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in thermal equilibrium, while the available power remains
constant at kBT per hertz, where kB � 1.38 
 10�23 J/K is
Boltzmann’s constant and T the absolute temperature. These
two forms of current noise are also called modulation noise,
because they modulate the resistance. If a bandpass filter is
inserted between the measuring device (usually a quadratic
meter) and the noise source, then the spectral density of the
fluctuations, ((�I)2)f � SI( f) [or SV( f)] is obtained by dividing
the measured mean square by the bandwidth 	f of the filter.

SHOT NOISE

With the notable exception of 1/f noise, also known as excess
noise, the various types of noise mentioned above were well
known and understood in the third decade of the twentieth
century through the works of J. B. Johnson, H. Nyquist, and
W. Schottky. For instance, shot noise is caused, in vacuum
tubes, electron beams, Schottky diodes, p–n junctions, and
any other device carrying a current, by the discrete, atomistic
nature of electricity. It is easily described as a Poisson pro-
cess, and is given at low frequencies by

SI( f ) = 2eI0 (1)

where e is the electric charge of the charge carriers and I0 the
average electrical current in the direction of their motion. For
electrons both e and I0 are negative. The mean squared cur-
rent in a frequency interval 	f is thus 2eI0 	f . The general
formula is given by Carson’s theorem, which gives the spec-
tral density of a random uncorrelated repetition of identical
processes with spectrum �( f) and repetition rate � as

2λ|φ( f )|2 (2)

The case with arbitrary correlations present between the mo-
ments t0 of passage was treated by C. Heiden (1) and is usu-
ally not called shot noise. The elementary process in shot
noise is the current i(t � t0) caused by the passage of a single
carrier. Therefore

φ(0) =
∫ ∞

−∞
i(t − t0) dt = e (3)

is the total charge e transported by a single carrier. With
NOISE, LOW-FREQUENCY e� � I0, Carson’s theorem then gives Eq. (1). The name ‘‘shot

noise’’ recalls the noise caused by small shot (or raindrops)
Low-frequency noise, containing fluctuations of current or falling on a drum.

1/f noise, however, remained shrouded in mystery, andvoltage with frequency components below 10 kHz, is mainly
fundamental 1/f noise and sometimes nonfundamental 1/f fundamental 1/f noise was understood only after the advent

of the quantum 1/f theory (2) in 1975. It turns out there isnoise. In addition, shot noise, generation–recombination (GR)
noise, and thermal noise, which are important at higher fre- always fundamental 1/f noise (3,4) caused by the quantum

1/f effect (Q1/fE), a new aspect of quantum mechanics as fun-quencies, also extend to the low-frequency domain. All these
forms of electronic noise, each defined below, are character- damental as space and time or existence itself. But there is

also nonfundamental 1/f noise, characterized by accidentalized by the mean squared current fluctuation ((�I)2) [or
((�V)2) � (rms �V)2 for voltage], measured in series with [or 1/f -like spectra arising from a fortuitous superposition of GR

noise spectra. Both fundamental and nonfundamental 1/facross] the device or sample under test, when a constant volt-
age [or current] is applied, except for thermal noise, which is noise types are important in practice, as we show below.

We briefly consider first GR and thermal noise here beforepresent even in thermal equilibrium, with no bias applied. All
the other forms of noise present in addition to thermal noise tackling 1/f noise at an elementary level. Armed with an un-

derstanding of the basic low-frequency noise processes, weare also known as current noise and are absent in thermal
equilibrium. Nevertheless, 1/f noise and GR noise also modu- then proceed to practical device applications. Next, we delve

into the quantum 1/f theory and finally consider briefly thelate the rms level of the thermal noise currents (or voltages)
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epistemological and ontological origin of the 1/f spectra in the recombination rate is r � �NP � �N(N � Nd). There-
fore,general, trying to understand their much wider presence in

nature, their ubiquitous character.

τ = 1
ρ(N0 + P0)

, ((δN)2) = ((δP)2) = N0P0

N0 + P0
(9)

GENERATION–RECOMBINATION NOISE

3. For a semiconductor with Nt traps and N trapped elec-
GR noise is caused by the random generation and recombina- trons, the trapping rate is proportional to the number
tion or trapping and detrapping of current carriers in semi- Nt � N of empty traps, while the release rate is propor-
conductors, being described by the (always one-sided) spectral tional to N. Therefore, g(N) � a(Nt � N) and r(N) �
density bN. The constants a and b are determined by the equi-

librium condition a(Nt � N0) � bN0, which yields N0 �
[a/(a 
 b)]Nt. Therefore,SI( f ) = 8((δI)2)πτ

1 + ω2τ 2 (4)

Here � is the lifetime of the carriers and � � 2�f . According
τ = 1

a + b
, ((δN)2) = bN0

a + b
= abNt

(a + b)2
(10)

to the Wiener–Kinchine theorem, the spectral density is the
Fourier transform of the autocorrelation function In this special case the rates g and r are not nonlinear

functions of N and Eqs. (10) are therefore independent
of N0. In this case, the fluctuation of N obeys the bino-A(τ ) ≡ (I(t)I(t + τ )) (5)
mial distribution law.

and is given by

THERMAL NOISE
S( f ) = 4

∫ ∞

0
A(τ ) cos(2π f τ ) dτ (6)

Also known as Johnson (or Nyquist) noise, thermal equilib-
rium noise has a white (frequency-independent) spectrum at

Equation (3) is obtained by Fourier transformation from the not too high frequencies. It is given in general, for a circuit
exponential autocorrelation function A(�) � ((�I)2)e�t/�, which component of impedance Z � 1/Y of conductance G � Re Y
describes for instance the exponential decay of the number of and resistance R � Re Z, by the Planck–Nyquist formula
carriers that have not yet recombined at the time t. There is
a term similar to Eq. (4) present in the spectral density of
current noise in semiconductors, for each type of carriers.

Let N be the number of carriers of a certain type in a semi-
conductor sample in stationary conditions. In terms of the

SI( f ) = 4G
hf

eh f /kT − 1
≈ 4kTG

SV ( f ) = 4R
hf

ehf /kT − 1
≈ 4kTR

(11)

generation rate g(N) and of the recombination rate r(N), the
general formulas for both the lifetime � and the mean square

Here h � 6.62 
 10�34 J � s is Planck’s constant, and k �entering in Eq. (4) are:
1.38 
 10�23 J/K is Boltzmann’s constant. The thermal noise
power available (for a matched load) is

τ = 1
r′(N0) − g′(N0)

, ((δI)2) ≡ I2
0

N2
0

((δN)2) = I2
0

N2
0

τg(N0)

(7) Sa( f ) = hf
ehf /kT − 1

≈ kT (12)

Here the prime denotes a derivative w.r.t. N. The derivatives With the exception of ultrahigh frequencies at very low tem-
are taken for N � N0 � (N), and we have denoted (I) by I0. peratures, only the approximate forms are used in practice
The following special cases are highlighted: and are known as equivalent forms of the Nyquist formula.

The amplitude distribution of thermal noise is Gaussian, with
1. For a n-type semiconductor with Nd deep donors, the small deviations of fundamental origin caused by the Q1/fE

generation rate g(N) � �(Nd � N) is proportional to the noise even in thermal equilibrium (4).
number of neutral donors, Nd � N, while r(N) � �N2,
with constant � and �, because there are N free elec-

GENERAL INTRODUCTION TO 1/f NOISEtrons and N ionized donors. Therefore, one obtains

At low frequencies, the observed noise spectrum, in general,
is roughly proportional to the reciprocal frequency, as John-
son first observed in 1925 in vacuum tubes. This 1/f noise
accounts for most of the low-frequency noise. Low-frequency
noise is therefore often considered synonymous with 1/f noise

τ = 1
γ + 2ρN0

= Nd − N0

ρN0(2Nd − N0)

((δN2)) = N0(Nd − N0)

2Nd − N0

(8)

in practice. Schottky first called the 1/f noise ‘‘flicker noise’’
in 1926 and blamed it on a random flickering process on the2. For a near-intrinsic n-type semiconductor with N elec-

trons, Nd donors (all ionized), and P � N � Nd holes, we surface of the cathode. In 1937 Schottky observed that flicker
noise is suppressed by space charge in vacuum tubes to awrite g � const because the fluctuations are due to the

thermal generation of electron–hole pairs. In this case larger extent than shot noise.
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Nonfundamental 1/f Noise by the universal feedback reaction of the electric current on
itself via the electromagnetic field.

A. L. McWhorter suggested in 1954 that 1/f noise in semicon-
F. N. Hooge recognized that the turbulence theory (5,6)

ductor samples and devices might arise from transitions of
was the only physical theory of fundamental 1/f noise avail-

electrons to and from traps in the oxide at the surface. The
able at the time. This sparked experiments trying to verify

superposition of many Lorentzian spectra [Eq. (4)] resulting
1/f -noise universality in the laboratory. In 1969 Hooge

from traps with different exponential relaxation times � in the
claimed, on the basis of his measurements, that the known

interval �1 � � � �2 can yield a 1/f -like spectrum in a limited
inverse proportionality of 1/f noise with the volume of the

frequency domain if two conditions are satisfied, causing a
sample under test becomes universal (i.e., with the same coef-

nonfundamental, or accidental, 1/f noise, as mentioned above.
ficient �0 for any semiconductor, metal, or electrolyte) if the

The two conditions are: (1) an electron is not allowed to inter-
number of carriers, N, rather than the volume of the sample

act with many traps at the same time, and (2) the distribution
(assumed to be homogeneous), is used in the denominator:

of the characteristic times has a probability density c/�. In-
deed, one expects then an addition of power spectra

SI( f ) = α0|2/Nf (14)

This relation was known long before Hooge’s work, but the
coefficient �0 was considered dependent on the material, and
the volume of the sample was used with preference in the
denominator, instead of N. This was thought to be equivalent,
because the volume is proportional to N. Early experiments

SI ( f ) = 8((δI)2)πc
∫ τ2

τ1

τ

1 + ω2τ 2

dτ

τ

= 8((δI)2)
πc
ω

(arctanωτ2 − arctanωτ1)

