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common fuzzy control techniques seen both from the system’s
and the controller’s point of view. A special part is attended
to the nonlinear nature of fuzzy control. Aspects of heuristic
and model based fuzzy control are dealt with and the main
points of supervisory and adaptive control are discussed.

Fuzzy control in the form of set of IF-THEN fuzzy rules
was initiated by E. H. Mamdani when he started an investi-
gation of fuzzy set theory–based algorithms for the control of
a simple dynamic plant (2). Østergaard reported a fuzzy con-
trol application of a heat exchanger (3), and in 1982 Holmblad
and Østergaard presented a cement kiln fuzzy controller (4).
However, mainly due to the attention that Japan’s industry
paid to the new control technology, it was not until the late
1980s that fuzzy control became more and more accepted in
industry. The commonly used technique in industrial process
control is the Proportional-Integral-Differential (PID) control-
ler, and it is used in a variety of different control schemes
(e.g., adaptive, gain scheduling, and supervisory control archi-
tectures).

Today, processes and plants under control are so complex
that PID controllers are not sufficient even though aug-
mented with additional adaptive, gain scheduling, and super-
visory algorithms. Although there is a large number of meth-
ods and theories (5) to cope with sufficiently complex control
problems in the automation, robotics, consumer and indus-
trial electronics, car, aircraft, and ship-building industries,
the restrictions for applying these methods are either too
strong or too complicated to be applied in a practically effi-
cient and inexpensive manner. Therefore, control engineers
are in a need of simpler process and plant models and control-
ler design methods far removed from the sophisticated mathe-
matical models available and their underlying rigorous as-
sumptions. These simpler design methods should provide
good performance characteristics, and they should be robust
enough with regard to disturbances, parameter uncertainties,
and unmodeled structural properties of the process underFUZZY CONTROL
control.

In connection with traditional control techniques, fuzzyFuzzy control is a control approach which is based on the con-
cept of fuzzy sets and fuzzy logic invented by Lotfi Zadeh in control provides a variety of design methods that can cope

with modern control problems. There are three main aspects1965 (1). Fuzzy sets are noncrisp or nonsharp sets or num-
bers, and fuzzy logic is a logic which deals with implications of fuzzy controllers that go beyond the conventional control-

lers designed via traditional control methods:or IF THEN statements using noncrisp truth values. Fuzzy
control deals with IF THEN statements or IF THEN rules,
respectively, but in the sense of control commands like ‘‘IF 1. The use of IF-THEN rules.
temperature is LOW THEN change current of heater by a 2. The universal approximation property.
POSITIVE HIGH value.’’ In this rule LOW and POSITIVE

3. The property of dealing with vague (fuzzy) values.HIGH are fuzzy terms which are not sharply described. With
the help of rules like that, one can formulate the knowledge

The first aspect concerns the human operator’s knowledgeof an operator in a complex plant with the aim to introduce
and its heuristic experience for controlling a plant. Thisan automatic control of the plant or of parts of it. Another
knowledge is formulated in terms of IF-THEN fuzzy rules. Inoption is to build up an advisory system by means of a set of
the same way, the plant’s behavior can also be expressed byfuzzy rules that supports the human operator making deci-
a set of IF-THEN fuzzy rules. The major problem is to identifysions. Fuzzy control is not only useful when human operators
the fuzzy rules and the regarding parameters such that thecome into play but also in existing automatic control loops.
operator’s control actions and the systems’s response are suf-Here, the fuzzy controller is a nonlinear control element that
ficiently well described (6–8). Identification of this type ofis able to improve control performance and robustness of a
fuzzy rules can be done in two ways:plant. In automatic control it is often required to have a pro-

cess model available for compensation of nonlinear system’s
behavior and a corresponding feed forward control. For com- 1. Knowledge acquisition via the use of interviewing tech-

niques from the area of knowledge-based expert sys-plex systems or plants it is therefore of advantage to use fuzzy
system plant models in order to simplify both the identifica- tems. This type of identification has been applied suc-

cessfully to the control of Single Input/Single Outputtion and the control task. The following article deals with

J. Webster (ed.), Wiley Encyclopedia of Electrical and Electronics Engineering. Copyright # 1999 John Wiley & Sons, Inc.



FUZZY CONTROL 93

(SISO) plants and processes, but is difficult to apply and nique depends on how the system to be controlled is de-
verify for Multi Input/Multi Output (MIMO) control scribed. Figure 1 shows the most important FC techniques
problems. dealing with systems and controllers.

The following subsection deals with the design goal of2. Black box type of identification via the use of clustering,
fuzzy control. In a subsequent subsection the fuzzy region isneural nets, and genetic algorithm–based techniques.
defined. Finally, the individual FC techniques for systems

In the latter approach one distinguishes between structure and controllers are outlined.
identification and parameter identification.

Structure identification requires structural a priori knowl-
The Design Goaledge about the system to be controlled (e.g., whether the sys-

tem is assumed to be linear, and what the order of the system The objective of the design in fuzzy control can be stated as
might be). If one has to identify a plant with only little struc- follows:
tural knowledge, one has to use algorithms that learn from
data. The result of structure identification is a set of fuzzy 1. Stabilization. In stabilization control problems, a fuzzy
rules. controller, called a stabilizer, or regulator, is to be de-

Parameter identification deals with a proper parametriza- signed so that the state vector of the closed-loop system
tion, scaling, and normalization of physical signals. Parame- will be stabilized around a point (operating point, or a
ter identification is a comparetively simple task and can be setpoint) of the state space. The asymptotic stabiliza-
done by classical methods (e.g., Linear Quadratic (LQ) meth- tion control problem is to find a control law in terms of
ods and related techniques). a set of fuzzy rules such that, starting anywhere in a

The second aspect, the universal approximation property, region around the setpoint xd, the state vector x of the
means that a fuzzy system with product-based rule firing, closed-loop system goes to the setpoint xd, as t goes to
centroid defuzzification, and Gaussian membership functions infinity.
can approximate any real continuous function on a compact

2. Tracking. In tracking control problems, a fuzzy control-set to arbitrary accuracy (9–11). However, in most cases the
ler is to be designed so that the closed-loop system out-approximation of a finite state space by a finite number of
put follows a given time-varying trajectory. The asymp-fuzzy rules is required while using triangular or trapezoidal
totic tracking problem is to find a control law in termsmembership functions. In this case certain approximation er-
of a set of fuzzy rules such that starting from any initialrors must be accepted.
state x0 in a region around xd(t), the tracking errorThe approximation property is due to the overlap of the
x(t) � xd(t) tends to 0 while the whole state vector re-membership functions from the IF parts of the set of fuzzy
mains bounded. Let us stress here that perfect trackingrules. Because of this overlap, every rule is influenced by its
(i.e., when the initial states imply zero tracking error)neighboring rules. The result is that every point in state
is not possible. Therefore, the design objective of havingspace is approximated by a subset of fuzzy rules.
asymptotic tracking cannot be achieved. In this case,The third aspect considers control tasks where the control-

ler inputs are fuzzy values instead of being crisp variables. In one should aim at bounded-error tracking, with small
contrast to classical controllers, fuzzy controllers (FC) can tracking errors to be obtained for trajectories of particu-
also deal with fuzzy values, and even the mixture of crisp and lar interest.
fuzzy values becomes possible. Fuzzy values are qualitative
‘‘numbers’’ obtained from different sources. One particular From a theoretical point of view, there is a relationship
source is a qualitative statement of a human operator while between the stabilization and the tracking control problems.
controlling a plant, like ‘‘temperature is high.’’ Another source Stabilization can be regarded as a special case of tracking
may originate from a sensor that provides information about where the desired trajectory is a constant. On the other hand,
the intensity of a physical signal with in a certain interval. if, for example, we have to design a tracker for the open-loop
Here, the intensity or distribution of the signal with respect system
to this interval is expressed by a membership function.

This article is arranged as follows: The following section ÿ + f (ẏ, y, u) = 0 (1)
deals with fuzzy control techniques, including the design goal,
the definition of a fuzzy region, and the most important FC so that e(t) � y(t) � yd(t) tends to zero, the problem is equiva-
techniques for systems and controllers. Then the article deals lent to the asymptotic stabilization of the system,
with the fuzzy controller as a nonlinear transfer element
while the computational structure of a fuzzy controller, its ë + f (ė, e, u, yd, ẏd, ÿd ) = 0 (2)
transfer characteristics, and its nonlinearity are discussed.
Different heuristic and model-based control strategies, such

its state vector components being e and ė. Thus the trackeras the Mamdani controller, the sliding mode fuzzy controller,
design problem can be solved if one designs a regulator forthe cell mapping control strategy, and the Takagi Sugeno con-
the latter nonautonomous open-loop system.trol strategy, are discussed, a short overview of supervisory

control is provided; and finally the main aspects of adaptive
Performance. In linear control, the desired behavior of thefuzzy control are discussed.

closed-loop system can be systematically specified in exact
quantitative terms. For example, the specifications of the de-FUZZY CONTROL TECHNIQUES
sired behavior can be formulated in the time domain in terms
of rise time and settling time, overshoot and undershoot, etc.FC techniques can be divided into experiential (heuristic) and

model-based techniques. The choice for a special FC tech- Thus, for this type of control, one first postulates the quanti-



94 FUZZY CONTROL

Figure 1. FC techniques. Collection of
fuzzy control techniques for systems and
controllers. Mamdani controllers can, e.g.,
be applied to systems described by differ-
ential equations.
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tative specifications of the desired behavior of the closed-loop We want to stress here that the aforementioned specifica-
tions of desired behavior are in conflict with each other tosystem and then designs a controller that meets these speci-

fications (for example, by choosing the poles of the closed-loop some extent, and a good control system can be designed only
based on tradeoffs in terms of robustness versus performance,system appropriately).

