smell) signals.

Detecting Man-Made Objects from Remote Sensing
Images

In a remotely sensed image, the regions (objects) are usu-
ally ill-defined because of both grayness and spatial am-
biguities. Moreover, the gray value assigned to a partic-
ular pixel of a remotely sensed image is the average re-
flectance of different types of ground covers present in the
corresponding pixel area (36.25m–36.25m for the Indian
Remote Sensing (IRS) imagery). Therefore, a pixel may
represent more than one class with a varying degree of
belonging.

A multivalued recognition system (6,7) formulated
based on the concept of fuzzy sets has been used for detect-
ing curved structure from IRS images (108). The system is
capable of handling various imprecise inputs and in provid-
ing multiple class choices corresponding to any input. De-
pending on the geometric complexity (8, 9) and the relative
positions of the pattern classes in the feature space, the en-
tire feature space is decomposed into some overlapping re-
gions. The system uses Zadeh’s compositional rule of infer-
ence (109) to recognize the samples.The recognition system
is initially applied on an IRS image to classify (based on the
spectral knowledge of the image) its pixels into six classes
corresponding to six land cover types, namely pond water,
turbid water, concrete structure, habitation, vegetation, and
open space. The green and infrared band information, being
sensitive than other band images to discriminate various
land cover types, are used for the classification.

The clustered images are then processed for detecting
the narrow concrete structure curves. These curves include
basically the roads and railway tracks. The width of such
attributes has an upper bound, which was considered there

to be three pixels for practical reasons. So all the pixels ly-
ing on the concrete structure curves with width not more
than three pixels were initially considered as the candidate
set for the narrow curves. As a result of the low pixel reso-
lutions (36.25m — 36.25m for IRS imagery) of the remotely
sensed images, all existing portions of such real curve seg-
ments may not be reflected as concrete structures and, as a
result, the candidate pixel set may constitute some broken
curve segments. To identify the curves in a better extent,
a traversal through the candidate pixels was used. Before
the traversing process, one also needs to thin the candi-
date curve patterns so that a unique traversal can be made
through the existing curve segments with candidate pix-
els. Thus, the total procedure to find the narrow concrete
structure curves consists of three parts: 1) selecting the
candidate pixels for such curves, 2) thinning the candidate
curve patterns, and 3) traversing the thinned patterns to
make some obvious connections between different isolated
curve segments. The multiple choices provided by the clas-
sifier in making a decision are used to a great extent in the
traversal algorithm. Some of the movements are governed
by only the second and combined choices.

After the traversal, the noisy curve segments (i.e., with
insignificant lengths) are discarded from the curve pat-
terns. The residual curve segments represent the skeleton
version of the curve patterns. To complete the curve pat-
tern, the concrete structure pixels lying in the eight neigh-
boring positions corresponding to the pixels on the above
obtained narrow curve patterns are now put back. This
resultant image represents the narrow concrete structure
curves corresponding to an image frame (108).

The results are found to agree well with the ground
truths. The classification accuracy of the recognition sys-
tem (107, 108) is not only found to be good, but also its
ability of providing multiple choices in making decisions is
found to be very effective in detecting the road-like struc-
tures from IRS images.

Content-Based Image Retrieval (CBIR)

In the last few years, researchers have witnessed an up-
surge of interest in content-based image retrieval (CBIR),
which is a process of selecting similar images from a collec-
tion by measuring similarities between the extracted fea-
tures from images themselves. Real-life images are inher-
ently fuzzy because of several uncertainties developing in
the imaging process. Moreover, measuring visual similari-
ties between images highly depends on subjectivity of hu-
man perception of image content. As a result, fuzzy image
processing for extracting visual features finds an impor-
tant place in image pretrieval applications. Let us explain
here, in brief, an investigation carried out in Reference 110
on image retrieval is based on fuzzy geometrical features.
Here a fuzzy edge map is extracted for each image. Using
the edge map, a fuzzy compactness vector is computed that
is subsequently used for measuring the similarity between
the query and the database image.

The process involves extracting the possible edge can-
didates using the concept of Top and Bottom of the inten-
sity surface of a smoothened image. The extracted edge
candidates are assigned gradient membership value µm(P)
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within (0.0 to 1.0) computed from the pixel contrast ratio
over a fixed window. The selected points are categorized as
weak, medium, and strong edge pixels based on their gra-
dient membership value µm(P). Multilevel thresholding is
performed by using (α – cut) to segregate the edge pixels.
Fuzzy edge maps snα consisting of different types of edge
pixels are obtained from the candidate set sn by varying
µm(P), from which the connected subsets s′nα as shown in
Fig. 5(b) and (c) are obtained. Fuzzy compactness value is
computed from the fuzzy edge map s′nα, obtained at differ-
ent (α – cut) to index an image of the database.

snα = {(P ∈ sn : µm(P) ≥ α)} (32)

where 0.5 ≥ α ≥ 1. This geometrical feature is invariant to
rotation translation and scaling by definition. It physically
means the maximum area that can be encircled by the
perimeter. The similarity between the feature vectors of
two images are computed by the widely used Euclidean
distance metric. The retrieval results are shown in Fig. 6.
From the experimental results of Fig. 6, it is seen that im-
ages are retrieved with fairly satisfactory precision.