≈ 8((δI)2)
π2c
ω

(13)
seemed to support Hooge’s hypothesis, with a universal �0 of
2 to 3 times 10�3, but later experiments with smaller samplesThe last approximation is valid only for 1/�2 � � � 1/�1. There
showed that Hooge was wrong, because any �0 value fromis strong evidence favoring a major contribution of this mech-
103 down to 10�10 was shown to be possible. Although Hoogeanism in MOSFETs from studies of the relaxation of slow
was proven wrong in his suggestion of a universal constant,surface states, particularly since the observed spectrum often
his initial optimism helped accredit the notion of the funda-differs slightly from 1/f . The slow states are distributed uni-
mental nature of 1/f noise. The experimental ‘‘constant’’ �0formly in the oxide volume, which serves as gate insulation,
was called the ‘‘Hooge parameter’’ (7) by A. van der Ziel, al-at the surface of the semiconductor. This nonfundamental
though it was in fact material-dependent, as had been as-contribution is usually larger in MOSFETs than the funda-
sumed before Hooge. In 1974 the quantum 1/f theory derivedmental 1/f noise. The constant c is proportional to the super-
Eq. (10) for the first time from first principles, allowing theficial density of slow surface states, which can in principle be
exact calculation of �0, and explaining why small devicesdetermined from the slow relaxation of the surface charges,
have �0 values ranging from 10�5 to 10�10. In 1982 it also ex-but is hard to determine in practice without measuring the
plained why large devices have �0 values close to 4 
 10�3 and1/f noise. Therefore, Eq. (13) is difficult to apply in practice.
why ferroelectric substances have �0 values as large as 103.
This quantum-electrodynamic (QED) theory is presentedGeneral Aspects of Fundamental 1/f Noise
here, first at an over simplified elementary level and with

In fact, 1/f noise was found in carbon resistors and micro- practical applications to devices, in order to clarify the physi-
phones, in all semiconductors and semiconductor devices, in cal basis and the new notions it introduces.
contacts (contact noise), in infrared detectors, in bolometers,
in photodetectors, in piezoelectric transducers and sensors, in

Elementary Introduction to Fundamental 1/f Noise
mixers, in thin metallic sheets, in Josephson junctions and
SQUIDs, in electron beams in vacuum, in the rate of electron The main form of fundamental 1/f noise known at the present

time is quantum 1/f noise, which is a manifestation of thetunneling and cold emission, in the recombination and gener-
ation rates for current carriers in the bulk and on the surface coherent and conventional Q1/fE, representing a little-known

new aspect of quantum mechanics. It can be obtained fromof semiconductors, in the frequency fluctuations of quartz res-
onators and SAW devices and arrays, and so on. It is always a straightforward QED calculation of fundamental quantum

fluctuations in cross sections, process rates, and electric cur-observed when a bottleneck is present, causing an electrical
current to be carried by only a few current carriers. This ubiq- rents, resulting from the author’s attempts to quantize the

earlier turbulence theory. These attempts were necessitateduity of 1/f noise indicates that 1/f noise is ‘‘the way of life’’
for electric currents. by the absence of instabilities with zero threshold, which

could otherwise trigger the turbulence. They resulted in theThe ubiquitous character of 1/f noise inspired the develop-
ment of a turbulence theory of it (5,6), which generalized discovery first of the conventional (1–4) and then of the coher-

ent (3,8–10) quantum 1/f effect. The Q1/fE was proven to beHeisenberg’s hydrodynamic turbulence theory to the hydro-
magnetic plasma turbulence case. This theory yielded for the responsible for most of the 1/f noise observed in electronic

devices, thereby allowing for a unified presentation of noisefirst time a universal 1/f spectrum from postulated instabili-
ties of the laminar flow in the plasma of current carriers (elec- in electronic devices (7,11–22).

Other forms of fundamental 1/f noise are found in naturetrons and holes in semiconductors). This physical theory was
limited to homogeneous isotropic turbulence in an infinite, beyond the realm of electrophysics. Like the Q1/fE, these

other forms of fundamental 1/f noise have been proven (23)randomly stirred-up plasma of current carriers, and could
therefore not be applied in practice. Nevertheless it demon- to arise from a coincidence of nonlinearity and homogeneity

in physical systems. Just as in the case of the ontologicallystrated the fundamental nature of the 1/f spectrum caused
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more fundamental Q1/fE, these other forms occur in systems delta function a(t) � 	v �(t) whose Fourier transform 	v is
constant and is the change in the velocity vector of the parti-that satisfy a universal sufficient criterion.
cle during the almost instantaneous scattering process. The
one-sided spectral density Pf of the emitted bremsstrahlungSimplified Derivation of the Conventional Quantum 1/f Effect
power,

Definition. The Q1/fE is a fundamental quantum fluctua-
tion of all physical cross sections �, process rates �, and cur- Pf = 4q2(�vvv)2/3c3 (16)
rents j given by the universal formula S( f) � 2�A/fN [con-
ventional quantum 1/f equation (16)] for small devices, and is therefore also constant, independent of frequency, but goes
S( f) � 2�/�fN [coherent quantum 1/f equation (16,23,24)] for to zero for frequencies larger than the reciprocal duration of
large devices. These two forms can be combined into a single the scattering process. The number 4q2(	v)2/3hfc3 of emitted
general formula, as we show below. Here S( f) is the spectral photons per unit frequency interval is obtained by dividing by
density of fractional fluctuations in current, �j/j, in the scat- the energy hf of one photon. The probability amplitude of pho-
tering or recombination cross section ��/�, or in any other ton emission,
process rate ��/�. The number � � e2/�c � 1/137 is Sommer-
feld’s fine structure constant, a basic number of our world
depending only on Planck’s constant �, the charge of the A f =

�
4q2(�vvv)2

3hfc3

�1/2

eiγ (17)
electron, e, and the speed of light in vacuum, c. The quantity
A � 2(	v/c)2/3� is essentially the square of the vector velocity

is given by the square root of this photon number spectrum,change 	v of the scattered particles in the scattering process
including also a phase factor ei�. The Schrödinger wave func-whose fluctuations we are considering, in units of c. Finally,
tion � of the scattered outgoing charged particles can be con-N is the number of particles used to define the notion of cur-
structed from products of single-particle wave functions �.rent j, of cross section � or of process rate �.
The beat term in the probability density ���2 is linear both inPlan. We will present here first a back-of-the-envelope der-
this bremsstrahlung amplitude Af and in the nonbremsstrah-ivation of the conventional Q1/fE. After presenting some
lung amplitude, which does not depend on f . The spectralpractical applications to devices, we present below first an ele-
density of this beat term will therefore be given by the prod-mentary derivation and later a more rigorous derivation of
uct of the squared probability amplitude �Af�2 � 1 of photonboth the conventional and coherent Q1/fE.
emission (proportional to 1/f ) with the squared nonbrems-Origin. The physical origin of electrodynamic conventional
strahlung amplitude 1 � �Af�2 � 1, which is practically inde-quantum 1/f noise is easy to understand. Consider for exam-
pendent of f . The resulting spectral density of fractional prob-ple Coulomb scattering of current carriers (e.g., electrons) on
ability density fluctuations is obtained by dividing by ���4 anda center of force, keeping in mind that electrons are described
is thereforeas probability amplitude waves � according to quantum me-

chanics. The scattered electrons reaching a detector at a given
angle away from the direction of the incident beam are de-
scribed by de Broglie waves � of a frequency corresponding to
their energy. However, the electrons have energy loss ampli-

|ψ |−4S2
δ|ψ |( f ) = 8q2(�vvv)2

3hfNc3 ≡ 2αA
fN

= j−2Sj ( f ) = Sδ j/ j ( f ) = Sδσ /σ ( f ) (18)
tudes in the scattering process, due to the emission of brems-
strahlung into low-frequency photon modes. Therefore, part where � � e2/�c is the fine structure constant if q � e is the
of the outgoing de Broglie waves are shifted to slightly lower elementary charge, � � h/2�, and �A � 2e2(	v)2/3��c3 is the
frequencies. When we calculate the probability density ���2 in bremsstrahlung coefficient, also known as the infrared expo-
the scattered beam, we obtain also cross terms, linear in both nent in quantum field theory. It is derived here as the quan-
the parts of � scattered with and without bremsstrahlung. tum 1/f -noise coefficient in electrophysics.
These cross terms oscillate with the same frequency as the The spectral density Sj of current density fluctuations �j �
frequency of the emitted bremsstrahlung photons. The emis- v����2 is obtained by multiplying the probability density fluc-
sion of photons at all frequencies results therefore in probabil- tuation spectrum with the velocity v � p/m of the outgoing
ity density fluctuations at all frequencies. The corresponding particles. When we calculate the spectral density of fractional
quantum fluctuations of the current density v���2 are obtained fluctuations in the scattered current j, the outgoing velocity
by multiplying the probability density fluctuations by the ve- simplifies or drops out, and therefore Eq. (18) also gives the
locity v of the scattered current carriers. Finally, these cur- spectrum of current fluctuations Sj( f), as indicated above. Fi-
rent fluctuations, present in the scattered beam, will be no- nally, the scattered particle current j per unit incoming flux
ticed at the detector as low-frequency current fluctuations, is what we shall call the physical scattering cross section �.
and will be interpreted as fundamental fluctuations in the This allows for the first equality in Eq. (18) after the iden-
physical scattering cross section of the scatterer. tity sign.

Derivation. For a simple semiclassical calculation of the The quantum 1/f noise contribution of each carrier is inde-
conventional Q1/fE along these lines, we start from the clas- pendent, and therefore the quantum 1/f noise from N carriers
sical (Larmor) formula is N times larger; however, the current j will also be N times

larger, and therefore in Eq. (1) a factor N was included in the
denominator for the case in which the cross-section fluctua-P = 2q2aaa2/3c3 (15)
tion is observed on N carriers simultaneously. Finally, note
that the simplified back-of-the-envelope derivation which ledfor the power P radiated by a particle of charge q in the scat-

tering process. The acceleration a can be approximated by a to Eq. (18) is similar to considering diffraction of a single pho-
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ton in Young’s diffraction experiment and then estimating the tum 1/f noise in a single representative scattering event that
limits the mobility or the diffusion coefficient.autocorrelation function and the spectral density in the prob-

Coherent Effect. For large devices the concept of coherent-ability fringes obtained on the screen, claiming it should
state Q1/fE was introduced by the author (23,24). In this caseapply to the diffraction pattern generated by a large number
the 1/f noise parameter �0 as derived in the theory sectionof photons. The correct way is based on the two-particle wave
below is given byfunction, which is a product of two single-particle functions in

the noninteracting case considered here. This yields the same
result, replacing ���4 in the calculation with the physically rea- α0 = (α0)coh = 2α/π = 4.6 × 10−3 (19)
sonable squared absolute value of the two-particle wave func-
tion (see below). where � � 1/137 is the fine structure constant as mentioned

Discussion. We have defined the physical cross section as above. This is of the same order of magnitude as the empiri-
the quantum-mechanical cross section plus the corresponding cal value �0 � 2 to 3 times 10�3 that Hooge and others found
quantum fluctuations, which were eliminated in the calcula- for large devices. It is obvious that Hooge’s empirical value
tion of the quantum-mechanical expectation value, which is for �0 is due to the coherent Q1/fE and has a fundamental
usually defined as the cross section. Our new notion of physi- origin.
cal process rate is defined in the same way. The physical quan- Conventional Effect. For small samples or devices we con-
tities are the directly observed ones, because in the Q1/fE the sider conventional quantum 1/f noise (1–4,5,6,8–15), which
quantum fluctuations become macroscopic—observable at low is just the cross-section fluctuation introduced above in Eq.

