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QUANTUM DEVICES

Most existing semiconductor devices, such as bipolar and field effect transistors, can be treated as classical
systems of carriers near equilibrium, where quantum effects manifest themselves as minor corrections that may
limit device reliability. During the 1980s and 1990s considerable research interest and effort were expended
on semiconductor structures that could exploit quantum effects to perform circuit functions. Although, to date
none of these structures has evolved beyond the laboratory, continuing interest has been maintained because
of two major factors.

First, it is generally recognized that microelectronics will soon cease to improve at the device level.
Evolution toward ever-faster devices is driven by the minimal size of lithographic features. Smaller devices
yield faster transit times at lower operating voltages and currents, leading to higher maximum frequencies at
lower power per device (1). At the time of writing, the Semiconductor Industry Association roadmap predicts
continuous device improvement until 2015, at which point the minimum lithographic size would fall below 1000
Å and the DRAM size would reach 16 or 64 Gb. The roadmap and its implications are discussed by a number of
authors in Ref. 1. In addition to technological hurdles, this evolution faces rapidly escalating fabrication costs.
However, even if both the technological and economic constraints are overcome, new operational concepts
will be needed in the foreseeable future, because the minimum channel length L of a standard scaled silicon
metal-oxide semiconductor field effect transistor (Si MOSFET) bottoms out slightly below L ≈ 0.05 µm. More
complicated device layouts, such as double-gate devices, or cryogenic operation may yield another device
generation or two, but probably not more.

The second factor driving research into quantum devices springs from semiconductor bandgap engineer-
ing. Modern epitaxy of III–V semiconductors, silicon, and silicon-based alloys provides exceptional control
over layer thickness, doping, and composition. It is now possible to specify regions of carrier localization and
transport, tailor electric fields and potential barriers, and make use of size and charge quantization, the latter
pushing device research toward single electronics, in which the transfer of one electron suffices to control a
device.

Higher speed is often cited as an advantage of quantum devices, but speed is rarely the prime consid-
eration. Even though quantum mechanical tunneling is an intrinsically fast process, this does not typically
translate into device performance improvement because of other delays, such as RC time constants of bias elec-
trodes. Frequently, a more significant advantage is higher functionality, made possible either by strong, tunable
current-voltage nonlinearities or by unusual electrode symmetries of quantum devices. Examples covered in
this article include multistate memory and logic implementations using reduced device counts. Quantum tun-
neling also plays a key role in the recently developed quantum cascade lasers, while the use of quantum dots
embedded in the active medium has opened up new horizons in low-threshold lasers.

After a simple introduction to quantization effects and quantum mechanical tunneling, this article covers a
number of basic quantum device structures and operating principles. Various proposed applications—ranging
from memories and logic circuits to novel lasers—are then presented. A brief overview of the prospects of
quantum devices serves as the conclusion.
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2 QUANTUM DEVICES

Fig. 1. (a) Finite quantum well potential diagram, showing the wavefunction χ1(z) of the the lowest discrete level E1. (b)
A particle of energy E incident on a single barrier.

Quantum Mechanical Density Of States and Tunneling

Quantum devices are based on two consequences of the Schrödinger equation that have no classical analog.
First, if a particle is confined by some potential V (r) on a scale comparable to its de Broglie wavelength, the
particle’s momentum k is quantized. The continuous energy spectrum E (k) = 2k2 / 2m∗ of free motion (m∗ is
the effective mass) is broken up into subbands En (k). Second, as long as the confining potential V (r) is not
infinite, the particle has a finite probability of penetrating the classically forbidden region. These effects are
most easily illustrated in the case of one-dimensional (1-D) motion in a finite potential well of width LW and
barrier height Va shown in Fig. 1(a). The 1-D Schrödinger equation for the wavefunction χ(z) can be written as
follows:

where is the reduced Planck’s constant. Solving this equation in all three regions and imposing continuity
conditions on χ(z) and dχ/dz, one obtains energy levels En and the corresponding χn(z). The normalized χn (z)
give the probability of finding the particle at some coordinate z0 byP(z0) = |χ(0z0|2. In an infinite potential well,
the eigenfunctions χn(z) must go to zero at |z| = LW/2 and the energy levels are given by

wheren is an integer. In the finite potential well case of Fig. 1(a), the well contains a finite number of energy
levels En. The corresponding wavefunctions χn(z) penetrate into the potential barriers according to

where κn = [2m∗(V0 − En)/2]1/2 [the other mathematically possible solution, χn(z) ∼ eK
n

|z|, diverges as |z| →
∞ and can be excluded]. Although the barrier penetration is exponentially decreasing, Eq. (3) implies that a
carrier in the state characterized by χn(z) has a finite probability of being found in the barrier region |z| > LW/2.
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Fig. 2. (a) A particle of energy E incident on a double-barrier potential, showing quantized levels. (b) The corresponding
1-D transmission coefficient T(E)

A particle of kinetic energy E incident on a 1-D potential barrier of finite height V0 and width LB, shown in
Fig. 1(b), illustrates the concept of tunneling. Classically, if E < V0 the particle is always reflected, but barrier
penetration analogous to Eq. (3) ensures a finite transmission probability T(E) that depends on V0 and LB. By
solving the Schrödinger equation and imposing the continuity conditions at the barrier boundaries, one can
solve for the reflection R(E) and transmission T(E) probabilities (2), with R + T = 1. This problem is treated
in all textbooks on quantum mechanics. For a particularly thorough discussion, see Ref. 2. For incident energy
E such that e− K LB � 1, where κ = [2m∗(V0 − E)/2]1/2, one obtains

Hence the transmission probability T(E) for E < V0 is exponentially small but nonzero, and it increases with
incident energy E. This monotonic behavior changes drastically when the same particle is incident on two
potential barriers separated by a well of width LW, shown in Fig. 2(a). The double-barrier transmission T(E)
can be obtained (3) by repeated application of Eq. (1), but intuitively the energy levels and wavefunctions in
the quantum well should coincide approximately with Fig. 1(a). Then, semiclassically (2), a particle occupying
one of the energy levels En oscillates between the barriers with velocity Uz = kz/m∗ and, in effect, is incident
on a barrier twice in each period of oscillation. Every incidence involves some probability T(En) of tunneling
out of the double-barrier potential, making the levels En metastable.

If the energy E of a particle incident from the left does not coincide with one of the levels En, the total
T(E) for tunneling through the double-barrier potential is given by the product of the individual transmission
probabilities of the first (emitter) and second (collector) barriers, T(E) = TETC. On the other hand, if the
incident energy matches one of the energy levels En, the amplitude of the wavefunction builds up in the well
as in a Fabry–Perot resonator, and the resulting T(E)

can reach unity (3). Hence, T(E) is a sharply peaked function of incident energy, shown in Fig. 2(b).
Many quantum devices rely on this highly nonlinear transmission probability, which leads to a nonlin-

ear I(V) characteristic, including regions of negative differential resistance (NDR). The required confining
potentials are provided by semiconductor heterostructures. Real incident carriers typically have some energy
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Fig. 3. Schematic densities of states for free three-dimensional motion (a); two-dimensional motion, as in a quantum well
(b); one-dimensional motion, as in a quantum wire (c); and discrete spectrum of a fully confined quantum dot (d).

distribution, and the total current involves an average over this distribution. Crucially, real devices are hardly
ever one-dimensional in the ideal sense of Eq. (1) (2,3,4,5) because of other spatial degrees of freedom. Carriers
may be confined by potentials in one or more dimensions, while remaining free to move in the others. With the
exception of full three-dimensional confinement—whether in an atom or a quantum dot—the energy spectrum
is not a collection of discrete levels En. Instead, the carriers occupy quantized states in various subbands, and
for the simplest case of isotropic constant effective massm ∗ the appropriate densities of states can be derived
by counting the states up to some energy E (4). The results follow and are illustrated schematically in Fig. 3 for
the three relevant situations of no confinement at (free 3-D motion), confinement by a potential in one direction
(free 2-D motion in a quantum well), and confinement by a potential in two directions (free 1-D motion in a
quantum wire):

A typical semiconductor implementation of Fig. 2(a) has the double-barrier potential along the epitaxial direc-
tion V(z), with free transverse motion. The total wavefunction � (r) of an electron in one of the quantum well
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levels χn(z) depends on in-plane momentum k⊥ and can be written as

where N is a normalization factor. The corresponding total energy is given by

The density of states in the well is given by Eq. (6b). Tunneling carriers are incident from an emitter reservoir
outside the double-barrier potential, where the density of states can be taken as 3-D. As long as the factorization
of the wavefunction into in-plane and tunneling-direction components remains valid, transverse degrees of
freedom do not complicate the situation unduly. Transverse momentum k⊥ remains a constant of motion as
the carrier tunnels through the 2-D subbands En with a transmission probabilityT(Ez) that depends on the
energy of motion along the tunneling direction only, Ez = 2k2

3/2m∗. The total tunneling current densityJ can
be computed by integrating over the electron distribution in the emitter reservoir:

where N(Ez)dEz is the number of electrons with the same EZ per unit area. Scattering by phonons, impurities,
or other carriers will relax k⊥ conservation (inelastic processes like phonon emission also enter into energy
conservation). If scattering is strong, the simple dependence of T(Ez) on energy Ez given by Eq. (2) is replaced
by a more complex dependence on both Ez and the total energy E of the tunneling carrier (5).