As observed in Ref. 12, such systematic specifications of cost versus performance, etc.
the desired behavior of nonlinear closed-loop systems, except
for those that can be approximated by linear systems, are not Fuzzy Regions
obvious at all because the response of a nonlinear system

In fuzzy control, a crisp state vector x � (x1, . . ., xn)T is a(open or closed loop) to one input vector does not reflect its
state vector the values of which are defined on the closed in-response to another input vector. Furthermore, a frequency
terval (the domain) X of reals. A crisp control input vectordomain description of the behavior of the system is not possi-
u � (u1, . . ., un)T is a control input vector the values of whichble either.
are defined on the closed interval (the domain) U of reals. TheThe consequence is that in specifying the desired behavior
set of fuzzy values of a component xi is called the term set ofof a nonlinear closed-loop system, one employs some qualita-
xi denoted as TXi � �LXi1, . . ., LXimi

	 (e.g., NB, NM, NS, Z,tive specifications of performance, including stability, accu-
PS, PM, PB with N negative, P positive, S small, M medium,racy and response speed, and robustness.
B big). LXij is defined by a membership function �X �Xij

(x)/x.
The term set of ui is likewise denoted as TUi � �LUi1, . . .,Stability. Stability must be guaranteed for the model used
LUiki

	. LUij is defined by a membership function �U �Uij
(u)/u.for design (the nominal model) either in a local or in a global

An arbitrary fuzzy value from TXi is denoted as LXi that cansense. The regions of stability and convergence are also of in-
be any one of LXi1, . . ., LXimi

. An arbitrary fuzzy value fromterest.
TUi will be denoted as LUi and can be any one of LUi1, . . .,One should, however, keep in mind that stability does not
LUiki

.imply the ability to withstand persistent disturbances of even
A fuzzy state vector LX � (LX1, . . ., LXn)T denotes a vectorsmall magnitude. This is so since the stability of a nonlinear

of fuzzy values. Each component x1, . . ., xn of the state vec-system is defined with respect to initial conditions, and only
tor x takes a corresponding fuzzy value LX1, . . ., LXn, wheretemporary disturbances may be translated as initial condi-
LXi � TXi. A fuzzy region LXi � (LXi

1, . . ., LXi
n)T is definedtions. Thus stability of a nonlinear system is different from

as a fuzzy state vector for which there exists a contiguous setstability of a linear system. In the case of a linear system,
of crisp state vectors �x*	, each crisp state vector satisfyingstability always implies the ability to withstand bounded dis-
the given fuzzy state vector LXi to a certain degree differentturbances when, of course, the system stays in its linear
from 0. The fuzzy state space is defined as the set of all fuzzyrange of operation. The effects of persistent disturbances on
regions LXi.the behavior of a nonlinear system are addressed by the no-

tion of robustness.
Example Let x � (x1, x2)T, TX1 � �LX11, LX12, LX13	, and

Accuracy and Response Speed. Accuracy and response speed TX2 � �LX21, LX22, LX23	. Then the total number of different
must be considered for some desired trajectories in the region fuzzy state vectors is M � 9 and the corresponding state vec-
of operation. For some classes of systems, appropriate design tors are
methods can guarantee consistent tracking accuracy indepen-
dent of the desired trajectory, as is the case in sliding mode

1. LX1 � (LX11, LX21)T

control and related control methods.
2. LX2 � (LX11, LX22)T

3. LX3 � (LX11, LX23)TRobustness. Robustness reflects the sensitivity of the
closed-loop system to effects that are neglected in the nominal 4. LX4 � (LX12, LX21)T

model used for design. These effects can be disturbances, 5. LX5 � (LX12, LX22)T

measurement noise, unmodeled dynamics, etc. The closed-
6. LX6 � (LX12, LX23)T

loop system should be insensitive to these neglected effects in
the sense that they should not negatively affect its stability. 7. LX7 � (LX13, LX21)T
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8. LX8 � (LX13, LX22)T relational composition (e.g., max-min composition). A
fuzzy relation is another representation of a Mamdani9. LX9 � (LX13, LX23)T

fuzzy system.
Analytical Systems Models. If an analytical model of theFC Techniques for Systems and Controllers

plant is available, then the system’s behavior can be de-
In this subsection we deal with systems and controllers ac-

scribed by a set of differential equations or by a set of
cording to the scheme shown in Fig. 1. Given a model (heuris-

so-called Takagi Sugeno fuzzy rules (TS rules) (8). A
tic or analytical) of the physical system to be controlled and

typical differential equation of an open-loop system is
the specifications of its desired behavior, design a feedback
control law in the form of a set of fuzzy rules such that the ẋ̇ẋx = A · xxx + B · uuu (5)
closed-loop system exhibits the desired behavior.

The general control scheme is shown in Fig. 2. Here, we On the other hand, a TS fuzzy rule consists of a fuzzy
have the following notations: antecedent part and a consequent part consisting of an

analytical equation. A typical TS rule for a first-order
x is the state vector (also controller input) system is
xd is the desired state vector
u is the control input vector (also controller output) RSi: IF x = LX i THEN ẋ = Ai · x + Bi · u (6)

where the vectors x, xd, u, are continuous functions of time. where LXi is the ith fuzzy region for x, and Ai and Bi are
For simplicity, the output vector y is set to be equal to the parameters corresponding to that region.
state vector x:

Fuzzy controllers can be classified as follows:
yyy = xxx

Mamdani Controller. A Mamdani controller works in the
In the following we define two basic types of nonlinear con- following way:

trol problems: namely, nonlinear regulation (stabilization)
1. A crisp value is scaled into a normalized domain.and nonlinear tracking (12). Then we will briefly discuss the
2. The normalized value is fuzzified with respect to thespecifications of desired behavior, such as performance, sta-

input fuzzy sets.bility, and robustness, in the context of nonlinear control.
3. By means of a set of fuzzy rules, a fuzzy output value

is provided.Stabilization and Tracking. In general, the tasks of a control
system can be divided into two basic categories: 4. The fuzzy output is defuzzified with the help of an

appropriate defuzzification method (center of gravity,
Heuristic System Models. When an analytical model of the height method, etc.).

plant is not available, the control design has to be car- 5. The defuzzified value is denormalized into a physical
ried out on the basis of qualitative modeling. This can domain.
be done either in terms of a set of Mamdani fuzzy rules A typical Mamdani controller is
or a fuzzy relation (6,13). A typical Mamdani rule of a
continuous first-order system is RCi: IF x = LX i THEN u = LU i (7)

RSi: IF x is PS AND u is NB THEN ẋ is NS (3)
where LUi is the corresponding fuzzy value for the con-
trol variable.and for a discrete system

Relational Controller. According to the description of the
system in terms of a relational equation, a typical dis-
crete fuzzy relational equation for a controller is

RSi: IF x(k) is PS AND u(k) is NB THEN

x(k + 1) is NS

U (k) = X (k) ◦ C (8)A typical fuzzy relational equation of a discrete first-
order system is

where X is the fuzzy state, U is the fuzzy control vari-
able, and C is the fuzzy relation. A relational controllerX (k + 1) = X (k)◦ U (k) ◦ S (4)
is another representation of a Mamdani Controller.

relating the state at time k � 1 to the state and control Takagi Sugeno Controller. A typical TS controller is
input at time k. S is the fuzzy relation. � denotes the

RCi: IF x = LX i THEN u = Ki · x (9)

where LXi is the ith fuzzy region for x, and Ki is the gain
corresponding to that region.