(18). In that case �0 may be writtenfrequencies—due to the 1/f dependence.
Although the wave function � of each carrier is split into a

bremsstrahlung part and a nonbremsstrahlung part, no quan-
tum 1/f noise can be observed from a single carrier. A single

α0 = (α0)conv = 4α

3π

(�vvv)2

c2 (20)

carrier will only provide a pulse in the detector. Many carriers
This general principle is now illustrated on practical exam-are needed to produce the quantum 1/f noise effect, just as in
ples of materials and devices. The exact meaning of large andthe case of electron diffraction patterns, where each individ-
small is explained below and also in the theory section inual particle is diffracted, but unless we repeat the experiment
terms of the parameter s (24–26).many times, or use many particles, no diffraction pattern can

be seen. A single particle only yields a point of impact on the
photographic plate in diffraction, or a pulse in the detector in Simplified Application to Homogeneous Semiconductor Sam-

ples. In a homogeneous sample of length L, cross section A,1/f noise. While incoming carriers may have been Poisson-
volume V � AL, carrier mobility �, carrier concentration n,distributed, the scattered beam will exhibit super-Poissonian
and total number of carriers N � nAL, the conductance C �statistics, or bunching, due to this new effect, the Q1/fE. The
n�eA/L and the resistance R � 1/C will exhibit quantum 1/fQ1/fE is thus a many-body or collective effect, at least a two-
fluctuations with a spectral density S�C/C of fractional fluctua-particle effect, best described through the two-particle wave
tions �C/C � ��R/R given byfunction and two-particle correlation function.

In conclusion, the conventional Q1/fE (1–4,6,8–15) is a
fundamental fluctuation of physical cross sections and process SδC/C( f ) = SδR/R( f ) = Sδµ/µ( f ) = α0/ fN (21)

rates, caused by the infrared-divergent coupling of current
carriers to low-frequency photons (electrodynamic Q1/fE) and Size Dependence. To calculate �0 we first evaluate the pa-

rameter s � nA 
 5.5 
 10�13 cm introduced in the theoryto other infraquanta, such as transverse phonons with piezo-
section below. If s � 1, coherent quantum 1/f noise is ob-electric coupling (lattice-dynamic Q1/fE), or electron–hole
served with �0 � 2�/�.pairs on the Fermi surface of metals (electronic Q1/fE).

If s � 1, Eq. (21) requires knowledge of (�0)conv. The latterApplication. The fundamental quantum 1/f fluctuations of
is calculated from Eq. (18) or (20) for each type of scatteringphysical cross sections � and process rates � are reflected in
that limits the mobility � � e�/m* of the carriers. Here � isthe collision frequency � � 1/� and collision time � of the carri-
the mean collision time or scattering time of the carriers anders, and in various kinetic coefficients in condensed matter,
m* is their effective mass. In terms of the mean frequency ofsuch as the mobility � and the diffusion constant D, the sur-
collisions � � 1/� � �vni, one obtains � � e/�m* � e/�vnim*.face and bulk recombination speeds s, and recombination
Here v is the mean speed of the carriers between collisions, �times �r, the rate of tunneling jt, and the thermal diffusivity
a scattering cross section, and ni the concentration of scat-in semiconductors. Specifically, neglecting the energy distri-
terers.bution of the carriers or using appropriate averages, ��/� �

Conventional Quantum 1/f Effect in the Mobility. In general,��/� � ��/� � ���/� � ���/� � ��D/D. Therefore, the spec-
Matthiessen’s rule allows us to write, in terms of mobility,tral density of fractional fluctuations in all these coefficients

is given also by Eq. (18) in a first approximation that neglects
the statistical effects of the momentum distribution of the
current carriers. This is true in spite of the fact that each

1
µ

=
∑

j

1
µ j

(22)

carrier will undergo many consecutive scattering transitions
in the diffusion process. The resulting quantum 1/f noise in where �j is the mobility that would be obtained if only the
the mobility and in the diffusion coefficient is most often prac- jth scattering mechanism were present and limited the mobil-

ity. Applying a quantum 1/f fluctuation to Eq. (22), squaring,tically the same as (and can never be smaller than) the quan-
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and averaging quantum-mechanically and statistically, we times the squared phonon scattering matrix element, �M�2.
The latter exhibits quantum 1/f fluctuations, because the car-obtain as a reasonable first approximation
riers emit bremsstrahlung photons in the scattering process.
Therefore, if the mobility � of electrons (of random velocity
v � �k/m*) is limited by phonon scattering, we get

δµ

µ2 =
∑

j

δµ j

µ2
j

, Sδµ/µ( f ) =
∑

j

�
µ

µ j

�2

Sδµ/µ j
( f ) (23)

Equation (20) yields the strongest conventional quantum
1/f noise for umklapp scattering, followed by the f and g
forms of intervalley scattering or intervalley with umklapp
scattering (in indirect bandgap semiconductors such as Si and
Ge only), followed by normal-phonon scattering, by neutral-

Sδµ/µ( f )ap = Sδ�/�( f )ap = 4α

3π fN

〈�
��kkk
m∗c

�2
〉

= 3 × 10−3

fN

〈�
��qqq
m∗c

�2
〉

(27)

impurity scattering, and by ionized-impurity scattering. The
Here 	q is the acoustic-phonon momentum transfer in thecorresponding terms in Eq. (23) reflect this hierarchy only
scattering process, and the brackets indicate the averagepartially, because of the factors (�/�j)2, which gauge the im-
value. Using the linear approximation of the acoustic-phononportance of each of the scattering processes in limiting the
dispersion relation Eq � vsq�, with vs denoting the speed ofresultant mobility. To gain physical insight, the conventional
sound, we obtain for a thermal phonon with Eq � kBT/2Q1/fE present in the various scattering processes is only esti-

mated below and is actually calculated in the theory section
in the second half of this article, taking into account the cor-
rections introduced by the momentum distribution of the car-

〈(��qqq/m∗c)2〉 =
� kBT

2vsm∗c

�2

= 1.25 × 10−5
�m0

m∗

�2
(28)

riers and by the phonon distribution function at the tempera-
ture T. We finally obtain

Impurity Scattering. For instance, in the case of impurity
scattering, ni is. One obtains S��/�( f) � S��/�( f). The physical
scattering cross section �, in turn, exhibits the Q1/fE with

Sδµ/µ( f )ap = 3.75 × 10−8

fN

�m0

m∗

�2
(29)

the spectral density given by Eqs. (18) and (20):
The mean squared momentum change and the 1/f noise are
much larger (e.g., 50 times; see Fig. 1 below) for acoustic-pho-
non scattering, because impurity scattering is mainly small-

Sδσ /σ ( f )i = 4α

3π fN

〈�
�vvv
c

�2
〉

≈ 3 × 10−3

fN

�
��kkk
m∗c

�2

(24)

angle scattering. A more rigorous treatment for the many
types of scattering present in semiconductors, taking into ac-The average quadratic velocity change of the electrons in
count the corrections introduced by the momentum distribu-a scattering process is smaller in impurity scattering than in
tion of the carriers and the phonon distribution function atlattice scattering, which includes normal-phonon scattering,
the temperature T, is given in the theory section in the secondintervalley scattering in indirect-bandgap semiconductors
half of this article for the case of silicon.with several valleys, and umklapp scattering, as well as opti-

cal-phonon scattering. The Coulomb–Rutherford or Conwell–
Weisskopf scattering cross section is proportional to 1/�	k�4,
which favors small-angle scattering. Nevertheless, there are
a few larger-angle scattering events, which are most effective
in limiting the mobility and which therefore are decisive in
the exact evaluation of the Q1/fE coefficient as a slow func-
tion of ni, the concentration of impurities, given in the theory
section below. This corresponds approximately to assuming
randomizing collisions,

〈(�vvv)2〉i = 2(v2) = 6kBT/m∗ (25)

although impurity scattering is not randomizing. With m0

representing the free-electron mass, we obtain this way

Sδµ/µ( f )i = Sδσ /σ ( f )i = 4α

3π fN

〈
6kBT
m∗c2

〉

≈ 10−9

fN
Tm0

4m∗(100K)
(26)
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The quantum 1/f noise power present in impurity scattering
is therefore proportional to T. Figure 1. Acoustic Hooge parameter in units of 10�8 (open diamonds)

Normal-Acoustic-Phonon Scattering. For normal-phonon and impurity Hooge parameter in units of 10�9 for three doping con-
scattering, the product �vni has to be replaced by the lattice centrations: 1021 (open squares), 1023 (solid diamonds), and 1024

(solid squares).scattering rate �, given by an effective number of phonons
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Umklapp Scattering. In this case the momentum change is noise. The results obtained are in general applicable both to
direct- and to indirect-bandgap semiconductors.close to the smallest reciprocal lattice vector approximated by

�G � 2��/a, where a is the lattice constant. Therefore, Eq.
Introduction(20) yields
Handel and Chung (29) have performed an analytical calcula-
tion of mobility fluctuations in silicon and gallium arsenide,
using the new quantum 1/f cross-correlations formula. This(α0u)conv = 4α

3π

� 2π�

am∗c

�2

= 6 × 10−8

fN

�m0

m∗

�2
(30)

calculation is of major importance for the 1/f -noise-related op-
timization of the two types of materials, and of the many de-for umklapp scattering.
vices constructed with them for military and civilian applica-Intervalley Scattering. In indirect-bandgap semiconductors
tions in the electronic and optoelectronic industries.the location of the energy minima of the conduction band in

The new cross-correlation formula gives the cross-spectralk space is different from the location of the valence-band en-
density, which describes the way in which simultaneousergy maxima. In thermal equilibrium electrons and holes are
quantum 1/f scattering rate fluctuations 	W observed in thepresent close to the minima of the conduction and valence
direction of the outgoing scattered wave vector K� are corre-bands. Scattering processes carrying electrons from one mini-
lated with those in the K� direction when the two correspond-mum (or valley) to the other are known as intervalley scatter- ing incoming current carriers have the wave vectors K1 and

ing. This is large-angle scatteing, compared with normal (in- K2:travalley) scattering, and it is therefore affected by larger
conventional quantum 1/f noise, almost as large as umklapp
scattering. Indeed, for example, in Si the eight minima are
located at 0.85G from the origin, where G is the smallest re-
ciprocal lattice vector magnitude. For g processes, which scat-

S�W (KKK1,KKK ′;KKK2,KKK ′′; f )

