
ZENER EFFECT

Zener effect is a term often used, in the band theory
of solids in external fields, to refer to a general class
of quantum mechanical phenomena also known as the
Landau–Zener–Stückelberg (LZS) effect. Zener effect, as
the name applies to solid-state phenomena, is usually
caused by external dc electric fields, such as those occurring
in degeneratively-doped p–n junctions of Esaki diodes or in
less-heavily doped p–n junctions of Zener diodes, as well as
in intermediately doped backward tunnel diodes. Zener ef-
fect involves the passage of an electron through a region
in the energy-parameter space where the electron energy
is forbidden (energy gap). The physical process is analo-
gous to a train passing through a tunnel across a moun-
tain barrier. Without the tunnel, the energy of the train is
not enough to go over the barrier; this is circumvented by
passing through a tunnel across the physical barrier. The
mountain barrier is a potential barrier, defined here as a
spatially forbidden region in classical mechanics. An en-
ergy gap is a forbidden region in energy-parameter space
obtained from the quantum mechanical treatment of time-
independent systems.

Whereas the absence of a tunnel negates the passage
of a train across a mountain barrier, quantum mechani-
cal tunneling deals with the probability of a particle tun-
neling through potential barriers and energy gaps. Hence
the quantum mechanical tunneling probability is between
0 and 1. The quantum mechanical wavefunction belong-
ing to the tunneling particle is responsible for the nonzero
probability of tunneling through the forbidden region. This
is illustrated in Fig. 1 for an electron tunneling through a
potential barrier. The Zener effect may be approximately
viewed as the tunneling of electrons through a potential
barrier, as in the electron emission from cold metals in high
electric fields.

BLOCH ELECTRONS IN EXTERNAL ELECTRIC FIELDS

In crystalline semiconductor materials, the electron en-
ergy levels form bands of very closely spaced energy levels,
which arise from the splitting of the degeneracies of the
energy levels of the individual atoms making up the crys-
tal. These electrons are known as Bloch electrons; their
wavefunctions are the Bloch functions. The correspond-
ing atomic (i.e., localized) wavefunctions become Wannier
functions. The energy level in each band is a function of a
parameter K, often referred to as the crystal momentum.
These energy levels are periodic function of K, with a “pe-
riod in 3-D” defined by the so-called first Brillouin zone.
The length of the first Brillouin zone along the direction
of the real-space lattice vector a1 is 2π�/a1. Thus, know-
ing the energy levels in the first Brillouin zone is all that is
needed. Figure 2 shows a simple model of the energy bands
as a function of K, and as a function of the position inside
the crystal. Realistic energy bands in semiconductors are
more complicated.

When a dc electric field, F, is applied to the crystal,
to a first approximation the energy bands become tilted,
since all the energy levels acquire an extra term given

by −eFx, as shown in Fig. 3(a). Together with this, the
crystal momentum K acquires a time dependence given by
K(t) =Ko + eFt. Therefore, for a certain value of the energy,
the electron executes oscillatory motion within the allowed
energy band; this is known as Bloch oscillations. These os-
cillations are hardly observable in bulk materials, due to
scattering effects, which destroy the coherence of the parti-
cle wavefunction. In the absence of scattering effects within
the allowed energy band (this can be realized in superlat-
tice structures where the band is broken into minibands
of allowed energies), these oscillations are quantized in a
more exact treatment, leading to an energy level structure
known as the Stark levels, first introduced by Wannier (1).
The discrete Stark energy levels are displaced from each
other by one lattice constant and the separation between
neighboring levels is given by |eFa1|, where a1 is the lattice
vector along the direction of the electric field, as shown in
Fig. 3(b). Indeed, Bloch oscillations, Stark levels, as well as
Zener tunneling, have been experimentally observed in su-
perlattice structures (2). Note that, for very narrow bands,
the Stark levels of Fig. 3(b) resemble a ladder; hence the
name Stark ladder is also used in the literature. The local-
ized Stark level wavefunctions from within one band are
generalization of the Wannier functions in the absence of
the electric field. The corresponding generalization of the
Bloch functions are the Houston wavefunctions, which are
electric field dependent.

The influence of an external electric field on the optical
properties of crystalline solids is a topic of sustained and
growing research interest in optoelectronics. Optically in-
duced transitions between two localized states belonging
to different bands lead to an optical absorption coefficient
of direct band gap semiconductors, which exhibits an expo-
nential tail for photon energies less than the band gap. For
photon energies larger than the band gap, the absorption
coefficient has an oscillatory behavior. The exponential tail,
as well as the periods and amplitudes of the oscillations,
increase with the applied external electric field. This phe-
nomenon is often referred to as the Franz–Keldysh effect.

It is more revealing to view the energy versus time-
dependent crystal momentum, En = (K(t)), in the repeated
Brillouin zone scheme, where the subscript n is the band in-
dex. The arrows in Fig. 4 indicate the oscillatory motion of
the electron within the respective allowed band of energies,
corresponding to Bloch oscillations. If the particles stay
within their respective energy bands, the time-dependent
motion is called adiabatic. The dotted line shows the path
in the forbidden region if the electron tunnels to another
band of energies. This process, if it occurs, is called diabatic
transition or Zener effect. From Fig. 4, one can readily cal-
culate the period of oscillation within the allowed energy
band from the relation: |eF|T = 2π�/a1, where T is the pe-
riod.

The Zener effect is often treated as a transmission
across a potential barrier (TPB), that is, a quantum me-
chanical tunneling through a classically forbidden region
in space. A potential that is often used to calculate the
Zener effect is the triangular potential, depicted by the
dotted lines in Fig. 3(a). However, the result differs from
the exact result derived below, which also accounts for the
reduced effective mass entering in the problem. Moreover,
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Figure 1. Quantum mechanical wavefunction of a particle incident from the left of the potential barrier and transmitted to the right
with probability approximately given by |c|2 ≈ 4 exp{−2

∫
a−a × 2m[v(x) − E] dx}, where V(x) is the potential barrier and E is the particle

energy.

Figure 2. Simple model of Bloch electron energy bands as functions of crystal momentum K in repeated Brillouin zone scheme. The
corresponding energy bands as function of position within the crystal is shown on the left.

the use of a parabolic potential barrier (3) to capture the ex-
act result is physically unjustifiable and is only misleading.
Thus, the difficulty with obtaining a physically justifiable
answer when viewed as a TPB problem signifies that the
Zener effect contains essentially a different and inherently
time-dependent physics in the energy-parameter space.

Before Zener introduced the Zener effect in quantum
transport, the tunneling of electrons through a triangular
potential barrier was known to Fowler and Nordheim in the
early days of quantum mechanics and was used to explain
the phenomenon of electron emission from cold metals un-
der the action of high electric fields. The proposed physical
model is described in Fig. 5(a). The electrons in metal are
confined by a potential wall, whose height is given by the
work function ϕ plus the Fermi energy, εF . Upon the action
of a high electric field, F, the potential barrier wall thick-
ness is substantially decreased in a triangular fashion, al-
lowing the electrons to tunnel across the forbidden region,
as shown in Fig. 5(b). The potential energy inside the metal

is shown undisturbed, since the electric field penetration
into the metal is negligible. They derived the well-known
Fowler–Nordheim tunneling current formula (C is a con-
stant)

The dependence of the tunneling current on the exponen-
tial factor exp{−4 ϕ3/2/3�|eF|}, where e is the unit
charge, is noteworthy and characterizes the behavior of the
transition probability across a triangular potential barrier.
Note, however, that the Fowler–Nordheim problem is es-
sentially a one ‘single-particle’ state problem; later it will
be seen that the Zener tunneling effect is essentially a two-
state time-dependent-parameter problem, as evidenced by
the presence of reduced effective mass in the exact Zener
tunneling expressions. The Zener effect describes nonadia-
batic transitions in quantum mechanics, and embodies the
violation of the Ehrenfest adiabatic principle, by virtue of
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Figure 3. (a) Electron energy bands in the presence of an external electric field. The electron oscillates between all K values of the allowed
energy bands in direction of the field. (b) Corresponding discrete energy level spectrum, called Stark levels, and schematic presentation of
localized wavefunctions with localization ≈ bandwidth (BW)/|eF|.
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Figure 4. Bloch oscillations in the εn (K) diagram and as a function of time. Through the time-dependence of K, nonadiabatic transition
is possible.

Figure 5. (a) Energy band-edge diagram of a metal surface, with the electrons bound to the metal interior; (b) Electron emission under
high electric field is via tunneling through a triangular potential barrier.
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the fast passage through almost degenerate states in the
avoided crossing region, as described by Wannier (4)

Zener Effect in p–n Junction Diodes

In p–n junction diodes, the disturbance of the band energies
is localized in position space and in the parameter K space.
In Fig. 6, note that only for a time interval 2τc the conduc-
tion electron acquires time dependence, K(t) =Ko + eFt and
hence traverses the states down to the bottom of the con-
duction band edge and back. Likewise, only for the time
interval 2τv does the valence electron acquire the time de-
pendent K(t) and traverse the states up to the top of the
valence band edge and back. This problem has been ap-
proximated as a TPB problem with a triangular potential
barrier, and as a scattering problem by Fredkin and Wan-
nier (5). This will be considered in the exact treatment be-
low, by appealing to numerical results.

Indirect-Gap Zener Tunneling: The Keldysh Effect

When the conduction and valence bands in a p–n junction
are centered at different values of K in the Brillouin zone
(Fig. 7), in the so-called “indirect-gap” semiconductor, then
the Zener “inertial” effect cannot occur. However, in the
presence of quantized lattice vibrations (phonons), the to-
tal system is capable of creating the necessary allowed ‘in-
termediate’ electronic states for the Zener effect to occur.
This can happen at some critical values of the bias volt-
age for forward and reverse bias. For example, in Ge-based
p–n junction diodes, the valence band minimum is located
at K= 0 and the conduction band minimum is located at
K= (�π/a1)(1, 1, 1,), separated by an energy gap, EG. Under
forward bias, in order to create the necessary electronic
states from the states at the conduction band, the conduc-
tion electrons must create phonons in such a way as to give
up crystal momentum given by K= (�π/a1)(1, 1, 1).

However, an electron cannot give up momentum with-
out giving up energy equal to the energy of the phonon
created. This process is illustrated in Fig. 7 under forward
bias. Indeed, the resulting expression for the diabatic tran-
sition probability was shown by Keldysh (6) to be identi-
cal to the one obtained with “direct-gap” semiconductors,
but with EG replaced by EG − Eph, which is the reduced ef-
fective gap of the electronic states of the total system of
electrons and phonons, Eph is the energy of the phonon cre-
ated. At low temperature in the absence of bias, and for
small bias less then the critical value equal to the energy
of phonon created, these “displaced states” of the conduc-
tion band are not available to assist the Zener tunneling.
Thus, in the Esaki diode, which operates by Zener tunnel-
ing of conduction electrons to the unoccupied states in the
valence band, no Zener tunneling current flows below the
critical bias voltage. Above the critical voltage, the ensuing
Zener tunneling current is phonon-assisted. There are four
types of phonons, belonging to two acoustic and two optical
branches of the vibration spectrum, with the same crystal
momentum. Thus four current onsets are seen experimen-
tally with increase in forward bias (7).

Under reverse bias, the valence electron tunnels to in-
termediate states of higher energies before being scattered
to the conduction band states, as shown in Fig. 8. The effec-

tive energy gap is thus increased under reverse bias. Only
the first onset of current due to the first phonon is exper-
imentally resolved; the onset due to the other phonons is
masked by the large current of the first onset.

ZENER EFFECT p–n JUNCTION DEVICES

Esaki Tunnel Diode

The first Zener effect device was discussed by Esaki, and
is now known as the Esaki diode. An Esaki diode consists
of a simple p–n junction that is very heavily doped with
impurities, thus bringing the p and n sides to degeneracy.
This means that the Fermi level is located within the al-
lowed energy bands, resulting in ‘overlapping’ conduction
and valence bands across the junction, even at zero bias.
The Fermi level, measured from the bottom of the conduc-
tion band and from the top of the valence band, En

F and
Ep

F , respectively, is typically a few kT with a depletion
layer width of less than 10 nm, of nanometer dimension
much narrower than conventional p–n junction diodes. The
basic operation of an Esaki diode is depicted in Fig. 9. Zener
tunneling occurs from occupied states to the unoccupied
overlapping states in the other side of the junction. The
situation for different bias is illustrated in this figure. The
negative differential resistance property of the Esaki diode
can be used in microwave amplification.

‘Backward’ Diode

This is a variant of the Esaki tunnel diode, which exhibits
essentially no peak current. This is accomplished by dop-
ing the two sides of the junction just to the threshold of
degeneracy, so that there is no band overlap for forward
bias. The current-voltage characteristics are shown in Fig.
10. A reverse bias causes the bands to overlap and the spa-
tial width of the forbidden region to thin down (resulting
in fast passage), so that a large tunneling current flows.
Such a diode has a sharper resistance nonlinearity than a
normal diode, with the resistance break right at zero bias.
These diodes have no significant charge storage effects and
can be used for fast switching.