Predictive Controller. A special way of predictive fuzzy
control was introduced by Yasunobu (14) for automatic

xd

x

Fuzzy or
crisp system

S or FS

Fuzzy
controller 

FC
x

u

train operation. It includes control rules for the time k
to predict the behavior of the system for the next time-Figure 2. General control structure.
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step k � 1. By means of a performance index J(k), which state space is affected to a different extent by the control laws
associated with all the fuzzy regions to which this particularappears for a specific control action u(k), different fea-

tures like velocity, riding comfort, energy saving, and point in the state space belongs. By using the operations of
aggregation and defuzzification, a specific control law for thisaccuracy of a stop gap are evaluated. By means of going

through the whole range of possible control actions particular point is determined. As the point moves in the
state space, the control law changes smoothly. This impliesu(k), one obtains a range of corresponding performance

indices J(k) from which the control action u(k � 1) with that a fuzzy controller yields a smooth nonlinear control law
despite the quantization of the state space in a finite numberthe highest performance index J(k) is applied to the

plant. A typical predictive control rule is of fuzzy regions.
One goal of this section is to describe computation with aIF the performance index J(k) � LJi is obtained

fuzzy controller and its formal description as a static nonlin-AND a control value u(k) is chosen to be LUi

ear transfer element and thus provide the background knowl-
THEN the control value to be applied to the plant for edge needed for understanding control with a fuzzy controller.

the next timestep k � 1 Furthermore, we show the relationship between conventional
is chosen to be u(k � 1) � LUi. and rule-based transfer elements, thus establishing the com-
A formal description is patibility between these two conceptually different, in terms

of representation, types of transfer elements.
IF J(k) = LJ i AND u(k) = LU i THEN u(k + 1) = LU i

(10)
The Computational Structure of a Fuzzy Controller

A further relationship to model predictive control A control law represented in the form of a fuzzy controller
(15) can be found in Refs. 16 and 17. directly depends on the measurements of signals and is thus

Hybrid Controller. A hybrid controller is represented by a static control law. This means that the fuzzy rule-based rep-
a mixture of fuzzy controller and conventional con- resentation of a fuzzy controller does not include any dynam-
troller. Fuzzy hybrid controllers are, e.g., applied for ics, which makes a fuzzy controller a static transfer element,
tuning conventional controllers and in adaptation like a state controller. Furthermore, a fuzzy controller is, in
schemes. Another application is the use of a nonlin- general, a nonlinear static transfer element that is due to
ear fuzzy mapping in nonlinear control tasks. A typi- those computational steps of its computational structure that
cal hybrid controller appears if the control law con- have nonlinear properties. In what follows we will describe
sists of a Mamdani controller Cfuzz and an analytical the computational structure of a fuzzy controller by pre-
feedforward term Ccomp that compensates (e.g., stati- senting the computational steps that it involves.
cal or dynamical forces in a mechanical system): The computational structure of a fuzzy controller consists

of a number of computational steps and is illustrated in
Fig. 3:u = Cfuzz(xxx,xdxdxd ) + Ccomp(xxx) (11)

where xd is the desired vector. Further information 1. Input scaling (normalization)
can be found in Ref. 18.

2. Fuzzification of controller-input variables
3. Inference (rule firing)

THE FUZZY CONTROLLER AS A
4. Defuzzification of controller-output variablesNONLINEAR TRANSFER ELEMENT
5. Output scaling (denormalization)

A fuzzy logic controller defines a control law in the form of a
static nonlinear transfer element (TE) due to the nonlinear The state variables x1, x2, . . ., xn (or e, ė, . . ., e(n�1)) that

appear in the IF part of the fuzzy rules of a fuzzy controllernature of the computations performed by a fuzzy controller.
However, the control law of a fuzzy controller is not repre- are also called controller inputs. The control input variables

u1, u2, . . ., um that appear in the THEN part of the fuzzysented in an analytic form, but by a set of fuzzy rules. The
antecedent of a fuzzy rule (IF part) describes a fuzzy region in rules of a fuzzy controller are also called controller outputs.

We will now consider each of the computational steps for thethe state space. Thus one effectively partitions an otherwise
continuous state space by covering it with a finite number of case of a multiple-input/single-output (MISO) fuzzy control-

ler. The generalization to the case of multiple-input/multiple-fuzzy regions and, consequently, fuzzy rules. The consequent
of a fuzzy rule (THEN part) specifies a control law applicable output fuzzy controller, where there are m controller outputs

u1, u2, . . ., um instead of a single controller output u, canwithin the fuzzy region from the IF part of the same fuzzy
rule. During control with a fuzzy controller, a point in the easily be done.

Figure 3. The computational structure of
a fuzzy controller. The arrangement of the
blocks correspond to the sequence of com-
putation.
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Input Scaling. There are two principal cases in the context
of input scaling:

1. The membership functions defining the fuzzy values of
the controller inputs and controller outputs are defined
off-line on their actual physical domains. In this case
the controller inputs and controller outputs are pro-
cessed only using fuzzification, rule firing, and defuzzi-
fication. For example, this is the case of a Takagi-Su-
geno fuzzy controller.

e eNeN =

e eNeN =

eN

eN

e

e

2. The membership functions defining the fuzzy values of
Figure 4. Normalization of the phase plane. Different normalizationcontroller inputs and controller outputs are defined off-
factors Ne and Nė correspond to different slopes of the line Ne � e �line, on a common normalized domain. This means that
Nė � ė � 0.the actual, crisp physical values of the controller inputs

and controller outputs are mapped onto the same prede-
termined normalized domain. This mapping, called nor- fects the angle of a line that divides the phase plane into two
malization, is done by appropriate normalization fac- semiplanes (see Fig. 4).
tors. Input scaling is then the multiplication of a Furthermore, we can see how the supports of the member-
physical, crisp controller input, with a normalization ship functions defining the fuzzy values of e and ė change
factor so that it is mapped onto the normalized domain. because of the input scaling of these controller inputs (see
Output scaling is the multiplication of a normalized Fig. 5).
controller output with a denormalization factor so that In the next three subsections on fuzzification, rule firing,
it is mapped back onto the physical domain of the con- and defuzzification, we consider only the case when the fuzzy
troller outputs. values of the controller inputs and controller outputs are de-

fined on normalized domains (e.g., EN and UN), and in this
The advantage of the second case is that fuzzification, rule case we will omit the lower index N from the notation of nor-
firing, and defuzzification can be designed independent of the malized domains and fuzzy and crisp values. In the subsec-
actual physical domains of the controller inputs and control- tion on denormalization we will use the lower index N to dis-
ler outputs. tinguish between normalized and nonnormalized fuzzy and

To illustrate the notion of input scaling, let us consider, for crisp values.
example, the state vector e � (e1, e2, . . ., en)T � (e, ė, . . .,
e(n�1))T, where for each i, ei � xi � xdi

. This vector of physical Fuzzification. During fuzzification a crisp controller input
controller inputs is normalized with the help of a matrix Ne x* is assigned a degree of membership to the fuzzy region
containing predetermined normalization factors for each com- from the IF part of a fuzzy rule. Let LEi

1, . . ., LEi
n be some

ponent of e. The normalization is done as fuzzy values taken by the controller inputs e1, . . ., en in the
IF part of the ith fuzzy rule Ri

C of a fuzzy controller; that is,eN = Ne · e (12)
these fuzzy values define the fuzzy region LEi � (LEi

1, . . .,
LEi

n)T.with
Each of the preceding fuzzy values, LEi

k is defined by a
membership function on the same (normalized) domain of er-
ror E. Thus the fuzzy value LEi

k is given by the membership
function �E �LEi

k
(ek)/ek.

Let us consider now a particular normalized crisp control-
ler input

Ne =




Ne1
0 . . . 0

0 Ne2
. . . 0

...
...

. . .
...

0 0 . . . Nek


 (13)

eee ∗ = (e ∗
1, . . ., e ∗

n)T (16)
where Nei

are real numbers and the normalized domain for e
is, say, EN � [�a, �a]. from the normalized domain E. Each e*k is a normalized crisp

Example Let e � (e1, e2)T � (e, ė)T with

e = x − xd and ė = ẋd − ẋd (14)

Then input scaling of e into eN and ė into ėN yields

eN = Ne · e and ėN = Nė · ė (15)

where Ne and Nė are the normalization factors for e and ė, re-
spectively.

 – a  a1

1

e

eN

N

1

e⋅
e⋅

Figure 5. Change of the supports of the membership functions due
In the context of a phase plane representation of the dy- to input scaling. Scaling normalizes different supports for e and ė to

a common support for eN and ëN.namic behavior of the controller inputs, the input scaling af-
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value obtained after the input scaling of the current physical �i(e*) of the fuzzy region LEi is computed as
controller input. The fuzzification of the crisp normalized con-
troller input then consists of finding the membership degree µiii(eee ∗) = min

(
µ

LEiii
1
(e∗

1), µ
LEiii

2
(e∗

2), . . ., µ
LEiii

n
(e∗

n)
)

(19)
of e*k in �E �LEi

k
(ek)/ek. This is done for every element of e*.