= 2α

3π f

�
�

m∗c

�2

WKKK 1 ,KKK ′WKKK 2 ,KKK ′ ′ [(KKK ′ − KKK1)2 + (KKK ′′ − KKK2)2]δKKK1 ,KKK 2

(32)ter an electron to the valley symmetrically located on the
other side of the origin, Eq. (30) remains valid with a correc- The form conjectured by us earlier had 2(K� � K1)(K� � K2)
tion factor of (0.85)2. On the other hand, for f processes in Si, in place of the rectangular bracket. The difference between
scattering electrons between neighboring valleys, the factor is the rectangular bracket and 2(K� � K1)(K� � K2) is the perfect
2 times smaller. There is also the possibility of intervalley square [(K� � K1) � (K� � K2)]2. Therefore we expect the new
scattering with umklapp, which requires a correction factor results to be always larger than the results obtained on the
of (1 � 0.85)2. Equation (20) thus yields for intervalley scat- basis of the previously conjectured form.
tering with umklapp

Impurity Scattering

For impurity scattering of electrons in solids, fluctuations 	�
of the collision times � will cause mobility fluctuations

(α0iu)conv = 0.0225
4α

3π

� 2π�

am∗c

�2

= 1.35 × 10−9

fN

�m0

m∗

�2
(31)

While this appears to indicate a lower contribution from these �µband(t) = e
m∗〈〈v2〉〉

∑
KKK

v2
KKK �τ(t) nKKK (33)

intervalley umklapp processes, the corresponding factor
(�/�j)2 in Eq. (23) ensures a larger contribution to the re- where ��v2�� is both the average over all states of wave vectors
sulting spectral density of quantum 1/f noise, S��/�( f). Physi- K, with occupation numbers nK, in the conduction band, and
cally, this is caused by the scarcity of high-energy phonons the thermal equilibrium average, of the squared carrier veloc-
able to bridge the momentum gap of 0.85G. ities. With the help of the relation

CALCULATION OF THE CONVENTIONAL QUANTUM 1/f
1

τ (KKK )
= V

8π3

∫ �
1 − cos θ ′

cos θ

�
WKKK ,KKK ′ d3K ′ (34)

EFFECT IN HOMOGENEOUS SEMICONDUCTOR MATERIALS
the mobility fluctuations are reduced to fluctuations of the
elementary scattering rates WK,K�, governed by Eq. (32). HereA first-principles calculation of quantum 1/f cross-correla-
V is the volume of the normalization box, which disappearstions, performed for the first time in 1987 by Handel (27), has
in the final result, and � and �� respectively the angles K andyielded a slightly different result from earlier expectations.
K� form with the direction of the applied field. One finallyThis same new form of the quantum 1/f cross-correlations
obtains, after tedious multiple integrations,was rederived with a different method by Van Vliet (15) in

1989. It differs from the old form used in the 1985 calculation
of Kousik et al. (28) by a correction that is zero when the
momentum changes of the two current carriers involved in
the cross correlation are identical, but increases when the mo-
mentum differences caused by the scattering process are dif-
ferent. The correction is proportional to the squared differ-
ence of the two momentum changes. Handel and Chung (29)
have repeated all calculations in the original paper by Kousik
et al. (28), obtaining both for impurity scattering and for the
various types of phonon scattering new analytical expressions
that show a considerable increase of the final quantum 1/f

µ−2S�µ( f ) = 256πακ2ε4
�

12

3m∗8Z4e8N2
i

1
f

×
∑

K

K10
�

ln(1 + a2) − a2

1 + a2

�−3

�
2a2 + a4

1 + a2 − 2 ln(1 + a2)

�
F(EK )

×
�∑

K

v2
Kτ (K)F(EK )

�−2

(35)
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where a � 2K/�, �2 � e2n(T)/�kBT, n(T) is the electron concen- where F � [exp(��o/kBT) � 1]�1, and �o is the optical-phonon
tration, F(EK) � exp(EF � EK) for nondegenerate semiconduc- frequency.
tors, Ni is the concentration of impurities of charge Ze, and �
is the dielectric constant. The corresponding partial Hooge pa- Polar Optical-Phonon Scattering
rameter for impurity scattering is thus

Proceeding as in the cases of impurity and nonpolar optical-
phonon scattering, we obtain

αi = 4
√

2πακ�5Nc

3m∗7/2(kBT )3/2c2∫ ∞

0
dx x11/2e−x

�
ln(bx + 1) − bx

bx + 1

�−3

�
2bx + b2x2

bx + 1
− 2 ln(bx + 1)

�

×
[∫ ∞

0
dx x3e−x

�
ln(bx + 1) − bx

bx + 1

�−1
]−2

(36)

This result is graphed in Fig. 1 for three different values

αp o ph = 8π
√

2�ωlαNc�
2

3m∗5/2c2ωl

�∫ ∞

0
dx x4

× {F2(x + 1)1/2 ln[2x1/2 + 2(x + 1)1/2]

+ (F + 1)2(x − 1)1/2 ln[2x1/2

+ (x − 1)1/2]θ(x − 1)}exp(−�ωlx/kBT )

× {(F + 1)arcsinh[(x − 1)1/2θ(x − 1)]

+ F arcsinh(x1/2)}−4
�

(39)
of the donor concentration Nd and is compared with old re-
sults obtained by simply recalculating the old analytical ex- Here �l is the longitudinal phonon frequency.
pression (28). As expected, the new cross-correlation formula
leads to slightly higher �i values than the previously conjec-

Intervalley Scatteringtured expression. This was mentioned in connection with Eq.
(32) above. This type of scattering, present in indirect-bandgap semicon-

ductors, transfers electrons from one of the six minima (orElectron–Acoustic-Phonon Scattering
valleys) of the conduction-band energy in k space to one of

In this case the calculation is similar, and leads to the result the other five minima. Transitions between a valley and the
nearest valley, which is along the same k-space direction in
the next copy of the first Brillouin zone in the periodic zone
scheme, are of the umklapp type, and are called g processes.
Transitions to the four valleys present in the same zone along
the other two k-space directions are called f processes. Re-
peating a previous calculation (31) on the basis of the new
cross-correlation formula Eq. (32), we obtain for g processes

αac = 32παNcm∗C7
�

3

(3c2kBT )4

[
1

R2

∫ ∞

1
dx x−4

×
�

(x − 1)7

7
+ (R + 1)

(x − 1)6

6
+ R

(x − 1)5

5

�

×
�

(x − 1)5

5
+ (R + 1)

(x − 1)4

4
+ R

(x − 1)3

3

�
exp

�
− x2

4R

�

+
∫ 1

0
dx x−4

�
(x + 1)5

5
− (x + 1)6

6
+ (x − 1)5

5
+ (x − 1)6

6

�

×
�

(x + 1)3

3
+ (x − 1)4

4
+ (x − 1)3

3
− (x + 1)4

4

�

exp
�

− x2

4R

�
+

∫ ∞

1
dx x−4

�
(x + 1)5

5
− (x + 1)6

6

�
�

(x + 1)3

3
− (x + 1)4

4

�
exp

�
− x2

4R

�]
(37)

where R � kBT/2m*C2
1, C1 is the deformation potential, and

Nc is the effective density of states for the conduction band.

αg = 8π
√

2�ωijαNc�
2

3m∗5/2c2ωij

[∫ ∞

0
dx x5/2

× [(F + 1)(x − 1)1/2θ(x − 1) + F(x + 1)1/2]−4

× [(F + 1)2(x − 1)(2x − 1)θ (x − 1)

+ F2(x + 1)(2x + 1)] exp
�

−�ωijx
kBT

�]

×
[∫ ∞

0
dx x3/2[(F + 1)(x − 1)1/2θ(x − 1)

+ F(x + 1)1/2]−1 exp
�

−�ωijx

kBT

�]−2

(40)

Nonpolar Optical-Phonon Scattering
where ��ij is the phonon energy corresponding to the momen-This time one obtains
tum difference required by the intervalley transition. For the
corresponding f process we obtain (30)

αf =
�

k0

q0

�2

αg
�ωijf

kBT
(41)

where k0/q0 is the ratio between length of the position vector
of a conduction-band energy minimum in k space, and twice
the distance of the same minimum from the Brillouin zone
boundary, 0.85/0.3 for silicon. �g(��ijf /kBT) is calculated with
the f momentum difference. There are three g-type alphas,
�g1, �g2, and �g3 (from LA, TA, and LO phonons respectively),
and three f-type ones, �f1, �f2, and �f3 (from TA, LA, and TO

αn o ph = 8π
√

2�ωoαNc�
2

3m∗5/2c2ωo

[∫ ∞

0
dx x5/2

× [(F + 1)(x − 1)1/2θ(x − 1) + F(x + 1)1/2]−4

× [(F + 1)2(x − 1)(2x − 1)θ (x − 1)

+ F2(x + 1)(2x + 1)] exp
�

−�ωox
kBT

�]

×
[∫ ∞

0
dx x3/2[(F + 1)(x − 1)1/2θ(x − 1)

+ F(x + 1)1/2]−1 exp
�

−�ωox
kBT

�]−2

(38)
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tions, given by kT/e times the mobility fluctuations, will lead
to local current fluctuations in the interval 	x:

δ�Ind(x, t) = Ind �x
δDn(x, t)

Dn
(44)

The normalized weight with which these local fluctuations
representative of the interval 	x contribute to the total cur-
rent Id through the diode at x � 0 is determined by the ap-
propriate Green function and can be shown to be (1/L)
exp(�x/L) for wp/L � 1. Therefore the contribution of the sec-
tion 	x is

δ�Id(x, t) = �x
L

exp
�
− x

L

�
Ind

δDn(x, t)
Dn

(45)

with the spectral density
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Figure 2. Hooge parameters for intervalley scattering in units of
10�8 for g processes (solid) and f processes (shaded).