Zener Diode

This is the name given to a heavily doped p–n junc-
tion diode with a sharp breakdown voltage, often used in
voltage-regulating circuits. Most diodes described by this
name actually break down by an avalanche or impact ion-
ization process. A true Zener diode breaks down via a Zener
tunneling process, which occurs only below 6 V to 8 V
reverse bias. Beyond the breakdown voltage, the voltage
across the diode remains approximately constant, indepen-
dent of the current. Since breakdown occurs at significant
reverse bias, the doping need not cause overlapping bands.
A typical Zener diode characteristic is shown in Fig. 11.
The relation between the Esaki diode, backward diode, and
Zener diode lies in the decreasing doping levels or band
overlaps from the Esaki diode down to the Zener diode.
Another way to characterize the difference is that Zener
diodes exhibit tunnel breakdown at reverse bias, the back-
ward diode exhibits this at zero bias, and the Esaki diodes
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Figure 6. In a p–n junction, the time dependence of K is localized. Outside the junction region the electrons are field free.

Figure 7. The onset of phonon-assisted Zener tunneling occurs when the applied potential equals the phonon energy with the desired
momentum. The effective energy-band gap is reduced under forward bias.

only show less abrupt tunnel breakdown at zero bias, with
current peaks at positive bias.

The temperature dependence of the breakdown voltage
is opposite in sign for the two different breakdown mech-
anisms in Zener diodes. In the case of Zener breakdown,
the breakdown voltage decreases with increase in temper-
ature because of the increase in the valence-band electrons
available for tunneling to the conduction band as the tem-
perature rises. In the case of avalanche breakdown, the
breakdown voltage increases with increase in temperature,
since the scattering mean free path of the energetic elec-

trons decreases as the temperature rises, thus producing
more scattering per unit length at higher temperatures.

MEASUREMENT TECHNIQUES

Quantitative measurements of the electric field and im-
purity profiles in Zener diodes, solar cells, photode-
tectors, and metal-semiconductor field-effect transistors
(MESFET) have recently been successfully demonstrated
by Mil’shtein et al. (8) by using the scanning electron
microscopy-dark voltage contrast (SEM-DVC). This tech-
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Figure 8. At reverse bias, the onset of phonon-assisted Zener tunneling occurs at applied potential equals to the phonon energy with the
desired momentum as shown. The effective energy-band gap is increased under forward bias.

Figure 9. [After (Ref. (3))]. The operation of Esaki diode under different biasing conditions. (a) reverse bias; (b) zero bias; (c) conduction
band filled states directly overlapping valence band empty states; (d) bottom of conduction band approaching top of the valence band; and
(e) no band overlap with thermal activation of electrons.

Figure 10. I–V characteristic of a ‘backward diode’. The band overlap is zero at zero bias. Tunnel breakdown occurs at reverse bias,
‘thermal breakdown’ at forward bias. The dashed curve is for the rectifying-diode characteristic.

Figure 11. I–V characteristic of Zener diode. Band overlap is negative at zero bias. Zener breakdown at large reverse bias.
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nique also allows one to study the dynamical behavior of
the device in response to changes in the terminal volt-
age. The measurements require the taking of the image
of the device with all electrodes at a certain potential
(e.g., grounded) and an image of the same device under a
changed potential at one of the electrodes, such as the gate
in a MESFET, the subtraction of one image from the other,
and the calibration of the contrast, in accordance with the
voltages at the electrodes. This procedure allows one to vi-
sualize the potential distribution inside the device.

QUANTUM THEORY OF
LANDAU–ZENER–STÜCKELBERG EFFECT AT AN
AVOIDED CROSSING (NONADIABATIC AND
ADIABATIC TRANSITIONS)

The quantum level crossing problem involves nonadia-
batic processes in quantum mechanics. One is concerned
here with systems whose Hamiltonian depends on some
variable K, such as the internuclear separation (configu-
ration) between atoms in a molecule, or the wave vector
in a semiconductor. It is to be understood that, when an
external force or influence is applied, such as an electric
field in a semiconductor or a magnetic field in metals, K
becomes time dependent. As a consequence, an explicitly
time-dependent situation is obtained, in which the quan-
tum energy levels of the system are brought closer together
as time evolves. Such a situation may lead to non-adiabatic
transitions between the levels to take place at the region
of closest approach or “avoided crossing region.”

This level crossing problem is ubiquitous in different
contexts, not only in electronics and physics, but also in
chemical reaction kinetics and biophysics. Specifically, this
problem is also encountered in explaining the conversion
of the νe neutrinos emitted from the sun into νµ neutri-
nos, when traversing the sun, and thereby rendering the
νe unobservable. It occurs in numerous situations in atomic
and solid-state physics. The LZS problem in nuclear mag-
netic resonance, laser irradiated atoms, atomic collisions
(9), atom-surface scattering, Zener tunneling in dielectric
breakdown in solids (10), magnetic breakdown in metals
(11), and Zener tunneling in semiconductor p-n junctions
(12) are perhaps well-known examples. For other relevant
references to these problems see Ref. (13).

Of particular interest are two eigenstate trajectories of
the system, which abound in most realistic systems whose
paths to first a approximation cross as a function of K,
as shown in Fig. 12(a). This situation usually corresponds
to the two eigenstates of a 2 × 2 Hamiltonian, when the
off-diagonal elements are neglected. However, when the
off-diagonal elements (which couple the ‘first-order’ lev-
els) are taken into account, the degeneracy of the levels at
the crossing is avoided. The two levels repel, in accordance
with the “no crossing” theorem, as shown in Fig. 12(b). The
Landau–Zener–Stückelberg problem can be stated as fol-
lows. Consider the system to be initially prepared in state
|1〉 of Fig. 12(b). If K changes with time (as a result of ex-
ternal influence), traversing the energy levels through the
avoided crossing, what is the probability of finding the sys-
tem in state |1′〉 and |2′〉? The transition to |1′〉 is often

called the diabatic transition and that to |2′〉 is called adi-
abatic transition. An analytically rigorous solution to this
LZS problem can be obtained for the simplest case, where
the energy separation between the first-order levels,

varies linearly with K, as indicated in Fig. 12(a) and K
varies linearly with time (dK/dt is a constant). Then the
diabatic transition across the avoided crossing region re-
sults in an imaginary phase, acquired by the eigenstate
given by

Therefore, the probability that the system undergoes tran-
sition to |1′〉 is thus given by

This result was first given by Zener (9). The probability
depends on the ratio of the square of the energy gap at the
avoided crossing to the slew rate, that is, it depends on the
energy gap and slew rate, as expected. Hence the name
‘inertial effect’ (3) is sometimes used. The approximation
envisaged here is valid in most physical situations.

It is worthwhile to point out the similarities and dif-
ferences of the LZS problem with the textbook problem of
transmission through potential barriers (TPB). The Zener
tunneling effect is essentially a two-state time-dependent-
parameter problem, as evidenced by the presence of re-
duced effective mass in the Zener tunneling expressions.
In both LZS and TPB, one is dealing with two crossing tra-
jectories as a function of time, in the absence of the off-
diagonal matrix elements in LZS or a potential barrier in
TPB. The off-diagonal elements lead to avoided crossing
(energy gap) in energy-parameter space, whereas the po-
tential barrier is a classically forbidden region in space.
Thus, the energy gap is obtained from quantum mechan-
ical treatment of time-independent systems, whereas po-
tential barriers are forbidden position spaces in classical
mechanics. The trajectories between LZS and TPB are de-
fined in entirely different spaces; they are defined in the
E–K space in LZS, whereas in TPB, they are defined in
position-time (q–t) space at a constant energy. In both LZS
and TPB, the trajectory crossings are avoided for an in-
finitely slow approach in the presence of the off-diagonal
matrix elements in LZS or the potential barrier in TPB.
In traversing the avoided crossing region, the eigenstates
in both LZS and TPB acquire imaginary phases, which de-
termine the transition probability. These phases in both
LZS and TPB basically depend on the rate of approach be-
tween the two trajectories, compared with the energy gap
or height of the potential barrier. Different methods of cal-
culating these phases are usually employed between LZS
and TPB.
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Figure 12. (a) Energy levels as a function of K in the absence of off-diagonal terms; (b) Solid lines are the energy levels with the off-
diagonal elements included, crossing dotted lines correspond to the diagonal elements which may account for diagonal ‘renormalization’
in the presence of external field. Avoided crossing region results from the off-diagonal elements.

Quantum Mechanics of a Two-State System and the LZS
Problem

To derive the diabatic (“inertial”) transition probability,
consider a two-level system governed by a 2 × 2 Hamil-
tonian H(K), which depends explicitly on a parameter K,
given by

In obtaining an analytically solvable model to the LZS
problem, one assumes that the basis states |1〉 and |2〉, as
well as �, are independent of K. Otherwise, one has to re-
sort to numerical methods for solving the LZS problem. In
the vicinity of the crossing, H11(K) and H22(K) are taken to
vary linearly with K, as shown by the dashed line in Fig.
12(b). In a solid, for example, this 2 × 2 Hamiltonian may
describe the k · p Hamiltonian of zinc in the vicinity of the
second-zone monster Fermi surface and third-zone needle
Fermi surface, used to calculate the magnetic breakdown
probability (11). It may also represent a simple k · p Hamil-
tonian in a semiconductor, used for calculating interband
tunneling under high electric fields (14). The adiabatic tra-
jectories, solid lines in Fig. 12(b), can be obtained by diag-
onalizing H(K).

For a moment, allow the basis states and � to vary with
K. The most general transformation U that diagonalizes a
2 × 2 Hamiltonian H(K) is given by a 2 × 2 unitary ma-

trix, with determinant one and having three independent
parameters, corresponding to the three Eulerian angles of
rotation in space (15), given by

The three independent parameters are chosen such that
UHU−1 = Udiagonal. The result for the three independent pa-
rameters is

Note that the angle β = β(K) is a function of K, as well as the
angle λ = γ(K) if the off-diagonal elements are also function
of K. The resulting eigenenergies of H are
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The corresponding adiabatic eigenfunctions are given
by the matrix

The above solutions are the adiabatic solutions with the
parameter K independent of time. Note that these solu-
tions acquire the characteristics of the diabatic first-order
solutions at values of K, such that |H11 − H22| > �. When K
varies infinitely slowly with time, the trajectory in E −K
space follows the adiabatic solution of Fig. 12(b) by virtue of
the Ehrenfest “adiabatic theorem.’ However, ifK changes at
a finite rate, it is more convenient to reconsider the problem
as a time-dependent problem from the beginning. Thus,
for dK/dt �= 0, one solves the time-dependent Schrödinger
equation with the 2 × 2 Hamiltonian H,

We expand the solution in terms of time-dependent “dia-
batic” basis states,

Note that the diagonal elements of the 2 × 2 Hamilto-
nian may account for the ‘renormalization’ effects in the
presence of the field. It will be seen later that the use of
diabatic basis states renders a simple expression for the
diabatic transition probability in terms of the expansion
coefficients. Substituting the assumed solution in Eq. (11)
and using the orthogonality of the basis |1〉 and |2〉, one
obtains coupled first-order differential equations for the
time-dependent expansion coefficients,

The appropriate boundary conditions correspond to the
knowledge that initially the system is in state |b1(K)〉 or |1〉,
which are equivalent when K is far from the avoided cross-
ing region, as shown in Fig. 12(b). Assuming that K varies
monotonically with time, one has the boundary conditions

Note that the use of the diabatic basis states yields a very
simple expression for the quantum mechanical probability
of nonadiabatic (diabatic) transition. This is given by

The above coupled differential equations can be decou-
pled to yield two analytically solvable equations. Taking

the time derivative and eliminating A2 in Eq. (13) and A1

in Eq. (14) yields

Assuming a constant �, the first-order term can be elimi-
nated by using the following transformations:

to yield, after some rearrangement, the following second-
order equations, without first-order terms, for the proba-
bility amplitudes:

Consistent with the constant �, one can assume that
the avoided crossing region is so small that one can regard
�ω = H11 − H22 ≈ ��t, where � is the constant slew rate,
which is taken to be greater than zero, as indicated in Fig.
12(b) (t = 0 at the crossing point). The resulting equations
are of the form of the Weber equation (16),

where

The solutions are given by the Weber functions: Dn (z),
Dn (−z), or D−n−1(±iz), or their proper combinations.
The solution a2 is chosen to vanish at t = −∞ by
virtue of the boundary condition at the remote past:
|A2(−∞)| = |a2(−∞)| = 0. The asymptotic expansion for
Dn (z) for |arg z| < 3π/4 is given by Gradshteyn and Ryzhik
(16)

If one chooses the solution as a a2 = �D−n2−1(−iz2),
where � is the normalizing constant, then the require-
ment has been satisfied on the argument of the variable
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for the simple asymptotic expression to be valid for t < 0,
since |arg(−iz2)t<0| = π/4 < 3π/4. Moreover, the boundary
condition is also satisfied as shown by

The normalizing constant � can be determined from the
other boundary condition for |A1(−∞)| = |a1(−∞)| = 1, since
A1 is related to A2 through Eq. (14). For convenience, this
relation between A1 and A2 is given here,

This yields,

where

Therefore, the normalizing constant is given by

With a2 = √
χe−πχ/4D−n2−1(−iz2), calculate the asymp-

totic value of a2 at t → ∞, to determine the adiabatic
and nonadiabatic transition probabilities. For t > 0, one
has −π/4 > (arg(−iz2) = −3π/4) > −5π/4. The corresponding
asymptotic expansion is given by Gradsteyn and Ryzhik
(16),

Substituting the expression for z2 for t > 0, one obtains

Therefore, the probability for an adiabatic transition is
given by

The last line made use of the identity relations for gamma
functions. This result yields the exact probability for dia-
batic transition given by

where, in the last line νr is the “relative velocity” and K(t)
is written in the form

A(t) is identified as the ‘generalized’ gauge field or vector
potential of the external influence or “force,” with e the el-
ementary charge and c the speed of light in a vacuum. The
above time dependence of K(t) is well known in solids un-
der external electromagnetic fields. In Born–Oppenheimer
studies of molecules, however,K(t) has an entirely different
meaning.