Second, given the degree of satisfaction �i(e*) of the fuzzy re-Example Consider the fuzzy rule Ri
C given as

gion LEi, the normalized controller output of the ith fuzzy
rule is computed asRiii

C: IF eee = (PSe, NMė) THEN u = PMu (17)

where PSe is the fuzzy value POSITIVE SMALL of the con-
troller input e, NMė is the fuzzy value NEGATIVE MEDIUM

CLUiii =
∫

U
µ

CLUiii (u)/u = min
(

µiii(eee∗),
∫

U
µ

LUiii (u)/u
)

(20)

of the second controller input ė, and PMu is the fuzzy value
NEGATIVE MEDIUM of the single controller output u. The Thus the controller output of the ith fuzzy rule is modified by
membership functions representing these two fuzzy values the degree of satisfaction �i(e*) of the fuzzy region LEi and
are given in Fig. 6. hence defined as the fuzzy subset CLUi � �U �CLUi(u)/u of �U

�LUi(u)/u. That is,
In this example we have e � (e, ė)T and thus the IF part of

the preceding rule represents the fuzzy region LEi � (PSe,
NMė)T. Furthermore, let e* � a1 and ė* � a2 be the current
normalized values of the physical controller inputs e* and ė*,

∀u:µ
CLUiii (u) =

{
µ

LUiii (u) if µ
LUiii (u) ≤ µiii,

µ
LUiii (u) = µiii(eee∗ ) otherwise

(21)

respectively, as depicted in Fig. 6. Then from Fig. 6 we obtain
the degrees of membership �PSe

(a1) � 0.3 and �NMė
(a2) � 0.65. The fuzzy set CLUi � �U �CLUi(u)/u is called the clipped

controller output. It represents the modified version of the
Rule Firing. For a multi-input/single-output fuzzy control- controller output �U �LUi(u)/u from the ith fuzzy rule given

ler, the ith fuzzy rule of the set of fuzzy rules has the form certain crisp controller input e*1 , . . ., e*n .
In the final stage of rule firing, the clipped controller out-

puts of all fuzzy rules are combined in a global controller out-Riii
C: IF eee = LELELEiii THEN u = LU iii (18)

put via aggregation:
where the fuzzy region LEi from the IF part of the preceding
fuzzy rule is given as LEi � (LEi

1, LEi
2, . . ., LEi

n)T. Also, LEi
k ∀u:µCU (u) = max(µ

CLU111 , . . ., µCLUMMM ) (22)
denotes the fuzzy value of the kth normalized controller in-
put ek that belongs to the term set of ek given as TEk � where CU � �U �CU(u)/u is the fuzzy set defining the fuzzy
�LEk1, LUk2, . . ., LUkn	. Furthermore, LUi denotes an arbi- value of the global controller output. The type of rule firing
trary fuzzy value taken by the normalized controller output described here is called max-min composition. Another type
u, and this fuzzy value belongs to the term set TU of u; that of composition can be found in Ref. 40.
is, TU � �LU1, LU2, . . ., LUn	.

Let the membership functions defining the fuzzy values
Defuzzification. The result of rule firing is a fuzzy set CUfrom LEi and LUi be denoted by �E �LEi

k
(ek)/ek (k � 1, 2, . . .,

with a membership function �U �CU(u)/u, as defined in Eq.n) and �U �i
LUi(u)/u, respectively. The membership function

(22). The purpose of defuzzification is to obtain a scalar value�U �LUi(u)/u is defined on the normalized domain U, and the
u from �CU. The scalar value u is called a defuzzified control-membership functions �E �LEi

k
(ek)/ek are defined on the normal-

ler output. This is done by the center of gravity method asized domain E.
follows.Given a controller input vector e* consisting of the normal-

In the continuous case we haveized crisp values e*1 , . . ., e*n , first the degree of satisfaction

u =

∫
U

µCU (u) · u du∫
U

µCU (u) du
(23)

and for the discrete case

u =

∑
U

µCU (u) · u du

∑
U

µCU (u)
(24)

NB NSNM PMPS PB

e

Z

µ

– a a  a1  a2

0.3
0.65

e⋅

1

Example Consider the normalized domain U � �1, 2, . . .,
Figure 6. Fuzzification of crisp values e* and ė*. Fuzzification of 8	 and let the fuzzy set CU be given as
e* � a1 with respect to a fuzzy set NM is obtained by finding the
crosspoint between a1 and the corresponding membership function
NM. CU = {0.5/3,0.8/4,1/5,0.5/6,0.2/7} (25)
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where

x = input; y = output;
N = negative; P = positive; Z = zero; S = small; B = big

2. Shape and location of the corresponding membership
functions are chosen so that they always overlap at the
degree of membership �X � 0.5 (see Fig. 8).

3. For the specific crisp controller input xin one obtains the
degrees of membership �XNS

(xin) � 0 and �XZ
(xin) � 0,

where the remaining degrees of membership �XNB
(xin),

�XPS
(xin), and �XPB

(xin) are equal to zero. Hence, only rules
R2 and R3 fire. The controller output set is computed

1 3 4
vcog

5 6 7 82

0.5

1

cuµ

u

by cutting the output set �YPS
at the level of �XNS

(xin) and
Figure 7. Defuzzification of a fuzzy controller output. Defuzzification �YZ

at �XZ
(xin). The resulting output membership func-

of a fuzzy set �CU is obtained by computing the u-coordinate of the tion �Y takes every rule into account, performing the
center of gravity of the membership function. union of the resulting output membership function �YRi

of each rule Ri (i � 1, . . ., 5) which means the maxi-
mum operation between them.

Then the defuzzified controller output u is computed as (see 4. The crisp controller output y is obtained by calculating
also Fig. 7) the center of gravity of the output set LY:

u = 0.5 · 3 + 0.8 · 4 + 1 · 5 + 0.5 · 6 + 0.2 · 7
0.5 + 0.8 + 1 + 0.5 + 0.2

= 4.7 (26)

Denormalization. In the denormalization procedure the de-
fuzzified normalized controller output uN is denormalized

y =

∫ +A

−A
µYRi

(y) · y dy

∫ +A

−A
µYRi

(y) dy

(29)

with the help of an off-line predetermined scalar denormaliza-
The cut operation (min operation), the max operationtion factor N�1

u , which is the inverse of the normalization fac-
over all resulting fuzzy subsets LYRi, and the center oftor Nu. Let the normalization of the controller output be per-
gravity are nonlinear operations that cause a nonlinearformed as
operating line between x and y. This seems to make a
systematic design of a desired transfer function withuN = Nu · u (27)
the help of membership functions difficult.

Then the denormalization of uN is However, in the x domain there are operating points
A1, A2, A3, A4, and A5 at which only one of the five

u = N−1
u · uN (28)

The choice of Nu essentially determines, together with the rest
of the scaling factors, the stability of the system to be con-
trolled.

In the case of Takagi Sugeno fuzzy controllers, the preced-
ing computational steps are performed on the actual physical
domains of the controller inputs and outputs. Thus the com-
putational steps of normalization and denormalization are
not involved in the computational structure of a Takagi Su-
geno fuzzy controller, which, in turn, eliminates the need for
input and output scaling factors.

The Transfer Characteristics

The way to obtain a specific input output transfer characteris-
tics shows the following example (SISO):

1. Suppose there is a set of rules like

+A

 A3  A4  +A= A1

0

0

Crisp input

NB

Output
set

Input
set

NS
1 1

1 1

PS PB

x

Z µ

µNB NS PS PBZ

y

Crisp output center
of gravity
(c. o. g.)

1

–A = A1  A2  C2  C10

–A

0
0

aSupport

Figure 8. Membership functions for input x and output y. The output
membership function is obtained by clipping the output membership
functions at the corresponding degrees of membership of the input.

R1 : IF x = NB THEN y = PB

R2 : IF x = NS THEN y = PS

R3 : IF x = Z THEN y = Z

R4 : IF x = PS THEN y = NS

R5 : IF x = PB THEN y = NB
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rules fires. At these operating points the center of grav- Because of fuzzification and defuzzification, a fuzzy con-
troller is in fact a crisp transfer element. This crisp TE hasity can be calculated more easily than for the intermedi-

ate points. The operating points A1, A2, A3, A4, and A5 a nonlinear transfer characteristic because of the nonlinear
character of fuzzification (when performed on nonlinear mem-form points in the x-y domain (see Fig. 9). The values of

the transfer characteristic between the operating points bership functions), rule firing, and defuzzification. The argu-
ment for this is that if one computational step within the com-may show a slight nonlinear behavior, but from a linear

approximation (interpolation) between two operating putational structure of the TE is nonlinear, then the whole
TE is nonlinear as well. Using the additivity and scaling prop-points one obtains the relation between the supports of

the input and output membership functions, on the one erties of a linear system, we will now establish the linearity,
or nonlinearity, of each computational step in the computa-hand, and slopes required of the transfer characteristic,

on the other hand. tional structure of a fuzzy controller with respect to these
two properties.

In what follows, without any loss of generality, we will useThe Nonlinearity of the Fuzzy Controller
a single SISO fuzzy rule such as

In this subsection we will describe the sources of nonlinearity
of the transfer characteristic of a fuzzy controller by relating RC: IF e = LE THEN u = LU (35)
them to particular computational steps.

