
TRANSPORT IN SEMICONDUCTORS, DYNAM-
ICS OF CARRIERS IN MACROSCOPIC AND
MESOSCOPIC SYSTEMS

To understand the transport phenomena in semiconduc-
tor crystals one needs to know a multitude of interrelated
concepts, including the electronic band structure of semi-
conductors, crystal lattice dynamics, and electron–phonon
interaction. This article is an overview of these and several
other closely related topics.

The transport of electrons inside a semiconductor crys-
tal has very complicated dynamics. To start, in one cubic
centimeter of a typical crystal there are approximately 1023

electrons interacting with an equally large number of nu-
clei. The atoms of the crystal are attached to one another by
covalent bonds (electrons that are shared between neigh-
boring atoms), which can be considered as “springs” con-
necting heavy ions. These ions are vibrating around an
equilibrium position. These vibrations, which exist at any
temperature (and increase as the temperature of the crys-
tal is raised) are described by small packets of thermal (or
vibrational) energy referred to as phonons. Electrons, in
their movement inside the crystal, are scattered by these
phonons. Scattering is a generic term used for collisions
between carriers and the obstacles that the carriers might
face. These collisions impede the motion of electrons. The
strength of the scattering (the intensity of the collision) is
dependent on the energy and momentum of the electrons
as well as the energy and momentum of phonons.

To describe the transport phenomenon we do the follow-
ing in successive sections:

1. Approximate the behavior of the ensemble of real
electrons in real crystals with a realistic number of
differential equations that can be solved analytically
or numerically.

2. Discuss the time frames within which the scattering
of carriers take place, and limit the study of trans-
port to time frames longer than several limiting time
intervals.

3. Determine the momentum dependence of the en-
ergy of carriers in the crystal. It turns out that the
parabolic relationship between the energy and mo-
mentum (E = p2/2m) for free electrons is altered when
electrons are inside the crystal and experience the in-
ternal forces within the crystal.

4. Assign an effective mass to electrons such that
the nonparabolic energy–momentum relationship for
electrons can be accounted for by a simple replace-
ment of the free-carriers mass with effective mass.
The effective mass is connected with the energy band
structure.

5. Study the dynamics of the crystal lattice vibrations,
and discuss various modes of the resulting phonons.
One also needs the energy and momentum depen-
dence, as well as the range of frequencies, of these
phonons. This study is needed before any interaction
of electrons and phonons can be investigated.

6. Establish a rule of interaction between the scatterers
and electrons, referred to as Fermi’s “golden rule.”

7. Define certain characteristic times (referred to as re-
laxation times) that approximate the process of re-
turn of the ensemble of electrons to its equilibrium
state. For example, when the energy (or momentum)
of the ensemble of electrons is disturbed by an ap-
plied force (electric or magnetic), the energy attained
by electrons must somehow be dissipated and trans-
ferred to the crystal. The relaxation times are pa-
rameters that characterize this dissipation and the
return of the ensemble to its equilibrium state.

8. Calculate the rate by which carriers are scattered
by the various scatterers, which include phonons,
impurities, and others. Scattering rates are com-
puted from the scattering potentials and are approxi-
mated by power-law energy-dependences. A complete
derivation of scattering rates due to ionized impuri-
ties and certain selected phonons scattering rates is
given.

9. Formulate a simple model for the conductivity of car-
riers in terms of the transport of electrons within the
crystal. This conductivity model is related to the mo-
bility of carriers.

10. In the last Section of this article we introduce sev-
eral concepts related to the transport in mesoscopic
devices (also referred to as nanostructures or nan-
odevices).

This article, which is the first of a two-article series, ends
with the discussion of the conductivity model. All the ma-
terials presented in this article are groundwork for a sec-
ond article entitled: “Semiconductor Boltzmann Transport
Equation in Macroscopic and Quantum-Confined Systems.

APPROXIMATING THE DYNAMICS OF REAL
ELECTRONS IN REAL CRYSTALS

Setting aside the effects of imperfections in the crystals,
and assuming a perfect crystal, the Hamiltonian (the
mathematical operator associated with the total energy)
can be written as (1)

In this expression ri denotes the position of the ith elec-
tron, Rj is the position of the jth nucleus, Zj is the atomic
number of the jth nucleus, pi and Pj are the momentum
operators of the electrons and nuclei, respectively, and
−e is the electronic charge. The masses of the electrons
and nuclei are denoted as mi and Mj , respectively. Each
term in the Hamiltonian expressed in Eq. (1) describes
a different contribution to the total energy. The first two
terms, Si p2

i /2mi and SjP2
j /2Mj, are the kinetic energies of

electrons and the nuclei, respectively. The third term, 1⁄2
Sj �=j , ZjZj , e2/‖Rj − Rj‖, is the energy associated with the
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interactions among the nuclei; the fourth term, Sj,i Zje2/‖ri

− Rj‖, is that associated with the interactions between the
electrons and the nuclei. The last term, 1⁄2 Si �=j e2/‖ri − rj‖
represents the interactions among the electrons. Consider-
ing the fact that there are approximately 1023 electrons in
each cubic centimeter of the crystal, and an equally large
number of nuclei, the task of solving the system of coupled
equations described in the above many-particle Hamilto-
nian is formidable. It turns out that solving even one of
these equations is equally nontrivial.

To proceed, one needs a large number of approximations.
The first approximation is to separate the electrons into
two groups: valence electrons and core electrons. The core
electrons, which are mostly localized around the nuclei, can
be lumped together with the nuclei to form the ion core.
The electrons in the incompletely filled shells (3s and 3p
electrons in silicon) are the valence electrons. This approx-
imation is well justified in that the electrical and electronic
properties of semiconductors (and other materials for that
matter) are mostly due to the valence electrons.

The next approximation invoked is the Born–Oppen-
heimer or adiabatic approximation, in which it is assumed
that so far as the valence electrons are concerned, the ion
cores are essentially stationary. The typical frequency of
ionic vibration in crystals is about 1013 Hz, whereas the
typical response time (see the following section) of elec-
trons (in a semiconductor with 1 eV bandgap) corresponds
to a frequency of about 1015 Hz. As a result, electrons can
respond to ionic motions almost instantly, while the ions
cannot follow the motion of electrons. So, from the point
of view of ions, the motion of electrons creates only a time-
averaged adiabatic potential. With the Born–Oppenheimer
approximation the Hamiltonian in Eq. (1) can be written
as

In Eq. (2), the term Hions(Rj ) is the Hamiltonian describing
the ionic motion under the influence of the ionic potential
plus the time-averaged adiabatic potential. This ionic mo-
tion is responsible for creating several branches of phonons,
which act as scatterers of electrons, and is discussed in de-
tail in the section “Phonons and Lattice Dynamics.” The
second term in Eq. (2), He–ion(ri , dRj ), represents the elec-
tron energy due to the interaction (scattering) of electrons
with displacement of ions (dRj ), which is the well-known
electron–phonon interaction, and is discussed in three sec-
tions thereafter. The last term He(ri , Rj0) in Eq. (2) de-
scribes the interaction of electrons with the ions frozen in
their equilibrium position Rj0, and can be written as

The above Hamiltonian, although significantly simpler
than the Hamiltonian given by Eq. (1), still involves ma-
trices of dimension 1023. To make solution possible, a dras-
tic approximation known as mean-field approximation is
made, in which it is assumed that every electron expe-
riences the same average potential V(r). With this rather
oversimplifying approximation, the Schrödinger equation

describing the motion of each electron will be given by

Here H1e, yn (r), and En are one-electron Hamiltonian, the
eigenfunction, and the energy of an electron in an eigen-
state, respectively. Each eigenstate, denoted by n, can ac-
commodate two electrons of opposite spin.