Effects associated with scattering and limited phase coherence significantly alter the idealized, sharply
peaked I(V) characteristic predicted by Fig. 2(b). The huge peak-to-valley ratios (PVRs) have not been exper-
imentally observed, even at low temperatures. For this reason, the sequential tunneling model (6), in which
transport is described by carriers tunneling into the quantized density of states in the well followed by un-
correlated tunneling out to the collector, has become a standard. The I(V) nonlinearities arise from E and k⊥
conservation without recourse to near-unity transmission coefficients of the double-barrier potential in the co-
herent limit. This model and its relevance to optimizing resonant tunneling structures for device applications,
such as maximizing PVR or peak current densities, are discussed in the next section.

Double-Barrier Resonant Tunneling Structures

The first experimental resonant tunneling (RT) data were reported by Chang, Esaki, and Tsu 7, on a
GaAs/AlGaAs device. Since then, improvements in material quality and device design have led to RT diodes
with very sharp low-temperature I(V) characteristics (8), as illustrated in Fig. 4. The I(V) curve exhibits strong
NDR, with PVR reaching ∼30. Still, the valley current is much larger than predicted by coherent tunneling
theory because of nonresonant processes.

The sequential tunneling model (6) is illustrated in Fig. 5,using the n-GaAs/AlGaAs RT structure of
Fig. 4 as an example. At V = 0, E1 in the well lies above the emitter EF, so that E and k⊥ -conserving tunneling
is impossible. As V increases, E1 is lowered with respect to the emitter. Resonant tunneling becomes possible
when E1 aligns with the occupied states in the emitter. The subset of emitter carriers that can tunnel into the
well conserving both E and k⊥, often known as the supply function, can be estimated by the simple geometrical
overlap between the occupied states in the emitter and the available states in the well—it is shown in boldface
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Fig. 4. I(V) characteristics of a GaAs/AlGaAs double-barrier RT structure at T = 4.2 K. After Zaslavsky et al. 8.

Fig. 5. Self-consistent potential distribution in a GaAs/AlGaAs RT structure under bias V = 0.225 V at T = 4.2 K. The
supply function is obtained from the geometric overlap between the E(k⊥) dispersions in the emitter and well, as shown at
lower left. After Zaslavsky et al. 8.

in Fig. 5. Larger V lowers E1 below the occupied states in the emitter, at which point the supply function drops
(ideally to zero). The current density into the well due to E and k⊥ conserving tunneling is then

Other current components, like direct tunneling into the collector and phonon-, impurity-, or interface
roughness-assisted tunneling, must be added to Eq. (10). In addition, at sufficiently high V tunneling through
the second subband E2 becomes possible. Nonresonant components contribute to the valley current: for exam-
ple, the strong phonon coupling in GaAs leads to a phonon-assisted replica peak when E1 is biased below the
emitter by the GaAs optical phonon energy ωopt = 36 meV (9). The quantitative modeling of nonresonant cur-
rent components usually relies on adjustable parameters (10). This is unfortunate, because the valley current
plays an important role in the minimum power dissipation of RT devices.
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Fig. 6. I(V) characteristics of an In0.53Ga0.47As/AlAs RT diode, showing high peak-to-valley ratio and peak current density
at T = 300 K. Device area is µm2. Figure courtesy of E. R. Brown, 1995.

The resonant current of Eq. (10) depends sensitively on the alignment of E1 with the occupied emitter
states. Yet in a standard, two-terminal RT diode, this alignment can only be controlled by the applied bias V.
If electric fields in the emitter and collector regions are ignored, one immediately obtains that V(n)P = 2En
in a symmetric structure. However, in real devices, potential drops in the emitter and collector regions are
significant, especially in high-frequency RT diodes, where low emitter-collector capacitance is often achieved
by a large undoped collector spacer (11). A self-consistent calculation of the potential, as shown in Fig. 5, is
therefore necessary to predict VP

+++. An additional complication is the dynamically stored charge density σW
in the well as the tunneling current flows. The effect of σW is to screen the first barrier and hence reduce the
bias-induced lowering of the 2-D subbands. In symmetric RT structures,σW is small, but if the collector barrier
is made larger, σW becomes significant. In highly asymmetric devices, the electrostatic feedback due to σW can
cause a hysteretic loop to appear in the I(V), with VP depending on the direction of the bias sweep (12). At least
in principle, a bistable I(V) makes a two-state semiconductor memory possible in a single device.

Double-barrier GaAs/AlGaAs structures have been very useful in clarifying the relevant physics, but their
I(V) characteristics are less suitable for devices. First, the sharp NDR needs to survive at room temperature,
where the valley current is supplemented by thermionic emission over the barriers and temperature-assisted
tunneling through higher-lying subbands. These PVR-degrading effects can be reduced by designing higher
barriers and increasing the subband separation. In contrast, for high-speed operation, one needs to maximize
JP, since high currents necessary for rapid charging of the various capacitances—ideally JP ≥ 105 A/cm2. The
use of very narrow and high barriers is therefore indicated, as well as the lightest possible effective mass m∗ to
increase subband separation. Limitations of the GaAs/AlGaAs system have kept the fastest double-barrier RT
oscillators (13) with high JP ≈ 105 A/cm2 at a room-temperature PVR of only 3. Better PVR and JP have been
obtained in InGaAs/AlAs RT diodes: a device with JP > 105 A/cm2 and PVR ∼8 is shown in Fig. 6 (14). This RT
structure included a large undoped collector spacer region to reduce the emitter–collector capacitance, hence
the high VP. Because of the sharp NDR, the biasing circuit becomes unstable above VP, leading characteristic
jumps in the I(V) (15).

Another variant of two-terminal RT devices uses polytype GaSb/AlSb/InAs heterostructures with a stag-
gered bandgap alignment (16). A schematic polytype band diagram is shown in Fig. 7. The current is due to
holes tunneling from the GaSb emitter into the InAs well—a geometrical evaluation of the supply function
requires inverting the emitter dispersion in Fig. 5 (17). The polytype structure represents an RT version of the
Esaki tunnel diode. Its advantage lies in the bandgap blocking beyond VP, where the emitter states line up
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Fig. 7. (a) Potential diagram of a polytype GaSb/AlSb/InAs RT structure near flatband and (b) under large bias V > VP.
Arrows indicate the tunneling current of GaSb holes into the n-InAs quantum well. In (b) resonant tunneling is blocked by
the InAs bandgap. After Beresford et al. 18.

with the InAs bandgap. Very good PVR has been achieved in polytype structures, albeit at modest peak current
densities, and RT designs with very wide wells LW ≈ 1000 Å are realizable without compromising PVR (18).

Silicon-based RT devices have been fabricated in SiGe/Si heterostructures (19). Unfortunately, the avail-
able barrier height is rather small, V0 ≈ 200 meV. Because of low V0 and relatively heavym∗, no room tem-
perature NDR has been observed in SiGe/Si devices to date, although PVR ∼4 has been observed at cryogenic
temperatures (20). Consequently, even though these devices have been employed for spectroscopy of anisotropic
hole dispersions (21) and strain relaxation (22), the prospects of their integration into mainstream technology
appear remote.

In addition to epitaxial double-barrier structures, lateral tunneling devices have been fabricated by
gating a modulation-doped 2-D electron gas (2DEG) heterostructure. By applying a gate potential VG with
respect to the 2DEG, electrons can be electrostatically depleted underneath the surface gates, creating the
double-barrier potential. The advantages include: excellent electronic properties of the 2DEG; tunability of
VG-induced barriers; and planar device layout. The main drawback is the relative weakness of the barriers.
Hence, the I(V) of lateral RT structures produced by electrostatic gating show NDR at low temperatures only
(23).

Two-terminal RT structures are useful for oscillators and frequency multipliers but ill-suited for more
general circuitry. The addition of a third terminal to control the I(V), either with a small current as in a bipolar
transistor or a gate voltage VG, has been attempted in a number of schemes.

Current-controlled three-terminal RT devices involve a separate contact to the quantum well that can
source or sink a “base” current large enough to alter the alignment of En and the emitter states (24). If the
device is biased close to VP, a small base current can lower En below the emitter, giving rise to negative
transconductance. A significant constraint on such devices is the effective base resistance. To have significant
2-D subband separation and hence strong NDR in the I(V), the quantum well width LW must be small. But the
lateral base resistance is inversely proportional toLW. Setting the benchmark for a high-speed device at 1 ps,
the RB C time delays due to emitter-well or well-collector capacitance are

where εS is the dielectric constant, L is the lateral extent of the device, LB is the emitter or collector barrier
thickness, and RS is the sheet resistance of the base. The resulting RS ≤ 1 k� per square constraint is difficult
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Fig. 8. Room temperature I(V, VG) characteristics of a three-terminal Schottky-gated GaAs/AlGaAs RT device (shown
schematically in the inset) of 10 µm × 0.7 µm stripe geometry for VG = 0 to 2.0 V in 0.5 V increments. Dashed line shows
gate leakage for VG = 2.0 V. After Kolagunta et al. (28).

to meet in narrow LW ≈ 100 Å quantum wells and, moreover, impurity scattering in the heavily doped well can
wash out the NDR.