APPLICATIONS TO ELECTRONS IN SOLIDS UNDER
EXTERNAL ELECTROMAGNETIC FIELDS

Zener Tunneling in Narrow-Gap Direct Semiconductors

The two-band model for a narrow-gap direct semiconductor
given by Kane and Blount (14) may be simply written as

The adiabatic eigenvalues are
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In the presence of a dc electric field, F, the time dependence
of K(t) is written as K=Ko + eFt, with A(t) = −cFt. There-
fore, dK/dt = eF. The Zener tunneling probability can thus
be immediately written as

One can express the velocity s in terms of the energy gap,
EG = �, and reduced effective mass, m∗,r

ii , by using the re-
lations

where the subscript i indicates the direction of the electric
field. Then the exact Zener tunneling probability can be
recast as

This was also obtained by Kane and Blount (14) by a differ-
ent method. This is an exact result based on the approxi-
mate Hamiltonian of a narrow-gap semiconductor. The re-
duced effective mass is generally present in Zener tunnel-
ing expressions, which do not occur if the problem is viewed
as electron tunneling through a triangular potential bar-
rier; compare with the exponential factor of Eq. (1).

Magnetic Breakdown in Zinc Metals

In zinc, the magnetic analog of Zener tunneling occurs be-
tween the second zone “monster” Fermi surface and the
third zone “needle” Fermi surface at magnetic fields of only
a few kilogauss (Fig. 13). The second zone “monster” Fermi
surface and third zone “needle” Fermi surface of zinc can
be described by the use of a k · p Hamiltonian of the form
(11)

where Kz has been set equal to zero, since it has no effect on
the result. In a magnetic field the time dependence of K(t)
is tied to the time dependence of the electron coordinate
via the expression for the vector potential,

where the vector potential is given in the Landau gauge:
A(r) = B(0, x, 0), B is the magnetic field in the z-direction.
Therefore, one obtains

Applying Eq. (38), the Zener tunneling probability is thus
given as

where

The expression of Eq. (51) is often used in studies of mag-
netic breakdown in metals in external magnetic fields [see
references in (11)].

CORRECTIONS TO LZS TUNNELING IN p–n JUNCTION
DIODES

The assumption that �ω(K) varies linearly with time is not
satisfied for p–n junction of Esaki or Zener diodes. In p–n
diodes �ω(K) sweeps through the avoided crossing region
at a constant rate but is independent of time outside some
interval τ, which is the time spent in the avoided crossing
region. Figure 7 shows the situation for Zener, backward,
or Esaki diodes. As shown in the figure, the energy dif-
ference, �ω(K(t)), only varies linearly as it approaches the
p–n junction, but is effectively constant outside some in-
terval δK, corresponding to the time interval τ = τc + τν. A
good approximation to “pulse” behavior of �ω(K(t)) is the
one proposed by Rubbmark et al. (17),

For arbitrary variation of �ω(K(t)), the equation has to be
solved numerically (18, 19).

The diabatic transition probability was found to de-
pend on three parameters: χ = �2/4�|�|, s = (�/2)(�/τ)−1,
and d = s/χ. For d → ∞, the LZS result for the diabatic tran-
sition probability is recovered. However, for d = 1 this is al-
most independent of χ. As a function of s, the Zener tunnel-
ing probability exhibits a quasi resonant behavior, exceed-
ing the LZS value at resonance around s = 1. For d > 10,
which is valid in narrow-gap semiconductors, the diabatic
transition probability generally agrees with the Zener re-
sult.

NOVEL HIGH-FREQUENCY SOURCES

The p–n junction serves as the basic building block of
bipolar semiconductor thyristors, transistors, and diodes.
The recent development of heterostructure technology has
brought the ‘hetero’ junction as the basic building block of
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Figure 13. [After (Ref. (11))]. (a) The third zone ‘needle’ of Fermi surface of zinc; (b) The cross section of the Zinc Fermi surface showing
the second zone ‘monster’ and third zone ‘needle’; (c) The three avoided crossing regions of about the K point of the Brillouin zone.

most advanced, high-speed, and high-frequency devices for
electronic and optoelectronic applications. A heterojunc-
tion is an interface within the semiconductor material,
across which the chemical composition changes, in con-
trast to the p–n junction, where only the dopants change.
The junction between GaAs and AlGaAs, the junction be-
tween AlGaSb and InAs, and the junction between Si and
GeSi are some of the examples. A host of different band-
edge alignments (20) have generated different Zener effect
or interband tunneling devices (21). Heterostructure de-
vices offer ultra-high-frequency sources in the THz range,
as found from independent numerical quantum transport
simulations (18, 19) of conventional resonant tunneling
devices (RTD), which are closely spaced double potential-
barrier heterostructures. This was also indirectly inferred
from experiments (22). This was further discussed in the
context of equivalent-circuit models, where the concept of
a quantum inductance was introduced (23, 24). The au-
tonomous device oscillation occurs when a RTD is biased
in the negative-differential-resistance (NDR) region, just
after the resonant current peak.

An Interband Tunnel High-Frequency Source

The new oscillation addressed here occurs before the res-
onant current peak, and is based on interband tunneling
in RTD with staggered band-gap alignment. A staggered
band-edge alignment can be realized by using InAs/AlSb

heterojunctions, as in Fig. 14(a). In a simple implemen-
tation of a novel interband tunnel high-frequency source,
a deeper quantum-well-for-holes is desirable, which can
support a localized hole state; this is obtained by using
InAs/AlGaSb heterojunctions; see Fig. 14(b). Unless other-
wise specified, quantum well refers to the conduction band
edge and conduction-band electrons.

The new mechanism of modulating the resonant energy
level in the quantum well with respect to the energy distri-
bution of supply electrons from the emitter can simply be
described through the oscillatory build-up and decay of the
polarization pairing between electrons in the quantum well
and trapped holes in the barrier. This modulation is likely
to be more useful, since it is controlled by trapped holes
(similar to base charges of a bipolar transistor). For a well-
designed emitter and a sufficiently sharp energy level, the
modulation of the energy level of the quantum well has a
large ‘transconductance’ as the current peak of RTD is ap-
proached, where the trapping of holes in the barrier also
occurs. Thus, autonomous control of a significant current
by an interband process can be realized for the first time.

The polarization pair is referred to as a duon, since this
Coulomb-correlated e–h pair, in contrast to an exciton, can
only be transported in the transverse direction. In what
follows, we introduce the physics of the duon dynamics.
The limit cycle solution leads to an oscillatory voltage drop
between the quantum well and the barrier. Since common
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Figure 14. (a) Energy band edge alignment of RTD using InAs/AlSb heterojunction. The shallow potential well in the valence band cannot
support a localized hole state; (b) Energy band edge alignment of RTD using InAs/AlGaSb heterojunction. The deeper potential well in the
valence band can support localized hole state. Approximated band-edge offsets are indicated in electron volts.

experimental techniques are incapable of investigating ter-
ahertz oscillations, the current-voltage (I–V) characteristic
is also calculated with results in agreement with the ex-
perimental I–V characteristics (25).

Device Operation

When the localized valence-band electrons, confined in the
AlGaSb barrier, see the available states in the drain re-
gion (refer to Fig. 15), these valence-band electrons tunnel
to the drain leaving behind quantized holes. The emerg-
ing conduction-band electrons deposit at the spacer layer
which is then acted on by the field of the depletion region

and eventually recombine at the contact. In effect, this pro-
cess initiates the“polarization”between the barrier and the
quantum well, thus establishing a high-field domain in this
region. The result is a consequent redistribution of the volt-
age drop across the device. The Zener transition is initiated
when the discrete level of the right barrier, εn, matches with
unoccupied conduction-band states in the drain, this first
occurs at (kD

z )2 ≥ (kD
F )2 in Fig. 15, with the “>” sign holding

for indirect band-gap Zener tunneling.
The drain serves as a sink due to unoccupied states

above kD
F that could satisfy the conservation of transverse

crystal momentum associated with the discrete “longitu-
dinal energy,”εn, of the right barrier. Figure 15 pertains to
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Figure 15. Schematic average EBE profile showing the various quantities used in the calculations. The shaded region in the lower-right-
hand corner indicates the occupied transverse and longitudinal momentum states in the drain.

motion in the z direction and therefore EF , is the Fermi
energy for motion in the z direction, with “in-plane energy”
(or transverse crystal momentum) and higher values of
(kD

F )2 being unoccupied in the right contact, as schemati-
cally shown in the inset of Fig. 15.

The time-dependent dynamics of the hole charging and
discharging that follows is dictated by the self-consistency
of the potential. At higher voltage bias, this is described by
Fig. 16. As hole charging occurs, Fig. 16(a), the polarization
between the barrier and the quantum well induced by the
trapped hole charge [Fig. 16(b)] creates a high-field domain
tending to lower the residual potential drop between the
drain contact and the right barrier. This process results in
reducing the Zener tunneling probability of the valence-
band electrons from the barrier to the right contact. Ow-
ing to self consistency of the potential, further polarization
leads to the “switching” of the intravalence band tunneling
of the trapped holes from the barrier towards the quantum
well region [Fig. 16(c)]. When the situation shown in Fig.
16(c) is reached, the hole intravalence band tunneling prob-

ability is maximum and the Zener transition probability is
minimum. The onset of two other possible mechanisms for
hole discharging may also occur at this point, namely. ther-
mal activation of the valence electrons in the continuum to
recombine with localized holes, or loss of any bound hole
states in the barrier.

The “bound-hole leakage” is by tunneling through a
triangular potential barrier, which would likely have a
smaller barrier height than for that of Zener tunneling if
viewed as tunneling through potential barriers (3). Any of
the hole-leakage processes mentioned above will immedi-
ately restore the high field between the barrier edge and
the right contact. This redistribution of the voltage drop
accompanying the discharging process in turn “switches
off ’ the intraband tunneling probability, or reestablishes
the localized state in the barrier if this was lost when the
situation of Fig. 16(c) was reached, while “switching on”
the Zener transition of valence-band electrons towards the
right contact, recharging the barrier. The situation shown
in Fig. 16(a) is revisited, after which the process repeats.
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Figure 16. Schematic diagram showing the mechanism of the oscillation of trapped hole charge in the barrier. (a) e–h generation by
Zener tunneling; (b) duon generation is through an autocatalytic process; (c) three mechanisms for hole discharging are mentioned in the
text.

Therefore, oscillations of the hole charging of the AIGaSb
barrier can occur in the THz range, by virtue of the nano-
metric dimensional features of the device.

It is important to realize that the whole dynamical pro-
cess limits the average amount of hole charge that can be
trapped in the barrier as a function of drain bias. The direct
interband recombination process is not considered since it
cannot compete with the conduction-band electron tunnel-
ing process. There is not enough time for direct interband
recombination to take place, since the velocity of the con-
duction electrons at the barrier is quite large owing to the
small probability of being inside the barrier region.