Only for a few simple potentials V(r) can the
Schrödinger equation be solved analytically. Three such
closed-form solutions for three prototype problems—
namely, the harmonic oscillator (crystal vibrations), an
electron in a potential well (quantum wells), and an elec-
tron in a central force (hydrogen atom)—can be found in
any quantum mechanics text. [See for example White (2)
or Yariv (3).]

TIME SCALES IN THE TRANSPORT OF ELECTRONS IN
SEMICONDUCTORS

The motion of electrons in a semiconductor is not collision-
free. Electrons, when subjected to a force (electric or mag-
netic, internal or external), undergo a series of collisions
with a number of scattering particles. The collisions are
present even when there is no applied field. In fact, it is
these collisions that provide the mechanism of exchange
of energy and momentum with the lattice and other car-
riers. There are collisions between the carriers (electrons
or holes), which randomize the energy and momentum of
the ensemble of carriers. Then there are elastic collisions
between the carriers and impurities or acoustic phonons,
and finally there are inelastic collisions between the carri-
ers and the lattice vibrations in the form of optical phonons.
Which of these scattering mechanisms become dominant
depends on the semiconductor material, the strength of
the applied field, the temperature, the level of doping, and
several other parameters. When an external force is ap-
plied, the electrons,while being accelerated, exchange their
energy and/or momentum with other particles (meaning
other electrons, or ionized and neutral impurities, acoustic
or optical phonons, etc.). This exchange, depending on the
type of scattering mechanism involved, relaxes the energy,
or the momentum, or both the energy and the momentum,
of the ensemble of electrons to their equilibrium states, pro-
vided that the external force has not disturbed the carriers
far from equilibrium.

There are finite time intervals involved in all of these
collisions and relaxations to equilibrium. In general there
are four time scales involved: (1) τC, the average time du-
ration of the collision, (2) τF, the average time between two
consecutive collisions, which is also known as the mean free
time, (3) τR, the characteristics time associated with the re-
turn of a disturbed electron distribution to its equilibrium
distribution, also known as the relaxation time (depending
on the collision mechanism involved, it can be either an en-
ergy or a momentum relaxation time), and (4) the hydrody-
namic time τH, the characteristic time associated with the
return of a nonuniform (nonhomogeneous) distribution of
electrons to its uniform distribution. The collision time τC

is extremely short, and is the least important of all. The
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mean free time τF is usually much longer than τC, except
under high electric fields, where the mean free time and
the collision time are comparable and one encounters sev-
eral new transport effects, such as hot-electron transport
and the Stark effect. The quantities that are character-
ized by the relaxation time τR are momentum (momentum
relaxation time, τm), and energy (energy relaxation time
τe). Relaxation in momentum returns the system to a lo-
cal equilibrium, whereas relaxation in energy returns the
system to an ensemble equilibrium. These relaxation times
are still longer than the mean free time τF. When there is
a carrier concentration gradient (as in external injection
of carriers into a crystal), the establishment of a uniform
distribution, or a nonequilibrium steady state, takes place
on time scales comparable to the hydrodynamic time τH,
which is the longest of all four time scales. It is only on the
scale of τH that the process is truly ergodic-that is, such
that time averages are equal to ensemble, or distribution,
averages, which are the important averages. In summary,
the time scales in transport of electrons in semiconductors
can be written as (4)

Studying transport phenomena in semiconductors in-
volves investigating the transient behavior of carriers and
the evolution of their distribution with time. In fact, the
Boltzmann transport equation, described in a separate ar-
ticle immediately following, describes the temporal evolu-
tion of a distribution function that is defined for carriers
in a space referred to as phase space, consisting of posi-
tion, momentum, and time. The validity of the Boltzmann
equation becomes seriously questionable when the time
scales of interest are shorter than the time scales described
above. In fact, it is only within the time scales comparable
to the hydrodynamic time τH that the transport of carri-
ers in semiconductors can be described by the Boltzmann
transport equation.

ELECTRONIC BAND STRUCTURE

The energy–momentum relationship E(k) for a free elec-
tron (an electron that is free from any internal scatter-
ing forces within a crystal) is parabolic, and the electron
is allowed to attain a continuous range of energies pro-
portional to square of the momentum k. Within the crys-
tal, and when subjected to internal scattering forces of the
lattice, the E(k) relationship loses its parabolicity and ac-
quires discontinuities in the form of forbidden energy gaps.
The formation of such forbidden gap (called a bandgap) is
the basis of many electrical and optical properties of all
semiconductors.

Furthermore, the E(k) relationship of electrons pro-
vides for yet another important simplification useful for
the description of transport within the crystal, which is
the effective-mass approximation for the carriers. In this
approximation, the effect of the crystal lattice potential on
the transport is included by using an effective mass, and
thus transport of carriers under the influence of an exter-
nal field can be described easily. To obtain the E(k) relation-
ship, one needs to solve the one-electron time-dependent

Figure 1. A schematic plot of the three components of the po-
tential energy U of electrons: U = UE + UL + US. (a) Macroscopic
potential UE; (b) periodic lattice potential UL, and (c) scattering
potential, US. After Datta (5); reprinted with permission.

Schrödinger equation given by

where m0 is the rest mass of the free electron and is 9.11 ×
10−31 kg, and Ñ is equal to h/2 π, where Planck’s constant h
is 6.625 × 10−34 J·s. The wave function ψ0(r, t) is a complex
quantity, and its squared magnitude represents the prob-
ability of finding the carrier at a point r and time t. The
subscript 0 is used to distinguish ψ0 from the ψ we will use
later to define the effective mass. The sum of probabilities
of a large number of electrons at a time t is interpreted as
the probability density of the electron.

To solve Eq. (6) one needs to model the potential energy
U(r, t), which is composed of two parts: the microscopic part
due to the periodic lattice of ions and other electrons, and
the macroscopic part due to the external field UE(r, t). The
microscopic part itself consists of two contributions: one
due to the periodic ionic lattice, UL(r, t), and the scattering
potential due to electrons, defects, phonons, and impurities,
US(r, t). Thus, the total potential energy can be written as
(5)

A schematic illustration of the three contributions to the
potential energy is shown in Fig. 1.

To simplify the solution of Eq. (6), we consider the simple
case of the periodic potential UL(r, t) and neglect US(r, t)
and UE(r, t). The periodicity of the crystal potential results
in a periodic eigenfunction solution to the Schrödinger
equation, and the wave functions will be Bloch waves. See
Pierret (6) for a complete discussion of the Bloch theorem
and Bloch waves. The wave function of an electron in a
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Figure 2. A one-dimensional potential energy of a crystalline lat-
tice: (a) periodic potential, (b) Kronig–Penny model.

band ν with wave vector, k is given by

where uν,k(r) are the Bloch functions, which have the same
periodicity as the crystal lattice and are different for each
ν and each k. The plots of Eν(k) are known as the energy
band diagrams.