An alternative route to a three-terminal RT structure is voltage control by a sidewall gate. The vertical
pillar geometry of epitaxially grown RT structures makes the fabrication rather difficult. Self-aligned p-type
implantation with the top metal contact of an n-type RT diode serving as a mask has been used to control the
RT current by reverse-biasing the resulting in-plane p–n junction (25). In addition to leakage currents, lateral
straggle of the implantation becomes a problem for deep submicron devices. Alternatively, a metal Schottky
gate can be deposited on the sidewalls of the RT diode pillar (26,27). By employing an undercut RT pillar
profile (see inset of Fig. 8), room temperature three-terminal operation has been reported (28): the I(V, VG)
curve of a GaAs/AlGaAs RT stripe geometry device is shown in Fig. 8. Gate control is achieved with reasonably
small gate leakage, but note that the side-gating geometry of Fig. 8 sacrifices the effective transconductance
gm unless the pillar diameter is extremely narrow, resulting in formidable fabrication difficulties.

A device that combines gate control with a planar layout is the double electron layer tunneling transistor
(29), where resonant tunneling occurs between 2DEGs in an epitaxially grown GaAs/AlGaAs double quantum
well structure (see inset of Fig. 9). The source and drain make separate electrical contact to the two 2DEGs,
so the source-drain current is determined by inter-2DEG tunneling (30). In this 2-D–2-D tunneling geometry,
conservation of E and k⊥ requires precise alignment of the 2-D subbands in different wells. Drain voltage
VD changes the subband alignment; as a result, a two-terminal source-drain ID(ID) curve exhibits a resonant
current peak followed by an NDR region. Third-terminal control is provided by either a surface gate or a
backgate, which can modulate the subband energy in either the upper or the lower well. A set of ID(VD, VG)
curves showing gate control of the peak position, is shown in Fig. 9 for a surface-gated device at low temperature.
Available PVR in this device reaches ∼10 at T = 77 K; InGaAs-containing heterostructures may yield room
temperature operation. The separate contacting of the 2DEGs necessitates the fabrication of depletion gates
both above and below the double quantum well active region [and hence flip-chip processing (29)]. By combining
two devices in series, one with a backgate and one with a surface gate, unipolar complementary memories are
achievable (31).
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Fig. 9. Electrical I(VD, VC, characteristics of the double electron layer tunneling transistor, showing surface gate control
of the current peak position, at low T. Inset shows the band diagram of the double quantum well structure: resonant
tunneling is only possible when the energies of the subbands in both wells coincide. Figure courtesy of J. Simmons, 1998.

A long-proposed three-terminal RT structure is shown in Fig. 10 (32). The original double barrier is grown
epitaxially; then an angled interface is etched, and an AlGaAs gate insulator is deposited, followed by a gate
electrode. A positive gate bias VG induces 2DEG in the undoped GaAs layers as in a standard FET. In the well,
1-D subband quantization E′

1 arises from the double-barrier potential V(z) combined with the gate-induced
V(x). A potential difference between the 2DEGs above and below the double-barrier potential will produce a
tunneling current subject to the usual E and k⊥ conservation, with the conserved k⊥ = ky corresponding to free
motion along the quantum wire. The gate bias VG controls the emitter 2DEG density and hence the magnitude
of the RT current. Interestingly, VG can also be used to tune VP because the fringing electric field shifts E prime;

1
with respect to EF for the same source-drain bias V. As a result, gm < 0 can be achieved. If the 2DEG depletion
in the collector region is ignored, the electric field distribution can be solved by conformal mapping techniques
and gm can be extracted (29). In real devices, depletion of the 2DEG in the collector reduces the gate control of
E

′
1 and hence the transconductance.

The geometry in Fig. 10 makes the device difficult to fabricate and only proof-of-concept prototypes have
been achieved by cleaved edge regrowth (33). Low-temperature I(V, VG) curves of the resulting device (34)
and the corresponding negative gm are shown in Fig. 11. Room temperature operation and fabrication of such
devices by technological means are yet to be reported.

In addition to the severe fabrication problems faced by three-terminal RT devices, it is not clear that
their negative gm can be usefully applied for computation. Although it has been suggested that such devices
can perform complementary functions (35), no RT transistor circuit analogous to a CMOS inverter has been
demonstrated to date. In a complementary CMOS transistor pair, the current is due to carriers of opposite
polarity, and the drains of the two transistors can be connected. It might appear that both transistors in the
CMOS pair can be directly replaced by a pair RT devices with negative gm . But in RT devices, the current
depends on the alignment of the emitter and quantum well densities of states and hence on the emitter bias
VE. The effective emitter bias VE on the second RT device in the pair would itself vary between a high and a
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Fig. 10. Schematic cross section of a gated 2-D RT transistor together with the band diagram. The current is carried by
2-D electrons tunneling through 1-D quantum wire subbands. Both the 2-D electron gas density and the relative alignment
of the wire subbands E

′
n with the emitter 2-D electron gas can be controlled by the gate. After Luryi and Capasso (32).

Fig. 11. (a) Three-terminal I(VD, VG) at T = 4.2 K of a gated 2-D RT transistor produced by cleaved edge overgrowth.
Gate bias VG is changed in 0.03 V steps. (b) Corresponding transconductance at VD = 0.4 V. Device width is 300 µm. After
Kurdak et al. (34).
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Fig. 12. Room-temperature I(V) of a cascaded RT structure with N = 8 diodes in series. Device area is 32 µm2. Superim-
posed in the I(V) curve is the load line when the device is biased by an FET current source, with stable points indicated by
open circles. After Seabaugh et al. (36) ( c© 1992 IEEE).

low state, rather than remaining at a constant potential. In CMOS inverter language, in an RT pair the gate
voltage VIN would be referenced to VOUT, rather than VDD, making it difficult to design a useful circuit (4).

Cascaded Double-Barrier Structures and Superlattices

Many applications of RT devices require a multipeak I(V ) with peaks of the same magnitude and regularly
spaced in voltage. Neither condition is met by a standard RT structure: the subband separation (En −En − 1)
changes with n, so the peak voltages VP

(n) are not evenly spaced, and the peak currents increase rapidly with
n as the emitter barrier height drops. However, a multipeak I(V) curve can be obtained from a cascaded RT
structure with n double-barrier potentials separated by doped cladding regions. Current flows once the RT
diodes are biased above threshold, V ≥ NVth. As V is increased, one of the diodes will be biased beyond VP,
suddenly presenting a high resistance to the biasing circuit, so the I(V) exhibits NDR. If V is increased further,
current continuity requires that almost all of the increase drop over the off-resonance diode, until it begins to
conduct through the higher subband E2. This process then is repeated with other diodes, for a total of n evenly
spaced peaks in the I(V), as shown in Fig. 12 (36). This type of device can be used for a multistate memory.

If the doped cladding regions are removed and the subbands in different wells are allowed to interact, the
result is a superlattice (SL) of period d = LB + LW shown in Fig. 13(a). Consider the wavefunction ψ(z) along
the SL direction. If the barriers are infinitely high, we have isolated quantum wells with the usual quantized
levels En described by wavefunctions χn

(m)(z), where m labels the quantum well. If the barriers are finite, the
χn

(m)(z) wavefunctions penetrate into the barriers according to Eq. (3), and the previously degenerate levels
will broaden into minibands 	n. According to the Bloch theorem, a state in the nth miniband of a superlattice
can be described by linear combinations of wavefunctions periodic in the SL period d, multiplied by a plane
wave (37)
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Fig. 13. (a) Superlattice potential diagram, showing the broadening of energy levels En into minibands of width 	n. The
superlattice period is d = LW + LB. Dotted lines mark the two lowest energy levels confined by the mth potential well (bold
line), wavefunction χj

m(z) is also shown. The potential V
′
0(Z) used in the calculations of miniband dispersion is shown by

a dashed line—it includes all wells other than the mth. (b) Model superlattice miniband dispersion.

As long as 	n � (En − En − 1), ϕ(m)
n(z) are to a good approximation built up from combinations of χn

(m)(z). For
some range of barrier parameters V0 and LB, only adjacent wells matter (this is known as the tight-binding
approximation), and the problem simplifies drastically. The dispersion E(kz) for motion along the SL axis
becomes

where the shift integral Sn is defined as

and the transfer integral Tn as

The potential V ′
0(z) employed in the calculation of the shift and transfer integrals includes all potential wells

other than the mth [see Fig. 13(a)]. The width of the nth miniband 	n = 4Tn and the allowed values of kz
obtain from periodic boundary conditions on Eq. (13):kz = 2π P/Nd, where P = 0, 1, 2, . . . (N − 1).

The dispersion for motion along the SL direction is plotted in Fig. 13(b). It is evident that the effective
mass along the SL, m∗ = 2(kz

− 1∂E /∂kz)− 1, is a strongly varying function of kz: starting with a “band-edge”
value m∗

SL ≡ m∗kz = π/2d, and becomes negative thereafter.
If a small electric field E is applied along the SL direction and there is no scattering, the semiclassical

equation of motion (∂kz/∂t) = e E implies that kz changes linearly with time. Since V(kz) is periodic, carriers
execute the so-called Bloch oscillations. It was the pioneering suggestion of Esaki and Tsu to employ semi-
conductor heterostructures to create the required SL potential that opened the modern era of heterostructure
bandgap engineering (38). In that celebrated paper, the effects of a finite scattering time τ on the average drift
velocity VD of electrons propagating in a 1-D superlattice with dispersion given by Eq. (13) was evaluated
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classically:

where a (t) ≡ a[kz(t))] is the acceleration of the miniband electron. The result for vD in terms of E τ, SL period
d, and m∗

SL was

where ξ =eE τd/ The average drift velocity peaks at ξ = 1, that is when the electric field ε = / E τd. Beyond this
point, increasing E results in a lower vD because more and more carriers reach the negative-mass region. As
a result, the SL I(V) characteristic should exhibit NDR. Experimentally, because of Zener tunneling between
minibands and electric field domain formation due to space-charge instabilities (39), only relatively weak I(V)
nonlinearities have been observed (40).

