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d–q–0 REPRESENTATION OF THREE-PHASE QUANTITIES

The highly coupled nature of induction and synchronous ma-
chines had led to the use of artificial variables rather than
actual (phase) variables for the purpose of simulation as well
as for visualization. The essence of the nature of the transfor-
mation of variables that is utilized can be understood by ref-
erence to Fig. 1 which shows three-dimensional orthogonal
axes labeled a, b, and c. Consider, for instance, the stator cur-
rents of a three-phase induction machine which is, in general,
made up of three independent variables. These currents
(phase variables) can be visualized as being a single three-
dimensional vector (space vector) existing in a three-dimen-
sional orthogonal space, that is, the space defined by Fig. 1.
The projection of this vector on the three axes of Fig. 1 pro-
duce the instantaneous values of the three stator currents.
However, in most cases, the sum of these three currents adds
up to zero since most three-phase loads do not have a neutral
return path. In this case, the stator current vector is con-
strained to a plane defined by

ia + ib + ic = 0 (1)

This plane, the so-called d–q plane, is also illustrated in Fig.
1. Components of the current vector in the plane are called
the d–q components, while the component in the axis normal
to the plane (in the event that the currents do not sum to
zero) is called the zero component. When the phase voltages
and phase flux linkages also sum to zero, as is the case with
most balanced three-phase loads (including even a salient
pole synchronous machine), this same perspective can be ap-
plied to these variables as well. The components of the phase
current, phase voltage, or phase flux linkage vectors in the
d–q–0 coordinate system in terms of the corresponding physi-
cal variables are
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While an electrical machine exists for the bulk of its time in
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the steady state, it is during the brief period of transient, non-
where f denotes the current variable i, voltage v, or flux link-stationary, behavior that most of the stresses occur which
age 
.limit the life of the machine. Because the differential equa-

In the dominant case where the three-phase variables sumtions of an electrical machine are nonlinear, a closed form
to zero (i.e., the corresponding vector is located on the d–qsolution for many of these transient conditions is impossible,

and it is necessary to resort to time domain simulation of the
relevant differential equations. The modern era of electrical
machine simulation had its beginnings largely through the
efforts of Dr. Vannevar Bush of M.I.T. Over 70 years ago,
Bush described a device called the integraph which realized
continuous integration by a principle related to that of the
watt-meter (1). Within a year, Bush’s integraph was used in
the analysis of the pulsating torques of a synchronous motor–
compressor set (2). Hence, simulation techniques for modeling
transient behavior of ac machines was under development
even before the classic papers of Park (3) and Stanley (4)
which developed the basic d–q model of the synchronous and

d-q plane

c-axis

b-axis

a-axis

induction machine, respectively. Development of simulation
techniques has been ongoing since that time with almost 200 Figure 1. Cartesian coordinate system for phase variables showing

location of the d–q plane.papers identified in a 1974 publication (5).
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plane), this transformation reduces to vectors. For example, if axes are defined which rotate with
the stator voltage vector, one realizes the synchronous voltage
reference frame. In general, it is not necessary to define rotat-
ing axes to rotate synchronously with one of the vectors but
simply to define a general rotating transformation which
transforms the phase variables rotating axes on the d–q
plane,
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where the last row is now clearly not necessary. Figure 2
shows the location of the various axes when viewed from the
d–q plane. Note that the projection of the a-phase axis on the
d–q plane is considered to be lined up with the q-axis (the a-
phase axis corresponds to the magnetic axis of phase a in the
case of an electrical machine). The other axis on the plane is,
by convention, located 90� clockwise with respect to the q-
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(5)
axis. The third axis (necessarily normal to the d–q plane) is
chosen such that the sequence d, q, 0 forms a right hand set.