Some other significant work on image retrieval are
available in Reference (111–113). The authors in Reference
(111) propose an image retrieval system using texture sim-
ilarity, whereas the authors in Reference (112) present a
novel information fusion approach for use in content-based
image retrieval. Retrieval of color images has been investi-
gated in Reference (113). Recently, similarity-based online
feature selection was applied to bridge the gap between
high level semantic concepts and low level visual features
in content-based image retrieval (114). Note that all these
methods mentioned above use fuzzy theory to handle var-
ious kinds of ambiguities.

Segmentation of Brain Magnetic Resonance Image

Image segmentation is an indispensable process in the vi-
sualization of human tissues, particularly during clinical
analysis of magnetic resonance (MR) images. A robust seg-
mentation technique based on fuzzy set theory for brain
MR images is proposed in Reference (115).

The method proposed in Reference (115) is based on a
fuzzy measure to threshold the image histogram. The im-
age is thresholded based on a criterion of similarity be-
tween gray levels. The second-order fuzzy correlation is
used for assessing such a concept. The local information
of the given image is extracted through a modified co-
occurrence matrix. The technique proposed here consists of
two linguistic variables bright, dark modeled by two fuzzy
subsets and a fuzzy region on the gray level histogram.
Each of the gray levels of the fuzzy region is assigned to
both defined subsets one by one and the second-order fuzzy
correlation using modified co-occurrence matrix is calcu-
lated.

First, let us define two linguistic variables dark, bright
modeled by two fuzzy subsets of X, denoted by A and B,
respectively. The fuzzy subsets A and B are associated with
the histogram intervals [xmin, xp] and [xmax, xq], respectively,
where xp and xg are the final and initial gray-level limits for
these subsets, and xmin and xmax are the lowest and highest
gray levels of the image, respectively.

Next, we calculate CA(xmin : xp) and CB(xp : xmax), where
CA(xmin : xp) is the second-order fuzzy correlation of fuzzy
subset A and its two-tone version and CB(xp : xmax) is the
second-order fuzzy correlation of fuzzy subset B and its
two-tone version using modified co-occurrence matrix. The
second-order fuzzy correlation can be expressed in the fol-
lowing way:

C(µ1, µ2) = 1 −
4
∑L

i=1

∑L

j=1 [µ1(i, j) − µ2(i, j)]2
ti j

Y1 + Y2
(33)

where tij is the frequency of occurrence of the gray level i
followed by j; that is, T = [tij ] is the modified co-occurrence
matrix, which is given by

ti j =
∑

a ∈ X,b ∈ ag

δ

(1 + |�|2)
(34)

where

b ∈ ag = {(m, n − 1), (m, n + 1), (m + 1, n), (m − 1, n),

(m − 1, n − 1), (m − 1, n + 1), (m + 1, n − 1), (m + 1, n + 1)}

� = 1
4

max{|xm−1,n + xm−1,n+1 + xm,n + xm,n+1 − xm+1,n

− xm+1,n+1 − xm+2,n − xm+2,n+1|, |xm,n−1 + xm,n + xm+1,n−1

+ xm+1,n − xm,n+1 − xm,n+2 − xm+1,n+1 − xm+1,n+2|}

δ = {
1 if gray level value of a is i

and that of b is j

0 otherwise

and

Yk =
L∑

i=1

L∑

j=1

[2µk(i, j) − 1]2
ti j; k = 1, 2

To calculate correlation between a gray-tone image and its
two-tone version, µ2 is considered as the nearest two-tone
version of µ1. That is,

µ2(x) = { 0 if µ2(x) ≤ 0.5
1 otherwise

(35)

As the key of the proposed method is the comparison of
fuzzy correlations, we have to normalize those measures,
which is done by computing a normalizing factor α accord-
ing to the following relation:

α = CA(xmin : xp)
CB(xq : xmax)

(36)

To obtain the segmented version of the gray-level his-
togram, we add to each of the subsets A and B a gray-level xi

picked up from the fuzzy region and form two fuzzy subsets
A′ and B′ that are associated with the histogram intervals
[xmin, xi] and [xi, xmax], where xp < xi < xq. Then we calculate
CA′(xmin : xi) and CB′(xi : xmax). The ambiguity of the gray
value of xi is calculated as follows:

A(xi) = 1 − |CA′(xmin : xi) − α · CB′(xi : xmax)|
(1 + α)

(37)

Finally, applying this procedure for all gray levels of the
fuzzy region, we calculate the ambiguity of each gray level.
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Figure 5. (a) Original image. Fuzzy edge map for candidates with (b) µmP ≥ 0.6 (c) µmP ≥ 0.8.