If the electric field E is sufficiently large, the nth miniband breaks up into a set of discrete levels, known
as the Wannier–Stark ladder of states shown in Fig. 14(a) (41,42). As soon as the extent of the Wannier–Stark
wavefunctions falls below N periods, they no longer reach from one end of the SL to another. Scattering becomes
necessary for dc current to flow, and the current will remain small until E brings into resonance Wannier–Stark
states in adjacent wells. At these sharply defined values of E , e E j, d = Ej − E1, j = 2, 3 . . ., the current can flow
by sequential tunneling between different Wannier–Stark states in adjacent wells, followed by relaxation to a
lower-lying state [see Fig. 14(b)]. The I(V) curve should then exhibit peaks at V = NeE j d, followed by NDR
regions.

A particularly interesting process is photon emission in the regime whereE > E , which was proposed by
Kazarinov and Suris decades ago as a voltage-tunable laser (43). The scheme is shown in Fig. 14(c) and the
photon energy isω = e(E − E j)d, tunable in the infrared by the applied voltage. The problem with this exciting
possibility, as with the Esaki–Tsu NDR at low,E is maintaining a uniform electric field E throughout the SL.
Devices that operate in the NDR regions of their I(V) characteristics are particularly susceptible to the electric
field breaking up into high- and low-field domains (39). For this reason, voltage-controlled lasing illustrated in
Fig. 14(c) has not been observed, and it is not clear whether it can be observed even in principle.

On the other hand, the alignment provided by E j between different Wannier–Stark states in adjacent
wells can also provide a lasing medium, provided that at least some fraction of the E2 → E1 relaxation is
radiative [see Fig. 14(b)]. The voltage tunability is now lost, since ω = (E2 − E1), but now the device need
not operate in the NDR region. Infrared lasing in a conceptually similar device—the quantum cascade laser
(QCL)—based on intersubband transitions in a modified SL structure has been achieved recently (44). A more
detailed discussion of the QCL follows.

Resonant Tunneling Nanostructures and Coulomb Blockade

If a double-barrier RT structure is etched into a very narrow pillar or biased to a narrow effective size by a
lateral gate, new quantum effects come into play. The more obvious is lateral size quantization in the quantum
well. Lateral confining potentials are weak compared to the narrow wells available by epitaxy, so lateral
quantization will be much weaker: to a good approximation, each of the 2-D subbands En in the well will give
rise to a series of fully quantized states Enm, where m labels the states of the lateral potential V(x, y). Tunneling
into these discrete levels can be treated within the usual sequential formalism (6,45) but with a new effect. The
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Fig. 14. (a) Schematic band diagram of a biased superlattice, in which the minibands break up into Wannier–Stark states.
The lowest-lying Wannier–Start state E1 in the mth well is shown by the dotted line, together with the corresponding
schematic wavefunction for 	1/eE d ≈ 3, where 	1 is the miniband energy width. (b) Sequential tunneling through a
superlattice when excited and ground states in adjacent wells are aligned, resulting in a current peak. Vertical lines
represent intersubband relaxation. (c) Photon-assisted sequential tunneling tunable by the electric field.

charging energy U required to transfer even a single electron into the well becomes significant for small devices.
If the charging energy is ignored, the situation is shown in Fig. 15(a). Since the lateral confining potential V(x,
y) changes between the emitter and well, k⊥ is no longer a conserved quantity. As the bias V lowers E11 below
EF in the emitter, tunneling through this single state becomes possible—this defines the threshold Vth. At
higher V, additional tunneling channels open up. The resulting I(V) will exhibit a rising staircase of steplike
features (46), their strength depending on the transmission TE(V) and also on the degeneracy of the E1m states.
No NDR is expected in the I(V) because k⊥ conservation no longer impedes tunneling through higher-lying
E1m states when E11 drops below the occupied states in the emitter.

This picture of tunneling into a quantum dot would be unpromising from the device standpoint, if not
for the charging energy U = e2/2CW associated with the tunneling of a single electron into the well (CW is
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Fig. 15. (a) Schematic band diagram of a double-barrier RT nanostructure with lateral quantization. The levels Enm arise
from the quantization of the nth 2-D subband En into discrete quantum dot states. (b) Coulomb blockade regime. A single
electron tunneling into the well changes the emitter–well alignment by U ≈ e 2/2CW, where CW is the dot capacitance.
Tunneling into the well is cut off if U raises E11 above the occupied states in the emitter, as shown.

the effective capacitance of the dot). This U can appreciably alter the alignment of Enm with emitter EF, as
illustrated in Fig. 15(b). A simple, geometric estimate of the capacitance is CW ≈ εSL2/LB, where LB is the
effective barrier thickness. For current to flow, at least one electron must tunnel into the dot. So, Vth shifts
proportionally to the single-electron charging energy U. The shift to other steplike features depends on the
average occupation of the dot, which is determined by the transmission ratio TE/TC of the emitter and collector
barriers (46). If TE/TC � 1, the occupation of the dot by more than one electron at a time is rare and all the
steplike features in the I(V) corresponding to additional tunneling channels shift together. On the other hand,
if TE/TC � 1, each available level is occupied most of the time, so the opening of every additional channel
requires sufficient biasing to overcome the charging energy—the so-called Coulomb blockade. Such devices
have been studied to probe the energy spectra of quantum dots with and without electron–electron interactions
(46,47).

It is the charging energy required to change the electron occupation that makes RT nanostructures
promising for devices. Consider a third gate electrode that can change the potential between the quantum dot
and the emitter but that is sufficiently isolated from the dot to prevent any possibility of electron transfer from
the gate. Then, if the device is biased by VE near a voltage step corresponding to the addition of another electron
to the dot, a small change in VG can tune the occupation of the dot, resulting in a single-electron transistor.
Because of fabrication difficulties, gate control of single-electron tunneling is easier in the planar geometry,
with the dot and gate electrode defined by electrostatic metal gates deposited on top of a high-mobility 2DEG. A
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Fig. 16. Conductance of a small 2-D electron gas island as a function of gate bias VG, at T = 20 mK. Inset shows a top
view of the island geometry. Gates G1, G2, and G4 are biased into deep depletion, forming a 2DEG island weakly coupled
to 2DEG electrodes. VG is applied to the gate G3. Changes in the electron occupation of the island produce regular spikes
in the conductance. Figure courtesy of C. J. B. Ford, 1996.

top view of the gated structure is shown in the inset of Fig. 16: the outside gates are biased into deep depletion,
forming a small island of 2DEG connected to the reservoirs by tunneling barriers. The island is quite large, so
the lateral size quantization is negligible. As a result, the energy spectrum is entirely defined by the charging
energy U. The gate electrode can alter the effective size and capacitance of the island, so the I (V) characteristic
as a function of VG should show regularly spaced steps corresponding to the adding of electrons to the island.
At low temperatures, very regular conductance (g = ∂I/∂V) peaks have been observed in such structures (48),
an example is shown in Fig. 16.

Precise single-electron control over the occupation of small quantum dots or islands has led to many
proposals of logic and memory circuits based on single-electron transistors (SETs) (49). To some extent, single
electron devices can be considered the logical endpoint of miniaturization-driven semiconductor technology. In
fact, standard silicon floating-gate memories have been made small enough for the single-electron charging of
the gate to control the transistor threshold, resulting in “classical” single-electron devices (50,51). The main
difficulty for large-scale circuitry of this type is posed by the extremely stringent fabrication requirements,
especially at noncryogenic temperatures. Currently, SET characteristics (like the data in Fig. 18) are measured
at low temperature, to ensure the condition U = e 2/2C �W kT. Clearly, device sizes will need to be reduced by
orders of magnitude before higher temperature operation can be contemplated. Even at T = 77 K, the charging
energy must be certainly larger than 10 meV. This requires a capacitance CW < 10− 17 F, a very stringent
condition. It is imperative to avoid parallel capacitance due to leads or other electrodes, since even a simple thin
wire has an intrinsic capacitance of about 10− 16 F/µm. It is also not clear that semiconductor SET realizations
have any advantages over metal tunnel junctions for most proposed devices: the first observation of Coulomb-
blockade phenomena (52) and the first SET with voltage gain (53) both employed small Al tunnel junction
capacitors. One specific application for which the SET appears promising is the construction of precision current
standards. In a gated 2DEG island, by sequentially lowering and raising the emitter and collector barriers in
the Coulomb-blockade regime, the transfer of one electron per cycle of barrier biasing can be achieved (54). If the
barriers are cycled at a frequency f , the current is given by I = ef W, making for a very precise current source.
It is anticipated that such a device may provide a new metrological current standard, although single-electron
transfer along a chain of small metallic islands may prove a more successful implementation (55).
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Fig. 17. Schematic cross section and energy band diagram of a three-terminal GaAs/AlGaAs RST transistor. In this
version, there are no electrons in the channel at flatband—the channel density n(x) is induced by collector bias Vc. If
instead the channel consists of a modulation-doped quantum well, n(x) can be nonzero at Vc = 0

Real-Space Transfer Structures

Another approach to exploit a highly nonlinear I(V) involves the integration of the real-space transfer (RST)
mechanism with a third terminal. The idea behind RST is the transfer of carriers between semiconductor
layers of high and low mobility (56), first demonstrated in two-terminal modulation-doped multiquantum well
GaAs/AlGaAs heterostructures (57). When the electric field along the GaAs wells is small, electrons remain
there, and the source–drain I(VD) is ohmic. However, as the field is increased, the power input into the electron
distribution exceeds the energy loss into the lattice, and electrons heat up to some effective temperature Te. At
high Te, there is partial transfer over the heterostructure barrier V0 to the AlGaAs layers, where the mobility
is much lower, giving rise to NDR in the two-terminal I(VD). The analogy to the Gunn effect is obvious.