The discharging and charging processes are in gen-
eral governed by the two characteristic times. These
are the polarization-charge build-up time, τB, and the
charge-leakage time, τL. The build-up time τB is through
Zener transition and consequent charging of quantum
well with conduction electrons. The charge-leakage time

τL is through intravalence band tunneling, thermal acti-
vation of valence electrons from the continuum, and loss
of bound-hole state, coupled with the decay of conduction
electrons in the quantum well by virtue of the consequent
rise of the resonant energy level following the discharge
of trapped holes. In general, if τB > τL, then oscillatory be-
havior will occur, the charging process will always be lag-
ging behind the discharging process and oscillations will
result. This criterion holds true in conventional RTD and
single-electron devices (26). It is estimated that τB > τL,
by virtue of several possible fast hole-discharge channels
mentioned above, and the likelihood of small triangular-
potential-barrier height whenever a bound state still exists
when the situation of Fig. 16(c) is reached. The oscillation
is expected to occur in the THz range. Analogous oscillatory
trapped-charge behaviors are not uncommon in nanostruc-
ture systems (27,23,26).
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Polarization Pairing Dynamics

To describe the physical mechanism described above using
quantum transport theory of electrons and holes, including
Zener tunneling and pairing dynamics, is a very complex
task requiring large computational resources which will
make use of the general and fundamental quantum trans-
port equations recently formulated by Buot (28–31).

Our task here is to give a simple phenomenological
model for the three physical processes depicted in detail
in Fig. 16. A much more rigorous derivation of the physi-
cal model is given in Ref. (31). Here, we follow closely the
phenomenological modeling of Buot and Krowne (32).

Mathematically, we need to model the respective rate
equations for the following processes: (i) the creation of
conduction electrons and trapped holes by Zener tunneling,
Fig. 16(a), whose rate decreases with the generation of po-
larization between the barrier and quantum well, (ii) stim-
ulated generation of barrier-well polarization. Fig. 16(b),
and (iii) the decay of duons is depicted in Fig. 16(c). The
process depicted in Fig. 16(b) generally involves the trans-
port of conduction electrons from the emitter to the quan-
tum well induced by the polarization effect of the preced-
ing hole charging of the barrier, coupled with a succeed-
ing e-h generation by Zener tunneling. In process (2), the
Zener-generated electron flows to the metallic contact of
the drain, and goes out of the picture; this is substituted
by the tunneled conduction electron from the emitter to the
quantum well to form a “duon” or polarization pair with the
hole in the barrier. We observe here an “autocatalytic” or
positive feedback of this process, since duon generation is
induced by existing duons, in the presence of e-h through
Zener tunneling. The hole process depicted in Fig. 16(c)
can take place through one of several mechanisms or their
combinations. mentioned before. These are coupled with
the decay of conduction electrons in the quantum well by
virtue of the consequent rise (note that the device is op-
erating before the resonant-current peak) of the resonant
energy level as the number of duons or of a high-field do-
main between the quantum well and barrier decreases.

Let G be the maximum rate of e-h generation by Zener
tunneling from the barrier valence band to the drain con-
duction band for a given bias. This constant rate G is a
function only of the applied voltage, or more appropriately
of the biasing field at the depletion layer of the drain region
(refer to Fig. 15). It is therefore our measure of the applied
bias at the drain contact for a given device structure. It is
clear that the maximum rate of generation of e-h by Zener
tunneling occurs in the absence of any hole charge trapped
in the barrier, and hence in the absence of duons which we
denote by P. The reason for this is that the highest field in
the depletion layer for a given bias occurs in the absence
of duons, as indicated in Fig. 16(a).

The effective generation rate for e-h by Zener tunnel-
ing will of course decrease with polarization since the re-
gion between the quantum well and the barrier becomes a
growing high-field region at the expense of the voltage drop
in the depletion region. We expect this rate of decrease to
be proportional to the rate of production of duons. On the
other hand, the generation rate of the duons autocatalyti-
cally depends on the concentration of existing duons. The

generation of duons involves three interacting components,
namely, (a) trapped holes in the barrier, (b) generated con-
duction electrons, and (c) existing duons to stimulate the
net transfer of conduction electron from the emitter to the
quantum well to be paired with the trapped hole in the bar-
rier to form more duons. One can view this autocatalytic
“pairing” of conduction electron in the quantum well and
trapped hole charge in the barrier as a stimulated transfor-
mation of the e-h pair generated by Zener tunneling into a
duon with the electron created by Zener tunneling recom-
bining at the drain contact, leaving only the “polarization
pair” (duon) as depicted in Fig. 16(b).

The duon generation rate with three interacting compo-
nents can thus be expressed as

Stimulated duon(P)generation rate

(hbarrier + edrain + P ⇒ 2P)

}
= ∼

�(NB)2
P (54)

where NB is the number of “unpaired” holes which is equal
to the number of “exiting” conduction electrons created by
Zener tunneling.

∼
� is the rate parameter [per number of

electrons and per number of holes produced by Zener tun-
neling as indicated in Fig. 16(b)].

We can now write the “effective” generation rate of un-
paired trapped holes in the barrier as

∂NB

∂t
= G − ∼

�(NB)2
P (55)

Note that the total concentration of trapped holes in the
barrier, QB, at any time is given by

QB = NB + P (56)

where P is given as the duon concentration.
To obtain the rate equation for P, we need to formulate

the process in Fig. 16(c) describing the decay of the high-
field domain between the quantum well and barrier. This
decay rate for P is expected to saturate to a constant rate
for very large P. Let N be the total number of matching
states for the holes in the barrier to transition to. Let NP

be the number of matching states in the valence band no
longer available by virtue of holes already transitioning
to these states. The production rate of NP is proportional
to the product of the available number of matching states
and P. Let λ be this proportionality constant. And let γ

the decay rate of NP by virtue of recombination of holes
and screening: electrons in the valence band. Then, we can
write the rate equation for NP as

∂NP

∂t
= λ(N − NP )P − γNP (57)

where the first term is also the decay rate of P. The process
described by the last term of Eq. (57), i.e., recombination
of holes and screening electrons in the valence band, is the
fastest process in the problem. NP is therefore expected
to relax much faster than P and NB. Thus by adiabatic

elimination of fast variables, we can let
∂NP

∂t
⇒ 0. Then the

decay rate of P is equal to γNP . We obtain

N − NP = N

1 + λP

γ

(58)
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Upon substituting the expression of Eq. (58) in the first
term of Eq. (57), we obtain the decay rate of P given by

γNP = λNP

(1 + λP

γ
)

Likewise, the decay rate via tunneling of conduction elec-
trons from the quantum well to the drain is limited,
through self-consistency, by the limit set on the trapped
hole decay process. Thus, we can express the decay rate of
the duon concentration as

Duon (P) decay rate = αP

1 + βP
(59)

where
α

β
= γN,

1
β

is proportional to the sum of available

states in the valence band of the quantum-well region and
the states participating in thermal recombination, other-
wise, it represents the actual number of hole states in the
barrier in the case of the loss of bound hole state. Equation
(58) is similar to the Michaelis-Menten decay law in chem-
ical kinetics (37). The parameter α = λN is the decay rate
constant and

α

β
is the value of the saturated decay rate of

duons. Therefore, we can now write the rate equation for P
as

∂P

∂t
= ∼

�(NB)2
P − αP

1 + βP
(60)

As seen in Eq. (62) below, the physical situation corre-
sponds to

α

β
> G. This means that to sustain this two-

dimensional dynamical nonlinear system with a stimu-
lated intermediate process, the maximum e-h generation
rate by Zener tunneling for a given bias must be less than
the maximum possible (saturation) value of the decay rate
of duons. Therefore, in the formation of the high-field do-
main, the maximum discharging rate is larger than the
maximum build-up rate as conjectured before. Indeed, we

can estimate that
1
τB

≈ G and
1
τL

≈ α

β
. Therefore,

α

β
> G

implies that τB > τL.
Equations (55) and (60) describe a two-parameter (

∼
�, G)

and two-dimensional (NB , P) dynamical system. The in-
termediate process depicted in Fig. 16(b) is a catalytic pro-
cess whose form occurs in several other systems. Similar
coupled equations were considered by Pimpale et al. (38)
for analyzing the stimulated production of excitons in the
presence of recombination centers in optically excited semi-
conductors. We give the details of our calculations in what
follows.

Stationary Solution and Stability Analysis. The stationary
solution to the coupled rate equations, Eqs. (55) and (60),
is given by

G = ∼
�(NB)2

P = αP

1 + β p
(61)

It follows from Eq. (55) that the effective Zener tunneling
has stopped. The total stationary trapped hole concentra-
tion, QB, is thus given by

QB = NB + P =
(

α − βG

�∼

)1/2

+ G

α − βG
(62)

It is important to point out that the more accurate average
value of the total trapped hole charge under a limit cycle
oscillation is shown later to be a slowly decreasing function
of bias. This is an important factor in comparing our theory
with the existing experiment (35).

For a fixed bias, the total terminal current of the RTD
is the sum of polarization current, due to the time varying
polarization, and the RTD conduction electron resonant-
tunneling current component. With QB and P constant for
a given bias, Eq. (61) states that the production of duons is
balanced by the decay of duons. This means that the cor-
responding polarization current is also a constant, equal
to zero. Since QB and P are constants, the duon produc-
tion rate is via the transfer of conduction electrons from
the emitter to the quantum well and the duon decay rate
is via transfer of conduction electrons from the quantum
well to the drain. At steady state these two conduction-
electron-mediated decay and generation processes are bal-
anced resulting in net steady-state resonant-tunneling cur-
rent across the double-barrier structure.

It should be emphasized that it is the effective e-h gen-
eration rate that describes the actual Zener tunneling pro-
cess, to account for self-consistency of the potential in the
presence of duons. This effective Zener tunneling rate,
Geff (NB, P) = G − ∼

�(NB)2
P , reduces to zero at steady state.

In other words, the steady-state operation no longer in-
volves interband processes, as schematically shown in Fig.

18. However, in dynamical situation,
∂NB

∂t
= 0, while the

duon generation may still be nonzero, which may lead to
an elliptical limit-cycle behavior.

For the following stability and nonlinear analyses, it is
convenient to simplify the fundamental rate equations and
write them in terms of dimensionless variables as

∂

∂τ
� = �Q2� − �

1 + �
(63)

∂

∂τ
Q = G − �Q2� (64)

where

� = βP

Q = βNB

� =
∼
�

α
(
1
β

)
2

(65)

G = G

α/β
(66)

τ = αt

Since, in general, the duon formation also involves a
higher-order process involving Zener tunneling from the
valence band of the barrier to the conduction band in the
drain coupled with tunneling of electron from the emitter
to the quantum well to form a polarization pair, we ex-
pect the frequency of duon formation to be much less than
the frequency for duon decay which may consist of several
parallel single-event channels. Therefore, � must be con-
siderably less than one. Similarly, the dimensionless pa-
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Figure 17. More efficient generation of initial polarization pairs or duons is due to the initial resident excess electron in the quantum
well for a given applied bias.

Figure 18. At steady state the two conduction-electron-mediated duon decay and generation processes are balanced, resulting in steady-
state current across the double barrier structure.

rameter G in Eq. (66) is basically a ratio of the maximum
e-h generation rate to the maximum duon decay rate. G is
less than one since the e-h generation rate has only one
channel, whereas the duon decay rate has several parallel
channels. Clearly, in the presence of stimulated interme-
diate process, the maximum decay rate for duons must be
larger than. the maximum e-h generation rate, otherwise
the whole 2D dynamical system cannot be sustained or will
become unbounded. It is estimated that G is much less than
0.5 for all the pertinent range of biasing condition before
the current peak.

In the absence of any data, we can make a rough esti-
mate for G. Assume that there are 1011

cm−2 electrons avail-
able in the barrier capable of Zener tunneling to the drain,
but only 1010

cm−2 were able to execute tunneling in 10−12
s

(or 109
cm−2 in 10−13 s). Then, we have G = 1022

cm−2 s−1. We
can also estimate the intravalence band tunneling time of
the trapped holes to be around 10−13 s leading to α = 1013

s−1. If we take
1
β

� 1011
cm−2, then G = 10−2. Using these

values, a reasonable value for � comes out to be about same
order of magnitude as G, which can easily lead to the in-
equality (1 − G)3

/4 > �. We will. see that this last inequal-
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ity has a very important role in our limit cycle analysis. In
what follows we take G< 0.5 to cover the physical range for
G.

In terms of these dimensionless variables, the station-
ary values of Q and � are given by

�
◦ = G

1 − G (67)

Qo = (
1 − G

�
)
1/2

(68)

As mentioned before, for the physical situation in the rele-
vant RTD, 0 <G< 1.0.