Even with the simplifications described above, the solu-
tion of the Schrödinger equation for an electron in a crystal
remains formidable. A further simplification, referred to as
the Kronig–Penny model, is achieved by approximating the
real periodic crystal potential shown in Fig. 2(a) with that
in Fig. 2(b). The mathematical details of the Kronig–Penny
model are rather straightforward and can be found in many
references (see for example, Refs. 6, 7, or 4). The resulting
E(k) relationships for the first four bands are depicted in
Fig. 3. The range of k from −π/(a + b) to π/(a + b) forms the
first Brillouin zone. Note that the group velocity of elec-
trons, defined as (1/ Ñ) dE/dk, is zero at the zone bound-
aries. This implies that electrons with such energy and mo-
mentum will simply be standing waves.

The concept of the one-dimensional energy band dia-
gram can be readily extended to three dimensions in which
case the Brillouin zone becomes a three-dimensional vol-
ume in k-space enclosing the k values associated with a
given energy band. The first 3-D Brillouin zone for a dia-
mond cubic (Si, Ge) or zinc blende crystal is an octahedron
truncated by [100] planes at a distance of 2 π/a from the
center of the zone, where a is the cubic lattice constant.
This is illustrated in Fig. 4. The zone center, point �, cor-
responds to k = 0 and is a point of high symmetry. Other
points of high symmetry are the X and the L points, which
correspond to ends of the zone along the 〈100〉 and 〈111〉 di-
rections, respectively. (The notation 〈 〉 indicates the equiv-
alent directions of certain planes in the crystal. For exam-
ple, in the cubic crystal the direction 〈100〉 is the direction

Figure 3. Energy–momentum diagram of allowed E(k) states in
the first Brillouin zone of a one-dimensional crystal as determined
from the Kronig–Penny model. After Pierret (6); reprinted with
permission.

Figure 4. First Brillouin zone for materials crystallizing in the
diamond and zinc blende lattices. After Pierret (6); originally after
Blakemore (10); reprinted with permission.

perpendicular to a plane that intercepts the x axis at the
point with x coordinate 1, and parallel to the yz plane.)

The distance from the� point to the X point is more than
that from the � point to the L point. The ratio of these dis-
tances is in fact

√
3 Since plotting a complete E(k) diagram

requires four dimensions (i.e., E, kx , ky , kz ), it is customary
to depict projected E(k) plots along certain physically im-
portant k directions, which are typically the directions of
high symmetry. Plots of projected E(k) diagrams are shown
in Fig. 5(a) for germanium, 5(b) for silicon, and 5(c) and 5(d)
for gallium arsenide in the 〈100〉 and 〈111〉 directions.

The E(k) curves above the point marked Ec are for elec-
trons (with energy increasing upward) and are called the
conduction band. The E(k) curves below the point marked
Ev are called valence bands and are for holes (with en-
ergy increasing downward). For most semiconductors, the
points,�, L, and X are of importance, as they exhibit valleys
(energy minima) for electrons and peaks (energy maxima)
for holes, and most of the electrons populate the states at
the bottom of the valleys, whereas most of the holes reside
at the top of the peaks.

The energy difference between the maximum of the va-
lence band (the�point) and the minimum of the conduction
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Figure 5. E(k) diagrams characterizing the conduction and va-
lence bands of (a) germanium, (b) silicon, (c) gallium arsenide, and
(d) gallium arsenide in more detail. After Pierret (6); originally
(a–c) after Sze (11) and (d) after Blakemore (10); reprinted with
permission.

band is called the bandgap of the semiconductor:

The parameter Eg is perhaps the single most important
parameter of any semiconducting material. Many of the
optical and electronic properties of semiconductors are re-
lated to the bandgap. The minimum in the conduction band
for Ge and Si occurs at the L and X points, respectively.
Since the valence band maximum and the conduction band
minimum are not at the same k value, these materials are
called indirect bandgap semiconductors. In such materi-
als, any electronic transition between the top of the valence
band the bottom of the conduction band (i.e. generation and
recombination) requires the exchange of both energy and
momentum. In GaAs, the maximum in the valence band
and the minimum in the conduction band occur at the �
point, and any electronic transitions between the valence
band maximum and conduction band minimum do not re-
quire exchange of momentum. Thus, GaAs is called a di-
rect bandgap material. The L valley of GaAs is situated
only 0.3 eV above the � valley, and application of high-
electric-field results in transfer of carriers from the � val-
ley to the L valley. This phenomenon is the basis of many
transferred-electron devices, such as the Gunn diode. Fi-
nally, the valence band of most semiconductors at the �
point has two E(k) curves, and the valence electrons are
degenerate, which leads to the concept of light and heavy
holes, which will be discussed in the next section.

Figure 6. Constant-energy surfaces characterizing the band
structure of (a) germanium, (b) silicon, (c) gallium arsenide, and
(d) germanium, showing the truncation of the surfaces at the Bril-
louin zone boundaries. After Pierret (6); originally (a–c) after Sze
(11) and Ziman (12), (d) after McKelvey (13); reprinted with per-
mission.

EFFECTIVE MASS OF CARRIERS

The E(k) diagrams discussed in the preceding sections are
plotted in k space. An alternative approach is to plot all k
values that result in the same energy, to form the constant-
energy surface. Usually, the energy of the surface is cho-
sen to be close the bottom of the conduction band or the
top of the valence band, as that corresponds to the car-
riers that take part in transitions and transport. Figure
6 depicts the constant-energy surfaces for the conduction
bands of Ge, Si, and GaAs for energies near Ec. In the E(k)
diagram of Ge, the conduction band minimum occurs along
each of the eight equivalent 〈111〉 directions. This is shown
in Fig. 6(a) and 6(d). Thus, the constant-energy surface
consists of eight elongated ellipsoids. In Si, there are six
ellipsoids because of the six equivalent 〈100〉 directions in
the E(k) diagram along which the conduction band mini-
mum occurs. Since the conduction band minimum occurs
in GaAs at the � point, the constant-energy surface is a
sphere centered at k = 0. Upon the development of the
effective-mass concept, one will have a better appreciation
of the usefulness of the constant-energy surfaces.

In one dimension let us consider the classical electron
with a velocity v as a wave packet with a group velocity vg

as given by

When an external force acts on the wave packet for a short
time dt, the energy of the packet increases by an amount
dE given by
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from classical Newtonian mechanics. Equivalently, we can
write Eq. (11) as

Differentiating Eq. (10) with respect to time yields

Solving for d(Ñk)/dt results in

Thus, we have

The above equation defines the effective mass of carriers,
m∗, as a parameter obtained from the inverse curvature
of the E(k) relationship. Use of the effective mass allows
for lumping together all the quantum mechanical effects
due to the crystal potential into the carrier’s mass, so that
in transport calculations there is no need to consider the
quantum effects of the crystal potential.

Extending the effective mass concept to 3-D crystal re-
sults in an effective-mass tensor given by (6)

where

with i, j = x,y,z. Since the E(k) relationships for all semi-
conductors are parabolic about the band extrema, all off-
diagonal components are zero.