A realistic treatment of electron heating in an RST structure involves the formation of longitudinal
electric field domains, redistribution of carriers both vertically and laterally, self-consistent electric fields in
the transfer direction, and quantum mechanical reflections at the barriers. The complexity of the problem
compels the use of Monte Carlo techniques (58). Like two-terminal resonant tunneling diodes, two-terminal
RST structures are potentially useful as high-frequency oscillators, but the available PVR is rather small.
What makes RST structures considerably more interesting as devices is the possibility of extracting the hot
carriers via a collector electrode, resulting in a three-terminal RST transistor (59).

Figure 17 shows a schematic cross section and band diagram of such a device. The source and drain
contacts are to a high-mobility GaA? channel, whereas the collector is separated from the channel by a large
AlGaAs barrier. As VD is increased, a drain current ID begins to flow, and the carriers heat up to some effective
temperature Te(V)D. This temperature determines the RST current injected over or tunneling through the
collector barrier, giving rise to IC. Unlike the two-terminal device, here the RST current is removed from the
drain current loop, leading to very strong NDR in the ID(VD) curve, with room temperature PVR reaching 160
in GaAs/AlGaAs devices (60), and up to 105 in pseudomorphic InGaAs/GaAs RST transistors (61).

There has been recent progress in Si/SiGe RST transistors, which are more promising for integration into
mainstream technology. The drain ID(VD) and collector IC (VD) characteristics of a p-Si/SiGe RST transistor
at room temperature 62 are shown in Fig. 18. Here SiGe layers comprise the channel and collector regions,
separated by a 3000 Å Si barrier. Negative V? induces a hole density in the channel, whereas VD heats the holes.
As VC increases, the drain characteristic exhibits NDR, with PVR slightly exceeding two. Even though the PVR
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Fig. 18. Room temperature Si/SiGe RST transistor (a) drain and (b) collector current as a function of drain bias VD for
constant VC = −3.5 to −5.5 V in −0.5 V increments. Source–drain channel length L = 0.5 µm, device width is 40 µm. After
Mastrapasqua et al. (62).

is greatly inferior to that available in III–V devices, it is sufficient to implement a single-device exclusive-OR
gate with a 10 dB on/off ratio at T = 300 K and a 65 dB on/off ratio at T = 77 K. For 0.5 µm source–drain
separation, this device had a current-gain cutoff frequency f T = 6 GHz

Like resonant tunneling devices, RST transistors provide NDR characteristics in the source–drain circuit.
Further, since the source and drain contacts of an RST transistor are fully symmetric, these devices have
additional logic functionality. A single RST transistor can perform an exclusive-OR function, because the
collector current IC flows if source and drain are at different logic values, regardless of which is “high.”

Resonant Hot-Electron and Bipolar Transistors

As we have seen, three-terminal RT structures with direct modulation of the resonant current are difficult
to fabricate. An alternative approach is the incorporation of a double-barrier RT potential into the emitter of
a bipolar or a hot-electron transistor (63). A schematic band diagram of the resonant hot-electron transistor
(RHET) is shown in Fig. 19. In a hot-electron transistor (64), carriers are injected from the emitter, traverse
the base without scattering, and surmount the collector barrier VC. If the base is narrow, a large fraction αT of
injected carriers arrives at the collector, giving a current gain β = αT/(1 − αT). Of course, the RBC time constant
of Eq. (11) still applies, so there is a trade-off between high gain (narrow base) and fast operation (low RB
and hence a wider base)—state-of-the-art results on InGaAs devices have yielded β ≈ 10 at room temperature
(65). In the RHET, this current gain is combined with the resonant emitter IE(VBE). Consider the collector
current IC(VBE) at some fixed VBC. At small VBE the emitter RT structure is below threshold, and IE ≈ IC is
negligible. At larger VBE, a resonant current flows through the emitter, injecting hot carriers into the base.
Finally, as VBE biases the emitter RT diode beyond VP, the emitter current drops. The corresponding PVR in
IC will approximately reproduce the PVR of the emitter diode. Peak-to-valley ratios of approximately 10 have
been reported in the IC(VBE ) characteristics of RHETs at T = 300 K (65)

Similar characteristics can be obtained by inserting a double-barrier or cascaded RT diode in the emitter-
base junction in an n–p–n bipolar transistor (66). Here emitter bias VBE divides between the RT diode in the
emitter and the emitter–base n–P junction to maintain current continuity. As long as VBE is less than the n–p
junction built-in voltage Vbi, IE, increases as in a conventional bipolar transistor. Beyond flatband, VBE ≥ Vbi,
additional VBE drops over the RT diode, and IE exhibits one or more NDR regions, which are reproduced in
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Fig. 19. Schematic band diagram of a resonant hot-electron transistor. The resonant I(V) of the RT diode in the emitter–
base junction is replicated in the collector current IC, leading to a peaked IC(VBE) characteristic.

Fig. 20. (a) Schematic IC(VBE) of a resonant hot-electron transistor in the common-emitter configuration. The RHET
exhibits negative transconductance for VBE > VP with high PVR. (b) Exclusive-NOR circuit using a single RHET.

the IC. The multipeak IC characteristic of a bipolar transistor with two RT diodes in the emitter has been used
as a frequency multiplier: driving the base with an ac signal of frequency f , signals at 3 f (for sawtooth input)
and 5 f (for sinusoidal input) were generated with reasonable conversion efficiency (67).

Like RST transistors, resonant hot-electron and bipolar transistors exhibit higher logic functionality,
illustrated schematically in Fig. 20. Given a common-emitter IC(VBE) characteristic with reasonable PVR, the
output IC can be high when VBE = Vhigh < VP, but low when VBE = 0 or 2 Vhigh. Thus, a single device with
two base contacts has exclusive- OR functionality, as shown in Fig. 20(b). Room temperature operation with
reasonable VOUT voltage swing has been demonstrated (65). In addition to the resistor network, a drawback of
these designs is the finite PVR that causes power dissipation and reduced noise margin when both base inputs
are high.

Similar logic functionality has been demonstrated in a silicon-based multiemitter floating-base bipolar
transistor (68). A schematic diagram of an n–p–n device with two emitter contacts is shown in the inset of
Fig. 21. The controlling base current is supplied by a reverse-biased emitter contact, where the current flows
by interband tunneling, as in a backward diode. Consider IC(VE2, VC) when VE1 = 0 and VC is biased high.
Voltage VE2 forward-biases one of the emitter junctions and reverse-biases the other. A small tunneling current
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Fig. 21. Room temperature IC(VE2, VC) of a Si/SiGe multiemitter heterojunction bipolar transistor with a floating base,
with inset showing a schematic device diagram. The biasing on the two emitters can be swapped without affecting the
transistor characteristics.

flows in the reverse-biased junction, but this is precisely the base current needed to cause electron injection
in the forward-biased emitter. The injected electrons reach the collector, and standard transistor operation,
including high current gain, is preserved: room-temperature IC VE2 VC of an n–p–n Si/SiGe/Si floating-base
transistor with gain β ≈ 400 is shown in Fig. 1 (69). Since the emitter contacts are symmetric, a double emitter
device possesses exclusive- OR functionality. IC is large when one of the emitters is biased high and the other is
grounded, but when both emitters are grounded or high IC ≈ 0. A further advantage is simplified fabrication,
because no base contact metallization is required; a possible disadvantage is the higher effective base contact
resistance—there is, at present, no reliable quantitative model of interband tunneling as a function of emitter–
base junction doping.

Quantum Device Oscillators

An obvious application of any device with a strong NDR characteristic is an oscillator. Resonant tunneling
diodes excel as solid-state high-frequency oscillators, because they are relatively easy to fabricate and exhibit
reasonable output power with high maximum oscillation freencies f MAX compared to competing microwave
tunnel and transit-time diodes.