For completeness, the zero component is also given. TheOther notation, using symbols �, � (Clarke’s components), is
scale change of �2/3 has also been included. The angle � issometimes used to denote these same variables. Also, with
the angular displacement of the vector on the d–q plane mea-the transformation shown, the d-axis is located 90� counter-
sured with respect to the projection of the a-axis on thisclockwise with respect to the q-axis. These two axes are some-
plane. Since the same scale change has been made for alltimes interchanged so that the reader should exercise caution
three components, the zero component uses somewhat uncon-when referring to the literature.
ventional scaling. Specifically, Fortesque’s scaling for thisWhen balanced sinusoidal three-phase ac voltages are ap-
component was selected asplied to such a load, it can be shown that the phase voltage

vector traces out a circle on this d–q plane with radius �3/2
Vpk where Vpk is the amplitude of the phase voltage. The vector
rotates with an angular velocity equal to the angular fre-

f0 = 1
3

( fa + fb + fc) (6)

quency of the source voltage (377 rad/s in the case of 60 Hz).
The current and flux linkage vectors, being a consequence of and is also widely used.
applying the voltage to a balanced load, also trace out circles Note that the zero axis does not enter into the rotational
on the d–q plane in the steady state. The fact that the length transformation. Hence, the zero axis can be considered as the
of the vector differs from the amplitude of the sinusoidal vari- axis about which the rotation takes place, that is, the axis of
able has prompted methods to correct this supposed defi- rotation. Because of the scaling, the power (and subsequently,
ciency. Specifically, if the transformation of Eq. (3) is the torque) is different in d–q–0 components than a–b–c vari-
multiplied by �2/3, a scale change is made in moving from ables, and a 3/2 multiplier must be added to the power in
a–b–c to d–q–0 variables. The transformation becomes the transformed system of equations since both current and

voltage variables have been scaled by �2/3.
In vector notation, Eq. (5) can be written as

fff qd0 = TTTqd0(θ ) fff abc (7)
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whereThe visualization of vector rotation on the d–q plane has
also led to transformations which serve to rotate with these
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The transformation Tqd0(�) can, for convenience and for com-
putational advantage, be broken into two portions, one of
which takes variables from physical phase quantities to non-
rotating d–q–0 variables (stationary reference frame) and
then from nonrotating to rotating d–q–0 variables (rotating
reference frame). In this case, one can write

q-axis

d-axis

0-axis
(Normal to

paper)

c-axis

b-axis

a-axis

fff qd0 = TTTqd0(θ ) fff abc = RRR(θ )TTTqd0(0) fff abc (9)
Figure 2. Physical and d–q–0 axes when viewed on the d–q plane.
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and

RRR(θ ) =

�
�

cos θ − sin θ 0
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Note that Tqd0(0) is obtained by simply setting � � 0 in Eq.
(8). The inverse transformation is

fff abc = TTTqd0(θ )−1 fff qd0 = TTTqd0(0)−1RRR(θ )−1 fff qd0 (12)

where
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Figure 3. d–q–0 equivalent circuit of an induction machine repre-
sented in a rotating reference frame.

Except for notational differences, the parameters in this
circuit are essentially the same as the conventional per phase
equivalent circuit. That is, rs, Lls, r�r , L�lr, and Lm correspond to
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the per phase stator resistance, stator leakage inductance, ro-
tor resistance, rotor leakage inductance, and magnetizing in-
ductance, respectively [typically labeled as R1, L1, R2, L2, and
L� (or Lm) respectively]. In most cases, the impressed rotor
voltages are identically zero (squirrel cage machine) and will
be assumed henceforth herein as zero. The zero sequence cir-
cuits are included for completeness but are seldom necessary
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and will now also be omitted from further consideration. The
primes used for the rotor variables are included as a reminder
that the physical variable has been referred to the stator by
the stator/rotor turns ratio in much the same manner as for

RRR(θ )−1 = RRR(θ )T =
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a transformer. The use of these primes is often dropped for
convenience.