Figure 6. Retrieved result (from fuzzy edge map), (a) general purpose database (b) logo retrieval from (USPTO) database, with top left
image as the query image.

The process is started with xi = xp + 1, and xi is incre-
mented one by one until xi < xq. In other words,we calculate
the ambiguity by observing how the introduction of a gray
level xi of the fuzzy region affects the similarity measure
among gray levels in each of the modified fuzzy subsets A′

and B′. The ambiguity A is maximum for the gray level
xi in which the correlations of two modified fuzzy subsets
are equal. The threshold level (T) for segmentation corre-
sponds to gray value with maximum ambiguity A. That
is,

A(T ) = max arg{A(xi)}; ∀ xp < xi < xq (38)

As an example, we explain the merits of the proposed
method in Figs. (7) and (8). Figure (7) shows the original
MR images and their gray-value histograms, whereas Fig.
8 represents the fuzzy second-order correlations CA′(xmin :
xi) and CB′(xi : xmax) of two modified fuzzy subsets A′ and B′

with respect to the gray level xi of the fuzzy region and the
ambiguity of each gray level xi. The value of α is also given
here. Figure (8) depicts the segmented image of the pro-
posed method. The thresholds are determined according to
the strength of ambiguity.
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Figure 7. Original image and corresponding histogram.

Figure 8. Correlations of two fuzzy subsets, measure of ambiguity and segmented image (proposed).

Other Advances

Over the years, applications of fuzzy theory in image pro-
cessing and recognition has developed extensively in many
other domains. Fuzzy morphology is a tool that has re-
ceived considerable attention among researchers in the
field of image processing (116, 117). Bloch (118, 119) used
fuzzy theory to define spatial positioning of objects in im-
ages. A fuzzy error diffusion method has been proposed
in Reference (120) to perform dithering to hide quanti-
zation errors in images. Zahlmann et al. (121) applied a
hybrid fuzzy image, processing system to assess the dam-
age to the blood vessels in the retina because of diabetis.
A fractal coding scheme using a fuzzy image metric has
been proposed in Reference (122). Adaptive schemes of
digital watermarking in images and videos using fuzzy-
adaptive resonance theory (fuzzy-ART) classifier has been
given in Reference 123. In Reference 124, fuzzy theory has
been used to represent the uncertain location of a normal
Eucledian point, and its application in doppler image se-
quence processing has been demonstrated. Fuzzy theory

have also been used in intelligent Web image retrieval pur-
poses (125–127). In Reference 126, an image search engine
named (STRICT) has been designed using fuzzy similarity
measures. The authors in Reference 127 combine fuzzy text
and image retrieval techniques to present a comprehensive
image search engine.

For an image, the histogram, which gives the frequency
(probability) of occurrence of each gray value, and the
co-occurrence matrix, which gives the frequency (joint-
probability) of occurrence of two gray vajues seperated by
a specific distance, are the first- and second-order statis-
tics. In Reference 128, the authors used fuzzy theory to
explain the inherent imprecision in the gray values of an
image and defined the first- and second-order fuzzy statis-
tics of digital images, namely, fuzzy histogram and fuzzy
co-occurrence matrix, respectively. Fuzzy theory has also
been used in various other applications such as automatic
taxget detection and tracking, stereovision matching, ur-
ban structure detection in synthetic aperture radar (SAR)
images, and image reconstrution (129–132).
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CONCLUSIONS AND DISCUSSION

The problem of image processing and recognition under
fuzziness and uncertainty has been considered. The role of
fuzzy logic in representing and managing the uncertain-
ties in these tasks was explained. Various fuzzy set the-
oretic tools for measuring information on grayness ambi-
guity and spatial ambiguity in an image were listed along
with their characteristics. Some examples of image pro-
cessing operations (e.g., segmentation, skeleton extraction,
and edge detection), whose outputs are responsible for the
overall performance of a recognition (vision) system, were
considered to demonstrate the effectiveness of these tools
in providing both soft and hard decisions. The significance
of retaining the gray information in the form of class mem-
bership for a soft decision is evident. Uncertainty in deter-
mining a membership function in this regard and the tools
for its management were also stated. Finally, a few real-life
applications of these methodologies are described.

In conclusion, gray information is expensive and infor-
mative. Once it is thrown away, there is no way to get it
back. Therefore, one should try to retain this information
as long as possible throughout the decision-making tasks
for its full use. When it is required to make a crisp decision
at the highest level, one can always throw away or ignore
this informaion.

Most of the algorithms and tools described here were
developed by the author with his colleagues. Processing of
color images has not been considered here. Some signifi-
cant results on color image information and processing in
the notion of fuzzy logic are available in References 133–
137.

Note that fuzzy set theory has led to the development
of the concept of soft computing as a foundation for the
conception and design of a high Machine IQ (MIQ) system.
The merits of fuzzy set theory have also been integrated
with those of other soft computing tools (e.g., artificial neu-
ral networks, genetic algorithms, and rough sets) with a
hope of building more efficient processing and recognition
systems.
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