The inset of Fig. 22 shows a simple equivalent circuit of a two-terminal diode oscillator with an NDR IV
characteristic, one that has been used for tunnel diodes. The real part of the equivalent circuit impedance Req
is given by
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Fig. 22. Comparison of RT oscillators fabricated in different material systems. The InAs/AlSb oscillator should reach f max
≈ 1 THz. Inset shows the simple equivalent circuit of a two-terminal tunnel diode oscillator, including the parasitics. Graph
courtesy of E. R. Brown, 1996.

where − RD = (VV − VP/IV − IP) is the negative diode resistance, CD is the diode capacitance, and RS is the
series lead resistance. For steady-state oscillation, Req must be negative, so the cutoff frequency f MAX is

To increase f MAX, series resistance RS and diode capacitance CD should be small.
Equations (16) and (17) have been employed in the design of RT diode oscillators with empirical parame-

ters (e.g., taking for CD the emitter-collector capacitance) and extended to include collector transit-time effects
(15). However, the equivalent circuit of Fig. 22 is physically unsatisfactory. The current flowing in an RT diode
depends on the alignment of the emitter and the 2-D subband in the well, with the tunneling currents into
and out of the well balancing in steady state, JIN = JOUT. The main difficulty lies in the unknown energy dis-
tribution of the dynamically stored charge density σW, which makes it impossible to describe JOUT as a unique
function of the potential difference VC between the well and the collector. It is possible to derive a small-signal
dynamic model if one assumes that carriers equilibrate in the well (70). For realistic RT diodes, one finds that
the key parameter for high speed is the lifetime of the metastable state, which should be minimized by making
the collector barrier as transparent as possible while keeping the sharpness of the 2-D quantization sufficient
for NDR in the I(V) characteristic.

Figure 22 summarizes experimentally measured, room temperature oscillator performance of high-speed
RT oscillators fabricated in different material systems: GaAs/AlAs, InGaAs/AlAs, and InAs/AlSb (15). While
the power density in GaAs/AlAs devices is limited by their relatively low PVR at T = 300 K, In GaAs/AlAs RT
oscillators exhibit good output power, while InAs/AlSb devices show promise for submillimeter wave (f > 300
GHz) performance and hold the record for solid-state oscillator frequency at 712 GHz (71). No other solid-state
sources generate coherent power at submillimeter fundamental frequencies. One possible application of such
devices is for low-noise local oscillators in radioastronomy.
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Fig. 23. (a) Schematic bistable memory made from an RT diode in series with a load resistor RL. Output voltage VOUT =
IRL depends on whether the circuit is at point A or C ; point B is unstable. (b) Schematic diagram of a multistate memory
constructed by biasing a cascaded RT device with a multipeak I(V), like that in Fig. 12, with a constant current. After
Seabaugh et al. (36) ( c© 1992 IEEE).

Quantum Device Memories

Several approaches in constructing memory circuits from quantum devices have been pursued. Single-device
memories can be constructed from a bistable RT diode (12) or an ordinary RT diode in series with a load
resistor RL, which for proper RL yields two stable bias points, as shown in Fig. 23(a). Voltage pulses can be
used to change the memory state. The drawback of such memories is that at least one of the states corresponds
to high current through the RT diode, resulting in prohibitive power dissipation. There have been attempts to
increase the functionality of the RT memory in a cascaded RT structure with a multipeak I(V) characteristic,
as in Fig. 12, biased by a constant current source, as in Fig. 23(b). Given N peaks in the I(V), the output node
VOUT can be at any of the(N + 1) stable voltage points. Switching between VOUT states is performed by setting
an input voltage via a momentarily enabled write line. This type of multistate memory also dissipates a great
deal of power, unless the PVR is very high. Ultimately, the quantifiable advantage of a multistate memory is
the reduction of the number of elements necessary to store the same information by a factor of log2(N + 1) for
an (N + 1)-state device replacing a binary flip-flop.

A different approach is the series connection of two NDR devices, which can be RT diodes, RST transistors,
or any other NDR device. If the total applied bias VDD exceeds twice the peak voltage VP, the voltage division
between the devices becomes unstable. One of the two devices takes on most of the bias, thereby determining
the voltage of the middle node VOUT. This is illustrated by the load-line construction in Fig. 24: operating points
A and C are stable, but B is unstable. Switching between the two states can be accomplished by changing the
middle node bias via an additional electrode. The current flowing through the two NDR devices when VDD >

2VP depends on the valley current. If the PVR of the devices is large, the current will be small regardless of
whether the circuit is in state A orC.

A schematic memory constructed from two RT diodes in series with an additional control electrode sepa-
rated from the middle node by a tunnel barrier is shown in Fig. 25(a). After their original demonstration at T
= 77 K using InGaAs/AlAs/InP RHETs (72), such devices have been fabricated in the polytype InAs/AlSb/GaSb
system (73), which provides good PVR at T = 300 K. To switch VOUT, a voltage VIN is applied to the subcollector
electrode, inducing a tunneling current between the middle node and the subcollector. When the subcollector
current reaches IP, VOUT switches, yielding hysteresis in the VOUT versus VIN characteristic, shown schemati-
cally in Fig. 25(b).
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Fig. 24. Graphical construction for determining the operating points of a circuit consisting of two identical NDR devices
in series. Points A and C are stable; point B is unstable.

Fig. 25. (a) Circuit and cross-sectional diagrams of a memory based on two RT diodes in series with an additional sub-
collector terminal to control the voltage VOUT of the middle node. After Shen et al. (73) ( c© 1995 IEEE). (b) Schematic
input–output characteristics: VOUT voltage swing (vertical extent of the loop) depends on the diode characteristics, in-
creasing with PVR; VIN switch points (horizontal extent of the loop) depend on the subcollector I(VOUT−VIN) two-terminal
characteristic.

Recently, a tunneling-based random access memory cell combining two RT diodes in series with het-
erostructure FETs fabricated from the same epitaxial heterostructure grown on InP was reported to operate at
room temperature (74). Despite poor PVR, this design achieved relatively low power consumption by employing
RT diodes with very low peak current densities, while compensating for the low current drive of the diodes
with an additional HFET.

Memory cells based on two RT diodes or RHETs in series, along the lines of Fig. 25, are smaller than
standard CMOS designs. The remaining issue for large-scale memory arrays is power dissipation. Because a
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Fig. 26. A three-input majority logic gate implemented with three resonant hot-electron transistors and a resistor sum-
ming network. The last RHET before the output node is larger in area to increase IC and, hence, the current drive of the
logic gate. After Takatsu et al. (75) ( c© 1992 IEEE).

reasonable IP is needed to charge up the interconnect capacitance (unless additional transistors are used (74),
which increases the cell area), the relevant figure of merit is PVR. Polytype InAs/GaSb/AlSb RT diodes allowed
for PVR of ∼20 at T = 300 K (73), but much higher PVR appears necessary for practical devices.

Quantum Device Logic

Quantum devices for logic elements have been proposed and, in some cases, demonstrated by a number of
groups. In particular, the compact exclusive-NOR (XNOR) functionality of RHETs has been employed in the
design of elementary logic components, such as latches and full adders (75). A typical building block in such
designs is the three-input majority logic gate, shown in Fig. 26, which uses three RHETs. By using a four-
resistor summing network connected to the emitter–base diode of the first RHET, the operating point lies below
VP in the IC(VBE) characteristic if none or one of the inputs is high and above VP if two or three inputs are
high. The second RHET senses whether the output of the first is above or below VP. The third RHET, which is
larger, increases the output current drive. By combining this majority logic gate with two XNOR gates made of
two RHETs each, a full adder operating at T = 77 K was demonstrated (75). Room temperature operation of
a hybrid full adder incorporating bipolar transistors with and without RT diodes in the emitter–base junction
has also been reported (76). Such designs accomplish the required logic function with a reduced number of
transistors, but at the expense of additional resistors. The impact of all these resistors on switching speed and
propagation delay has not been characterized to date. Also, the integration of these circuits with conventional
silicon technology is problematic, while the possibility of a stand-alone quantum device logic circuitry built in
III–V semiconductors competing with the ever-advancing silicon CMOS logic is extremely remote.

Integration of high-functionality devices with conventional logic circuitry is considerably easier when they
are built in Si/SiGe heterostructures. Both the Si/SiGe RST transistor of Fig. 18 and the multiemitter floating-
base Si/SiGe HBT of Fig. 21 combine higher logic functionality with silicon technology compatibility. Further,
in addition to the exclusive- OR function, these devices provide even higher logic functionality if the number of
input terminals is increased. For example, three input terminals permit a single-device implementation of an
ORNAND gate. Depending on whether the control input is high or low, the output current behaves as either a
NAND or an OR function of the other two inputs (77). This added logic appears especially attractive for BiCMOS
circuitry, where bipolar transistors are selectively added to CMOS logic blocks, typically to increase current
drive. However, epitaxial deposition of pseudomorphic SiGe layers for the active regions obviously requires
additional fabrication steps and reduces the thermal budget available for subsequent processing. The trade-off
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Fig. 27. Schematic conduction band diagram of the quantum cascade laser at a field ++ z = 8.5 × 104 V/cm. The radiative
E3 → E2 transition in the coupled-quantum-well active region is shown by the wavy line. Bold lines indicate the squared
moduli |χ(z)2|) of the subband wavefunctions in the active region. Note that the lower two states in the coupled quantum
well, E2 and E1, line up with the SL miniband, whereas the E3 state lines up with the SL minigap. The peak optical-power
output from a single facet versus injection current for this laser at various heat sink temperatures T is shown at lower left
(pulsed mode operation). At T = 100 K, the threshold current density Jth = 3 × 103 A/cm2. After Faist et al. (78).

between the added fabrication complexity and the area savings due to the higher functionality will decide the
future of silicon-based quantum devices.