For mobility and diffusion fluctuations the fractional spectral
density is given by �Hnd/( fN 	x), where the quantum 1/f coef-
ficient �Hnd for electronic diffusion or mobility is determined

phonons). Their values are given in Fig. 2 and are a few times from quantum 1/f theory according to Eq. (42). With Eq. (43)
larger than the old values. we obtain then

The various quantum 1/f contributions derived here can
be approximately superposed to yield the resultant quantum
1/f coefficient according to the rule S�Id

(x, f ) = �x
L2

exp
�

−2x
L

��
eDn

dN
dx

�2
αHnd

fN
(47)

The electrons are distributed according to the solution of the
diffusion equation:

αH =
∑

j

�
µ

µi

�2

αi (42)

In the next section we illustrate the application of these
results to inhomogeneous semiconductor devices on the sim-
plest case of pn junctions. The case of transistors and other

N(x) = [N(0) − Np] exp
�
− x

L

�

dN
dx

= −N(0) − Np

L
exp

�
− x

L

� (48)

junction devices, as well as the cases of field-effect transistors,
HEMTs, PBTs, and other devices, is presented in the litera-

Substituting into Eq. (47) and simply summing over the un-ture (see, e.g., Ref. 16).
correlated contributions of all intervals 	x, we obtain

DERIVATION OF MOBILITY QUANTUM
1/f NOISE IN n
p DIODES AND SId

( f ) = αHnd

� eDn

L2

�2 ∫ Wp

0

[N(0) − Np]2e−4x/L dx
[N(0) − Np]e−x/L + Np

(49)

METAL–INSULATOR–SEMICONDUCTOR DEVICES
We note that eDn/L2 � e/�n. With the expression for the satu-

Mobility Quantum 1/f Noise in n
p Diodes ration current I0 � e(Dn/�n)1/2Np and of the current I �
I0[exp(eV/kT) � 1], we can carry out the integration:For a diffusion limited n
p junction the current is controlled

by diffusion of electrons into the p region over a distance of
the order of the diffusion length L � (Dn�n)1/2, which is shorter
than the length wp of the p region in the case of a long diode;

SId
( f ) = αHnd

eI
f τn

∫ 1

0

a2u3 du
au + 1

= αHnd
eI
f τn

F(a) (50)

�n is the lifetime of the electrons. Quantum 1/f fluctuations of
Here we have introduced the notationthe scattering rates, discussed in the previous section, will

cause fluctuations in the local carrier mobility � and diffusion
constant D � �kT/e. If N(x) is the number of electrons per
unit length and Dn their diffusion constant, the electron cur-
rent at x is

u = exp(−x/L), a = exp(eV/kT ) − 1

F(a) = 1
3

− 1
2a

+ 1
a2

− 1
a3

ln(1 + a)
(51)

Equation (50) gives the diffusion noise as a function of the
quantum 1/f noise parameter �Hnd. A similar result can beInd = −eDn

dN
dx

(43)

derived for the quantum 1/f fluctuations of the recombination
rate in the bulk of the p region. The result is the same, withwhere we have assumed a planar junction and taken the ori-

gin x � 0 in the junction plane. Diffusion constant fluctua- �Hnd replaced by �Hnr.
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Mobility Quantum 1/f Noise in required to produce an rms noise voltage (current) equal to
the rms noise voltage (current) in a bandwidth 	f , and f isMetal–Insulator–Semiconductor Devices
the frequency of modulation. The noise equivalent power is

As an example of results on quantum 1/f noise in high-tech given by
devices, we provide here without proof the results obtained
by Handel for the 1/f -limited performance of metal–
insulator–semiconductor (MIS) HgCdTe infrared detectors.

NEP = hv
ηq

[SId
( f )� f ]1/2 (57)

The current density I in the detector contains a diffusion
Therefore we obtain for the detectivityterm Id, a term Ir caused by recombination in the space charge

region, a surface recombination term Is, a tunneling term It,
and a photovoltaic term caused by the creation of electron–
hole pairs by photons:

D∗(λ, f ) = qηλ

hc

�
A

SId
( f )

�1/2

= qλ

hc
[SId

( f )]−1/2 (58)

We notice that D*(�, f ) is proportional to � up to the peak
wavelength �c. For � � �c we have � � 0 and thus D*(�, f ) �
0. By substituting our result for SId

, we obtain the general
expression for the detectivity as a function of various parame-
ters of the MIS device.

I = Id + Ir + Is + It + qη�

= qni

[
ni

n0

�Dn

τn

�1/2

(eqV/kT − 1) + W
τ

(eqV/2kT − 1) + s

]

+ It + qη�

(52)

Let us now evaluate the spectral density S�( f) of fractional
fluctuations in the various dark-current noise contributionsHere ni is the intrinsic concentration, n0 the concentration of
per square centimeter of transversal detector (or gate) area,acceptors on the p side, Dn and �n the diffusion constant and
including also a numerical example for a MIS infrared detec-lifetime of minority carriers on the p side, W the width of the
tor. For a given detector, this needs to be divided by the areadepletion region, � � �p0


n0 the Shockley–Hall–Read lifetime,
A of the detector to yield the corresponding fractional spectralV the applied voltage, s the surface recombination speed, � densities: S( f) � S�( f)/A. Fractional fluctuations are dimen-

the quantum efficiency, and � the incident flux of photons. sionless, so S�( f) will have the dimension of a reciprocal fre-
With the exception of the last term, the terms in Eq. (52) are quency times a squared length unit, which simplifies when
known as dark-current components. we divide by the area of the detector at hand. Let S�Id

be the
We write the total dark-current fluctuation in the form spectral density of fractional fluctuations in the noise caused

by quantum 1/f fluctuations in diffusion, S�Ir
in bulk recombi-

δId = δId + δIr + δIs + δItb + δItc + δItsc (53)
nation, S�Is

in surface recombination, and S�It
in tunneling.

With m*p � 0.55m0, m*n � 0.02m0, �n � 10�6 s, Eg � 0.1 eV,
and the spectral density of current fluctuations will be 3kT/2 � 0.01 eV, we obtain for a p-type MIS device with

wp � LdSId
= SId

+ SIr
+ SIs

+ SItb
+ SItc

+ SItsc
(54)

Here we have lumped the recombination current on the back
surface Ib together with the surface recombination (genera-
tion) current IS. If we denote all the corresponding spectral
densities of fractional fluctuations by a prime (S�Ii

� SIi
/I2

i ), we
obtain

S′
Id

= (αHnd + αHnr)
e

f τnId
F(a) = αcoh

e1/2

f (kTµτn )1/2Np

F(a)

a

= 4.6 × 10−3

4 fNp

4 × 10−10 C1/2

[(10−6 s)(1.5 × 105 cm2/V · s)(4 × 10−21 J)]1/2

= 1.8 × 10−6 cm2

f
(59)

S′
Id

= (Idif/Id)2S′
Idif

+ (Idep/Id)2S′
Idep

+ (Is/Id)2S′
Is

+ (Itb/Id)2S′
Itb

+ (Itc/Id)2S′
Itc

+ (Itsc/Id)2S′
Itsc

(55)
S′

Ir
= αHee

f (τno + τpo)Ir
tanh x = αHee

f eAwn tanh x
tanh x

= αHe

fAwni
= 4.6 × 10−9 cm2

f
(x = eV/2kT ) (60)

This equation was obtained by dividing the previous equation
through I2

d, and shows that the biggest contribution will not
necessarily come from the process with the highest fractional
quantum 1/f noise, that is, with the highest 1/f noise coeffi-
cient. The weight of each type of noise is determined by the
corresponding squared current ratio.

The detectivity of infrared detectors is limited in general
by three types of noise: (1) current noise in the detector, (2)

S′
Is

= 4α

3π

2
m∗c2

�3kT
2

+ eU
2

+ 0.1Ve
� e tanh x

f (τno + τpo)Is

= 4α

3π × 0.02
2

500,000
(0.025 + 0.5 + 0.5)

e tanh x
f eAwni(ex − 1)

= 7 × 10−8 cm2

f
≈ SIb

(61)

noise due to background photons (photon noise), (3) noise in
the electronic system following the detector. We shall neglect
here the background photon noise and the noise in the elec-
tronic system. The detectivity is defined as

S′
Itb

= 4α

3π

Eg + 3kT/2
m∗c2

= 4
9.5 × 137 × 0.02

0.11
500,000

= 3.3 10−8 cm2

f
(62)

D∗(λ, f ) = (A� f )1/2

NEP
(cm · Hz1/2

/W) (56)

where A is the area of the detector; NEP is the noise equiva-
lent power, defined as the rms optical signal of wavelength �

S′
Itc

= 4α

3π

Eg + 3kT
2m∗c2

= 4
9.5 × 137 × 0.02

0.12
106

= 1.8 × 10−8 cm2

f
= S′

Itsc
(63)
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S�Id
was calculated in the small-bias limit for wp � L, but DERIVATION OF THE CONVENTIONAL

QUANTUM 1/f EFFECTwp � 0.25L gives the same result; the incoherent case with a
lattice constant of 0.65 nm and � � 320 K was also listed

The simplified description of quantum 1/f noise was pre-above (because a 10 �m thick device is very small, so it may
sented above in the elementary terms of Schrödinger’s statis-be applicable), and would give (1.8 
 10�10 cm2)/f for a n-type
tical catalog model, without using second quantization. Thisdevice. Equations (60)–(63) would be reduced m*p /m*n � 27.5
approach is natural in view of the close connection betweentimes for n-type devices. We mention that S�Is

has been calcu-
this new effect and diffraction, which is usually treated with-lated with the inclusion of a term of 10% of the applied gate
out second quantization, in the statistical catalog model basedvoltage V in the kinetic energy of the carriers at the surface,
on the single-particle solution of the Schrödinger equation,and that for the back-surface recombination current this term
normalized to the number of particles, N. Just as the superpo-has to be dropped in the similar expression for S�Ib

. However,
sition of elementary phase-shifted waves allows for the sim-we have neglected this here, because the surface recombina-
plest and most intuitive description of diffraction through ation terms will not turn out to be important, as we will see
slit, the description of quantum 1/f noise in terms of interfer-below. The applied gate voltage was taken to be V � 5 V.
ence beats between slightly frequency-shifted scattered par-Calculating the fraction of each current, we obtain
tial waves with bremsstrahlung energy losses will always pro-
vide the simplest and most elementary quantitative
derivation of the Q1/fE, easily accessible even at the under-
graduate level.

Below we now present the derivation of the Q1/fE in a
general form that determines the scattered current j from the
observation of a sample of N outgoing particles. The minimal
outgoing sample for defining particle–particle correlations in
the scattered wave consists of two particles, and therefore the
effect can be calculated for the case of two outgoing particles.
Since the general derivation also yields a factor 1/N for bos-

(1 cm−2) fS′
I ( f ) = (20/132)2 × 1.8 × 10−6 + (10/132)2

× 4.6 × 10−9 + (3.6/132)2 × 7 × 10−8

+ (0.01/132)2 × 3.3 × 10−8 + (80/132)2 × 1.8 × 10−8

+ (17.5/132)2 × 1.8 × 10−8

= 3.67 × 10−8 + 2.6 × 10−11 + 5.2 × 10−11

+ 1.9 × 10−16 + 6.61 × 10−9 + 3.17 × 10−10

= 4.37 × 10−8 (64)
ons and a factor 1/(N � 1) for fermions, and since the simpli-
fying restriction to N � 2 has given rise to some misinterpre-or for incoherent 1/f noise, 7.1 
 10�9 (p) and 3 
 10�10 (n).
tations, a presentation of the general case of N bosons or NThis value can be used in order to estimate the detectivity of
fermions will be of interest. We consider the case of bosons.the device in our example. Substituting into Eq. (57), we ob-

We start with the expression of the Heisenberg representa-tain with a quantum efficiency � � 0.7 and wavelength of
tion state �S� of N identical bosons of mass M emerging at an� � 10 �m:
angle � from some scattering process with various undeter-
mined bremsstrahlung energy losses reflected in their one-
particle waves �i(�i):

|S〉 = (N!)−1/2
∏

i

d3ξi ϕi(ξi)ψ
†(ξi)|0〉 =

∏
i

d3ξi ϕi(ξi)|So)〉 (66)

where �†(�i) is the field operator creating a boson with position
vector �i, �(�i) is the field operator annihilating a particle, and

D∗(λ, f ) = ηqλ

hc
[SId

( f )]−1/2

= (0.7 × 1.6 × 10−19 C)(10−5 m)

(6.6 × 10−34 J · s)(3 × 108 m/s)� f
(4.37 × 10−8 cm2)(1.74 × 10−6 A2/cm4)

�1/2

= (2 × 107 cm · Hz1/2
/W) × f 1/2 (65) �0� is the vacuum state, while �So� is the state with N bosons

of position vectors �i with i � 1, . . ., N. All products and
or for incoherent 1/f noise, 5 
 107 (p) and 2.5 
 108 (n). sums in this section run from 1 to N, unless otherwise stated.