Let us relate the effective mass to the constant-
energy surfaces discussed above. For GaAs, with spherical
constant-energy surface for energies near the conduction
band minimum (� point), the E(k) relationship can be writ-
ten as

The diagonal components of the effective-mass tensor will
be given by

Also, Eq. (18) can be written as

where m∗
e is the common value of the three diagonal com-

ponents, and the effective-mass tensor reduces to a simple
scalar. Thus, in GaAs, the transport is characterized by an
orientation-independent effective mass. The importance of
the shape of the constant-energy surface (spherical versus
ellipsoidal) will become apparent when we developed the
concept of mobility later on in this article.

The constant-energy surfaces of Si and Ge are elongated
ellipsoids:

where k1, k2, and k3 are the principal axes, with k1 along
the axis of rotation connecting the two extrema of the elon-
gated ellipsoid together. [See Fig. 6(a) and 6(b).] The off-
diagonal components of the mass tensor are again zero.
The three nonzero diagonal components are

The component m11, associated with the axis of rotation,
is called the longitudinal effective mass and is denoted as
m∗

l . The components m22 and m33, which are the effective
masses in the two perpendicular directions to the axis of
rotation, are equal and are called the transverse effective
mass and are denoted as m∗

t . Equation (21) can then be
written in terms of m∗

l and m∗
t as

Thus, for Si and Ge, the two effective masses m∗
l and m∗

t
characterize the transport of electrons in the conduction
band. The ratio m∗

l /m
∗
t is given by (6)

where Lr is the length of the ellipsoid along the axis of
rotation and Wm is the maximum width of the ellipsoid
perpendicular to the axis of rotation. It is obvious that for
both Si and Ge, m∗

l is always greater than m∗
t .

Using the E(k) curves for electrons in the valence band,
one can define two effective masses for holes in Ge, Si, and
GaAs. (Actually, the third band, called the split-off band,
is seldom populated and therefore is not usually consid-
ered.) These two effective masses are the light-hole effec-
tive massm∗

lh and the heavy-hole effective massm∗
hh, which

correspond to the two E(k) curves in the valence bands of
the three semiconductors shown in Fig. 5.



Transport in Semiconductors, Dynamics of Carriers in Macroscopic and Mesoscopic Systems 7

Figure 7. A linear monoatomic chain where the sth atom is dis-
placed by an amount us. The interatomic forces are represented
by springs. The interatomic spacing is a.

PHONONS AND LATTICE DYNAMICS

At any temperature above 0 K, the atoms forming the crys-
tal are subject to a random thermal motion that affects the
movement of carriers within the crystal. One might con-
sider the crystal as a chain of solid balls attached together
with deformable springs upon which an oscillatory wave
of thermal motion is imposed. This constant random ther-
mal motion is the main scattering mechanism that impedes
the movement of carriers in many semiconductor materi-
als. The energy and frequency of this thermal vibration
can be characterize by the concept of phonons in much the
same way the photons characterize the electromagnetic ra-
diation. Just as photons are quanta of radiation energy,
phonons are quanta of thermal vibration energy.

It is through the interaction of phonons with electrons
that the mobility of carriers in a semiconductor is limited.
The exchange of energy between the carriers and the lattice
can take place through the either the emission or absorp-
tion of a phonon. Many factors influence the frequency and
momentum of the phonons in a crystal, including the de-
formability of the crystal, the number of atoms in the prim-
itive cell of the crystal, the atomic mass of the constituent
atoms, and other factors. Depending upon the frequency
of the phonons, they are grouped into acoustic (low fre-
quency) and optical (high frequency). The optical phonons
are either polar or nonpolar, according as the bonds in the
crystal are purely covalent or slightly ionic. Both acoustic
and optical phonons can be longitudinal or transverse, ac-
cording as the vibration of the atoms is perpendicular or
parallel to the direction of propagation of the wave.

It should be pointed out that this random thermal mo-
tion of atoms, no matter how intense it may become, does
not result in a net movement of the crystal atoms, as they
only vibrate around a stationary equilibrium point.

A simple one-dimensional monatomic model for
phonons in Ge and Si can be developed if we make the
following simplifying assumptions: (1) only the motion of
nearest neighbors (in a linear chain of atoms) is significant,
and (2) the covalent bonds are considered as linear springs
in which the displacement is linearly proportional to the
force. Referring to Fig. 7, and denoting the displacement
of the sth atom as us , one can easily write the following
differential equation for the motion of the sth atom:

A steady-state solution to Eq. (26) can be tried as

where a is the lattice constant and q is the momentum wave
vector of the lattice (to be distinguished from k, which is
the momentum wave vector of the electrons).

Figure 8. Dispersion relationship for phonons in a monatomic
one-dimensional lattice.

Using Eq. (27) in Eq. (26) yields

where

where q, the lattice (or phonon) wave vector, is limited to
−π/a ≤ q ≤ π/a. Equation (29) can be written as

which relates the frequency of phonons to their momenta,
is called the dispersion curve of phonons, and is plotted in
Fig. 8. For small wave vectors q, the sinusoid in Eq. (30)
can be expanded so that

which is similar to the frequency of a sound wave moving
through the lattice. In fact the velocity of the sound waves
through the lattice can be written as

By measuring the sound velocity of an acoustic wave
through the lattice, one may determine the “spring” con-
stant C.

The mathematics of extending this concept to a diatomic
chain (such as GaAs) is only slightly more elaborate. The
resulting phonon dispersion relationship is, however, sig-
nificantly more involved (4):

where M1 and M2 are the masses of the two atoms, and a is
the lattice constant. Now there are two values of ω for each
value of q. One is a low-frequency branch, which is called
the acoustic branch, and the other is high-frequency branch
(in the infrared part of the optical frequency spectrum),
which is called the optical branch. The dispersion relation
for the diatomic lattice is shown in Fig. 9. For the case of
wave vector q = 0, the phonon waves become static standing
waves with frequencies

and
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Figure 9. Dispersion relation for phonons in a diatomic one-
dimensional lattice. The low-frequency phonons are the accoustic
branch, and the high-frequency phonons are the optical branch.

Figure 10. Vibrations of a diatomic chain. (a) In the acoustic
mode the two atoms M1 and M2 are vibrating together, whereas
(b) in the optical mode they are vibrating against each other.

for the acoustic mode and the optical mode, respectively.
This mode of vibration corresponds to the static displace-
ment of the atoms of mass M2 relative to the atoms of mass
M1. In this mode of vibration, the two types of atoms are
rigidly shifted with respect to each other. For nonzero small
values of q, the two chains of atoms, while rigidly vibrating
against each other, both remain in motion. (See Fig. 10).

For higher values of q (corresponding to shorter wave-
lengths) and in the limiting case of q = π/a, the dispersion
relation becomes

which has two solutions:

and

The two frequencies each involve only a single mass. The
first frequency, ω1, corresponds to the vibration of atoms
of type M1 while the M2 chain is at rest, and the second
frequency,ω2, to the M2 chain vibrating while the M1 chain
is at rest. The larger the mass, the lower is the frequency
of vibration.