Optical Quantum Devices: Quantum Cascade and Quantum-Dot Lasers

A significant area where quantum devices are about to make their mark is solid-state laser sources in the
mid-infrared (λ = 4 µm to 12 µm) and ultra-low-threshold quantum dot lasers.

The recently developed quantum cascade laser (QCL) (44,78) combines resonant tunneling and super-
lattice miniband spectrum in a device structure that makes full use of heterostructure bandgap engineering.
Figure 27 shows a partial band diagram of the QCL together with its output characteristics. The entire QCL
structure is composed of 25 stages of an InGaAs/AlInAs coupled-quantum-well active region followed by a
doped superlattice reflector. The active region is designed for the following 2-D subband structure under bias:
a higher-lying E3 subband with a wavefunction |χ3(z)|2 concentrated in the first well and two lower-lying
subbands E2 and E1 concentrated in the first and second well, respectively. The radiative transition is E3 →
E2, so the laser output energy is hω = E3 − E2. This radiative transition has to compete with other E3 → E2
relaxation mechanisms, mostly optical phonon emission. However, because ω � ωopt, phonon-assisted E3 → E2
relaxation requires large in-plane momentum transfer and is slow. On the other hand, since ωopt ≈ (E2 − E1),
phonon-assisted E2 → E1 relaxation is very fast. The superlattice downstream of the active region completes
the set of conditions necessary for population inversion between E3 and E2, as it blocks direct tunneling out
of the E3 level but allows efficient tunneling out of E1 into an SL miniband and then into the E3 level in the
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subsequent active region. There the process is repeated, until the electron cascades down all 25 stages and is
collected in the doped optical cladding layers that sandwich the QCL.

Finally and crucially, the layers near the middle of the SL region are doped in the 1017 cm− 3 range to
provide carriers for injection into the active regions and ensure overall charge neutrality under operating
conditions. The role of the SL regions is best appreciated by comparing the QCL structure of Fig. 27 with
the conceptually similar structure of Fig. 14(c). In Fig. 14(c), a constant electric field in an undoped SL would
be impossible to maintain in the presence of significant current, and tunneling from the E2 level into the
continuum would work against population inversion. The doped SL region maintains charge neutrality and
prevents nonradiative tunneling out of the upper level. Note that since effective Bragg reflection requires very
accurate grading of layer widths in the SL regions, this elegant approach places stringent demands on band
structure modeling and epitaxial layer control.

The lasing characteristics shown in Fig. 27 at lower left corresponds to a λ ≈ 4.5 µm laser with cleaved
facets operated in pulsed mode, but continuous mode operation at T = 140 K and pulsed operation at room
temperature has recently been reported in an optimized QCL structure (79). The power output is quite high,
but the threshold current density Jth increases rapidly with temperature. Recent theory of gain in QCL pointed
to the importance of hot-electron effects in the presence of subband nonparabolicity (80). Not only do electrons
tunnel into E3 with a considerable spread in energy of transverse motion, but those that relax nonradiatively
to the E2 subband are initially very hot, since (ω − ωopt) ≈ 3000 K for the λ = 4.5 µm transition. Because
of nonparabolity, the gain depends on the difference between hot-electron distributions in these subbands.
Calculations show that these distributions are radically different in the limits of low and high sheet-carrier
concentrations nD per QCL period. For low n � 1011cm− 2, the rate of electron–electron collisions is low, the
dominant scattering process is optical–phonon emission within the same subband, and the resulting electronic
distribution decreases toward the bottom of the E2 subband, as if the effective temperature were negative.
In this regime, the calculated peak gain is substantial even at T = 300 K, but this regime has not yet been
realized experimentally. Instead, QCL structures thus far have focused on the high nD limit, where the peak
gain is lower. Implementing the low-concentration regime appears to be a promising strategy for maximizing
QCL performance.

Another interesting new development is the quantum dot (QD) laser, where fully confined semiconductor
quantum dots placed in a matrix of a wider-bandgap semiconductor serve as the active medium (81). The
advantages of a QD laser arise from the discrete, atomic-like density of states (see Fig. 3), which makes it
easier to achieve population inversion, reducing the threshold current for lasing. Further, given sufficiently
small dots with energy separation larger than kT at room temperature, QD lasers exhibit excellent high-
temperature performance. Even though the proposals of temperature-insensitive QD lasers are not new (82),
the technological fabrication of QD media with desired dot size, density, and size uniformity only became
possible with advances in epitaxial self-assembly. It turns out, for carefully selected growth conditions, that
the transition from planar to islanded growth of strained layers (such as InAs on GaAs) can be controlled to
yield dots of remarkably consistent shape, size, and even lateral ordering. When these dots are overgrown with
GaAs, the result is a dense QD array in a wider bandgap matrix. In these dots, the density of states is discrete,
and electron-hole interactions are not screened, resulting in very high material gain compared to standard
quantum-well lasers. As a result, lasers fabricated with such a QD active medium were shown to have the
predicted low-threshold and temperature stability properties (83). Further, control over the QD size allows for
some tuning of the lasing frequency, extending GaAs-based lasers to the technologically important 1.3 µm and
1.55 µm wavelengths.

Two basic device geometries have been applied to QD lasers: stripe geometry lasers with the light propa-
gating along the QD plane, with the Fabry–Perot cavity formed by standard cleaved mirrors, and vertical cavity
QD lasers with distributed Bragg reflector mirrors. The first approach allows the fabrication of high-power
lasers with ultralow threshold current density, which also greatly improves device reliability by reducing dis-
location growth and suppressing mirror overheating due to nonradiative surface recombination at the mirrors.
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Fig. 28. High-power continuous-wave operation of an edge-emitting quantum dot laster at T = 300 K, together with a
transmission electron micrograph of ordered InGaAs quantum dots in the active region. Figure courtesy of N. N. Ledentsov,
1998.

High-power, continuous wave, room temperature operation of a QD laser is shown in Fig. 28, together with
a transmission electron micrograph of the QD active region (84). In the other geometry, light is emitted in
the vertical direction, with the cavity formed by multilayer distributed Bragg reflector mirrors. Not only does
this geometry promise lasers with ultralow total currents, but lasers based on single QD can be potentially
realized. In both geometries, the ultrahigh gain available in the dots together with efficient QD carrier con-
finement relaxes the constraints on optical waveguiding, promising, for example, vertical cavity QD lasers
even with moderate Bragg mirror reflectivity. The absence of exciton heating and screening, as well as much
reduced phonon-asisted nonradiative relaxation in quantum dots (85), distinguishes QD laser physics from
conventional semiconductor lasers sufficiently to warrant its discussion as a new quantum device, rather
than an improved conventional laser.

Future Of Quantum Devices

This article has reviewed some of the recent research in the area of quantum devices. It is clear that even
though many of these devices are quite successful according to some benchmarks, none has found large-scale
commercial application to date. To be sure, quantum device research has achieved much progress. Fascinating
new physics has been discovered, exemplified by the fractional quantum Hall effect (86). The basic effects
relevant to electronic devices, such as tunneling in heterostructures, ballistic transport, and charge injection
across potential barriers are now available as robust and reproducible phenomena. Yet only in the relatively
distant future—at very small device dimensions L, cryogenic temperatures T, or whatever other design criteria
future technology may require—might quantum devices offer a sufficient advantage for mainstream analog or
digital electronics. On the other hand, they have significant potential if they can be integrated with mainstream
semiconductor devices or, in the case of quantum dot lasers, if they can improve the performance of an existing
device without incurring major fabrication overhead. Finally, there are niche applications where quantum
devices appear ready to take over; a classic example is the quantum cascade laser, which promises a source in
the range of wavelengths where the competition—lead-salt lasers—is relatively inefficient.
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Evolution in microelectronics has been associated with the progress in two areas: miniaturization of
devices driven by advances in lithography and ion implantation doping, and bandgap engineering made possible
by modern epitaxy. Of these two areas, the first definitely has had a greater impact in the commercial arena,
whereas the second has been supplying the device physics field with new systems to explore. These roles
may well be reversed in the future. Development of new and exotic lithographic techniques with nanometer
resolution will set the stage for the exploration of various physical effects in mesoscopic devices, whereas
epitaxially grown devices, particularly heterojunction transistors integrated with optoelectronic elements, will
be gaining commercial ground. When and whether this role reversal will take place will be determined perhaps
as much by economic as by technical factors.

The logic of industrial evolution will provide new paths for a qualitative improvement of system compo-
nents, other than the traditional path of a steady reduction in fine-line feature size. Miniaturization progress
faces diminishing returns in the future, when the speeds of integrated circuits and the device packing densities
will be limited primarily by the delays and power dissipation in the interconnects rather than individual tran-
sistors. Further progress may then require circuit operation at cryogenic temperatures or heavy reliance on
high-bandwidth optical and electronic interconnects. Implementation of optical interconnects within the con-
text of silicon microelectronics requires hybrid-material systems with islands of foreign heterostructures grown
or grafted on Si substrates. In this scenario, the current noncompetitiveness of quantum devices could give
way to novel devices serving as small, highly functional application-specific components that add significant
value to main blocks of microelectronic circuitry.
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tocurrent measurements, see E. E. Mendez, F. Agulló-Rueda, and J. M. Hong, Stark localization in GaAs-GaAlAs
superlattices under an electric field, Phys. Rev. Lett., 60: 2426, 1988.