In conclusion we note that for the relatively large devices To calculate the particle density autocorrelation function
which we have considered, most of the quantum 1/f noise in the outgoing scattered wave, we need the expectation value
comes from fluctuations in diffusion and in the rate of tunnel- of the operator
ing via impurity centers in the bandgap. The effective mass
of the carriers is present in the denominator of all quantum O(xxx1,xxx2) = ψ †(xxx1)ψ †(xxx2)ψ(xxx2)ψ(xxx1) (67)
1/f noise contributions except the coherent quantum 1/f fluc-

known as the operator of the pair correlation. This operatortuation present in the diffusion current of large devices. In
corresponds to a density autocorrelation function. The pres-smaller devices the diffusion current will also be given by the
ence of two-particle coordinates in the operator O does notconventional quantum 1/f formula, which contains the effec-
mean that we are considering two-particle interactions; ittive mass of the carriers in the denominator. For umklapp
only means that the expectation value that we are calculatingscattering the mass of the carriers in the denominator is
depends on the relative position of the particles. Using thesquared. Consequently we expect lower quantum 1/f noise
well-known commutation relations for boson field operators,from n-type devices, in which the minority carriers are holes,

particularly if the devices are very small, say, below 10 �m.
ψ(xxx)ψ †(yyy) − ψ †(yyy)ψ(xxx) = δ(xxx − yyy) (68)We are now in a position to explain how ‘‘smart’’ ultralow-

noise materials can be designed for specific classes of device ψ(xxx)ψ(yyy) − ψ(yyy)ψ(xxx) = 0 (69)
applications (see the section ‘‘Development of Special Materi-
als for Ultralow-Noise FET and Junction Devices’’). ψ †(xxx)ψ †(yyy) − ψ †(yyy)ψ †(xxx) = 0 (70)
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we first calculate the matrix element: limit. Here 	v is the velocity change �(K � K0)/M of the scat-
tered boson, and f � ck/2� the photon frequency. Equation
(74) thus givesN|〈So|O|So〉

=
′∑

µv

′∑
mn

δ(ηv −xxx1)δ(ηµ −xxx2)δ(ξn −xxx1)δ(ξm −xxx2)
∑
(i, j)

′∏
i j

δ(η j −ξi )

(71)
〈S|O|S〉 =

∣∣∣∣Cx
∣∣∣∣
4 �

N(N − 1)+ 2(N − 1)αA[1+ cos q(x1 − x2)]
d f
f

�

(76)

where �So� is the state with well-defined particle coordinates.
which is the pair correlation function, or density autocorrela-Here the prime excludes � � � and m � n in the summations
tion function, along the scattered beam with df /f � dq/q. Theand excludes i � m, i � n, j � �, and j � � in the product.
spatial distribution fluctuations along the scattered beam willThe summation �(i, j) runs over all permutations of the re-
also be observed as fluctuations in time at the detector, at anymaining N � 2 values of i and j. On the basis of this result
frequency f . According to the Wiener–Khintchine theorem,we now calculate the complete matrix element
we obtain the spectral density of fractional scattered particle
density �, (or current j, or cross section �) fluctuations in fre-
quency f or wave number q by dividing the coefficient of the
cosine by the constant term N(N � 1):

ρ−2Sρ ( f ) = j−2Sj ( f ) = σ −2Sσ ( f ) = 2αA
fN

(77)

〈S|O|S〉 = 1
N(N − 1)

′∑
µv

′∑
mn

d3ηµ d3ηv d3ξm d3ξn

× ϕ∗
µ(ηµ)ϕ∗

v (ηv)ϕm(ξm)ϕn(ξn)δ(ηv − xxx1)

δ(ηµ − xxx2)δ(ξn − xxx1)δ(ξm − xxx2)

= 1
N(N − 1)

′∑
µv

′∑
mn

ϕ∗
µ(xxx2)ϕ∗

v (xxx1)ϕm(xxx1)ϕn(xxx2)

(72)

where N is the number of particles or current carriers used
to define the current j whose fluctuations we are studying.

The one-particle states are spherical waves emerging from Quantum 1/f noise is thus a fundamental 1/N effect. The ex-
the scattering center located at x � 0: act value of the exponent of f in Eq. (77) can be determined

by including the contributions from all real and virtual
multiphoton processes of any order (infrared radiative correc-
tions), and turns out to be �A � 1 rather than �1, which is

ϕ(xxx) = C
x

eiKx

�
1 +

∑
kkkl

b(kkk, l)e−iqxa†
kkkl

�
(73)

important only philosophically, since �A � 1. The spectral in-
tegral is thus convergent at f � 0.Here C is an amplitude factor, K the boson wave vector mag-

For fermions we repeat the calculation, replacing in thenitude, and b(k, l) the bremsstrahlung amplitude for photons
derivation of Eq. (10) the commutators of field operators byof wave vector k and polarization l, while a†

kl is the corre-
anticommutators, which finally yields in the same waysponding photon creation operator, allowing the emitted pho-

ton state to be created from the vacuum if Eq. (73) is inserted
into Eq. (72). The momentum magnitude loss �q � Mck/K �
2�Mf /K is necessary for energy conservation in the brems-

ρ−2Sρ ( f ) = j−2Sj ( f ) = σ −2Sσ ( f ) = 2αA
f (N − 1)

(78)

strahlung process. Substituting Eq. (73) into Eq. (72), we ob-
tain which causes no difficulties, since N � 2 for particle correla-

tions to be defined, and which is practically the same as Eq.
(77), since usually N � 1. Equations (77) and (78) suggest a
new notion of physical cross sections and process rates that
contain 1/f noise and express a fundamental law of physics,
important in most high-technology applications (16).

We conclude that the conventional quantum 1/f effect

〈S|O|S〉 =
∣∣∣∣Cx

∣∣∣∣
4�

N(N − 1)

+ 2(N − 1)
∑
kkk,l

|b(kkk, l)|2[1 + cos q(x1 − x2)]

�
(74)

can be explained in terms of interference beats between the
part of the outgoing de Broglie waves scattered withoutwhere we have neglected a small term of higher order in
bremsstrahlung energy losses above the detection limitb(k, l). To perform the angular part of the summation in Eq.
(given in turn by the reciprocal duration T of the 1/f noise(74), we calculate the current expectation value of the state
measurement) on one hand, and the various parts scatteredin Eq. (73) and compare it with the well-known cross sections
with bremsstrahlung energy losses; but there is more towithout and with bremsstrahlung:
it than that: exchange between identical particles is also
important. This, of course, is just one way to describe the
reaction of the emitted bremsstrahlung back on the scat-
tered current. This reaction thus reveals itself as the cause

jjj = �KKK
Mx2

[
1 +

∑
kl

|b(k, l)|2
]

= jjj0

�
1 + αA

d f
f

�
(75)

of the quantum 1/f effect, and implies that the effect cannot
be obtained with the independent-boson model. The effect,where the quantum fluctuations have disappeared; �A �

(2�/3�)(	v/c)2 is the fractional bremsstrahlung rate coeffi- just like the classical turbulence-generated 1/f noise, is a
result of the scale-invariant nonlinearity of the equationscient, also known in QED as the infrared exponent; and the

1/f dependence of the bremsstrahlung part displays the well- of motion describing the coupled system of matter and field.
Ultimately, therefore, this nonlinearity is the source of theknown infrared catastrophe, that is, the emission of a loga-

rithmically divergent number of photons in the low-frequency 1/f spectrum in both the classical and the quantum form
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of the author’s theory. We can say that the quantum 1/f This yields for the coherent state �zq� the representation
effect is an infrared divergence phenomenon, this diver-
gence being the result of the same nonlinearity. The new
effect is, in fact, the first time-dependent infrared radiative
correction. Finally, it is also deterministic in the sense of a
well-determined wave function, once the initial phases �
of all field oscillators are given. In quantum-mechanical

ψq(x) = exp(− 1
2 |zq|2) exp

�
−x2

2

� ∞∑
n=0

(zqeiωt )n

[n!(2n
√

ω)]1/2
Hn(x)

= exp(− 1
2 |zq|2) exp

�
−x2

2

�
exp(−z2

qe−2iωt + 2xzqeiωt )

(81)
correspondence with its classical turbulence analog, the new
effect is therefore a quantum manifestation of classical In the last form the generating function of the Hermite poly-
chaos, which we can take as the definition of a certain type nomials was used. The corresponding autocorrelation function
of quantum chaos. of the probability density function, obtained by averaging

over the time t or the phase of zq, is, for �zq� � 1,

PHYSICAL DERIVATION OF THE COHERENT
QUANTUM 1/f EFFECT

Pq(τ , x) = 〈|ψq|2t |ψq|2t+τ 〉
= [1 + 8x2|zq|2(1 + cos ωτ ) − 2|zq|2] exp(−x2/2)

(82)

This effect arises in a beam of electrons (or other charged Integrating over x from �	 to 	, we find the autocorrelation
particles propagating freely in vacuum) from the definition of function
the physical electron as a bare particle plus a coherent state
of the electromagnetic field. It is caused by the energy spread A1(τ ) = 2−1/2(1 + 2|zq|2 cos ωτ ) (83)

characterizing any coherent state of the electromagnetic field
This result shows that the probability distribution containsoscillators, an energy spread that spells nonstationarity, that

a constant background with small superposed oscillations ofis, fluctuations. To find the spectral density of these inescap-
frequency �. Physically, the small oscillations in the totalable fluctuations, which are known to characterize any quan-
probability describe self-organization, or bunching, of the par-tum state that is not an energy eigenstate, we use an elemen-
ticles in the beam. They are thus more likely to be found in atary physical derivation based on Schrödinger’s definition of
measurement at some times and places than at others alongcoherent states, followed by a rigorous derivation from a well-
the beam. Note that for zq � 0 the coherent state becomes theknown quantum-electrodynamical propagator. The chaotic
ground state of the oscillator, which is also an energy eigen-character of these fluctuations is discussed in the last subsec-
state, and therefore stationary and free of oscillations.

tion of the next section. We now determine the amplitude zq with which the field
The coherent quantum 1/f effect will be derived in three mode q is represented in the physical electron. One way to do

steps: First we consider a hypothetical world with just a sin- this is to let a bare particle dress itself through its interaction
gle mode of the electromagnetic field coupled to a beam of with the electromagnetic field, by performing first-order per-
charged particles; considering the mode to be in a coherent turbation theory with the interaction Hamiltonian
state, we calculate the autocorrelation function of the quan-
tum fluctuations in the particle density (or concentration)
that arise from the nonstationarity of the coherent state.