System theory distinguishes between two basic types of where LE and LU are the fuzzy values taken by the normal-
systems: linear and nonlinear. A system is linear if and only ized, single controller input e and the normalized, single con-
if it has both the additivity property and the scaling property; troller output u, respectively. These two fuzzy values are de-
otherwise it is a nonlinear system. termined by the membership functions �E �LE(e)/e and �UAdditivity Property (Superposition Property). Let it be the �LU(u)/u defined on the normalized domains E and U. Here
case that again we only consider normalized domains, fuzzy and crisp

values, and thus the lower index N will be omitted from they1 = f (x) and y2 = f (z) (30)
notation unless there is a need to distinguish between nor-
malized and actual crisp and fuzzy values used within the

Then for the additivity property to hold, it is required that same expression.
Furthermore, let e*1 and e*2 be two normalized crisp control-y1 + y2 = f (x + z) (31)

ler inputs and u*1 and u*2 be the defuzzified controller outputs
corresponding to these normalized controller inputs.Hence, we obtain

Input Scaling and Output Scaling. Input scaling is linear be-f (x) + f (z) = f (x + z) (32)
cause it simply multiplies each physical controller input e*1
and e*2 with a predetermined scalar Ne (normalization factor)Scaling Property (Homogeneity Property). Let it be the case
to obtain their normalized counterparts e*1N and e*2N. Thus wethat
have

y = f (x) (33)
Ne · e∗

1 + Ne · e∗
2 = Ne · (e∗

1 + e∗
2) (36)

Then for the scaling property to hold, it is required that
Furthermore, for a given scalar 
 we have

α · y = f (α · x) and α · f (x) = f (α · x) (34)
α · Ne · e∗

1 = Ne · (α · e∗
1) (37)

Thus input scaling has the properties of additivity and scaling
and is thus a linear computational step. The same is valid for
output scaling since it uses N�1

e instead of Ne.

Fuzzification. Let the membership function �E �LE(e)/e de-
fining the normalized fuzzy value LE be, in general, a nonlin-
ear function (e.g., a triangular membership function). The
fuzzification of e*1 and e*2 results in finding �LE(e*1 ) and
�LE(e*2 ). Linearity requires

µLE (e∗
1) + µLE(e∗

2) = µLE(e∗
1 + e∗

2) (38)

The preceding equality cannot be fulfilled because the mem-
bership function �E �LE(e)/e is, in general, nonlinear. Thus,
fuzzification in the case of nonlinear membership functions is
a nonlinear computational step.

A1 A2 A3 A4 A5

c1 c2

–5/6a

5/6a

–a

a

x

y

Rule Firing. Let the membership function �U �LU(u)/u de-Figure 9. Transfer characteristic of a fuzzy controller. The transfer
characteristic is a static input/output mapping of a fuzzy controller. fining the normalized fuzzy value LU be, in general, a nonlin-
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ear function. Then the result of rule firing given the normal- However, in the case of a Takagi Sugeno FC-1, each single
fuzzy rule is a linear TE for all controller inputs (state vec-ized crisp controller input e*1 will be
tors) that belong to the center of the fuzzy region specified by
the IF part of this rule. At the same time, for controller inputs∀u:µ′

CLU(u) = min(µLU(e∗
1), µLU (u)) (39)

outside the center of a fuzzy region, this same fuzzy rule is a
Similarly, for the normalized crisp controller input e*2 we ob- nonlinear TE. Because of the latter, the set of all fuzzy rules
tain of a Takagi Sugeno FC-1 defines a nonlinear TE. In the case

of a Takagi Sugeno gain scheduler, we have that each fuzzy∀u:µ′′
CLU (u) = min(µLE(e∗

2)µLU(u)) (40) rule defines a linear TE everywhere in a given fuzzy region.

Linearity requires
HEURISTIC CONTROL AND MODEL-BASED CONTROL

∀u:µ′
CLU (u) + µ′′

CLU(u) = min(µLE(e∗
1 + e∗

2), µLU (u)) (41)
Fuzzy control can be classified into the main directions heu-
ristic fuzzy control and model-based fuzzy control. Heuristicbut the preceding equality does not hold because
control deals with plants that are unsufficiently described
from the mathematical point of view, while model-based fuzzy• �U �LU(u)/u is a nonlinear membership function.
control deals with plants for which a mathematical model is• �U ��CLU(u)/u and �U ��CLU(u)/u are nonlinear membership
available. In this section we will describe the following con-functions (usually defined as only piecewise linear func-
trol strategies:tions).

• the min-operator is nonlinear. Mamdani control (MC)
Sliding mode fuzzy control (SMFC)Thus rule firing is a nonlinear computational step within the
Cell mapping control (CM)computational structure of a fuzzy controller.
Takagi Sugeno control (TS1)

Defuzzification. Let defuzzification be performed with the Takagi Sugeno control (TS2) with Lyapunov linearization
center of gravity method. Furthermore, let u1 and u2 be the
normalized defuzzified controller outputs obtained after de- The Mamdani Controller
fuzzification. That is,

This type of fuzzy controller obtains its control strategy from
expert knowledge. Since a model of the plant is not available,
a simulation of the closed loop cannot be performed. There-
fore, the control design is based on trial-and-error strategies,
which makes the implementation of the fuzzy controller criti-

u1 =

∫
U

µ′
CLU (u) · u du∫

U
µ′

CLU (u)du
, (42)

cal. The crucial point is that the behavior of the plant to be
controlled is only reflected through the operator rules. How-
ever, from the control point of view this is not a satisfactory
situation. Thus, one seeks methods to build qualitative mod-
els in terms of fuzzy rules.

u2 =

∫
U

µ′′
CLU (u) · u du∫

U
µ′′

CLU (u)du
(43)

In the context of heuristic control, the so-called Mamdani
control rules are used where both the antecedent and the con-Linearity requires, however,
sequent include fuzzy values. A typical control rule (operator
rule) is

RCi: IF xxx = LXLXLXiii THEN uuu = LULULUiii (46)u1 + u2 =

∫
U

(µ′
CLU(u) + µ′′

CLU (u)) · u du∫
U

(µ′
CLU (u) + µ′′

CLU (u))du
(44)

For a system with two state variables and one control vari-
able, we have, for example,However, the preceding equality cannot be fulfilled since in-

stead of it we have
RCi: IF x = PS AND ẋ = NB THEN u = PM (47)

which can be rewritten into

RCi: IF (x, ẋ)T = (PS,NB)T THEN u = PM (48)

u1 + u2 =

∫
U

µ′
CLU (u) · u du∫

U
µ′

CLU (u)du
+

∫
U

(µ′′
CLU(u) · u du∫

U
µ′′

CLU (u)du
(45)

withThis shows that the nonlinearity of the computational step of
defuzzification comes from the normalization of the products
�U ��CLU(u) � udu and �U ��CLU(u) � udu.

From all of the foregoing it is readily seen that a fuzzy
controller is a nonlinear TE, its sources of nonlinearity being
the nonlinearity of membership functions, rule firing, and de-
fuzzification.

xxx = (x, ẋ)T

LX iLX iLX i = (PS, NB)T

uuu = u

LUiLUiLUi = PM



102 FUZZY CONTROL

Even if there is only a little knowledge about the system
to be controlled, one has to have some ideas about the behav-
ior of the system state vector x, its change with time ẋ, and
the control variable u. This kind of knowledge is structural
and can be formulated in terms of fuzzy rules. A typical fuzzy
rule for a system is

RSi: IF xxx = LXLXLXiii AND uuu = LULULUiii THEN ẋxx = LẊLẊLẊiii (49)

For the preceding system with two states and one control
variable we have, for example,

e
e

P — postitve

N — negative

S — small

Z — zero

M — medium

B — big

NS NS NM NM NB NBZPB

Z NS NS NM NM NBPSPM

PS Z NS NS NM NMPSPS

PS PS Z NS NS NMPMZ

PM PS PS Z NS NSPMNS

PM PM PS PS Z NSPBNM

PB PM PM PS PS ZPBNB

NM NS Z PS PM PBNB

Figure 10. A fuzzy controller in a diagonal form. Diagonal form

RSi: IF (x, ẋ)T = (PS,NB)T AND u = PM

THEN (ẋ, ẍ)T = (NM,PM)T
(50)

means that the same fuzzy attributes appear along a diagonal.

with

positive/negative fuzzy value of u is determined on the basis
of the distance �s� between its corresponding state vector e and
the sliding line s � � � e � ė � 0. This is normally done in
such a way that the absolute value of the required input u
increases/decreases with the increasing/decreasing distance
between the state vector e and the sliding line s � 0.