The voltage generators in the circuit represent speed volt-d–q–0 REPRESENTATION OF THREE-
ages which appear due to the fact that the circuit is beingPHASE INDUCTION MACHINES
solved in a rotating reference frame. This term is to be ex-
pected of any physical system represented in a rotatingThe benefits of visualizing three-phase variables as a vector
frame. (Recall from mechanics the � � r term representingrepresented in a nonphysical coordinate system become ap-
the relative velocity of a stationary point in rotating system.)parent only when the system equations of a coupled three-
The speed voltages in the stator portion of the circuit are pro-phase magnetic component such as a reactor, transformer, or
portional to the reference frame angular velocity �(� �motor are represented in terms of these newly defined vari-
d�/dt) since the circuits, themselves, are stationary. Theables. The equivalent circuit of an induction motor repre-
speed voltages in the rotor portion are proportional to � � �rsented in a rotating reference frame is shown in Fig. 3. Here,
since the rotor circuits, themselves, are rotating at an electri-the second subscripts ‘‘s’’ and ‘‘r’’ are used to denote ‘‘stator’’
cal angular velocity of �r(�r � d�r/dt, where �r is the angularand ‘‘rotor’’ quantities, respectively. The enormous simplicity
rotation of the rotor in electrical degrees). That is, the relativeafforded by this equivalent circuit can be better appreciated
angular velocity appears in this case. The electrical angularif it is mentioned that the original circuit defined in physical
displacement is related to the actual physical angular rotorvariables involves the mutual coupling among all six circuits
displacement �rm by �r � (P/2)�rm, where P is the number mag-(three stator and three rotor) with 36 consequent mutual and

self inductance terms. netic poles of the machine.
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The differential equations corresponding to the circuits of written
Fig. 3 are (neglecting the zero components),

Tem − Tload =
�

2
P

�
J

dωr

dt
(30)

vqs = rsiqs + dλqs

dt
+ ωλds (16)

where Tload is the load torque, and J is the inertia in SI units.
vds = rsids + dλds

dt
− ωλqs (17)

SIMULATION OF INDUCTION MACHINE USING
FLUX LINKAGES AS STATE VARIABLESv′

qr = 0 = r ′
ri

′
qr + dλ′

qr

dt
+ (ω − ωr)λ

′
dr (18)

Since the differential equations of the machine, Eqs. (16–19),
contain mixed variables (i.e., flux linkages and currents), ei-

v′
dr = 0 = r ′
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′
dr + dλ′

dr

dt
− (ω − ωr)λ

′
qr (19)

ther of these two quantities could be eliminated from the dif-
ferential equations by means of the algebraic relations, Eqs.where the flux linkages 
 are defined by
(20–25). The traditional approach to simulation is to consider
the flux linkage as the state variables and currents as depen-λqs = Llsiqs + λmq (20)
dent, algebraically related variables (6). Proceeding in this
manner, the currents can be solved in terms of the flux link-λds = Llsids + λmd (21)

ages asλ′
qr = L′

lri
′
qr + λmq (22)

λ′
dr = L′

lri
′
dr + λmd (23) iqs = λqs − λmq

Lls
(31)

and
ids = λds − λmd

Lls
(32)

λmq = Lm(iqs + i′qr) (24)

λmd = Lm(ids + i′dr) (25) i′qr = λ′
qr − λmq

L′
lr

(33)

Note that while not necessary to be defined explicitly, the mu-
tual (air gap) flux components 
mq and 
md have been included

i′dr = λ′
dr − λmd

L′
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(34)

to aid the simulation process.
The torque produced by the machine can be identified as

the power consumed by the voltage generators in Fig. 3 di-
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vided by the actual rotor speed. Multiplying these voltage
generators by their respective currents,
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These results can be inserted into the differential equations.
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The 3/2 term occurs because of the scale change taken during
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the d–q–0 transformation. The equation has two useful
equivalent forms, λds = R �
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Finally, the machine must be physically tied to an external Equations (28, 31–34) form the necessary equations to
load/prime mover in order to achieve energy conversion. In its simulate a squirrel cage induction machine. A block diagram
simplest form (neglecting mechanical damping), the equation of showing the flow of information which can be arranged in

a suitable simulation language such as MATLAB or ACSL iswhich couples the electrical to the mechanical world can be
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Figure 4. Flow of signals for simulation of a
squirrel cage induction machine in a rotating
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shown in Fig. 4. The term 1/s denotes integration with re- quantities, the stator phase voltages across the machine are
spect to time.