The question whether there is a nonstationary solu-
tion to our fundamental rate equations, involving inter-
band processes as depicted in Fig. 16, can first be an-
swered by examining the stability of the stationary point
in (�, Q) space. This is done by examining the neighbor-
hood of the stationary point. Let us denote the coordinates
of this neighborhood by

� = �
◦ + p

Q = Q
◦ + q

(69)

Substituting these in the coupled rate equations, Eqs. (63)
and (64), and retaining only linear terms in p and q, we
have

∂

∂τ

(
p

q

)
=

⎛

⎝
G(1 − G) 2G

[
�

(1 − G)

]1/2

−(1 − G) −2G
[

�

(1 − G)

]1/2

⎞

⎠
(

p

q

)
(70)

The solution for the trajectories in (�, Q) space about the
equilibrium point is given by

(
p

q

)
= A1e

λ1τ

(
V

p

1
V

q

1

)
+ A2e

λ2τ

(
V

p

2
V

q

2

)
(71)

where λ1 and λ2 are the eigenvalues of the matrix (M) de-
fined by Eq. (70), and the corresponding eigenvectors are
the column vectors V1 and V2, respectively, which can read-
ily be determined from the knowledge of the eigenvalues.
The eigenvalues are given by

λ1,2 = Tr(M)
2

± 1
2

√
[Tr(M)]2 − 4det(M) (72)

The character of the stationary point can thus be deter-
mined with the help of the invariants of the matrix (M),
namely. Tr(M), det(M), and D(M) = [Tr(M)]2 − 4det(M). The
stationary point cannot be a saddle point for physical rea-
sons since det(M) = 2G(1 − G)3/2√

� > 0. The physical pro-
cesses depicted in Fig. 16 also suggest that the station-
ary point can only be any one of the following cases: sta-
ble focus, Tr(M) < 0, center, Tr(M) = 0, or unstable focus,
Tr(M) > 0. This means that D(M) < 0 or 4det(M) > [Tr(M)]2.
Thus, there are two out of three chances that the oscillating
processes depicted in Fig. 16 are maintained, depending on
the value of the rate parameter � in relation to G. Phys-
ically, we expect the limit cycle oscillation for uniqueness
and stability.

For the unstable focus we have to demonstrate that a
limit cycle exists. The region in parameter space where
the structurally stable limit cycle solution is possible is
the area under the bifurcation curve of Fig. 19, [locus of
Tr(M) = 0]. Towards the end of this article, we will present
experimental evidence that our physical model is correct

by showing that the averaged trapped hole charge in the
barrier is a slowly and linearly decreasing function of the
bias when a limit cycle exists. This lead to results which
give excellent qualitative agreement with the experiment
(34,35,25,26). In practice, for a given material parameter
�, we choose the operating bias G such that Tr(M) > 0. For
a range of G where this is satisfied, we can optimize the
operating point G to realize a THz source with optimum
power and frequency.

The trace of (M) is given by Tr(M) =
G
{

(1 − G) − 2
[

�

(1 − G)

]1/2
}

. Thus, Tr(M) > 0 implies

(1 − G)3
> �. On the other hand, D(M) < 0 implies

(1 − G)3
< 4� + 8G−1(1 − G)5/2

�1/2 + 4
√

2G−1(1 − G)5/4
�3/4.

In the next section, we will employ a nonlinear perturba-
tion technique using the method of multiple time scales
with values of the rate parameter near the bifurcation
curve, Fig. 19. As we shall show in the following nonlinear
analysis, a unique limit cycle indeed occurs at Tr(M) > 0
with rate parameter expanded around the parameters
for Tr(M) = 0. The amplitude and frequency of oscilla-
tion is expected to depend on the actual values of the
two-parameters � and G in the region where Tr(M) > 0.

Nonlinear analysis and limit cycle solution. Retaining
nonlinear terms for p and q measured from the stationary
point, the rate equation, from Eqs. (10) and (11), in matrix
form becomes

∂

∂τ

(
p

q

)
=

⎛

⎝
G(1 − G) 2G

[
�

(1 − G)

]1/2

−(1 − G) −2G
[

�

(1 − G)

]1/2

⎞

⎠
(

p

q

)
+
(

Np

Nq

)

(73)

where

(
Np

Nq

)
=

⎛

⎜
⎜
⎜
⎝

⎧
⎪⎨

⎪⎩

(1 − G)3 p2 + 2[�(1 − G)1/2 pq + �G
(1 − G)

q2 + � pq2]

+
∞∑

n=3

(−1)n(1 − G)n+1 pn

⎫
⎪⎬

⎪⎭

−2[�(1 − G)]1/2 pq − �G
(1 − G)

q2 − � pq2

⎞

⎟
⎟
⎟
⎠

(74)

The perturbation technique employed in what follows es-
sentially transforms the above nonlinear equation into a
hierarchy of solvable and simpler equations, obtained by
equating coefficients of powers of the smallness parame-
ter. Near Tr(M) = 0, we use as our smallness parameter
the departure of Tr(M) from zero, i.e., the departure of the
equality (1 − G)3

/4 = �c.
Let the smallness parameter be ε =√{
� − [(1 − G)3]

4

}
D where D is to be determined

from the expansion of � in powers of ε. Since G is assumed
constant at fixed bias, i.e.. a function only of the external
bias, ε is also a measure of the departure of � from �c,.
We make the following expansion:

� =
∞∑

j=0

ε j�j, where �0 = �c (75)
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Figure 19. Plot of the bifurcation curve, Tr(M) = 0, which is the curve for � = �c.

As it turns out, D � �2 to zeroth order in ε in the analysis
that follows [refer to Eqs. (85) and (125) below]. We also
expand the matrix (M) in powers of ε through direct Taylor
expansion in powers of (� − �c), as

(M) = (Mc) + ε�1

(
∂M(�)

∂�
|�=�c

)

+1
2

ε2

⎡

⎢
⎣

�2

(
∂M(�)

∂�
|�=�c

)

+�2
1

(
∂2M(�)

∂�2
|�=�c

)

⎤

⎥
⎦+ O(ε3) (76)

Using (1 − G)3 = 4�c, we obtain the following expressions:

(Mc) = G(1 − G)
(

1 1
−G−1 −1

)
(77)

(M1) =
(

∂M(�)
∂�

|�=�c

)
= 2G(1 − G)−2

(
0 1
0 −1

)
(78)

(M2) = 1
2

(
∂2M(�)

∂�2
|�=�c

)
= −2G(1 − G)−5

(
0 1
0 −1

)
(79)

We let the solution depends on time τ in a combination
τo = τ and τ1 = (� − �c)τ. Thus, instead of determining the
solution in terms of τ we seek the solution as a function of
τo, τ, and ε. This method of doing the nonlinear perturba-
tion analysis is well known and is often referred to as the
method of multiple time scales (39). This has the virtue
that it separates the dependence of the solution into the
fast and slow time scales. For limit cycle behavior, for ex-
ample, we expect that the amplitude of the oscillation is
only a function of the slow time scale. The left side of the
rate equation can now be written a

∂

∂τ

(
p(τo, τ, ε)
q(τo, τ, ε)

)
=
[

∂

∂τo

+ (� − �c)
∂

∂τ1

](
p(τo, τ, ε)
q(τo, τ, ε)

)
(80)

The analysis is greatly simplified if we take the leading
order of the last term in Eq. (73) as second order in the
smallness parameter. Thus, for the solution we adopt the
following expansion:

(
p

q

)
=

∞∑

j=0

e j+1
(

pj

qj

)
(81)

Therefore, any finite solution that will found in this anal-
ysis will invariably indicate that the limit cycle occurs

for values of the parameter away from the critical point,
Tr(M) = 0, i.e., for nonzero smallness parameter. This holds
for example in our numerical simulation for the limit cy-
cle of conventional RTD operating at the NDR region (33).
With Eq. (81), the non-linear term in Eq. (73) acquires the
following expansion in terms of the smallness parameter:

(
Np

Nq

)
= ε2

(
N

p

2
N

q

2

)
+ ε3

(
N

p

3
N

q

3

)
+ O(ε4) (82)

where

(
N

p

2
N

q

2

)
= (1 − G)2

⎛

⎜
⎝

[
poqo +

(G
4

)
q2

o + (1 − G) p2
o

]

−
[

poqo +
(G

4

)
q2

o

]

⎞

⎟
⎠ (83)

(
N

p

3
N

q

3

)
= (1 − G)2

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎡

⎣
poq1 + p1qo + 2(1 − G) po p1 +

(G
2

)
q1qo + (1 − G)

4
poq

2
o

+
(

�1G
(1 − G)3

)
q2

o + 2
{

�2

(1 − G)3

}1/2

poqo − (1 − G)2
p3

o

⎤

⎦

−

⎡

⎣
poq1 + p1qo +

(G
2

)
q1qo + (1 − G)

4
poq

2
o

+
(

�1G
(1 − G)3

)
q2

o + 2
{

�2

(1 − G)3

}1/2

poqo

⎤

⎦

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(84)

We did not show nonlinear terms with fractional powers
of ε in Eq. (82) associated with �1 in Eqs. (74) since the left-
hand side of the rate equation does not contain fractional
powers of ε. To eliminate the occurrence of these fractional
powers of ε, we have to make �1 = 0 in the expansion of �,
Eq. (75), and also in Eqs. (76) and (84).

Upon substituting all the expanded quantities in the
non-linear rate equation, Eq. (73), we obtain a hierarchy
of simpler equations. Those arising from the first up to the
third powers of ε are given below,

Lo

(
po

qo

)
= 0 (85)

Lo

(
p1
q1

)
=
(

N
p

2 ( po, qo)
N

q

2( po, qo)

)
(86)

Lo

(
p2
q2

)
+ �2L1

(
po

qo

)
=
(

N
p

3 ( po, qo; p1, q1)
N

q

3( po, qo; p1, q1)

)
(87)
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where

Lo =
(

∂

∂τo

−(Mc)

)
(88)

L1 =
(

∂

∂τ1
−(M1)

)
(89)

The first equation in the hierarchy turns out to be a sim-
ple eigenvalue problem, analogous to our linear-stability
analysis before. The only difference is that the present
eigenvalue problem has to be solved with values of the pa-
rameter at the critical point, where Tr(M) = 0, using the
matrix (Mc).

Using the matrix expression of Eq. (77) for (Mc), the
eigenvalues for Eq. (85) are

γ1,2 = ±i
√G(1 − G)3/2 = ±iω (90)

and the corresponding eigenvectors are

Y1,2
o =

(
1

−1 ± iω

G(1 − G)

)
(91)

The solution can be written in the form(
po

qo

)
= �(τ1)�(τo) + c.c.

= �(τ1)

{
exp(iωτo)

(
1

−1 ± iω

G(1 − G)

)}
+ c.c.

(92)

where the separation between the slow and fast time scales
is explicitly written. Note that Eq. (87) determines the na-
ture of the dependence of the solution on the slow time
scale τ1 by virtue of the presence of the operator L1.

Next, we obtain the solution for
(

p1
q1

)
by solving Eq.

(86). The right-hand side is now known since it is only a

function of
(

po

qo

)
. The solution can be obtained separately

for terms involving fast and slow time scales, where the
fast time scale occurs only in the exponential terms. The
right-hand side of Eq. (86) can be written as

(
N

p

2 ( po, qo)
N

q

2( po, qo)

)
=
(

Ap

Aq

)
|�(τ1)|2

+
[(

Bp

Bq

)
�(τ1)2exp(2iωτo) + c.c.

]
(93)

where

(
Ap

Aq

)
= (1 − G)2

⎛

⎝
1
2

−2G
3
2

⎞

⎠ (94)

(
Bp

Bq

)
= (1 − G)2

⎛

⎜
⎝

−
(

1 + 2G
4

)
+ iω(2 − G)

2G(1 − G)(
5 − 2G

4

)
− iω(2 − G)

2G(1 − G)

⎞

⎟
⎠ (95)

If we write the solution for
(

p1
q1

)
as

(
p1
q1

)
=
(

αp

αq

)
|�(τ1)|2 +

[(
βp

βq

)
�(τ1)2exp(2iωτo) + c.c.

]
(96)

then we have to solve the following equations for the coef-
ficients:

(
αp

αq

)
= −(Mc)

−1
(

Ap

Aq

)
(97)

(
βp

βq

)
=
(

2iω − G(1 − G) −G(1 − G)
(1 − G) 2iω + G(1 − G)

)−1 (
Bp

Bq

)
(98)

Substituting the expressions given by Eqs. (94) and (95) in
Eqs. (97) and (98), we obtained the following expressions:

(
αp

αq

)
= (1 − G)

G

(
2G
− 1

2

)
(99)

(
βp

βq

)
= 1

6G(1 − G)

·
(

4(1 − G)3 + iω(1 + 2G)

(
15
2

G− 9
2

−3G2)(1 − G) − iω(8 − 3G − 2G−1)

)

(100)

and thus
(

p1
q1

)
is determined by Eq. (96).