It is easily observed that this design method is very similar
to sliding mode control (SMC) with a boundary layer (BL),

xxx = (x, ẋ)T

LX iLX iLX i = (PS, NB)T

ẋ̇ẋx = (ẋ, ẍ)T

LLLẊ̇ẊXiii = (NM, PM)T

uuu = u

LU iLU iLU i = PM which is a robust control method (12,27). Sliding mode control
is applied especially to control of nonlinear systems in theOnce the qualitative system structure is known, one has to
presence of model uncertainties, parameter fluctuations, andfind the corresponding quantitative knowledge. Quantitative
disturbances. The similarity between the diagonal form fuzzyknowledge means the following: In general, both control rules
controller and SMC enables us to redefine a diagonal formand system rules work with normalized domains. The task is
fuzzy controller in terms of an SMC with BL and then to ver-to map inputs and outputs of both the controller and the sys-
ify its stability, robustness, and performance properties in atem to normalized domains. For the system, this task is iden-
manner corresponding to the analysis of an SMC with BL. Intical with the identification of the system parameters. For the
the following, the diagonal fuzzy controller is therefore calledcontroller, this task is identical with the controller design
sliding mode fuzzy control (SMFC).(namely, to find the proper control gains).

However, one is tempted to ask here, What does one gain
by introducing the SMFC type of controller? The answer is

Sliding Mode Fuzzy Controller that SMC with BL is a special case of SMFC. SMC with BL
provides a linear transfer characteristic with lower and upperA typical Mamdani controller is the sliding mode fuzzy con-
bounds, while the transfer characteristic of an SMFC is nottroller (SMFC) (19–21). Fuzzy controllers for a large class of
necessarily a straight line between these bounds, but a curvesecond-order nonlinear systems are designed by using the
that can be adjusted to reflect given performance require-phase plane determined by error e and change of error ė (22–
ments. For example, normally a fast rise time and as little25). The fuzzy rules of these fuzzy controllers determine a
overshoot as possible are the required performance character-fuzzy value for the input u for each pair of fuzzy values of
istics for the closed-loop system. These can be achieved byerror and change of error (that is, for each fuzzy state vector).
making the controller gains much larger for state space re-The usual heuristic approach to the design of these fuzzy
gions far from the sliding line than its gains in state spacerules is the partitioning of the phase plane into two semi-
regions close to the sliding line (see Fig. 11).planes by means of a sliding (switching) line. This means that

In this connection it has to be emphasized that an SMFCthe fuzzy controller has a so-called diagonal form (see Fig.
is a state-dependent filter. The slope of its transfer character-10). Another possibility is, instead of using a sliding line, to
istic decides the convergence rate to the sliding line and, atuse a sliding curve like a time optimal trajectory (26).
the same time, the bandwidth of the unmodeled disturbancesA typical fuzzy rule for the fuzzy controller in a diagonal
that can be coped with. This means that far from the slidingform is
line higher frequencies are allowed to pass through than in
the neighborhood of it. The other function of this state-depen-IF e = PS AND ė = NB THEN u = PS (51)
dent filter is given by the sliding line itself. That is, the veloc-
ity with which the origin is approached is determined by thewhere PS stands for the fuzzy value of error POSITIVE

SMALL, NB stands for the fuzzy value change of error NEG- slope � of the sliding line s � 0.
Because of the special form of the rule base of a diagonalATIVE BIG, and PS stands for the fuzzy value POSITIVE

SMALL of the input. form fuzzy controller, each fuzzy rule can be redefined in
terms of the fuzzy value of the distance �s� between the stateEach semiplane is used to define only negative or positive

fuzzy values of the input u. The magnitude of a specific vector e and the sliding line and the fuzzy value of the input
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the rate with which the origin is approached. A fuzzy rule
including this distance is of the form

IF s = PS AND d = S THEN u = NS (52)

Despite of the advantages of an SMFC, it poses a number
of problems the solutions of which can improve its perfor-
mance and robustness. One such problem is the addition of
an integrator to an SMFC in order to eliminate remaining
errors in the presence of disturbances and model uncertain-
ties. There are several ways to accomplish this. One option,
for example, is to treat the integration term in the same man-
ner as the other parameters of the IF part of the SMFC’s
fuzzy rules. This and other available options will be described
later in this article.

Another problem is the so-called scaling of the SMFC pa-
rameters so that the domains on which their fuzzy values are
defined are properly determined and optimized with respect
to performance. This problem arises in the context of SMFC
since the real physical domains of the SMFC parameters are
normalized (i.e., their measured values are mapped on their

µ

–du/ds

–du/ds1

–du/ds2

0

0

s1

u1

u2

s2

s1 s2

s

s

Gain

respective normalized domains by the use of normalization
Figure 11. The adjustable transfer characteristic of an SMFC. The

factors). Thus a normalized input u is the result of the compu-nonlinear input/output mapping of the SMFC provides a nonlinear
tation with SMFC. The normalized u is then consequently de-gain for different input/output pairs.
normalized (i.e., mapped back on its physical domain) by the
use of a denormalization factor.u corresponding to this distance. This helps to reduce the

The determination of the proper scaling factors, via whichnumber of fuzzy rules, especially in the case of higher-order
the normalization and denormalization of the SMFC parame-systems. Namely, if the number of state variables is 2 and
ters is performed, is not only part of the design, but is alsoeach state variable has m fuzzy values, the number of fuzzy
important in the context of adaptation and on-line tuning ofrules of the diagonal form fuzzy controller is M � m2. For the
the SMFC. The behavior of the closed-loop system ultimatelysame case, the number of fuzzy rules of an SMFC is only m.
depends on the normalized transfer characteristic (controlThis is so because the fuzzy rules of the SMFC only describe
surface) of the SMFC. This control surface is mainly deter-the relationship between the distance to the sliding line and
mined by the shape and location of the membership functionsthe input u corresponding to this distance, rather than the
defining the fuzzy values of the SMFC’s parameters. In thisrelationship between all possible fuzzy state vectors and the
context one need pay attention to the following:input u corresponding to each fuzzy state vector.

Moreover, the fuzzy rules of an SMFC can be reformulated
1. The denormalization factor for u influences most stabil-to include the distance d between the state vector e and the

ity and oscillations. Because of its impact on stability,vector normal to the sliding line and passing through the ori-
the determination of this factor has the highest prioritygin (see Fig. 12). This gives an additional opportunity to affect
in the design.

2. Normalization factors influence most of the SMFC sen-
sitivity with respect to the proper choice of the op-
erating regions for s and d. Therefore, normalization
factors are second in priority in the design.

3. The proper shape and location of the membership func-
tions and, with this, the transfer characteristics of the
SMFC can influence positively the behavior of the
closed-loop system in different fuzzy regions of the fuzzy
state space provided that the operating regions of s and
u are properly chosen through well-adjusted normaliza-
tion factors. Therefore, this aspect is third in priority.

A third problem is the design of SMFC for MIMO systems.
The design for SISO systems can still be utilized, though
some new aspects and restrictions come into play when this
design is extended to the case of MIMO systems. First, we
assume that the MIMO system has as many input variables

sd 

d

s 
=

1 + λ2

e

s = = 0λ e +

e*

π
2

s 

e⋅*

e⋅

e⋅

ui as it has output variables yi. Second, we assume that the
so-called matching condition holds (12). This condition con-Figure 12. The s and d parameters of an SMFC. s is the distance
strains the so-called parametric uncertainties. These are, forbetween the state and the line s � 0. d is the distance between the

state and the line perpendicular to s � 0. example, imprecision on the mass or inertia of a mechanical
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outside the finite state space of interest is lumped together
into one so-called sink cell. The state of the system of Eq. (53)
while in the cell z is represented by the center point xc. Now
a cell mapping C is defined by

zzz(tk+1) = CCC(zzz(tk)) (54)

which is derived from the point mapping of Eq. (53) by com-
puting the image of a point x(tk) and then determining the
cell in which the image point is located. It is clear that not all
points x(tk) in cell z(tk) have the same image cell z(tk�1). There-
fore, only the image cell of the center x c(tk) is considered. A
cell that maps to itself is called an equilibrium cell. All cells

z (tk) = z (tk + 1)

 z (tk + 1)

 z (tk)
 xc(tk)

x1

x2

Equilbrium cell

Image cell

Regular cell

Sink cell

in the finite state space are called regular cells.
Figure 13. Cell mapping principle. The state space is partitioned The motivation for cell mapping is to obtain an appropriate
into a finite set of cells. Cell mapping deals with the transition behav-

sequence of control actions u(tk) that drive the system of Eq.ior between cells.
(53) to an equilibrium while minimizing a predefined cost
function. Therefore, every cell is characterized by the fol-
lowing:

system and inaccuracies on friction functions. Nonparametric
uncertainties include unmodeled dynamics and neglected • The group number G(z) that denotes cells z belonging to
time delays. the same periodic domain or domain of attraction

Let ẋ � f (x) � B � u, y � C � x be the nonlinear open-loop
• The step number S(z) that indicates the number of tran-system to be controlled, where f is a nonlinear vector function

sitions needed to transmit from cell z to a periodic cellof the state vector x, u is the input vector, B is the input
• The periodicity number P(z) that indicates the numbermatrix, y is the output vector, and C is the output matrix.

of cells contributing to the periodic motionThen the matching condition requires that the parametric
uncertainties have to be within the range of the input ma-

This characterization is introduced in order to find periodictrix B.
motions and domains of attractions by a grouping algorithm.