While Fig. 4 forms the simulation model of the induction vas = eag − vsg (42)
machine, the external inputs, namely vqs and vds, must be de- vbs = ebg − vsg (43)
fined. These inputs vary, of course, from problem to problem
but can be represented in a general way by the circuit shown vcs = ecg − vsg (44)
in Fig. 5. The voltages eag, ebg, and ecg are assumed to be known

Upon adding these three voltages,from another portion of the overall system simulation. For
example, these three voltages could correspond to the phase
to negative dc pole voltages of a three-phase PWM inverter, vas + vbs + vcs = eag + ebg + ecg + 3vsg (45)
the output voltages of a generator, or any of a variety of other
waveforms obtained either implicitly through simulation or as If we let Z(p) denote an arbitrary load impedance which can

even be nonlinear provided that it does not vary with statorexplicit functions of time. Assuming these voltages as known
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even if the load is a symmetrical three-phase induction ma-
chine or even a salient pole synchronous machine.

The phase voltages can now be solved in terms of the
known source voltages as

vas = 2
3

eag − 1
3

ebg − 1
3

ecg (48)

vbs = −1
3

eag + 2
3

ebg − 1
3

ecg (49)

a a

c c
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g s
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– +

vcs = −1
3

eag − 1
3

ebg + 2
3
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Figure 5. Three-phase wye connection having source voltages deter-
mined external to the motor. The point ‘‘g’’ is at an arbitrary (not

or equivalently,necessarily ground) potential.
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vas = Z(p)ias

vbs = Z(p)ibs

vcs = Z(p)ics

A block diagram illustrating the procedure for developingwhere p denotes the differential operator p � d/dt, and
the motor d–q voltages is shown in Fig. 6. The two blocks1/p � �( � ) dt so that
denoted by Eq. (51) and Eq. (10) can be readily solved to form

vas + vbs + vcs = Z(p)(ias + ibs + ics) (46)

Hence, when the sum of the three load currents equals zero,
the sum of the phase voltages also sum to zero. Equation (45)
becomes

TTTqd0(0)SSS =
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The last row of zeros show that the zero sequence componentvsg = 1
3

(eag + ebg + ecg) (47)

of voltage is zero. That is, the zero component of voltage is
impressed across the open circuit between points s and g andWhile this result has been illustrated for simple passive im-

pedances, it can be shown that the same conclusion is true not across the zero sequence circuit of the machine itself

Figure 6. Typical simulation of a wye connected
squirrel cage induction machine including modeling
of source voltages.
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(shown in Fig. 3). In the event that the three source voltages
also sum to zero, we have, finally,

TTTqd0(0)SSS =

�
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1 0 0

0 − 1√
3

1√
3

0 0 0

�
���� (53)

In general, the reference frame velocity can be selected to
be any explicit or implicit function of time. The speed of the
reference frame is typically chosen to best suit the problem
under investigation. For example, if the simulation requires
modeling piecewise linear or nonlinear elements such as
semiconductor switches, then the reference frame must be
constrained to rotate either with the stator or the rotor de-
pending upon where the switches are located. When a simple
balanced three-phase sinusoidal operation is investigated, a
synchronous reference frame can be used and often adds in-
sight into the problem being investigated. In motor control
problems such as field orientation, it is possible to fix the ref-
erence frame on a vector corresponding to a variable such as
the stator current or rotor flux vector. In the large majority
of cases, a simulation in the stationary reference frame, how-
ever, suffices in which case � is constant. If � � 0, R becomes
the identity matrix and can be eliminated since the signals
pass directly through the block without modification. In Fig.
6, the reference frame velocity � is shown as coming from the
external system as would be the case if the synchronous volt-
age rotating reference frame were used. Krause and Thomas

Vl -n, Vgap
(V, rms)

Vgap

Vl -n

R1

R2/S

+

–

+

–

Vgap

Imag (A, rms)

(a)

(b)

   m(unsat)  = Lm (unsat)Imag (V/s, pk)

Vl -n

   m(sat)
(V/s, pk)

   45°

λ

j   L1ω

L1lmagω

Air gap line
[slope =    Lm (unsat)]

Air gap line

ω

λ

mλ∆

j   L2ω

j   Lmω

(7) give an excellent treatment of simulation techniques to be
Figure 7. (a) No-load saturation curve. (b) Derived curve.employed when series connected semiconductor switches open

and close, producing temporary open circuit conditions in the
phases.