Figure 10 depicts the acoustic and optical modes of vi-
bration of a diatomic chain. In acoustic mode, the entire
collective chain of the two atoms M1 and M2 is vibrating,

Figure 11. Dispersion curves for GaAs in 〈111〉 and 〈100〉 direc-
tions. Various branches are depicted: transverse accoustic (TA),
longitudinal accoustic (LA), transverse optical (TO), and longitudi-
nal optical (LO).After Ferry (4); originally afterWaugh and Dolling
(14); reprinted with permission.

but in the optical mode, the atoms M1 and M2 are vibrating
against each other. The dispersion relations [f(q) plots] can
also be plotted for different directions in the crystals, usu-
ally for points of principal symmetry. Figure 11 shows the
phonon f(q) plots for GaAs in the � direction. Each of the
two acoustic and optical modes is split into longitudinal
and transverse branches, which are marked LA, TA, LO,
and TO. The range of vibration frequencies of all phonons
in many semiconductors is between 1012 Hz and about 5 ×
1013 Hz.

SCATTERING PHENOMENON AND FERMI “GOLDEN
RULE”

The transport of electrons (and holes) in a crystal is im-
peded (and also, remarkably, assisted) by scattering forces.
The scattering processes, on one hand, limit the velocity of
the carriers and give rise to the so-called saturation ve-
locity. On the other hand, without scattering processes,
the applied external force causes the momentum of elec-
trons to increase uniformly, causing the electrons to cycle
through the Brillouin zone without a net average velocity.
The resulting phenomenon is called Bloch Oscillations. In-
deed, transport is a balance between the accelerative forces
(the external applied field, for example) and the dissipative
forces, which are the scattering forces.

The adiabatic approximation discussed above in the sec-
tion “Approximating the Dynamics of Real Electrons in
Real Crystals” allows separation of ion core electrons and
valence electrons. The thermal motion of ion core electrons
constitutes the lattice vibrations (formation of phonons). It
is the interaction of the electrons with these phonons that
makes the greatest contribution to the scattering (and con-
sequently to the mobility) of carriers in semiconductors.
This interaction can be between electrons and different
branches of phonons, including acoustic phonons and polar
and nonpolar optical phonons. There are also nonphonon
scattering processes, such as ionized impurity scattering,
alloy scattering, surface roughness scattering, piezoelec-
tric scattering, neutral impurity scattering, and intervalley
scattering.
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Lundstrom (8) classifies the carrier scattering mecha-
nisms as:

Scattering by defects:
Neutral impurities
Dislocations
Alloy scattering
Ionized impurities

Scattering by carriers:
Binary electron–electron
Binary electron-hole
Collective plasmons

Scattering by phonons:
Acoustic deformation potential
Optical deformation potential
Acoustic polar
Optical polar

Which scattering mechanism dominates the transport
of carriers in a semiconductor depends on a number of fac-
tors, including (1) the crystal lattice temperature, (2) the
intensity of the applied external field, (3) the impurity dop-
ing level within the crystal, (4) the amount of injection of
external carriers (excess carriers), (5) the orientation of the
crystal, (6) the shape of the constant-energy surfaces in the
band structure of the crystal (spherical or ellipsoidal), (7)
the type of junction (homojunction or heterojunction) the
crystal is used for, and other factors.

The scattering mechanisms influence the transport of a
charged particle through a scattering potential, which can
exhibit spatial (and temporal) dependence. For example,
the scattering potential US for ionized impurity scattering
is given by (8)

where κs ε0 is the dielectric constant of the semiconductor
and LD is the Debye length given by

where kB is the Boltzmann constant, TL is the lattice tem-
perature in kelvin, and n0 is the electron concentration.
Scattering potentials for other scattering mechanisms are
given in the section after next.

The scattering rate S(p, p′), can be completely described
using the initial and final momentum vector states, p and
p′. It should be noted that we make the distinction between
p, which is the crystal momentum state, and k, which is
electron momentum state. Fermi’s “golden rule,” which is
based on a first-order perturbation of Schrödinger’s equa-
tion, provides the relationship between scattering rate and
scattering potential. Given the scattering potential of a
scattering source, the scattering rate S(p, p′) is given by

The matrix element, |Hp,p′ |2, is a volume integral involving
the scattering potential Us and the wave functions describ-
ing the initial and final states of the carrier,ψ(p) and ψ(p′),
respectively:

The δ function in Eq. (41) ensures that the energy is con-
served during the scattering process and thus involves the
initial and final energies of the carrier, E(p) and E(p′), re-
spectively. The energy of the scatterer is Ñ ω, with ω as
the angular frequency of the scatterer. Once the scattering
potential is identified, Fermi’s “golden rule” provides the
scattering rate. The scattering rates due to ionized impu-
rities and several branches of phonons are described in the
section after next.

Even though Fermi’s “golden rule” is widely used in de-
vice modeling, it has several limitations (4,5,8). Firstly,
it assumes that the scattering is instantaneous and spa-
tially localized. Secondly, it is assumed that the scatter-
ing from the initial momentum state is weak and hence
the occupation probability of that state is approximately
unity throughout the scattering process, which is the Born
approximation discussed earlier. Additionally, it assumes
that the scattering event is infrequent, which may not be
true, especially at high temperatures and high doping. In
the next sections we illustrate the use of Fermi’s “golden
rule” in the calculation of scattering rates of several scat-
tering sources.

SCATTERING RELAXATION TIMES

The scattering rates described by Fermi’s “golden rule” can
be used to define some characteristic terms (referred to as
relaxation times) that are related to the transition rate of
carriers due to scattering. These relaxation times are time
intervals within which the scattering sources completely
randomize the momentum or energy of the ensemble of
carriers. To arrive at these relaxation times, we consider
a small ensemble of electrons (being externally injected
into the semiconductor) each with initial momentum p0, as
shown in Fig. 12(a). The notion of relaxation is used in the
sense of the initial momentum (or energy) being relaxed
(or dissipated) by scattering agents within the crystal. Let
us assume that the electrons undergo collisions with any
one of the scattering sources such that they are scattered
to the final state p′. We define the scattering rate as (8)

where p′‖ denotes summation over all final states p′. Note
that only the states whose spins are parallel to that of
the incident carriers are considered. At time t = τ(p0), for
nonisotropic scattering mechanisms, the carriers retain a
memory of their incident momentum, as shown in Fig.
12(b). If we weight each collision by the fraction of change
in momentum (in the direction of the incident initial mo-
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Figure 12. Illustration of the process of relaxation of the momen-
tum and energy of an ensemble of electrons injected into a crystal.
(a) An initial group of electrons with momentum p0 are injected at
time t = t0. (b) At time t = τ(p0) the carriers are scattered, but they
retain a memory of their incident momenta. (c) The polar angle a
between the incident (p0) and scattered (p′) momenta. (d) At time
t = τm(p0) the momentum of the carriers has been completely ran-
domized by the scatterers. (e) At time t = τE(p0) the initial energy
of the ensemble has been dissipated by the scattering sources, as
indicated by the reduced momentum vectors. After Lundstrom (8);
reprinted with permission.

mentum which is along the z axis) as

then τm(p) will be the momentum relaxation time and will
be given by

where α is the polar angle between the incident and scat-
tered momenta, as shown in Fig. 12(c). At time t = τm(p0),
the scattering source has completely randomized the elec-
trons’ momenta. The quantity 1/τm(p0) is the momentum
relaxation rate. Its reciprocal, τm(p0), is the characteristic
time for relaxation (randomization) of injected initial mo-
mentum, as depicted in Fig. 12(d).