Applied to fuzzy control, it is evident that each cell describ-
CELL MAPPING ing the system’s behavior belongs to a corresponding fuzzy

system rule. Furthermore, each cell describing a particular
Cell mapping originates from a computational technique in- control action belongs to a corresponding fuzzy control rule.
troduced by C. S. Hsu (28) that evaluates the global behavior Smith and Comer developed a fuzzy cell mapping algo-
and the stability of nonlinear systems. It is assumed that the rithm the aim of which is to calibrate (tune) a fuzzy controller
computational (analytical) model of the system is available. on the basis of the cell state space concept (30). Each cell is
Cell mapping was first applied to fuzzy systems by Chen and associated with a control action and a duration, which map
Tsao (29). the cell to a minimum cost trajectory (e.g., minimum time).

The benefits of using cell mapping for fuzzy controlled sys- With a given cost function and a plant simulation model, the
tems are as follows: cell state space algorithm generates a table of desired control

actions. The mapping from cell to cell is carried out by a fuzzy
• Supporting of self-learning FC strategies controller, which smoothes out the control actions while the

transitions between the cells. The cell-to-cell mapping tech-• Creating of methodologies for the design of time optimal
nique has been used to fine-tune a Takagi Sugeno controllerfuzzy controllers
(see Fig. 14) (31).

Kang and Vachtsevanos developed a phase portrait assign-The basic idea of Hsu is as follows: Let a nonlinear system
ment algorithm that is related to cell-to-cell mapping (32). Inbe described by the point mapping

xxx(tk+1) = fff (xxx(tk),uuu(tk)) (53)

where tk represent the discrete timesteps over which the point
mapping occurs. It has to be emphasized that these timesteps
need not to be uniform in duration. If one wants to create a
map of the state space taking into account all possible states
x and control vectors u, one obtains an infinite number of
mappings even for finite domains for x and u, respectively.
To simplify this mapping, the (finite) state space is divided
into a finite number of cells (see Fig. 13). Cells are formed by
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–

Input Output

Optimal
control table

LMS
algorithm

Plant
Fuzzy

controller

+

–

partitioning the domain of interest of each axis xi of the state
space into intervals of size si that are denoted by an integer Figure 14. Cell mapping by Smith and Comer [Redrawn from Papa
valued index zi. Then a cell is an n-tuple (a vector) of inter- et al. 1995 (31)]. Cell mapping is used to fine-tune a Takagi Sugeno

controller.vals z � (z1, z2, . . ., zn)T. The remainder of the state space
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Let the inputs measured be x*1 � 4 and x*2 � 60. From Fig. 16
we then obtain

µXBIG
(x∗

1) = 0.3 µXBIG
(x∗

2) = 0.35

and

µXSMALL
(x∗

1) = 0.7 µXMED
(x∗

2) = 0.75

+

–

Input Output

Search
algorithm

Optimal
criteria

Cell space

Plant

Cell space

Fuzzy
controller

Figure 15. Cell mapping by Kang and Vachtsevanos [Redrawn from For the degree of satisfaction of R1 and R2, respectively, we
Papa et al. 1995 (31)]. Cell mapping is used for construction of an obtain
optimal rule base from data.

min(0.3,0.75) = 0.3 min(0.7,0.35) = 0.35

this approach states and control variables are partitioned into Furthermore, for the consequents of rules R1 and R2 we have
different cell spaces. The x-cell space is recorded by applying
a constant input to the system being simulated. Then, by y1 = 4 − 3 · 60 = −176 y2 = 4 + 2 · 4 = 12
means of a searching algorithm, the rule base of the funny
controller is constructed such that asymptotic stability is So the two pairs corresponding to each rule are (0.3, �176)
guaranteed. This is performed by determining the optimal and (0.35, 12). Thus, by taking the weighted normalized sum
control actions regardless of from which cell the algorithm we get
starts its search (see Fig. 15) (31).

Hu, Tai, and Shenoi apply genetic algorithms to improve
the searching algorithm using cell maps (33). The aim of this y = 0.3 · (−176) + 0.35 · 12

0.3 + 0.35
= −74.77

method is to tune a Takagi Sugeno controller.

This can be extended to differential equations in the fol-
TS Model-Based Control lowing way: Let a fuzzy region LXi be described by the rule
Model-based fuzzy controller design starts from the mathe-
matical knowledge of the system to be controlled (8,34). In RSi: IF xxx = LXLXLXiii THEN ẋxx = A(x ix ix i) · xxx + B(x ix ix i) · uuu (55)
this connection one is tempted to ask why one should use FC
in this particular case while conventional control techniques
work well. The reasons that apply FC in analytical known This rule means that IF state vector x is in fuzzy region
systems are as follows: LXi THEN the system obeys the local differential equation

ẋ � A(xi) � x � B(xi) � u. A summation of all contributing sys-
1. FC is a user-friendly and transparent control method tem rules provides the global behavior of the system. In Eq.

because of its rule-based structure. (55) A(xi) and B(xi) are constant system matrices in the cen-
2. FC provides a nonlinear control strategy that is related ter of fuzzy region LXi that can be identified by classical iden-

to traditional nonlinear control techniques. tification procedures.
3. The nonlinear transfer characteristics of a fuzzy con- The resulting system equation is

troller can be tuned by changing the shape and location
of the membership functions so that adaptation proce-
dures can be applied. ẋxx =

n∑
i=1

wi(xxx) · (A(x ix ix i) · xxx + B(x ix ix i) · uuu) (56)

4. The approximation property of FC allows the design of
a complicated control law with the help of only few where wi(x) � [0, 1] are the normalized degrees of satisfaction
rules. of a fuzzy region LXi.

5. Gain scheduling techniques can be transfered to FC. In The corresponding control rule (Takagi Sugeno FC1) is
this connection FC is used as an approximator between
linear control laws. RCi: IF xxx = LXLXLXiii THEN uuu = K(x ix ix i ) · xxx (57)

The description of the system starts from a fuzzy model of
the system that uses both the fuzzy state space and a crisp
description of the system.

Let the principle of a Takagi Sugeno system be explained
by the following example.

Example Consider a TS system consisting of two rules
with x1 and x2 as system inputs and y as the system output.

11

Small Big Medium Big

0.350.3
0.750.7

00 10010 x2 = 60x1 = 4

Figure 16. Fuzzification procedure for a TS controller. The fuzzifica-
tion procedure is the same as that for a Mamdani controller.

R1 : if x1 is BIG and x2 is MEDIUM then y1 = x1 − 3 · x2.

R2 : if x1 is SMALL and x2 is BIG then y2 = 4 + 2 · x1.
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and the control law for the whole state space is The control surface provides information about local and
global properties of the controller. For example, the local gain
for a specific state vector can be obtained by means of the
tangential plane being attached to the corresponding point in

uuu =
n∑

i=1

wi(xxx) · K(x ix ix i ) · xxx (58)

state space. From this information one can conclude whether
Together with Eq. (56) one obtains the closed-loop system the controlled system is locally stable. Furthermore, one ob-

tains a geometrical insight into how the control gain changes
as the state trajectory moves in the state space.

Another aspect is the following. To study the local behavior
ẋ̇ẋx =

n∑
i, j=1

wi(xxx) · wj (xxx) · (A(x ix ix i) + B(x ix ix i ) · K(x jx jx j )) · xxx (59)

of the system around specific points in state space, we linear-
It has to be emphasized that a system described by a set ize the system around them and study the closed-loop behav-

of rules like Eq. (55) is nonlinear even in the vicinity of the ior in the linearized region. Let, for example, the system of
center of the region. This is due to the fact that wi(x) depends Eq. (60) be linearized around a desired state xd and a corre-on the state vector x. Even if wi(x) is a piecewise linear func-

sponding state vector ud:tion of x, the product wi(x) � wj(x) � (A(xi) � B(xi) � K(xj)) � x in
Eq. (58) will always be a nonlinear function.