abscissa of Fig. 7(a) is multiplied by Lm(unsat) and the ordinate
by 1/�e, the normalized curve of Fig. 7(b) results in a new plotMODELING OF SATURATION
in which the abscissa remains proportional to MMF (but
scaled in terms of the unsaturated value of flux linkages) andProbably the most important effect absent from the model de-
the ordinate equal to the saturated value of flux linkages. Theveloped thus far concerns saturation of the magnetic core. In
slope at the air gap line is now clearly unity. The differencemost cases, the saturation of the teeth dominate, in which
between the saturated and unsaturated values of flux linkagecase saturation can be taken into account accurately by ex-
can be defined as �
m.pressing the air gap flux linkage as a nonlinear function of

The quantity �
m can now be plotted as a function of thethe air gap MMF. While the air gap MMF is difficult to deter-
unsaturated value of air gap flux linkages 
m(unsat). Since satu-mine under a loaded condition, the required relationship can
ration does not result in a phase shift in the fundamentalbe established if the motor is operated under a unloaded con-
component of flux linkages and only decreases the amplitude,dition in which case the MMF is clearly proportional only to
both the d- and q-components of saturated air gap flux shouldthe stator current since the rotor current is, in this case, zero.
be decreased by the same value. Thus,If the no-load voltage is plotted versus the no-load current,

the saturation curve of Fig. 7(a) can be established. Neglect-
ing stator resistance, the slope of a line drawn from the origin
to a point on the curve is proportional to the sum of the stator

�λmd = λmd(unsat)

λm(unsat)
�λm (54)

leakage plus magnetizing reactance �e(L1 � Lm), or (�e(Lls �
Lm) in d–q notation) where �e is the angular frequency of the
source voltages. If the leakage reactances of the machine have

�λmq = λmq(unsat)

λm(unsat)
�λm (55)

been measured by locked rotor test or calculated, the voltage
drop due to magnetizing current flow in the stator leakage Saturation in the q-axis can be incorporated if Eqs. (20) and
inductance branch can be subtracted from the terminal volt- (22) are modified to form
age to obtain the voltage at the air gap. The slope of the air
gap voltage versus magnetizing current is clearly the mag- λqs = Llsiqs + λmq(sat) = Llsiqs + λmq(unsat) − �λmq (56)
netizing reactance �eLm. The slope of the linear portion line
(air gap line) yields the unsaturated value of �eLm(unsat). If the λ′

qr = L′
lri

′
qr + λmq(sat) = Llriqr + λmq(unsat) − �λmq (57)
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Figure 8. Block diagram for the proce-
dure to calculate saturated air gap flux
linkages 
mq(sat) and 
md(sat).
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When combined with Eq. (24), the q-axis portion of unsatu- layers. The machine can then be simulated by modeling the
equations defining the circuit of Fig. 9. A treatment of model-rated value of flux linkage is
ing of machines with deep bar effect is given in (9). A method
to establish the parameters of the equivalent circuit of Fig. 9
is given in (10).

SATURATION MODEL WITH CURRENTS AS STATE VARIABLES

λmq(unsat) =

�
1

1
Lm

+ 1
Lls

+ 1
L′

lr

�
�

λqs

Lls
+ λ′

qr

L′
lr

+
�

1
Lls

+ 1
L′

lr

�
�λmq

� (58)

In recent years, numerous papers have been written concern-
ing the simulation of saturated induction machines proposingA similar result holds for the unsaturated value of d-axis air
the use of currents as the model state variables [e.g., (11–gap flux linkage. A block diagram showing the overall flow of

signals to model induction motor saturation is given in Fig. 8
(8) where, for convenience, we have defined

L∗
m = 1

1
Lm

+ 1
Lls

+ 1
L′

lr

(59)