At this stage of the calculation, we can expect that all

of
(

pj

qj

)
contains, as factors, various powers of �(τ1) as

well as powers of its absolute value, and their combina-
tions. Therefore, in order to find out if a limit cycle exists,
it is important to examine the τ1 dependence of �(τ1) and
thereby determine if a well-defined finite limit exists for

�(τ1) as t ⇒ ∞. Moreover, before we can calculate
(

p2
q2

)
,

we need to know the τ1 derivative of �(τ1) in Eq. (87).
This information can be obtained by imposing the “solv-
ability” condition. This condition makes use of the prop-
erty of the solution to the adjoint of Lo, denoted as L†

o. Let

L†
oR = 0, then

〈
R,Lo

(
p2
q2

)〉
=
〈
L†

oR,

(
p2
q2

)〉
= 0, where

the scalar product is defined by 〈ν, µ〉 ≡ limT → ∞
1
T

T∫

0

ν∗ ·

µdτ. Therefore, from Eq. (87) we must have
〈
R, −�2L1

(
po

qo

)
+
(

N
p

3 ( po, qo; p1, q1)
N

q

3( po, qo; p1, q1)

)〉
= 0 (101)

We refer the readers to Morse and Feshback (40), in show-
ing that the cigensolutions of Lo and L†

o form biorthogonal
set of eigenvectors, where L†

o here is given by

L†
o =

(
− ∂

∂τo

− G(1 − G)
(

1 −G−1

1 −1

))
(102)

For example, the eigensolutions to L†
oR = 0 with eigenval-

ues µ1 = iω and µ1 = −iω are given by R1 = exp(−iωτo)(Rp

1
Rq

1

)
and R2 = R∗

1, respectively, where

(Rp

1
Rq

1

)
=
(

1
G(1 − iω

G(1 − G)
)

)
(103)

The eigensolution R1 = exp (−iωτo)
(Rp

1
Rq

1

)
is orthogonal

to the eigenvector of Lo for the same eigenvalue, i.e.,〈
R1|exp(iωτo)Y1

o

〉 = 0, since µ∗
1 = −iω = γ2 of Lo, Eq. (90).

Thus, we are lead to the following relation:

〈R2|�(τo)〉 = 2(1 − G) + 2iω

(1 − G)
(104)

where only the Y1
o [in Eqs. (91) and (92)] contributes by

virtue of the biorthogonality, i.e., the complex conjugate
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part of �(τo) also does not contribute in Eq. (104). Thus,
with R chosen to be equal to R2, the scalar product in Eq.
(101) can be evaluated, and defines the differential equa-
tion for �(τ1). We obtain

∂�(τ1)
∂τ1

= 〈R, (M1)�(τo)〉
〈R, �(τo)〉 �(τ1) + �−1

2

〈R, �(τo)〉
·
〈
R,

(
N

p

3 ( po, qo; p1, q1)
N

q

3( po, qo; p1, q1)

)〉
(105)

Note that in Eq. (105) nonzero τo integration comes
only from poq1, p1qo, po p1, q1qo, and poq

2
o terms in(

N
p

3 ( po, qo; p1, q1)
N

q

3( po, qo; p1, q1)

)
, Eq. (84), while the rest including the

complex conjugate part do not contribute as T ⇒ ∞ by
virtue of the appearance of delta function of the frequency
sum after the τo integration. Therefore, by taking into ac-
count only the contributing terms, we can write Eq. (105)
in a simpler form as

∂�(τ1)
∂τ1

= η�(τ1) + σ

�2
�(τ1)|�(τ1)|2 (106)

where

η = 〈R, (M1)�(τo)〉
〈R, �(τo)〉 (107)

and

σ�(τ1)|�(τ1)|2

= (1 − G)2

〈R, �(τo)〉
〈
R,

(
Q3( po, qo; p1, q1) − (1 − G)3

p3
o

−Q3( po, qo; p1, q1)

)〉

(108)

with

Q3( po, qo; p1, q1) = poq1 + p1qo + 2(1 − G) po p1

+
(G

2

)
q1qo + (1 − G)

4
poq

2
o

(109)

We thus obtain

η = −G(1 − G)−2 + iω(1 − G) − 3 (110)

and

σ�(τ1)|�(τ1)|2 = lim
T ⇒ ∞

1
T

T∫

0

exp(−iωτo)dτo(1 − G)

×{[(1 − G)2 + iω]Q3 − (1 − G)4
p3

o}

×
(

2(1 − G) + 2iω

(1 − G)

)−1

(111)

Upon performing the τo integration in Eq. (111), we obtain

σ�(τ1)|�(τ1)|2 = 1
4

{[(1 − G)2 + iω]
∧
Q3 + 2(1 − G)

∧
po

∧
p1 − (1 − G)3 ∧

p
3

o }

×(2(1 − G) − 2iω

(1 − G)
)

(112)

where
∧
Q3 = ApCq + A∗

pBq + AqCp + A∗
qBp + G

2
(AqCq + A∗

qBq)

− (1 − G)
4

(2Ap|Aq|2 + A∗
pA2

q )
(113)

∧
po

∧
p1 = ApCp + A∗

pBp

∧
p

3

o = 3Ap|Ap|2
(114)

Ap = �(τ1),

Aq = �(τ1)
[
−1 + iω

G(1 − G)

] (115)

Cp = 2(1 − G)|�(τ1)|2

Cq = −
[

(1 − G)
2G

]
|�(τ1)|2 (116)

Bp = [4(1 − G)3 + iω(1 + 2G)]�(τ1)2

6G(1 − G)

Bq =

[(
15
2

G-
9
2

−3G2
)

(1 − G) − iω(8 − 3G − 2G−1)
]

�(τ1)2

6G(1 − G)

(117)

Carrying out the operation in Eq. (112), using Eqs. (113)–
(115), we obtain

σ = − (1 − G)3

16G (4 + 19G − 8G2)

− iω(1 − G)
48G2 (8 − 31G + 17G2 + 24G3)

(118)

We note that for 0.0 <G< 1.0, Reη < 0.0, and Reσ < 0.0. As
a check we also note that both η and σ in Eq. (110) and Eq.
(118), respectively, goes to zero nonlinearly as G⇒ 1.0.

We solve for the absolute value and phase of �(τ1)
by writing this in polar form and equating the real and
imaginary parts on both sides of Eq. (106). With �(τ1) =
|�(τ1)|expiφ(τ1), we obtain exactly solvable equations,

∂

∂τ1
|�(τ1)| = Reη|�(τ1)| + Reσ

�2
|�(τ1)|3 (119)

∂

∂τ1
φ(τ1) = Imη + Imσ

�2
|�(τ1)|2 (120)

A Solution of Eq. (119) in which the |�(0)| can be arbitrar-
ily independent of the limiting value |�(∞)|, which is the
possible limit cycle value, is of the form

|�(τ1)| = |�(0)||�(∞)|exp(Reητ1)

[|�(∞)|2 + {exp[2Reητ1 − 1]|�(0)|2}]1/2 (121)

where |�(∞)| =
[
− (Reη�2)

Reσ

]1/2

which is a real value if

�2 < 0, since Reη < 0 and Reσ < 0.
Indeed, in real time |�(∞)| = lim

t → ∞
|�(τ1)| only if

Reητ1 ⇒ ∞ as t ⇒ ∞ hence only if (� − �c) < 0 or � < �c,
in Eq. (121), i.e. �2 < 0. This is consistent with the crite-
ria for unstable focus in the linear analysis. Otherwise,
limt → ∞|�(τ1)| = 0 if (� − �c) > 0 or � > �c. Thus, a well-
defined limiting value of |�(τ1)| as t ⇒ ∞ exists only for
� < �c. This is the limit cycle value of |�(τ1)|. Substituting
the now known functional form of |�(τ1)| in Eq. (121), we
can also integrate Eq. (120). The result is

φ(τ1) = Const + Imητ1

+ Imσ

�2

|�(∞)|2
2Reη

{
ln

[|�(∞)|2 + exp[2Reητ1 − 1]|�(0)|2]

[|�(∞)|2 − |�(0)|2]

}

(122)
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The limiting values of φ(τ1) are

lim
t ⇒ ∞

φ(τ1) =

⎧
⎪⎪⎨

⎪⎪⎩

Const + Imητ1, if � > �c

Const + Imητ1 + Imσ

�2
|�(∞)|2τ1

+ln

{ |�(0)|2
[|�(∞)|2 − |�(0)|2]

}
, if � < �c

(123)

Taking the overall constant of integration equal to zero,
we end up with the expression for the limit cycle value of
|�(τ1)| given as

lim
t ⇒ ∞

�(τ1) =
[−Reη�2

Reσ

]1/2

expi[Imη(� − �c)

+ Imσ

�2
|�(∞)|2(� − �c)]τ (124)

With the limit cycle value of �(τ1) known,
(

po

qo

)
and

(
p1
q1

)
at the limit cycle are completely determined. Thus,

to second order in the smallness parameter, and by virtue
of Eq. (69) and Eq. (75), we have the limit cycle solution
given as

(
�

Q

)
=
(

�o

Qo

)
+
∣
∣ (�−�c )

�2

∣
∣1/2
(

po

qo

)
+
∣
∣ (�−�c )

�2

∣
∣
(

p1
q1

)

+O

(∣
∣ (�−�c )

�2

∣
∣3/2
) (125)

where from Eq. (92), we have
(

po

qo

)
= |�(∞)|√G

(
2cos�τ

−2
√Gcos�τ −

√
(1 − G)2sin�τ

)

= 2|�(∞)|√G

(
cos�τ

−sin(�τ + �)

) (126)

where

tan� =
√

G
(1 − G)

> 0 (127)

� = √G(1 − G)3/2 + [Imη(� − �c)

+ Imσ

�2
|�(∞)|2(� − �c)] (128)

From Eqs. (96), (99), and (100), we also have
(

p1
q1

)
= |�(∞)|2

⎧
⎪⎨

⎪⎩

(1 − G)
G
( 2G

−1/2

)

+ 2
6G(1 − G)

(
4(1 − G)3cos2�τ − ω(1 + 2G)sin2�τ[(
15
2

G-
9
2

−3G2

)
(1 − G)cos2�τ

+ω(8 − 3G − 2G−1)

]
sin2�τ

)
⎫
⎪⎬

⎪⎭
(129)

We note that Eq. (129) also contains a time-independent
term, indicating higher-order shifts of the center of the
limit cycle from the stationary point (Qo, �o). Therefore,

the average value of
(

�

Q
)

is given by

(
�

Q

)

average

=
(

�o

Qo

)
+
∣
∣ (�−�c )

�2

∣
∣ |�(∞)|2 (1−G)

G

(
2G

−1/2

)

+O(ε3)
(130)

where the leading higher-order corrections comes from the
time-independent terms.

Variation of the Average Value and Amplitude with Bias.
We see that the limit cycle occurs within the range of val-
ues of the parameter � where the criterion for unstable
focus (1 − G)3

> 4� (i.e., Tr(M) > 0) also holds, analogous to
our calculation of the limit cycle of AlGaAs/GaAs/ AlGaAs
double-barrier heterostructure operating in the NDR re-
gion (33). From Eqs. (62), (125), and (126), the leading av-
erage value of the total trapped hole charge in the barrier
is given by

βQB = �o + Qo

= G
(1 − G)

+
(

1 − G
�

)1/2 (131)

This is a slowly varying function of G since it is a sum of an
increasing function and a decreasing function. For values of
� under the critical point, i.e., limit cycle device operation,
the rate off change with respect to G is decreasing. Indeed,
we have

d(βQB)
dG = 1

(1 − G)2 −
(

1
4�(1 − G)

)1/2

≤ 0 (132)

where the equality is obtained at the critical point � = �c.
Since G is our measure of the voltage applied at the drain
contact, we conclude from Eq. (132), and by taking into
account the higher-order correction terms which increase
with G that the average total hole charge trapped in the
barrier is slowly decreasing with the applied bias to the
leading orders, in the range of G of physical interest. More-
over, it is linearly decreasing in the presence of oscillation,
i.e., � < �c. Note that for nonoscillatory case, � > �c, the
total trapped hole charge is a nonlinearly increasing func-
tion of G. Later, we will show that the oscillatory limit cycle
operation is supported by the experiment.

We now show that the amplitude of oscillation increases
with applied bias in the range of physical interest. From
Eqs. (125) and (126), this amplitude is given by the follow-
ing expression:

∣
∣
∣
∣
(� − �c)

�2

∣
∣
∣
∣

1/2
2|�(∞)|√G

=
∣
∣
∣
∣
(� − �c)

�2

∣
∣
∣
∣

1/2
2√G

[
− (Reη�2)

Reσ

]1/2

(133)

where η is given by Eq. (110) and σ is determined from
Eq. (118). From Eqs. (110) and (118), we have the final
expression for the amplitude given by
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The expression in the curly bracket in the denominator
of Eq. (134) goes to zero as G increases and approaches 1,
while the numerator increases with G. We are thus left with
an expression which is an increasing function of G which is
proportional to the applied bias.

Equation (134) explicitly shows that the amplitude of
oscillation increases with bias. Denoting the leading time-
dependent part of QB(t) as δQB(t), the total trapped hole
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charge in the barrier oscillates with amplitude that in-
creases with bias and is given by

δQB(t) = 4

∣
∣
∣

(� − �c)
�2

∣
∣
∣

1/2[ 4G|�2|
(1 − G)5|{4 + 19G − 8G2}|

]1/2

×[cos �T − sin(�T + �)]
(135)

This increase in the amplitude of oscillation is expected
since the maximum electric field in the depletion region,
and hence the maximum e-h generation rate, by Zener tun-
neling (10), increases with bias.