ẋ̇ẋx = fff (xdxdxd,u du du d ) + A(xdxdxd,ududud ) · (xxx − xdxdxd ) + B(xdxdxd,ududud) · (uuu − ududud)

(63)Model-Based Control with Lyapunov Linearization

In the following we discuss the case when a mathematical where
model of the system to be controlled is available and the fuzzy
controller is formulated in terms of fuzzy rules (8,21,34,35).
In this case system and controller are formulated on different
semantic levels. Let the system analysis starts from the

A(xdxdxd,ududud ) = ∂ fff (xxx,uuu)

∂xxx

∣∣∣∣
x d ,udx d ,udx d ,ud

and B(xdxdxd,ududud) = ∂ fff (xxx,uuu)

∂uuu

∣∣∣∣
x dx dx d ,ududud

mathematical model of the system
are Jacobians.ẋ̇ẋx = fff (xxx,uuu) (60)

An appropriate control law is
and let the fuzzy controller be formulated in terms of fuzzy
rules (Takagi Sugeno FC1) uuu = ududud + K(xd ) · (xxx − xdxdxd ) (64)

RCi: IF xxx = LX iLX iLX i THEN uuu = LU iLU iLU i (61) where K(xd) is the gain matrix. Since the system of Eq. (60)
changes its behavior with the setpoint xd, the control law of

To study stability, robustness, and performance of the closed- Eq. (64) changes with the setpoint xd as well. To design theloop system one has to bring system and controller onto the
controller for the closed-loop system at any arbitrary pointsame semantic level. Thus, formally we translate the set of
xd in advance, we approximate Eq. (63) by a set of TS fuzzycontrol rules into an analytical structure
rules

uuu = ggg(xxx) (62)

where, in general, the function g(x) is a nonlinear control sur-
face being a static mapping of the state vector x to the control
vector u (see Fig. 17).

RSi: IF xdxdxd = LX iLX iLX i

THEN ẋ̇ẋx = fff (xdxdxd,ududud ) + A(x ix ix i,uiuiui) · (xxx −xdxdxd ) + B(x ix ix i,uiuiui) · (uuu −ududud )

(65)

The resulting system equation is (Takagi Sugeno FC2)

ẋ̇ẋx = fff (xdxdxd,uuuddd ) +
n∑

i=1

wi(xdxdxd ) · (AAA(x ix ix i,uiuiui) · (xxx − xdxdxd )

+ BBB(x ix ix i,uiuiui) · (uuu − ududud ))

(66)

This is a linear differential equation because the weights wi

depend on the desired state vector xd instead of on x.
The corresponding set of control rules is

RCi: IF xdxdxd = LX iLX iLX i THEN uuu = ududud + K(x ix ix i ) · (xxx − xdxdxd ) (67)

with the resulting control law

x1

x2

µ

uuu =
n∑

i=1

wi(xdxdxd ) · (ududud + K(x ix ix i ) · (xxx − xdxdxd ) (68)

Figure 17. Nonlinear control surface u � g(x1, x2). Nonlinear map-
Substituting Eq. (68) into Eq. (66), we obtain the equation forping is a translation of fuzzy rules into a numerical input/output re-

lation. the closed-loop system
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be the model of the system and

uuu = gpgpgp(xxx, ppp) (72)

be the control law, where p is a parameter vector that has to
be determined by the supervisor. The subscript p means that
with the change of p the structure of the control law may also
change. Then the supervisory law can be written as

System
f

+

–
Controller

g(x, p)x x
u

pe

xd

FC

ppp = hhh(xxx,ccc) (73)
Figure 18. Supervisory control. The supervisor changes controller
parameters by means of input/output data u and x and desired val- where c is the vector of conditions. For example,
ues xd.

ccc = (|xxx − xxxddd| > K1; |ẋ̇ẋxddd| < K2)T

where K1 and K2 are constant bounds. The corresponding su-
pervisory fuzzy rule isẋ̇ẋx = fff (xdxdxd,ududud ) +

n∑
i, j=1

wi(xdxdxd ) · wj (xdxdxd ) · (A(x ix ix i,uiuiui)

+ B(x ix ix i,uiuiui) · K(x jx jx j )) · (xxx − xdxdxd )

(69)

IF xxx = LX iLX iLX i AND ccc = LC iLC iLC i THEN ppp = pipipi

Denoting A(x i, ui) � B(x i, ui) � K(x j) by Aij, asymptotic stabil- with LCi � (�x � xd� � K1i; �ẋd� 	 K2i)T.
ity of x � xd is guaranteed if there exists a common positive Supervision is related to gain scheduling. The distinction
definite matrix P such that the Lyapunov inequalities between the two is that gain scheduling changes the control-

ler gains with respect to a slowly time varying scheduling
variable while the control structure is preserved (38–40). OnAT

i jP + PAi j < 0 (70)
the other hand, supervision can both change the control gains
and the control structure and can deal with fast-changing sys-hold, where Aij are Hurwitz matrices (34). With this result
tem parameters as well (41).one is able to study the stability, robustness, and performance

of the closed-loop system around an arbitrary setpoint xd just
by considering the system at predefined operating points xi.

ADAPTIVE CONTROL

Many dynamic systems have a known structure but uncertainSUPERVISORY CONTROL
or slowly varying parameters. Adaptive control is an ap-
proach to the control of such systems. Adaptive controllers,A commonly used control technique is supervisory control,
whether designed for linear or nonlinear systems, are inher-which is a method to connect conventional control methods
ently nonlinear. We distinguish between direct and indirectand so-called intelligent control methods (see Fig. 18). This
adaptive control methods. Direct adaptive methods start withcontrol technique works in such a way that one or more con-
sufficient knowledge about the system structure and its pa-trollers are supervised by a control law on a higher level. Ap-
rameters. Direct change of controller parameters optimizesplications to supervisory control for a milling machine and a
the system’s behavior with respect to a given criterion.steam turbine are reported in Refs. 36 and 37. Normally, the

In contrast, the basic idea of indirect adaptive controllow-level controllers perform a specific task under certain con-
methods is to estimate the uncertain parameters of the sys-ditions. These conditions can be
tem under control (or, equivalently, the controller parame-
ters) on-line, and use the estimated parameters in the compu-• Keeping a predefined error between desired state and
tation of the control law. Thus an indirect adaptive controllercurrent state
can be regarded as a controller with on-line parameter esti-

• Performing a specific control task (e.g., approaching a
mation. There do exist systematic methods for the design ofsolid surface by a robot arm)
adaptive controllers for the control of linear systems. There

• Being at a specific location of the state space also exist adaptive control methods that can be applied to the
control of nonlinear systems. However, the latter methods re-

Usually, supervisors intervene only if some of the predefined quire measurable states and a linear parametrization of the
conditions fail. If so, the supervisor changes the set of control dynamics of the system under control (i.e., that parametric
parameters or switches from one control strategy to another. uncertainty be expressed linearly in terms of a number of ad-

Often, supervisory algorithms are formulated in terms of justable parameters). This is required in order to guarantee
IF-THEN rules. Fuzzy IF-THEN rules avoid hard switching stability and tracking convergence. However, when adaptive
between set of parameters or between control structures. It is control of nonlinear systems is concerned, most of the adap-
therefore useful to build fuzzy supervisors in the cases when tive control methods can only be applied to SISO nonlinear
‘‘soft supervision’’ is required. systems. Since robust control methods are also used to deal

A formal approach may be the following. Let with parameter uncertainty, adaptive control methods can be
considered as an alternative and complimentary to robust

ẋ̇ẋx = fff (xxx,uuu) (71) control methods. In principle, adaptive control is superior to



108 FUZZY CONTROL

robust control in dealing with uncertainties in uncertain or under control. One criterion mostly used is the integral
criterionslowly varying parameters.

The reason for this is the learning behavior of the adaptive
controller: Such a controller improves its performance in the
process of adaptation. On the other hand, a robust controller J =

∫ T

0
(eTeTeTQeee + uTuTuT Ruuu) dt (74)

simply attempts to keep a consistent performance. Further-
more, an indirect adaptive controller requires little a priori where e � x � xd is the error, and Q, R are weighting
information about the unknown parameters. A robust control- matrices. Another performance criterion can be formu-
ler usually requires reasonable a priori estimates of the pa- lated by fuzzy rules; for example,
rameter bounds.

Conversely, a robust controller has features that an adap-
tive controller does not possess, such as the ability to deal
with disturbances, quickly varying parameters, and unmod-

IF rise time = SMALL

AND settling time = MEDIUM

THEN performance = HIGHeled dynamics.
In control with a fuzzy controller, there exist a number of

2. The next point is to choose an appropriate optimizationdirect adaptive control methods aimed at improving the fuzzy
technique (e.g., gradient decent with constant searchingcontroller’s performance on-line. The FC’s parameters that
step width, or Rosenbrock’s method with variablecan be altered on-line are the scaling factors for the input and
searching step widths).output signals, the input and output membership functions,

3. A crucial point is to choose a tuning hierarchy (43) thatand the fuzzy IF-THEN rules. An adaptive fuzzy controller,
considers the different impacts of the control parame-its adjustable parameters being the fuzzy values and their
ters on stability, performance, and robustness of themembership functions, is called a self-tuning fuzzy controller.
closed-loop system:An adaptive fuzzy controller that can modify its fuzzy IF-

Tune the output scaling factors.THEN rules is called a self-organizing fuzzy controller. De-
tailed description of the design methods for these two types Tune the input scaling factors.
of direct adaptive fuzzy controllers can be found in Ref. 42. Tune the membership functions.
Descriptions of indirect adaptive fuzzy controllers can be
found in Ref. 8.
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