43. R. Kazarinov R. Suris Possibility of the amplification of electromagnetic waves in a semiconductor with a superlattice,
Fiz. Tekh. Poluprovodn., 5: 797, 1971 [Sov. Phys. Semicond., 5: 707, 1971.]

44. J. Faist et al. Quantum cascade laser, Science, 264: 533, 1994.
45. H. C. Liu G. C. Ayers Resonant tunneling through one-, two-, and three-dimensionally confined quantum wells, J.

Appl. Phys., 65: 4908, 1989.
46. B. Su V. J. Goldman J. E. Cunningham Observation of single-electron charging in double-barrier heterostructures,

Science, 255: 313, 1992; Single-electron tunneling in nanometer-scale double-barrier heterostructure devices, Phys.
Rev. B, 46: 7644, 1992.

47. T. Schmidt et al. Quantum-dot ground states in a magnetic field studied by single-electron tunneling spectroscopy on
double-barrier heterostructures, Phys. Rev. B, 51: 5570, 1995.

48. U. Meirav M. A. Kastner S. J. Wind Single-electron charging and periodic conductance resonances in GaAs nanos-
tructures, Phys. Rev. Lett., 65: 771, 1990; L. P. Kouwenhoven et al., Single electron charging effects In semiconductor
quantum dots, Z. Phys. B., 85: 367, 1991.

49. An extensive discussion is available in H. Grabert, M. H. Devoret, (eds.) Single Charge Tunneling: Coulomb Blockade
Phenomena in Nanostructures, New York: Plenum Press, 1992. The chapter by D. V. Averin and K. K. Likharev is
devoted to device applica- ons.

50. K. Yano et al. Room-Temperature single-electron memory, IEEE Trans. Electron. Devices I, 41: 1628, 1994; K. Yano
et al., 128 Mb early prototype for gigascale single-electron memories, IEEE Int. Solid-State Circuits Conf., 1998, pp.
344–345.

51. A. Nakajima et al. Room temperature operation of Si single-electron memory with self-aligned floating dot gate, Appl.
Phys. Lett., 70: 1742, 1997.

52. T. A. Fulton G. J. Dolan Observation of single-electron charging effects in small junctions, Phys. Rev. Lett., 59: 109,
1987.

53. G. Zimmerli R. L. Kautz J. M. Martinis Voltage gain in the single-electron transistor, Appl. Phys. Lett., 61: 2616,
1992.

54. L. P. Kouwenhoven et al. Quantized current in a quantum-dot turnstile using oscillating tunnel barriers, Phys. Rev.
Lett., 67: 1626, 1991.

55. H. Pothier et al. Single-electron pump based on charging effects, Europhys. Lett., 17: 249, 1992; J. M. Martinis, M.
Nahum, and H. D. Jensen, Metrological accuracy of the electron pump, Phys. Rev. Lett., 72: 904, 1994.

56. Z. S. Gribnikov Negative differential conductivity in a multilayer heterostructure, Fiz. Tekh. Poluprovodn., 6: 1380,
1972 [Sov. Phys. Semicond., 6: 1204, 1973].

57. M. Keever et al. Measurements of hot-electron conduction and real-space transfer in GaAs/Alx Ga1 − x As heterojunction
layers, Appl. Phys. Lett., 38: 36, 1981.

58. K. Hess et al. Negative differential resistance through real-space electron transfer, Appl. Phys. Lett., 35: 469, 1979.
59. A. Kastalsky S. Luryi Novel real-space hot-electron transfer devices, IEEE Electron. Device Lett., 4: 334, 1983; S. Luryi

et al., Charge injection transistor based on real-space hot-electron transfer, IEEE Trans. Electron. Devices 31: 832,
1984.

60. A. Kastalsky et al. Negative-resistance field-effect transistor grown by organometallic chemical vapor deposition, Solid
State Electron., 29: 1073, 1986.

61. C. L. Wu et al. Very strong negative differential resistance real-space transfer transistor using a mulitple δ -doping
GaAs/InGaAs pseudomorphic heterostructure, Appl. Phys. Lett., 66: 739, 1995.

62. M. Mastrapasqua et al. Charge injection transistor and logic elements in Si/Si1 − x Gex heterostructures, in S. Luryi, J.
Xu, and A. Zaslavsky (eds.), Future Trends in Microelectronics: Reflections on the Road to Nanotechnology, Dordrecht:
Kluwer, 1996, pp. 377–384.



32 QUANTUM DEVICES

63. N. Yokoyama et al. A new functional resonant-tunneling hot electron transistor (RHET), Jn. J. Appl. Phys., 24: L-853,
1985; N. Yokoyama et al., Resonant-tunneling hot electron transistor (RHET), Solid State Electron., 31: 577, 1988.

64. M. Heiblum I. Anderson C. M. Knoedler DC performance of ballistic tunneling hot-electron-transfer amplifiers, Appl.
Phys. Lett., 49: 207, 1986.

65. T. S. Moise et al. Room-temperature operation of a resonant-tunneling hot-electron transistor based integrated circuit,
IEEE Electron. Dev. Lett., 14: 441, 1993.

66. For a review of resonant tunneling bipolar transistor research see F. Capasso, S. Sen, and F. Beltram, Quantum-effect
devices, in S. M. Sze (ed.), High-Speed Semiconductor Devices, New York: Wiley, 1990, pp. 465–520.

67. S. Sen et al. Multiple state resonant tunneling bipolar transistor operating at room temperature and its application as
a frequency multiplier, IEEE Electron. Dev. Lett., 9: 533, 1988.

68. Z. S. Gribnikov S. Luryi Article comprising a bipolar transistor with a floating base, US patent 5,461,245, filed August,
1994; K. Imamura et al., Proposal and demonstration of multi-emitter HBT’s, Electron. Lett., 30: 459, 1994.

69. A. Zaslavsky et al. Multiemitter Si/Gex Si1 − x heterojunction bipolar transistor with no base contact and enhanced logic
functionality, IEEE Electron. Dev. Lett., 18: 453, 1997.

70. This model is developed in S. Sze (ed.), Modern Semiconductor Device Physics, New York: Wiley-Interscience, 1998, pp.
306–310.

71. E. R. Brown et al. Oscillations up to 712 GHz in InAs/AlSb resonant-tunneling diodes, Appl. Phys. Lett., 58: 2291, 1991.
72. T. Mori et al. A static random access memory cell using a double-emitter resonant-tunneling hot electron transistor for

gigabit-plus memory applications, Jpn. J. Appl. Phys., 33: 790, 1994.
73. J. Shen et al. Static random access memories based on resonant interband tunneling diodes in the InAs/GaSb/AlSb

material system, IEEE Electron. Dev. Lett., 16: 178, 1995.
74. J. P. A. van der Wagt A. C. Seabaugh E. A. Beam, III RTD/HFET low standby power SRAM gain cell, IEEE Electron.

Dev. Lett., 19: 7, 1998.
75. M. Takatsu et al. Logic circuits using resonant-tunneling hot-electron transistors (RHET’s), IEEE J. Solid-State Cir-

cuits, 27: 1428, 1992; N. Yokoyama et al., Resonant hot electron transistors, in: J. Shah, (ed.), Hot Carriers in Semicon-
ductor Nanostructures: Physics and Applications, San Diego: Academic Press, 1992, pp. 443–467.

76. A. C. Seabaugh M. A. Reed Resonant-tunneling transistors, in N. G. Einspruch and W. R. Frensley (eds.), Heterostruc-
tures and Quantum Devices, San Diego: Academic Press, 1994.

77. S. Luryi et al. Charge injection logic, Appl. Phys. Lett., 57: 1787, 1990.
78. J. Faist et al. Vertical transition quantum cascade laser with Bragg confined excited state, Appl. Phys. Lett., 66: 538,

1995.
79. J. Faist et al. High power mid-infrared ( λ ∼ 5 µm ) quantum cascade lasers operating above room temperature,

Appl. Phys. Lett., 68: 3680, 1996; C. Gmachl et al., Continuous-wave and high-power pulsed operation of index-coupled
distributed feedback quantum cascade laser at λ ≈ 8.5 µm, Appl. Phys. Lett., 72: 1430, 1998.

80. V. B. Gorfinkel S. Luryi B. Gelmont Theory of gain spectra for quantum cascade lasers and temperature dependence of
their characteristics at low and moderate carrier concentrations: IEEE J. Quantum Electron., 32: 1995, 1996.

81. N. N. Ledentsov et al. Three-dimensional arrays of self-ordered quantum dots for laser applications: Microelectron. J.,
28: 915, 1997.

82. Y. Arakawa H. Sakaki Appl. Phys. Lett., 40: 939, 1982.
83. N. Kirstaedter et al. Low threshold, large T0 injection laser emission from (InGa)As quantum dots, Electron. Lett., 30:

1416, 1994.
84. M. V. Maximov et al. High-power continuous-wave operation of a InGaAs/AlGaAs quantum dot laser, J. Appl. Phys.,

83: 5561, 1998.
85. H. Benisty C. M. Sotomayor Torres C. Weisbuch Intrinsic mechanism for the poor luminescence properties of quantum-

box systems, Phys. Rev. B, 44: 10945, 1991.
86. D. C. Tsui H. L. Störmer A. C. Gossard Two-dimensional magnetotransport in the extreme quantum limit, Phys. Rev.

Lett., 48: 1559, 1982.

A. ZASLAVSKY
Brown University