It is possible to relax the injected momentum without
affecting the energy of the carriers. However, some scat-
tering mechanisms relax (dissipate) the energy of the in-
jected carriers within a time interval, τE(p0), referred to as
energy relaxation time. This is shown in Fig. 12(e), where
the lengths of the momentum vectors have been reduced to
indicate the dissipation of the carriers’ energy to the crys-
tal by the action of scatterers. The energy relaxation time
is defined (much like the momentum relaxation time) by
weighting each collision by the fraction of change in en-

ergy. This will result in (8)

where τE(p0) is the energy relaxation time, and 1/τE(p0) is
the energy relaxation rate of carriers.

The three relaxation times τ, τm, and τE provide a foun-
dation for solution of Boltzmann transport equation, which
is described in. The relaxation times are also used to define
one of the most widely used parameters for transport in
semiconductors, referred to as mobility, which is discussed
in the section after next.

SCATTERING RATES FROM FERMI’S GOLDEN RULE

In this section, we will discuss ionized impurity scattering
and phonon scattering. The reader is referred to Refs. 4, 8,
and 9 for comprehensive advanced treatment of these and
other scattering mechanisms in Si and GaAs semiconduc-
tors.

Ionized Impurity Scattering Rates

Fermi’s golden rule relates the scattering rate S(p, p′) to
the scattering potential Us as

with the matrix element Hp′p given by

The scattering potential US for an ionized impurity is as-
sumed to be a screened Coulombic potential given by (8)

where the screening length LD is the Debye length. In re-
gions such as the depletion region of a pn junction where
the carrier density is low, the screening is minimal and the
Coulombic potential is unscreened:

Using Eq. (49) in Eq. (47), and working out the integration
in spherical coordinates, we find the scattering rate to be
(8)

where � is the volume of the crystal and α is the angle
between p and p′. NT is the concentration of ionized impu-
rities. Typically the scattering decreases with increasing
energy, which can be associated with less interaction time
between the scatterer and carrier.

For weakly screened scattering potentials (such as the
ones encountered in regions of very low doping, or in the
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Figure 13. A schematic plot of ionized impurity scattering rate
versus electron energy.

space charge regions of pn junctions) the screened Debye
length LD tends to infinity and the scattering rate will be

The difference between screened and unscreened ionized
impurity scattering rates becomes apparent only when the
polar angle between p and p′ is extremely small. But for
both cases, the scattering rate decreases with increasing
carrier energy, implying that ionized impurities tend to
scatter the carriers with lower kinetic energies. This is sim-
ply because the rapidly moving carriers are deflected less
by ionized impurities. The momentum relaxation time for
screened ionized impurity scattering can be worked out to
be (8)

where γ = 8m∗E(p)L2
D/Ñ2.

A plot of 1/tm(p) versus energy is shown in Fig. 13. As can
be seen, the carriers with higher kinetic energy have longer
momentum relaxation time, implying that the ionized im-
purities have less scattering effect on high-energy carriers.
Therefore, under high-electric-field or high-temperature
operation, the ionized impurity scattering is expected to
be less influential on the transport of carriers.

Similar expressions for momentum relaxation time are
obtained for unscreened ionized impurity scattering poten-
tials (8).

The above expression for the momentum relaxation
time has constant terms as well as slowly varying terms. A
convenient way of expressing the energy and temperature
dependence of the relaxation time is of the form

where τ0 is approximately constant. Here s is a characteris-
tic exponent that is s = √

3 for weak to moderate screening,
and s = −1⁄2 for very strong screening.

Phonon Scattering Rates

When a carrier encounters a phonon, the energy and mo-
mentum before and after the collision must be conserved:

and

where Ñβ is the momentum of the phonon, and the sign is
+ for the absorption and − for the emission of a phonon.
The ω(β) term indicates the momentum dependence of the
phonon frequency. For acoustic phonons (AP),

is the propagation velocity of sound in the crystal. Since vs

≈ 105 cm/s and the thermal average carrier velocity v(p) ≈
107 cm/s, then

which indicates that the maximum phonon momentum for
elastic acoustic phonon scattering is approximately twice
the carrier momentum. The maximum exchange of energy
resulting from acoustic phonon scattering is

which is significantly less than the kBTL except at very
low temperatures (kBTL is about 25 meV at room temper-
ature). Therefore, at room temperature, acoustic phonons
are treated as being elastic. For optical phonons (OP) the
phonon frequency ω is almost momentum-independent,
ω(β) ≈ ωo, and the optical phonon energy Ñ ωo is of the
order of tens of meV, which, unlike the acoustic phonon,
is comparable to kBTL at room temperature. The optical
phonons, therefore, unlike the acoustic branch, are inelas-
tic (except for extremely energetic carriers). The maximum
optical phonon momentum is (8)

Having established the elasticity versus inelasticity of
phonon scattering, before we discuss the scattering rates
for phonons we need to make a distinction between de-
formation and polar scattering by phonons. In the section
“Phonons and Lattice Dynamics” we illustrated the prop-
agation of lattice vibration throughout the crystal by con-
sidering the crystal atoms as attached to their neighbors
by deformable springs. It turns out that the crystals of
semiconductors, as solid as they appear to be, are indeed
deformable structures. When under pressure, the lattice
constant a (the dimension of the unit cell) of the crystal
changes by a small amount, δa. This small change in turns
alters the band structure of the crystal, as depicted in Fig.
14(a). The change in the conduction band and valence band
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Figure 14. (a) The effect of change in lattice spacing on the band
structure of a semiconductor. (b) The effects of lattice deformation,
due to a lattice vibration, on the band structure of a semiconductor.
After Lundstrom (8); originally (a) after Harrison (15), and (b) after
Nag (16); reprinted with permission.

are (8)

where DC and DV are the electron and hole acoustic defor-
mation energies and are 9.5 eV and 5 eV in Si, respectively,
and 7 eV and 3.5 eV in GaAs, respectively. For these and
other scattering parameters (and other transport parame-
ters) of Si and GaAs, see Refs. 8, 9, and 4.

The passage of phonon waves through the crystals de-
forms the lattice (periodically), causing an alteration in
band edges, as shown in Fig. 14(b). This deformation re-
sults in interaction of phonons and carrier waves. When an
elastic wave u(x, t) is propagating in the crystal, the result-
ing deformation (scattering of carriers) takes place for both
acoustic and optical branches. But, because in the acoustic
branch the neighboring atoms are vibrating in the same
direction, the change in lattice spacing is produced by the
strain ∂u/∂x and not by the displacement u(x, t). Therefore
the scattering potential for acoustic phonon is

In the optical branch, in contrast, the neighboring atoms
are vibrating in the opposite direction, and the change in
lattice spacing is directly related to the propagating dis-
placement as

In the above equations DA and D0 are acoustic and opti-
cal deformation potentials, respectively. The acoustic and
optical deformation potentials are the dominant scattering
sources in single crystals such as Si. In compound semicon-
ductors, however (such as GaAs, where the bonds between
Ga and As atoms are slightly ionic), there is a certain de-
gree of polarity in the atoms of the lattice. This polar nature

of the otherwise tetrahedral bonds in the compound semi-
conductors gives rise to a strong (and dominating) interac-
tion between the carriers and phonons (polar phonons) be-
cause of the electric field that is developed in the dipole be-
tween two atoms (in GaAs, gallium atoms are slightly neg-
ative and arsenic atoms are slightly positive). Polar scat-
tering may be due either to polar acoustic phonons (also
referred to as piezoelectric scattering), or to polar optical
phonons (POP), which is the dominant scattering mecha-
nism in GaAs and other polar semiconductors.