In summary, we have verified from the analysis of our
physical model that the average trapped hole charge in the
barrier is approximately a slanted step function as a func-
tion of the applied biasing field in the depletion layer of
the drain region determined by G. Furthermore, we have
also shown that the amplitude of the oscillation of trapped
hole charge in the barrier is an increasing function of the
biasing field in the range of physical interest, while main-
taining a slowly decreasing average value.

Average Barrier and Quantum-Well Charges

Since common experimental techniques are not capable of
proving this very high-frequency oscillation, we calculate
the time-averaged quantities leading to a current-voltage
I-V characteristic which can be compared with experimen-
tally measured I-V. We will show that our theoretical re-
sults are in excellent qualitative agreement with the ex-
isting experiment. The time-averaged hole charge in the
barrier is denoted as Q(AlGaSb). This average value of the
hole charge oscillation has been demonstrated previously
to be a slowly varying function of the applied biasing field,
after an abrupt increase at (kD

z )2 ≈ (kD
F )2 in Fig. 15. We are

thus guided to approximate a ‘slanted’ step-function behav-
ior, Qh�[(kD

z )2 − (kD
F )2] for the time-averaged hole charge

of the barrier, where Qh ≈ eQB [refer to Eq. (62), e is the
unit charge which is positive definite since only holes are
trapped. We shall see that indeed this leads to a “slanted
parallelepiped” hysteresis in the I-V characteristics, in full
qualitative agreement with an existing experiment.

The slanted step-function behavior of the time-averaged
hole charge is a property of our physical model and strongly
suggests the limit cycle operation of the experimental de-
vice. From the nature of Zener transition, higher bias and
higher electric field would mean “faster passage in an
avoided crossing region,” (10) and hence larger Zener tran-
sition probability. Thus, if duon generation and accompany-
ing oscillation is absent, Q(AlGaSb) is expected to mono-
tonically increase with biasing field. Therefore, the most
probable way for the hole charge to be slowly decreasing
with bias as indicated by Eq. (132), is for it to be oscillat-
ing between “charged” and “discharged” state and hence to
become strongly limited. It is the amplitude of this oscil-
lation which can monotonically increase with bias, as we
have demonstrated in the analysis of our physical model,
and discussed in more detail later, while maintaining the
average value to be slowly varying with bias. On the other
hand, the self-consistency of the potential alone in Fig. 15,
which must also be satisfied, demands that the polariza-
tion and hence Q(AlGaSb) increases monotonically with
biasing field or (kD

z )2. We shall see that the simultaneous
solution to these two requirements, plus the continuity con-

dition, leads to a slanted parallelepiped hysteresis of the
trapped hole charge in the barrier.

In order to describe the convex energy band-edge (EBE)
profile in the quantum well we need a minimum of two val-
ues of fields, and this is also true for describing the concave
EBE profile in the barrier. Therefore, we need four different
field parameters in the theory. However, the requirement
of a faster voltage drop, by virtue of the presence of hole
charge, occurring in the barrier region allows us to use only
three field parameters while still maintaining the concave
EBE profile in the barrier region. The inflection point or
the transition region from the convex to concave EBE pro-
files is located at the barrier wall of the conduction-band
quantum well; for our purpose we assumed this region to
have a measure zero as far as the integration of the fields
is concerned to obtain the total voltage drop across the de-
vice. For nonzero average value of NB, which is the number
of “unpaired” trapped holes, we also expect a nonzero av-
erage polarization between the barrier and spacer layer
of the drain region to be affecting the potential profile, as
indicated by a simple ‘kink’ in the spacer region of Fig. 15.

We only need to introduce a third field parameter, EB,
as shown in Fig. 15, instead of additional two field quan-
tities to describe the concave EBE profile in the barrier.
We can estimate the other field parameter in the second
half of the barrier as proportional to ER, as the figure sug-
gests with proportionality factor (which may depend on the
voltage) χ(V ), and still maintain the physical requirement
of concave EBE profile in this region. This takes into ac-
count the nonzero average NB, and the average presence of
electrons in the spacer layer displaced from the barrier by
Zener transition. Notice that the maximum concave curva-
ture must be located at the middle of the barrier where the
maximum density of highly confined holes occurs.

From Fig. 15, we can approximate the trapped hole
charge in the second barrier by the expression: χER − EB =
Q(AlGaSb), which follows from the Poisson equation. We
estimate the proportionality factor χ is close to unity and
positive. From the requirement of faster voltage drop in
the barrier region in Fig. 15, we must have EB more neg-
ative than χER, thus we obtain Q(AlGaSb) > 0 consistent
with the trapped hole charge in the second barrier. Figure
2 shows schematically the conduction and valence band-
edge profiles and serves to define the various quantities
used in the present calculations.

Hysteresis of trapped hole charge in the barrier. The self-
consistent calculation of the hole charge consists of two
steps. The first step is to account for the work done on a
positive charge e. This is related to the electric fields as
follows: Work = −e

∫
E · ds. With positive applied bias, V,

and referring to Fig. 15, this translates to the following
expression, with absolute value symbol explicitly indicated
here:

eV = e|EL|
(
b + w

2

)
+ e|ER|w

2
+ Eg + �

2(kD
z )2

2m∗ − Ehh (136)

where w and b are the width of the quantum well and bar-
rier, respectively. We now use the Poisson equation to elim-
inate |ER| in Eq. (136) in terms of Q(AlGaSb) and |EB|. This
means that |ER| of Eq. (136) will be absorbed in Q(AlGaSb),
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which is determined self-consistently by the voltage drop
in the left half of the barrier or |EB|, as well as by |EL|
which in turn determines Qw. Since all fields on the aver-
age have negative sign for positive applied voltage, we may
also write Poisson equation as

|ER| − |EL| = |Qw|
ε

|EB| − χ|ER| = Q(AlGaSb)
ε

(137)

Therefore, we obtain the following expression for the
trapped hole charge:

Q(AlGaSb) = 2εχ

ew

{

(Eg − Ehh) −
[
eV − e|EL|

(
b + w

2

)

−e|EB| w

2χ

]
+ �

2(kD
z )2

2m∗

}

(138)

Notice that the trapped hole charge is unambiguously an
increasing function of (kD

z )2 in Eq. (138); the remaining
terms are dependent on the applied voltage V and collec-
tively serves as a parameter for a family of linear curves
as a function of (kD

z )2.
The second step is to invoke the quantum transport phe-

nomena of Zener tunneling. Following the preceeding dis-
cussions, this is expressed by

Q(AlGaSb) = Qh[(kD
z )2]�[(kD

z )2 − (kD
F )2] (139)

where Qh[(kD
z )2] is a slightly decreasing function of aver-

age (kD
z )2 as dictated by our analytical result given by Eq.

(132), which is plotted in Fig. 20(a). Here, we made the
natural assumption that the average (kD

z )2 increases with
the biasing field or G. This assumption is consistent with
a decreasing average trapped hole charge as a function of
G. The simultaneous solutions of Eqs. (138) and (139), in-
corporating the continuity condition, is shown graphically
in Fig. 6(b), which yield the hysteresis of the trapped hole
charge in the AlGaSb barrier. Note that the forward bias
discontinuity is smaller than the reverse bias discontinu-
ity in the hysteresis loop. This is the salient features of
the present model which yield excellent qualitative agree-
ment with experiment. The discussion given here concern-
ing Q(AIGaSb) is more detailed than that in Refs. (25) and
(26).

Hysteresis of the quantum-well charge. We give here the
expression for the conduction-band quantum-well charge
which determines the source-to-drain terminal current of
the device. This is obtained by describing the whole length
of the device by three independent fields, namely, EL, E′

R,
and E′

B. Note that the field χER used before is only valid
in the right-half barrier region, by virtue of nonzero av-
erage number of unpaired trapped holes, NB, which may
lead on the average to a polarization between the right-
barrier edge and spacer-layer of the drain, as indicated in
Fig. 15. The field EL is as defined before, whereas E′

R is de-
fined by the relation: E′

R(b/2 + w/2) = ER(w/2) + EB(b/2),
and E′

B is the constant-field approximation for the rest of
the region of dimension [(b/2) + c]. As a consequence, we

arrive at the following relation: |E′
R| − |EL| =

∼
α|Qw|

ε
and

|E′
R| − |E′

B| =
∼
β |Q(AIGaSb)|

ε
, where

∼
α and

∼
β are the pro-

portionality constants. Thus, we may write for our present
purpose

eV = e|EL|
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2
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+ e|E′

R|
(

b

2
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+e|E′
B|
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b

2
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(140)

We then express |E′
R| and |E′

B| in terms of |Qw|, Q(AlGaSb),
and |EL|. We also use the relation: e|EL| = [e(V − φc)]/(2b +
w), where eφc = eV − Ew + �

2(ks
z)

2

2m∗ to obtain the final result
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(141)

where we have ξ = [2b + w + c]/(2b + w). Equation (141)
is the self-consistency requirement for |Qw|. The quantum
transport requirement for Qw was given by Buot and Ra-
jagopal (25, 26) as

|Qw((ks
z))|

= em∗kT
π�2

ln

[
1 + exp

1
kT

(
EF − �

2(ks
z)

2

2m∗

)](
τd

τe

)
�((kz)

2)

(142)

where
1
τd

= 1
τe

+ 1
τc

,
1
τc

, is the effective rate of decay of Qw

into unoccupied collector states,
1
τe

is equal to the rate of

supply of electrons from the emitter to the quantum well,
and this can be assumed to be equal to the rate of the re-
verse process only for the near-equilibrium situation. Un-
der steady state at significant bias, it is more appropri-
ate to approximate τd = τc. The simultaneous solution of
Eqs. 141 and 142, making use of the graphical solution
of Q(AlGaSb), is also graphically obtained as shown in
Fig. 21.

Discussions

Average value of the oscillating current and I-V hysteresis.
The RTD current can he approximated by Qw/τc. One can
immediately see that the resulting I-V characteristics have
all the salient features of the experimental results (34, 35),
exhibiting the slanted parallelepiped hysteresis inn the
I-V characteristic before the current peak, Fig. 7(b). Be-
cause of the result obtained in Eq. (132), plotted in Fig.
20(a), concerning the decrease of the trapped hole charge
with biasing field, the I-V hysteresis is more accurately
shown in this article to have a smaller higher-current off-
set at forward-bias compared to the lower-current offset at
reverse-bias. Note that the sensitivity of the time-averaged
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Figure 20. (a) Average trapped holes in the barrier, βQB of Eq. (131), as a function of G (proportional to applied bias). Note that the
negative slope increases with decrease in � while the values of the total trapped holes increase. For the value of � = 0.01, the Tr(M) > 0
region covers the range for G< 0.5. (b) Graphical solution of Eqs. (138) and (139). Equation (138) for Q( AlGaSb) vs. (kD

z )2 is approximated

by positive sloping lines, and Eq. (139) as a step function with value Qh[(kD
z )2] for (kD

z )2
> (kD

F )2. By applying the continuity condition, open
circles and solid circles are solutions for the increasing and decreasing voltage sweep, respectively. A slanted parallelepiped hysteresis of
trapped hole charge is clearly shown. [From Ref. 32 with permission].

hole charge, QB, to the applied bias is dictated by our physi-
cal model and limit cycle analysis. Specifically, for nonoscil-
latory case, the trapped hole charge increases nonlinearly
with applied biasing field or G, and is eliminated by the
experiment since this would lead to a larger current offset
at forward bias than for reverse bias contrary to the ex-
perimental I-V characteristics. Indeed, the analytical I-V
result under limit cycle operation is in complete qualita-
tive agreement with this one important salient feature of
the hysteresis of the experimental I-V characteristics (35),
which is reproduced in Fig. 21(c). Thus, we have experi-
mental evidence indicating the correctness of our approach
and the promising potential of this nanodevice as a novel
all solid-state THz source.

Amplitude of the fundamental oscillation. Similarly, from
Eq. (134), the amplitude Ao of the fundamental oscillation
of trapped holes is given by

Ao = 1
β

4
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(143)

Note that the magnitude of
1
β

is generally large, in-

dicating that the amplitude of oscillation of the trapped
holes can be quite significant. This could provide for a
good charge control of the quantum-well resonant en-
ergy level yielding useful power at THz frequencies. Using

our estimate of
1
β

≈ 1011
cm−2, then Ao ≈ (108 − 109)cm−2 or

Ao ≈ (10−11 − 10−10)C cm−2. Using a value of the capaci-
tance C of about 10−10

F , we see that corresponding voltage
modulation can be on the order of 1.0 V.

The oscillatory behavior allows the oscillation ampli-
tude to grow with the applied bias, in response to the in-
creasing maximum electric field in the depletion region
of the drain, while maintaining a slowly decreasing time-
average value. Figure 22 shows the variation of amplitude
as a function of G.