SIMULATION OF DEEP BAR EFFECT

Another very important phenomenon in squirrel cage induc-
tion machine concerns the uneven distribution of currents in
the rotor bars, termed deep bar effect. Because a filament of
current experiences a greater inductance at the bottom of the
bar than on the top portion, the current tends to rise to the
top of the bar facing the air gap, resulting in greater torque
as well as higher losses at a given slip frequency. This phe-
nomenon is frequently used to improve the starting perfor-
mance of a squirrel cage machine since the effect is greatest
under the starting condition due to the fact that the bar re-

rs Lls

Lm

d-axis

Llr1

Lmr2Lmr1

rr1

Llr2

rr2

Llr3

rr3

r   dsω  λ

+ +–

–

vds
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Lm

q-axis

Llr1

Lmr2Lmr1

rr1

Llr2

rr2

Llr3

rr3

r   qsω  λ

+ –+

–

vqs

actance is greatest at this point.
Simulation of the deep bar phenomenon is readily accom- Figure 9. Simulation of a squirrel cage induction motor with deep

bar effect modeled with three bar sections—rotor reference frame.plished by breaking up all of the bars of the rotor into equal
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13)]. In the process of analysis, a so-called cross-saturation solved for the currents and air gap flux linkages as
phenomenon has been identified which was supposedly ne-
glected prior to this time. In reality, prior to 1981, flux link-
ages rather than currents were used to model core saturation

iqs = λqs − λmq

Lls
(70)

primarily to avoid the difficulties addressed in these refer-
ences. It has been demonstrated that the solution of the two
methods are identical (8). Because of the complexity of the

i′qr = λ′
qr − λmq

L′
lqr

(71)

simulation (involving inversion of a 4 � 4 matrix every time
step), the method is not recommended. ids = λds − λmd

Lls
(72)

SIMULATION OF SYNCHRONOUS MACHINE
i′dr = λ′

dr − λmd

L′
ldr

(73)

Wound field and permanent magnet synchronous machines
can be modeled by use of the same d–q–0 transformation

i′f r =
λ′

f r − λmd

L′
lfr

(74)

used for induction machines. However, in this case, since the
rotor is not symmetric, wound field machines must be mod-
eled in a reference frame rotating with the asymmetry (i.e., a

λmd = L∗
md

�
ids

Lls
+ i′dr

L′
ldr

+
i′f r

L′
lfr

�
(75)

reference frame rotating with the rotor) in order to simplify
the coupled equation which exists in phase variable form. λmq = L∗

mq

�
iqs

Lls
+ i′qr

L′
ldr

�
(76)

The d–q–0 differential equations depicting behavior of a
wound field synchronous machine are

where

vqs = rsiqs + dλqs

dt
+ ωrλds (60)

L∗
md = 1

1
Lmd

+ 1
L′

ldr

+ 1
L′

lfr

(77)

vds = rsids + dλds

dt
− ωrλqs (61)

0 = r′
qri

′
qr + dλ′

qr

dt
(62)

L∗
mq = 1

1
Lmq

+ 1
L′

lqr

(78)

0 = r ′
dri

′
dr + dλ′

dr

dt
(63)

The equation for the electromagnetic torque is the same as
for the induction machine, Eq. (28) but not Eq. (29), because
of the nonsymmetrical rotor. A block diagram showing flow ofv′

f r = r ′
f ri

′
f r + dλ′

f r

dt
(64)

data for purposes of simulation is shown in Fig. 11.

The dr and qr circuits are called the amortisseur windings
(‘‘killer’’ or damper windings) and are physically realized by a
shorted squirrel cage constructed in much the same manner
as the squirrel cage of an induction machine (often labeled as
kd and kq). The last equation corresponds to the excited rotor
field winding. Primes are again used as a reminder that the
rotor circuits have been referred to the stator by the appro-
priate turns ratio. Note that Eqs. (60–63) are identical in
form to the induction motor equation except that the speed of
the reference frame � has been set equal to the speed of the
rotor �r, and that the rotor has asymmetry (rqr � rdr).

The flux linkages are related to the currents by

λqs = Llsiqs + Lmq(iqs + i′qr) = Llsiqs + λmq′ (65)

λ′
qr = L′

lqri
′
qr + Lmq(i′qr + iqs) = L′

lqri
′
qr + λmq′ (66)

λds = Llsids + Lmd(ids + i′dr + i′f r) = Llsids + λmd (67)

λ′
dr = L′

ldri
′
dr + Lmd(ids + i′dr + i′f r) = L′

ldri
′
dr + λmd (68)

λ′
f r = L′

l f ri
′
f r + Lmd(ids + i′dr + i′f r) = L′

l f ri
′
f r + λmd (69)
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–
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An equivalent circuit of this machine can be established from Figure 10. d–q–0 equivalent circuit of a wound field synchronous
machine.these equations as shown in Fig. 10. These equations can be
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Figure 11. Simulation flow diagram for wound field syn-
chronous machine.