By using the acoustic deformation potential (ADP)

and the optical deformation potential (ODP)

where g∗ is the effective change of the dipole and � is the
volume of the unit cell. Working out the integration pre-
scribed by Fermi’s golden rule (8) and incorporating cer-
tain quantum mechanical requirements (5), the scattering
rates are found to be

for ADP, and

for ODP, where DA carriers acoustic deformation potential
DO carriers optical deformation potential
Ñ ωs acoustic phonon energy
Ñ ωo longitudinal optical phonons energy
ρ � mass of the normalization volume
ρ mass density
� volume of unit cell
N�s number of acoustic phonons as given by Bose-Einstein

distribution
N�o number of optical phonons
1⁄2 ± 1⁄2 0 (for phonon absorbed) 1 (for phonon emitted)
Ñβ phonon momentum
p,p′ carrier momenta before and after collision, respec-

tively

Note that the two scattering rates given by Eq. (66) and
Eq. (67) have the dimensions of s−1. This is because the
dimension of D2

A β
2 is the same as that of D2

O, where DO

and DA are defined in Eq. (62) and Eq. (63).
Also noteworthy is the lack of any apparent tempera-

ture dependence in the above two equations for ADP and
ODP. In light of the fact that phonons are heat-generated
quanta, one may question this result. The answer lies in
the Bose–Einstein distribution that relates the number of
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phonons to their energy:

which makes both N�o and N�s in Eq. (66) and Eq. (67)
temperature-dependent, with TL as the lattice tempera-
ture.

The momentum and energy relaxation times for ODP
are (8)

and

where gc is the effective-mass density of states and is given
by

We now turn our attention to the polar optical phonons
(POP) which are the strongest scatterers in compound
semiconductors such as GaAs. The scattering potential
UPOP is given as [similar to Eq. (65)]

where

where k0 and k∞ are low and high frequency dielectric con-
stants, respectively. The scattering integral yields

Schematic plots of scattering rates for acoustic phonons
and optical phonons are shown, as functions of carrier en-
ergies, in Figs. 15 and 16, respectively. For more details
and derivation of rate of other scattering sources as well
as relaxation times see Ref. 8.

MOBILITY AND CONDUCTIVITY

By now we have seen the complexity of carrier dynamics
in crystals. Electrons, while being accelerated by the ap-
plied electric field, interact with one or more scatterers,
with results depending on the energy and momentum of
the electrons. In spite of these impeding collisions, carriers
do gain a net velocity from the applied electric field, which
gives rise to conduction within the crystal. The complica-
tions in developing the theory of conduction by crystals are
mainly because (9):

Figure 15. A schematic plot of acoustic phonon scattering rate
versus electron energy for silicon at room temperature.

Figure 16. A schematic plot of optical phonon scattering rate ver-
sus electron energy for silicon at room temperature.

1. There are many scatterers, and the scattering rates
are energy- as well as momentum-dependent.

2. More than one electron (and one phonon) participate
in any appreciable conduction, and one must calcu-
late the statistics of electron transport parameters.

3. The band structure [E(k) relationship] of the semi-
conductor must be incorporated in the conduction
model, because it relates the carriers’ energy and mo-
mentum.

These complications can be circumvented by making a
number of simplifying assumptions, most of which are
rather well justified under low applied field. Here we fol-
low Drude’s (9) conduction model. First we assume that all
electrons move with the same average velocity v, given by

where F0 is the applied force. Second, we assign the effec-
tive mass m∗ (discussed above) to incorporate the effects of
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band structure of the semiconductor:

If there is no opposing force to F0, Eq. (76) leads to a contin-
uous acceleration. Drude’s model suggests that the effect
of the scatterers is that of a friction force Ff :

where τ is the relaxation time associated with the domi-
nant scattering effect. The equation of motion of electrons
in the crystal then becomes

Setting F0 equal to zero, for a moment, results in

which has a simple exponentially decaying solution of the
form

making τ, the relaxation time, also the time constant with
which the velocity of carriers decay to zero. With the ap-
plied field E, the equation of motion becomes

The steady-state solution of Eq. (81), when v̇ = 0, is

But using v = µE introduces the mobility µ of electrons as

Equation (83) is indeed the definition of mobility. In ar-
riving at this definition,we have assumed an average veloc-
ity for all electrons. Under low electric fields, the electron
velocity is linearly proportional to the electric field:

The electron current density is

Therefore, for low fields,

From the local form of Ohm’s law,

where σ is the conductivity, we conclude

The conductivity of crystals is significantly more com-
plicated than the linear scalar coefficient given by Eq.
(88). Specifically, when the conduction band structure (the
spherical or ellipsoidal constant-energy surfaces) of the
semiconductor is taken into consideration, the conduction

process becomes much more complex. In the article enti-
tled, we reexamine this simple model. In particular, we de-
fine a probability function f = f(r, p, t) (a function of three
variables: position r, momentum p, and time t, which con-
stitute what is referred to phase space). Using this proba-
bility function, we then reexamine the process of averaging
the carrier velocity. We also discuss multiscattering mobil-
ity.

TRANSPORT IN NANO-STRUCTURES

In recent years, the chip-making industry has been able
to continually scale down the dimensions of the semicon-
ductor devices used in CPU and DSP chips. While 0.18 µm
and 0.13 µm are now yesterday’s news in chip making, In-
tel is presently working on development of 40-nanometer
chips with an anticipated marketing scheduled in the next
five years. The wireless communication chip making has
had a similar trend. The leap from 40 nanometers to less
than 10 nanometers is expected in the next few years. In
this Section we introduce several phenomena such as quan-
tum well, quantum wire, and quantum dot that are encoun-
tered in nano-scale devices. These concepts are necessary
for understanding the electronic transport in mesoscopic
systems.

Mesoscopic Dimensions

The validity of the transport models described in the above
Sections of this article become seriously questionable when
the dimensions of the device are reduced below the meso-
scopic threshold. Mesoscopic devices are structures that
are small compared to the macroscopic scale, but large
compared to the microscopic atomic scale. In order to de-
termine whether the dimensions of a device are macro-
scopic or mesoscopic one needs to compare the device di-
mensions to one or more of the following characteristic
lengths: (1) mean free path, which is the distance carriers
move before their initial momentum is destroyed, (2) the De
Broglie wavelength which is related to the kinetic energy
of the carriers, and (3) the phase-relaxation length which
is the distance carriers travel before their initial phase is
destroyed (17). These characteristics lengths vary rather
widely in different semiconductor materials with different
doping levels and under different applied biases and op-
erating temperatures. For this reason, the dimensions of
the mesoscopic system can vary from a few nanometers
to several micrometers. Considering all the limiting fac-
tors, the macroscopic transport models are valid in devices
with gate lengths of up to about 30 nanometers (18), below
which one needs to incorporate the mesoscopic transport
phenomena.