H ′ = Aµ jµ = −e
c

vvv · AAA + eφ (84)

Then we calculate the amplitude with which this one mode is
where A is the vector potential and � the scalar electric po-represented in the field of an electron, according to electrody-
tential. Another way is to Fourier-expand the electric poten-namics. Finally, we take the product of the autocorrelation
tial e/r of a charged particle in a box of volume V. In bothfunctions calculated for all modes with the amplitudes found
ways we obtainin the previous step.

Let a mode of the electromagnetic field be characterized by |zq|2 = π(e/q)2(�cqV )−1 (85)
the wave vector q, the angular frequency � � cq and the po-
larization �. Denoting the variables q and � simply by q in Considering now all modes of the electromagnetic field, we
the labels of the states, we write the coherent state (25,31,32) obtain from the single-mode result of Eq. (83)
of amplitude �zq� and phase arg zq in the form

A(τ ) = C
∏

q

(1 + 2|zq|2 cos ωqτ ) = C

�
1 +

∑
q

2|zq|2 cos ωqτ

�

= C
�

1 + 4V
23π3 d3q |zq|2 cos ωqτ

�
(86)

|zq〉 = exp(− 1
2 |zq|2) exp(zqa†

q)|0〉

= exp(− 1
2 |zq|2)

∞∑
n=0

zn
q

n!
|n〉 (79)

Here we have again used the smallness of zq, and we have
Here a†

q is the creation operator that adds one energy quan- introduced a constant C. Using Eq. (85) we obtain
tum to the energy of the mode. Let us use a representation of
the energy eigenstates in terms of Hermite polynomials
Hn(x),

|n〉 = (2nn!
√

π)−1/2 exp(−x2/2) Hn(x)einωt (80)

A(τ ) = C
�

1 + 4π
V

23π3

4π

V
e2

�c
dq
q

cos ωqτ

�

= C
�

1 + 2
α

π
cos ωτ

dω

ω

�
(87)
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Here � � e2/�c is the fine structure constant �1/137. The first To calculate the current autocorrelation function we need
the density correlation function, which is also known as theterm in the large parentheses is unity and represents the con-

stant background, or the dc part of the current carried by the two-particle correlation function, and is defined by
beam of particles through vacuum. The autocorrelation func-
tion for the relative (fractional) density fluctuations, or for the
current density fluctuations in the beam of charged particles,
is obtained therefore by dividing the second term by the first
term. The constant C drops out when the fractional fluctua-

〈�0|Tψ †
s (x)ψs(x)ψ †

s′ (x
′)�s′

(x′)|�0〉
= 〈�0|ψ †

s (x)ψs(x)|�0〉〈�0|ψ †
s′ (x

′)ψs′ (x′)|�0〉
− 〈�0|Tψs′ (x′)ψ †

s (x)|�0〉〈�0|Tψs(x)ψ †
s′ (x

′)|�0〉 (90)
tions are considered. According to the Wiener–Khintchine
theorem, the coefficient of cos �� is the spectral density of the The first term can be expressed in terms of the particle den-
fluctuations, S2

��� for the particle concentration, or Sj for the sity of spin s, n/2 � N/2V � ��0��†
s(x)�s(x)��0�, while the second

current density j � e(k/m)���2: term can be expressed in terms of the Green function Eq. (89)
in the form

S2
|ψ |〈|ψ |−2〉 = Sj〈 j〉−2 = 2

α

π fN
= 4.6 × 10−3 f −1N−1 (88)

Here we have included in the denominator the total number

Ass′ (x − x′ ) ≡ 〈�0|ψ †
s (x)ψ †

s′ (x
′)ψs′ (x′)ψs(x)|�0〉

= (n/2)2 + δss′ Gs(x′ − x)Gs(x − x′ ) (91)
N of charged particles that are observed simultaneously, be-

The relative autocorrelation function A(x � x�) describingcause the noise contributions from each particle are indepen-
the normalized pair correlation independent of spin is ob-dent. This result is related to the conventional Q1/fE consid-
tained by dividing by n2 and summing over s and s�:ered in the next section. A similar calculation yields the

gravidynamical quantum 1/f effect (QGD 1/f effect) by substi-
tuting gravitons for the photons considered so far as infra-
quanta.

RIGOROUS DERIVATION OF THE COHERENT
QUANTUM 1/f EFFECT

The present derivation is based on the well-known new propa-
gator Gs(x� � x) derived relativistically (33,34) in 1975 in a
new picture required by the infinite range of the Coulomb po-
tential. The corresponding nonrelativistic form (35) was pro-
vided by Zhang and Handel (see the last subsection under
‘‘Recent Results’’ below):

A(x − x′ )

= 1 − 1
n2

∑
s

Gs(x − x′ )Gs(x′ − x)

= 1 − 1
N2

∑
s

∑
pppppp′�

exp i
(ppp − ppp′) · (rrr − rrr′) − (Eppp − Eppp′ )(t − t ′)

�

�
nppp,snppp′ ,s

×
� ppp · (rrr − rrr′)

�
− (m2c2 + ppp2)1/2(t − t ′)

c
�

�α/π

×
� ppp′ · (rrr′ − rrr)

�
− (m2c2 + ppp′2)1/2(t ′ − t)

c
�

�α/π

(92)

Here we have used Eq. (89).
We now consider a beam of charged fermions (e.g., elec-

trons), represented in momentum space by a sphere of radius
pF, centered on the momentum p0, which is the average mo-
mentum of the fermions. The energy and momentum differ-
ences between terms of different p are large, leading to rapid
oscillations in space and time, which contain only high-fre-

− i〈�0|Tψs′ (x′)ψ †
s (x)|�0〉

≡ δss′ Gs(x′ − x)

= i
V

∑
ppp

�
exp i

ppp · (rrr − rrr′) − ppp2(t − t ′ )/2m
�

�
nppp, s

×
�

−i
ppp · (rrr − rrr′)

�
+ i(m2c2 + ppp2)1/2(t − t ′)

c
�

�α/π

(89)

quency quantum fluctuations. The low-frequency and low-
Here � � e2/�c � 1/137 is Sommerfeld’s fine structure con- wave-number part Al of this relative density autocorrelation
stant, np,s the number of electrons in the state of momentum function is given by the terms with p � p�:
p and spin s, m the rest mass of the fermions, �ss� the Kro-
necker symbol, c the speed of light, x � (r, t) any space–time
point, and V the volume of a normalization box. T is the time-
ordering operator, which orders the operators in the order of
decreasing times from left to right and multiplies the result
by (�1)P, where P is the parity of the permutation required to
achieve this order. For equal times, T normal-orders the oper-
ators, that is, for t � t� the left-hand side of Eq. (89) is
i��0��†

s(x)�s�(x�)��0�. The state �0 of the N electrons is described
by a Slater determinant of single-particle orbitals.

The resulting spectral density coincides with the result

Al(x − x′) = 1 − 1
N2

∑
s

∑
ppp

nppp,s

×
∣∣∣∣ ppp · (rrr − rrr′)

�
− (m2c2 + ppp2)1/2(t − t ′)

c
�

∣∣∣∣
2α/π

(93)

≈ 1 − 1
N

∣∣∣∣ ppp0 · (rrr − rrr′)
�

− mc2τ

�

∣∣∣∣
2α/π

for pF �
∣∣∣∣p03 − mc2τ

z

∣∣∣∣ (94)

2�/�fN, derived directly in the section above from the coher-
ent state of the electromagnetic field of a physical charged Here we have used the mean value theorem, considering the

2�/� power as a slowly varying function of p and neglectingparticle. The connection with the conventional quantum 1/f
effect is discussed in the section. p0 in the coefficient of � � t � t�, with z � �r � r��. The correla-
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tions propagate along the beam with a group velocity given photogeneration of carriers in photodetectors, (2) the verifi-
cation of the quantum 1/f noise theory in quartz resonators,by the average velocity p0/m of the particles in the beam, and

with the phase velocity c2/v. Using an identity in Ref. 36, we (3) the application of quantum 1/f noise to explain the anisot-
ropy observed for conventional quantum 1/f noise in mono-obtain from Eq. (94) with � � �� � p0 � (r � r�)/mc2� the form
crystal silicon, (4) the derivation of the nonrelativistic propa-
gator of QED, which predicts the presence of the coherent
quantum 1/f effect, and (5) a clear formulation of the problem
of transition between the coherent and conventional quan-
tum 1/f effects. In addition we have improved our universal
sufficient criterion for 1/f spectra in chaotic nonlinear sys-
tems, and (6) we have applied it to QED, obtaining the quan-
tum 1/f effect as a consequence of the nonlinearity of the sys-
tem formed by the charged particles together with the
electromagnetic field.