1/s
(Eq. 60)

(Eq. 76)

(Eq. 70)

λ

x

qs

λ mq

1/s
(Eq. 62)

λ qr′

vfr′
fr′λ

λ

ω

ds

vqs

iqs

iqr′

r

1/s
(Eq. 61)

(Eq. 75)

λ

x

ds

λ md

1/s
(Eq. 63)

1/s
(Eq. 64)

λ dr′

λqs

vds

ids

idr′

ifr′

1/s
(Eq. 30)

(Eq. 28)
ω r

λqs

iqs
Tem

Tload

λds

ids

(Eq. 73)

(Eq. 74)

(Eq. 72)

(Eq. 71)

It should be mentioned that the circuit of Fig. 11 is ade- field poles of a salient pole synchronous machine. Hence, sat-
quate only when predicting stator currents but fails when ac- uration becomes primarily determined by the flux in only one
curate portrayal of the rotor currents is desired. In this case, of the two magnetic axes (d–q axes), namely the d-axis. Deri-
more detailed models are required which include the fact that vation of the unsaturated flux linkage versus saturated flux
there exists a flux component which links both the d-axis linkage characteristic is done in the same manner by ob-
damper winding and field winding which does not enter the taining first the open circuit saturation curve (see Fig. 7).
air gap and, therefore, does not link the stator windings. In Derivation of the equations expressing saturation in this case
this case, the reader is referred to (14). is very simple but follows the induction machine example ex-

plained earlier. A block diagram of the resulting equations is
shown in Fig. 12.SATURATION MODEL OF WOUND

In cases where saturation occurs in the stator rather than,FIELD SYNCHRONOUS MACHINE
or in addition to, the rotor, the effect must be modeled by
several saturation functions. A good discussion of this prob-Because of the heavy excitation current (ampere turns) usu-

ally employed, saturation normally occurs first within the lem is given in (15). High-speed synchronous motors and tur-
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Figure 12. Saturation model for a salient pole
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wound field synchronous machine.

bogenerators are constructed with a round rotor which is typi- the machine in a nonrotating (stationary) frame of reference.
Reference 18 is a good place to begin concerning simulationcally not laminated. Because of the eddy currents which flow

in the rotor body, the saturation phenomenon is complicated. of permanent magnet machines.
Finally, various types of reluctance machines are also re-While saturation is often still modeled as in Fig. 12, a more

detailed model is needed for good correlation with physical lated to the synchronous machine. The synchronous-reluc-
tance machine has a conventional three-phase stator struc-tests. Reference 16 is a good beginning point.
ture similar to an induction or synchronous machine but has
a special rotor to enhance the reluctance torque produced by

OTHER MACHINES
a salient pole rotor structure. The equivalent circuit and its
modeling is the same as a wound field synchronous machine

While emphasis has been placed on the three-phase squirrel
except that the field winding is omitted. The variable reluc-

cage induction and salient pole wound field synchronous ma-
tance machine is unusual in that it has both a salient pole

chines, many of the other common machines are close rela-
stator and a rotor thereby invalidating the common develop-

tives of these two basic machine types. For example, a single-
ment of all of the other ac machines up to this point. The

phase induction machine is, effectively, a two-phase induction
subject is a special one to which the reader is referred to the

machine with an unequal number of turns in the two phases.
literature. If simulation techniques for this machine are of

Simulation of this machine closely follows the d–q model pre-
particular importance, (19) is a recommended starting point.

sented in Fig. 4 with a turns ratio correction on the auxiliary
Three books that treat the overall subject of analysis and sim-

winding to yield the equivalent of a balanced two-phase in-
ulation of ac machines in some detail are listed as (20–22).

duction motor. Details of the derivation are given in (17). Per-
manent magnet motors can be modeled by using the synchro-
nous machine d–q model with the d-axis circuit modified, as BIBLIOGRAPHY
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