Quantum Wells

With recent advances in nanoscale lithography techniques,
a variety of nano-structures has been developed. In most of
these structures, carriers (usually electrons) are confined
in a narrow potential well, which can be created by forming
a junction between two materials with different bandgaps.
The simplest example of such system is the quantum well
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Figure 17. Type I AlxGa1−xAs/GaAs/AlxGa1−xAs quantum well.
After Ferry and Goodnick (18); reprinted with permission.

formed by a thin layer of GaAs sandwiched between two
layers of Alx Ga1−xAs. The quantum well in the GaAs layer
is the direct result of the difference in the bandgap of
AlxGa1−xAs (with mole fraction of aluminum x between 0.1
and 0.45) and that of GaAs. The bandgap of AlxGa1−xAs at
room temperature varies with x as Eg=1.424+1.245x for
x<0.45 (18). For example with x=0.3, there is 375 meV dif-
ference between the bandgap of Al0.3Ga0.7As and that of
GaAs. This difference in badgap is split between the con-
duction band (65%) and valence band (35%) in the form
of band discontinuity in the GaAs quantum well. There-
fore, the depth of the quantum well in the conduction band
(the discontinuity in the conduction band, that is) of GaAs
is 243 meV while that of the valence band is 132 meV.
The resulting quantum well is referred to as Type I and is
shown in Figure 17. As the width (or length L) of the well
is reduced, the quantization of energy levels in the well
(for both electrons and holes) becomes more pronounced.
In the quantum well shown in Figure 17, there are three
bound states for electrons and three bound states for holes
which include states for heavy holes, Ehh, and light holes,
Elh. Such quantum wells have been used in a variety of de-
vices including high electron mobility transistors, resonant
tunneling transistors, and multiple quantum well solar
cells.

Modeling of the transport of carriers in structures with
one or more embedded quantum wells (see Figure 18) re-
quires knowledge of the quantized energy states (referred
to as eigenstates) as well as the wavefuctions (referred to
as eigenfunctions) of the carriers in the quantum wells.
These eigenfunctions and eigenenergies are obtained from
a field-dependent Schrödinger equation given by (19):[

�
2

2
d

dx

1
m∗(x)

d

dx
+ V (x)

]
ψi(x) = Eiψi(x) (89)

where Ei and ψi (x) are the energy level and the wavefunc-
tion of the subband i, respectively, and V(x) is the potential
profile in the device.A non-constant effective mass,m∗(x), is
used to account for different material systems throughout
the AlxGa1−xAs regions and and the GaAs quantum wells.

Figure 18. The energy band diagram of an AlxGa
1−xAs/GaAs/AlxGa1−xAs multiple quantum well (MQW) struc-
tures. Three quantum wells are embedded in the intrinsic GaAs
region sandwiched between a p- AlxGa1−xAs region and an
n-AlxGa1−xAs region. Several processes such as absorption of
light, capture and escape of electrons and holes and radiative
and non-radiative recombinations are depicted. After Ramey and
Khoie (19); reprinted with permission.

The Schrödinger equation is solved together with Poisson
equation:

∂2V

∂x2
= q

ε

[
N−
A −N+

D + nb + nqw − pb − pqw
]

(90)

The terms nb and pb are the bulk electron and hole densi-
ties, respectively, nqw and pqw are the quantum well elec-
tron and hole densities. N+

D and N−
A are the ionized donor

and acceptor doping levels, and ε is the dielectric constant.
In the presence of an electric field, the eigenenergies

shift to higher energies as depicted in Fig. 19, where the
eigenenergies and eigenfunctions are plotted versus posi-
tion in a 100 Åquantum well. The eigenenergies are refer-
enced to the bottom of the well, which is the corner of the
well located at 160 Å. This shift is expected since a nar-
rower well has its first eigenenergy higher than a wider
well. The applied field causes the well to slant to a trian-
gular bottom shape and thus acts as a narrower well. In
certain situations, such as the system depicted in Fig 19,
this increase in energy level can cause the highest level to
become unbounded, which would then no longer contribute
to the quantum well dynamics.

Quantum Wires

The movement of electrons that are confined in a quan-
tum well is restricted in the direction perpendicular to the
barriers, although thermal tunneling may aid their escape
from the quantum well. This situation results in forma-
tion of a two-dimensional electron gas (2DEG), in which
the electrons behave as two-dimensional entities. Further
reduction in the dimensionality of electrons is possible by
confining the 2DEG in another direction, which results in
formation of a one-dimensional electron gas (1DEG). This
can simply be realized by first forming a 2DEG, and then
removing (etching) a portion of the material in which the
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Figure 19. The eigenenergies and eigenfunctions of a GaAs quantum well in Al0.3Ga0.7As/GaAs system illustrating the effect of the
applied field. Notice that in the presence of the electric field, the n = 3 eigenstate becomes unbounded. After Ramey and Khoie (19);
reprinted with permission.

Figure 20. Realizations of quantum wire structures by etching quantum wells. In (a) the layers are etched below the 2DEG whereas in
(b) the layers are partially etched. After Ferry and Goodnick (18); reprinted with permission.

2DEG has formed. The resulting structure is called a quan-
tum wire.Two different realizations of quantum wire struc-
tures are shown in Fig. 20.

Quantum Dots

The degree of freedom of carriers in a quantum wire can
further be reduced to zero-dimension (0DEG) by remov-
ing the material in the remaining direction. The resulting
structure is referred to as a quantum dot (or quantum box).
Figure 21(a) shows an idealized quantum dot coupled to
two external leads through which the dot is connected to
an external circuit. This structure is called a Coulomb is-
land, and can be realized by depositing clusters of metal
(gold) in a dielectric medium such as aluminum oxide as
shown in Figure 21(b).

The mechanism for transferring electrons to and from
the Coulomb island is quantum tunneling. The energy re-
quired for charging of the dot with just one electron is:

E(charging) = 1
2
e2

C
(91)

Figure 21. (a) An idealized Coulomb island, and (b) realization
of a Coulomb island using metal clusters on an insulator. After
Ferry and Goodnick (18); reprinted with permission.

Where E is the energy required to charge the island, ε is
the charge of electron (1.602 × 10−19 Coulomb), and C is
the capacitance of the island. The average thermal energy
of electrons is:

E(thermal) = kBT (92)

Equating the energy required to charge the island with
that of the average thermal energy results in the largest
value of the capacitance C = 0.003 femto Farad. Calculation
shows that for this largest capacitance, the largest size the
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Figure 22. Experimental (A) and theoretical (B and C) I-V char-
acteristics from an STM-contacted 10 nm diameter In droplet
showing the Coulomb staircase. After Ferry and Goodnick (18);
Originally after Wilkins, et. al (20); reprinted with permission.

island can have is 30 nanometers. (See Ferry and Goodnick
(18).) In other words, with an island smaller than about 30
nm, addition of even one single electron can alter the po-
tential of the island drastically and lead to a phenomenon
called Coulomb blockade in which the tunneling of elec-
trons is blocked until the required charging energy is pro-
vided by increase in the applied bias. The resulting I-V
characteristics of such Coulomb island resembles a stair-
case (referred to as Coulomb staircase) and is shown in
Figure 22.
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