Frequency of the fundamental oscillation. The fundamen-
tal frequency of oscillation is given by wo = α�, where the
α comes from the conversion of τ to real time. From Eq.
(128), we have

wo = α[
√G(1 − G)3/2 + [Im η(� − �c)

+ Im σ

�2
|�(∞)|2(� − �c)]] (144)

where α = λN. Using estimates for the valence band den-
sity of states and tunneling rates, the first term of Eq. (144)
is estimated to be in the THz range of frequency. Using our
conservative estimate for α ≈ 1013

s−1 and G≈ 10−2, we ob-
tain wo = 1012 for the leading term of Eq. (144). Figure 23
shows the variation of frequency as a function of G. Com-
paring with Fig. 22, we see that there exists an optimum G
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Figure 21. (a) Graphical solution of Eqs. (141) and (142). Equation (141) is approximated by parallel sloping lines, and Eq. (142) has a
value zero for (ks

z)
2 ≤ 0. The solutions for Q(AlGaSb) are obtained from Fig. 20 and used here to create an offset in the sloping lines of Eq.

(141), leading to solutions at higher values of Qw as indicated by the dotted arrows. For the increasing voltage sweep, the solutions for
Qw are given by the intersection points S1, S2, S3, S4, S5, S6 (low), S6 (high), S7, and S8. For the reverse voltage sweep, the corresponding
solution points are S8, S7, S6, SR

5 , SR
4 , SR

3 , SR
2 [S2(high)], S2 [S2(low)], and back to S1. Note that the discontinuity at forward bias, where

Qh ≡ Qh(VTH ) is less than that of reverse bias where Qh ≡ Qh(V 2
b

) in accordance with Fig. 20(a). (b) Solution for the I-V characteristic
showing slanted parallelepiped hysteresis occurring before the RTD current peak, in agreement with the experiment. (c) Experimentally
measured I-V characteristics of AIGaSb/InAs/AlGaSb double-barrier structure (from Ref. (35), Fig. 2(a), reprinted by permission).

Figure 22. Plot of the amplitude of oscillation, square root of the expression within the bracket of Eq. (135), as a function of driving source
G (applied bias)
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Figure 23. Plot of the frequency of oscillation, which is the leading term of Eq. (128), as a function of the driving source G.

for a given rate parameter �, where the frequency and am-
plitude are optimized for maximum power output at THz
frequency.

Figures 22 and 23 also point out a very attractive and
unique feature of the device, namely, for some range of bias-
ing conditions (physical range of G), both the frequency and
power delivered (amplitude of oscillation) increase with G.
Thus, one can optimize the device for the highest frequency
at maximum power of operation.

Equivalent circuit model and anticipated THz power
output. To appreciate the compact nature of the solid-state
THz source, it is helpful to represent the proposed THz
source in terms of its equivalent circuit, using the combi-
nation of familiar circuit elements. This is represented in
Fig. 24, by a circuit consisting of one bipolar transistor, in
combination with a capacitor and resistors to form a relax-
ation type oscillator. The capacitor is used to represent the
generation of charge polarization pair or duon. The tran-
sistor represents the RTD with staggered band-edge align-
ment with the capability to trap holes which induces the
conduction of current across the RTD. The associated phys-
ical process responsible for the high-frequency modulation
of the current across the device is depicted in Fig. 16.

In Fig. 24, the capacitor charges (by virtue of polariza-
tion pair formation when Zener tunneling occurs) until the
transistor conducts via the induced current which goes to
a maximum value. At this point, the capacitor discharges
rapidly into the transistor decreasing the “base” voltage.
When the discharge of C has lowered the emitter-to-base
voltage, the transistor is cut off (i.e., the induced current
is cut off). The cycle is then repeated after a charge time
determined by Re, and C. Narrow pulses are thus avail-
able across the load RL, coupled through some form of loss-
less resonator matching circuit. This load may be a circuit
impedance used to drive an ultrafast timing circuitry in a
computer, or an equivalent radiation resistance of a dipole
(patch) antenna. The voltage across C is like a sawtooth-
like pulse by virtue of the rapid discharge after a slower
buildup of charge.

Note that in our proposed device the charging of the ca-
pacitance is through the Zener tunneling instability which
is acting in parallel throughout the whole device area, ren-
dering the charging time to be independent of the device
area. This is expected to yield a very effective and simple
power combining scheme. We can estimate the anticipated
THz power output of our proposed THz source by observing

that the polarization voltage is roughly in phase with the
fluctuating current across the device.We estimated the cur-
rent amplitude to be around 1.0 × 105

A/cm2, and the po-
larization voltage amplitude of about 0.3 V. These yield an
anticipated THz power output of 1.5 × 104

W/cm2 or 15mW

of power for a 10µm × 10µm device area. To realize this
often requires that some form of resonant guiding struc-
ture/antenna will be integrated with the proposed device
to minimize losses (41). Electrically pumped THz sources
(e.g., high performance GUNN diodes) operating tip to mW
power levels have not been demonstrated (41) (also note
that for the optically excited Bloch oscillator, the experi-
mental emitted power is only on the order of nano- to mi-
crowatts (42)).

Advantages over conventional RTD circuit-based THz
sources. The interband or Zener tunnelling high-frequency
(ZTHF) source possess definite advantages when compared
to the conventional intraband resonant-tunneling diode
(CIRTD) oscillator source. It should be noted that CIRTDs
have so far only been utilized as one of the components in
a traditional two-terminal oscillator source circuit. Specif-
ically, one biases the CIRTD in its NDR region. Here, any
noise fluctuations are amplified when the CIRTD device
and its inherent charge storage capacitance resonates in
an unstable manner with some external charge storage el-
ement (e.g., inductance of the contact lead). The instability
conditions necessary for operation of the CIRTD-based os-
cillator are intrinsically tied to the fact that the current and
voltage oscillations are made completely out of phase by the
NDR action. For example, at any constant bias within the
NDR region a small decrease in voltage (i.e., due to noise
fluctuations) leads to an increase in the current which acts
to charge the device capacitance. During the next cycle the
external element (inductor) is in turn charged by the dis-
charging device capacitance. Over many successive cycles
the gain, associated with the NDR, continues to increase
the amplitude of the oscillation until a limit cycle is reached
at the edges of the NDR.

The point is that CIRTD acts as an unstable gain mech-
anism and oscillations are produced by resonating with
an external element. Hence, the energy associated with
the oscillation must pass through a physical contact which
will always possess some loss. Even more important, the
CIRTD) is inherently unstable over a broad bandwidth.
Specifically, the NDR of the CIRTD will encourage oscilla-
tion in the biasing circuitry down to zero frequency. There-
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Figure 24. Equivalent-circuit model of an ITHS as a relaxation oscillator circuit with a common source.

fore, one must design the circuit coupled to the CIRTD-
based oscillator so that it is low-frequency stable to pre-
vent energy losses to lower-frequency modes. This requires
the designer to reduce the CIRTD capacitance. This can
only really be accomplished by reducing the area of the
diode. This reduction in CIRTD device area severely limits
the available output power of the oscillator at very high
frequencies.

In contrast, the ZTHF device acts as a stand-alone
high-frequency “generator” of nanometric dimensions in a
“monolithic” construction. The fundamental physical prin-
ciples upon which the ZTHF functions eliminates the pre-
viously described limitations associated with the CIRTD-
based oscillator. Specifically, the ZTHF operates by charg-
ing and discharging the localized well regions separated
by mesoscopic distances inside the semiconductor device.
The process of charging the conduction-band quantum well
in sub-picosecond time scales allows one to trigger a dis-
charging of the valence-band quantum well. This process
is equivalent to a mesoscopic scale feedback. Here, the
real advantages are that this feedback is accomplished
internally (therefore avoiding the loss and charging ef-
fects associated with external contacts) and that it can be
done outside the NDR region, an operating region which
in the CIRTD-based oscillator tends to amplify noise and
subharmonics.

The only other known single-element high-frequency
source device which exhibits this type of behavior (i.e., in-
trinsic oscillatory mechanism) are the IMPATT and GUNN
diodes. However, the IMPATT and GUNN oscillators func-
tion by propagating a charge dipole domain along a transit
channel. Hence, the IMPATT and GUNN oscillation fre-
quency is inversely proportional to device length which can
only be feasibly reduced to a minimum limit, much larger
compared to the dimensional features of ZTHF source, to
achieve subterahertz (i.e., approximately 100 GHz) perfor-
mance. In contrast to IMPATT and GUNN devices, the
ZTHF device operates on a fixed but oscillatory charge
dipole domain which acts as a “gate signal” for modu-
lating the conduction-band current of the CIRTD opera-
tion, without bringing the CIRTD operation into the NDR
region.

Compared to other solid-state THz sources driven by op-
tical lasers, the proposed device has a clear advantage in
terms of simplicity, compactness, and monolithic integra-
tion capabilities with power combiners, matching/guided
wave structures, and antennas. The proposed device also
promises to yield much larger THz power output.

Hence, the ZTHF source is a potentially very impor-
tant novel device because it can function on picosecond
time scales, it is not a broad-bandwidth oscillator, and un-

like CIRTD is not plagued by low-frequency stability con-
straints. We have performed preliminary numerical calcu-
lations and have found that, at reasonable dc biasing, sig-
nificant levels of hole trapping results. One can modulate
the conduction-band well energy-level by several meV by
interband tunneling currents. This is important because it
means that the conduction band current can be altered sig-
nificantly (≈ 50% modulation) by the valence band current
on THz frequency time scales.

Summary. In summary, the dynamical behavior of a cou-
pled system of duon and unpaired trapped hole charge
in the RTD with staggered band-gap alignment has been
shown to give the fundamental physical explanation of the
experimental I-V characteristic of AlGaSb/lnAs/AlGaSb
double-barrier structure. The stimulated production of
duons and Zener tunneling of electrons leads to an au-
tonomous control of the position of the energy level of the
quantum well. The self-oscillatory character of the trapped
hole charge provides the physical control mechanism be-
hind a novel interband-tunnel high-frequency-source RTD
device. To calculate the oscillating current, one simply re-
placed the average trapped charge Q(AlGaSb) in Eq. (141)
with the oscillating trapped charge expression determined
by Eqs. 131 and 135. This oscillation is useful for various
high-bandwidth applications, well beyond the range of ap-
plications of the traditional IMPATT and Gunn effect de-
vices. In practice, for a given material parameter �, we
choose the operating bias, directly related to G such that
Tr(M) > 0. For a range of G where this is satisfied, we can
optimize the operating point G to realize a THz source with
optimum power and frequency. Since in general the duon
formation is a higher-order process involving Zener tunnel-
ing coupled with resonant tunneling to form a polarization
pair, we expect � to be considerably less than one, as dis-
cussed before. Thus, in a realistic device Tr(M) > 0 should
easily be satisfied.

The hysteresis of the trapped-hole charge in the AIGaSb
barrier plays a crucial role in the hysteresis of the I-V curve
to occur before the current peak (25, 26). This is in sharp
contrast to the I-V hysteresis and bistability commonly
observed in RTD with conventional band-edge alignment
where the I-V hysteresis occurs after the current peak, at
the NDR region. The latter is caused by a combination of
factors, namely, the nonlinear series resistance, quantum-
well charge storage, and quantum inductance (33, 26).

Since the high-field domain associated with duon for-
mation acts to modulate the resonant energy level in the
conduction-band quantum well operating near and before
the ‘conventional’ resonant-current peak, the transcon-
ductance of this “self-gated” structure can be quite large,
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yielding a novel high-frequency source with considerable
power. Basically, the high-field domain acts as a self-gate
of the built-in-transistor oscillator. These oscillations are
expected to occur in the THz range. Application in com-
munication and sensors are possible niches, and perhaps
another, with the incorporation of defect engineering, as
a triggering element in semiconductor lasers. Advances in
power combining techniques using microfabrication give
more grounds for the need of a serious research and de-
velopment efforts on the RTD as potential solution for all
solid-state and compact THz sources.

The theoretical technique used here have also been ap-
plied to the analysis of the self-oscillating behavior of con-
ventional RTDs (27), also in full agrement with large-scale
time-dependent simulation and experiments. Our present
results qualitatively agree with the salient features of the
experimental measurements of the I-V characteristic of a
AlGaSb/lnAs/AlGaSb staggered band-gap double-barrier
structure. However, exact numerical results call for large-
scale time-dependent numerical simulation of multiband
quantum transport equations which account for interband
tunneling (31).

I would like to thank Dr. Dwight Woolard for some help-
ful discussions on the advantages over conventional RTD
circuit-based THz sources.

OTHER RESEARCH ON LZS EFFECT

For those interested in more advanced work on LZS phe-
nomena, there are several theoretical and experimental
reports dealing with LZS effect in the presence of dissipa-
tion. For a good overview of the theoretical work, readers
are referred to Ao and Rammer (13), and the monograph
of Leggett et al. (30)). Experimental and theoretical work
on superlattice heterostructures (2) and mesoscopic metal
rings in also being pursued (31). There exist more math-
ematical treatments of Stark–Wannier energy levels and
Zener tunneling; interested readers are referred to Refs.
32, 33.
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