Method Used

The derivation of the coherent nonrelativistic propagator of

A1(x − x′) = 1 − 1
N

∣∣∣∣mc2θ

�

∣∣∣∣
2α/π

= 1 − 1.25
N

|�|2α/π

= 1 − 1.25
N

e(2α/π ) ln �

≈ 1 − 1.25
N

�
1 + 2α

π
ln �

�

= 1 − 2.5
N

+ 1.25
N

�
1 − 2α

π
ln �

�

≈ N − 2.5
N

+ 1.25
N

e−(2α/π ) ln �

= 1
N

�
N − 2.5 + 2.5α

π cos α

∫
0

cos ω� dω

ω1−2α/π

�
(95)

QED was performed in the picture introduced by Dollard in
1964, and uses the branch-point propagator introduced laterThis indicates a ��1
2�/� spectrum and a 1/(N � 2.5) depen-
by Zwanziger and Kibble (33,34). The derivation of the anisot-dence of the spectrum of fractional fluctuations in density n
ropy of 1/f noise in monocrystalline silicon is based on theand current j. The total error corresponding to the two linear
conventional quantum 1/f noise theory and the known struc-approximations of exponentials in Eq. (95) is less than 1%,
ture of the conduction band of silicon in the Brillouin zone.provided �ln �� � 20, or (250,000)�1 h � ��� � 250,000 h. Here

� � �/(1 s), and � is the circular Fourier frequency in radians Results
per second. We have used [(1 s) mc2/�]2�/� � 1.25; this accounts

Below we report the main results of the four recent achieve-also for the presence of the number 2.5 instead of the more
ments mentioned above.usual number 2 in the final form. The form we have chosen

here is more convenient for applications. The equivalent nor-
First-Principles Proof of the Absence of the Quantum 1/f Effectmal form would have been

in the Photogeneration of Carriers in Photodetectors. Quantum
1/f noise is a fundamental aspect of quantum mechanics, rep-
resenting universal fluctuations of physical process rates R
and cross sections � given by the fractional (or relative) spec-

A1(x − x′) ≈ 1
N

�
N − 2 + 2α

π cos α

∫
0

�
mc2

�ω

�2α/π

cos ωθ
dω

ω

�

(96)
tral density S( f) � 2�A/fN. Therefore it is present in the pro-
cess rates generating the dark current observed in junctionin which the error caused by the two linear approximations
photodetectors, such as diffusion (scattering cross sectionsof exponentials would have been of the order of 20%, and in
fluctuate) in diffusion-limited junctions, and recombination inwhich the fractional power would also have been neglected in
the recombination-limited regime. One is therefore temptedthe integrand for all purposes except for the theoretical ques-
to expect similar fluctuations in the photogeneration of elec-tion of the integrability of the 1/� spectrum.
tron–hole pairs. However, as we show below, the correspond-The fractional autocorrelation of current fluctuations �j is
ing quantum 1/f coefficient is zero, precluding the existenceobtained by multiplying Eq. (92) on both sides by (ep0/m)2 and
of quantum 1/f fluctuations in the photogeneration rate. Heredividing by (enp0/m)2, which is the square of the average cur-
N is the number of carriers used to define or measure therent density j, instead of just dividing by n2. So it is the same
process rate or cross section considered.as the fractional autocorrelation for quantum density fluctu-

For an arbitrary process involving a total of n incomingations. The last form of Eq. (95) for the coherent quantum-
and outgoing charged particles, the nonrelativistic quantumelectrodynamical chaos process in electric currents becomes
1/f coefficient is given (37) by

Sδ j/ j (k) ≈ 2.5α

πω(N − 2.5)
ω2απ ≈ 2.5α

πωN
= 0.0058

ωN
(97)

2αA = 4α

3πc2

n∑
i, j=1

ηiη jqiq j(vvvi − vvvj )
2 (98)

Being observed in the presence of a constant applied field,
these fundamental quantum current fluctuations are usually where the summation runs over the charges qi and velocities
interpreted as mobility fluctuations. Most of the conventional vi of all incoming (�i � �1) and outgoing (�i � 1) particles
quantum 1/f fluctuations in physical cross sections and pro- (altogether n of them) in the process whose Q1/fN we want
cess rates are also mobility fluctuations, but some are also in to find, and � is Sommerfeld’s fine structure constant, e2/�c �
the recombination speed or tunneling rate. 1/137. In a photogeneration process a photon (q � 0) is ab-

sorbed, and a pair of oppositely charged particles is generated
(� � 1) with velocities v1 and v2, which either are zero orRECENT RESULTS
quickly decay to zero in a time negligible with respect to the
reciprocal frequency at which we calculate the quantum 1/fSix recent developments are reported. They include (1) a first-

principles proof of the absence of the Q1/fE in the process of noise. Thus in our case there are no incoming charged parti-
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cles, and n � 0 
 2 � 2. The coefficient �A of a photogenera- The corresponding resonance frequency fluctuations of the
quartz resonator are given by (39)tion process is therefore zero:

ω−2Sω( f ) = 1
4Q4

�

f
= Nα�(ω)

12nπmc2 f ε2Q4 (104)
αAph = (1,1) + (2,2) + (1,2) + (2, 1)

= 0 + 0 + 4α

3πc2
(vvv1 − vvv2)2 ≈ 0 (99)

where Q is the quality factor of the single-mode quartz reso-
All photogenerated carriers of the right sign are collected in nator considered, and (�) is not the circular frequency of the
the well of the charge-coupled device, although they may gen- main resonator mode, �0, but rather the practically constant
erate quantum 1/f voltage fluctuations on their way. Since frequency of the average interacting phonon, considering both
usually only the number of carriers collected at readout mat- three-phonon and two-phonon processes. The corresponding
ters, no quantum 1/f noise will be observed in a photoelectric 	Ṗ in the main resonator mode has to be also included in
CCD as long as the dark current is negligible with respect to principle, but is negligible because of the very large number
the photocurrent. This is in agreement with the experiments of phonons present in the main resonator mode.
performed by Mooney (38). The same considerations apply to Equation (6) can be written in the form
MIS photodetectors.

S( f ) = βV/ fQ4 (105)
Verification of the Quantum 1/f Noise Theory in Quartz Reso-

nators. According to the general quantum 1/f formula (2),
where, with a moderate value (�) � 108 s�1 and with n �

��2S�( f) � 2�A/f , where � � e2/�c � 1/137 and A �
kT/�(�), T � 300 K, and kT � 4 
 1014,2(	J/ec)2/3� is the quantum 1/f effect in any physical process

rate �. Setting
β = N

V
α�(ω)

12nπε2mc2 = 1022 (1/137)(10−27 × 108)2

12kT × π × 10−27 × 9 × 1020 = 1
JJJ = dPPP

dt
= ṖPP (100)

This is in very good agreement with experiment (40).
where P is the vector of the dipole moment of the quartz crys-
tal, we obtain for the fluctuations in the rate � of phonon Application of Quantum 1/f Noise to Explain the Anisotropy of
removal from the main resonator oscillation mode of the crys- Conventional Quantum 1/f Noise in Monocrystalline Silicon. The
tal (by scattering on a phonon from any other mode of average conduction band of silicon has six equivalent energy minima
frequency (�), or via a two-phonon process at a crystal defect along the six �100� directions in the reciprocal lattice, which
or impurity, involving a phonon of average frequency (��)) the is bcc. These directions correspond to [111] in the direct lat-
spectral density tice, which is fcc. If an electric field is applied along the [111]

direct lattice axis, along which the energy minima are located,
S�( f ) = �24α(�ṖPP)2/3πe2c2 (101) a lot of easy umklapp intervalley scattering processes (g pro-

cesses) will take place along the direction opposing the ap-
where (	Ṗ)2 is the square of the dipole moment rate change plied field, because in the reciprocal lattice the minima are
associated with the process causing the removal of a phonon at 0.85K from the center of the first Brillouin zone, so there
from the main oscillator mode. To calculate it, we write the is only 0.3K to the next minimum in the neighboring zone.
energy W of the interacting resonator mode (�) in the form Here K is the distance between the center and the edge of the

Brillouin zone. But umklapp processes are associated with
the largest conventional Q1/fE, because in the expressionW = n�(ω) = 2

Nm
2

�dx
dt

�2

= Nm
e2

�
e

dx
dt

�2

= m
Ne2

ε2ṖPP
2

(102)
(4�/3�)(� 	k/mc)2 we have 	k � G � 2�/a for umklapp, while
normal scattering processes have smaller 	k. Therefore, the

The factor 2 includes the potential energy contribution. Here [111] direction will yield the highest quantum 1/f noise for
m is the reduced mass of the elementary oscillating dipoles, e identical currents applied in different directions in a Si mono-
their charge, � a polarization constant, and N their number crystal. Experimentally it is well known that devices built on
in the quartz crystal. Applying a variation 	n � 1, we get (100) silicon surfaces have lower 1/f noise than those built on

(111) surfaces (41).
�n
n

= 2
|�ṖPP|
|ṖPP| , or �ṖPP = ṖPP

2n
Derivation of the Nonrelativistic Propagator of Quantum Elec-

trodynamics. The derivation of the coherent Q1/fE by us (42)Solving Eq. (102) for Ṗ and substituting, we obtain
in second quantization was done on the basis of a new picture
of QED introduced by Dollard, Zwanziger, and Kibble
(29,31,33,34,43,44). This new picture includes the long-range|�ṖPP| =

�N�(ω)

n

�1/2 e
2ε

part of the Coulomb potential in the unperturbed Hamilto-
nian H0. The result is a more complicated free particle and aSubstituting 	Ṗ into Eq. (3), we get
new propagator with a branch point instead of a pole. We
used a nonrelativistic form of this new propagator and ob-�−2S�( f ) = Nα�(ω)/3nπmc2 f ε2 ≡ �/ f (103)
tained the universal spectral density of fractional current
fluctuations S�j/j( f) � 2�/3�fN, which we called the coherentThis result is applicable to the fluctuations in the loss rate �

of the quartz. Q1/fE. The purpose here is to derive this nonrelativistic prop-
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agator from the well-known relativistic propagator based on we get
Dollard’s picture.

Our derivation is similar to the derivation of the nonrela-
tivistic equation from Dirac’s theory of the electron. It is
based on the distinction between the large and small compo-
nents of the Dirac spinor.

The relativistic propagator S(x� � x) in the equation

ϑ(t ′ − t)ϕ(xxx′)

=
∫

d3xxx
[∫

d3ppp
(2π)3

exp
�

i
ppp · (xxx′ − xxx) − (ppp2/2m)(t ′ − t)

h

�

(−ipx)α/π

]
ϕ(xxx) (112)

θ(t ′ − t)ψ †(x′) = i
∫

S(x′ − x)γ0ψ
†(x) d3xxx (106)

If we compare this with the equation

is ϑ(t ′ − t)ϕ(xxx′) = i
∫

d3xxx G(x′ − x)ϕ(xxx) (113)

which defines the nonrelativistic propagator, we get for the
latter

S(x) = i(2π)−3
∫

d3ppp
2E

eipx(−ipx)α/π (iγ p − m) (107)

and valid for very large time t�. In the nonrelativistic limit,
the Dirac spinor can be written in the form

G(x′ − x)

= −i
∫

d3ppp
(2π)3

exp
�

i
ppp · (xxx′ − xxx) − (ppp2/2m)(t ′ − t)

h

�
(−ipx)α/π

(114)
ψ †(x) = e−imc2/h

[
ϕ(xxx)

χ(xxx)

]
(108)

The propagator with a phase factor is

So we get G(x′ − x)

= −i
∫

d3ppp
(2π)3

exp
�

i
ppp · (xxx′ − xxx) − (ppp2/2m)(t ′ − t)

h

�

× (−i)α/π+iγ
�

−(m2c2 + p2)(t ′ − t)c
h

+ ppp · (xxx′ − xxx)

h

�α/π+iγ

(115)

This is just the nonrelativistic propagator used by us in the
preceding section. It has a branch point instead of a pole. For
x � x�,

ϑ(t ′ − t)ψ †(x′)

= i(−i)
∫∫

d3ppp
(2π)3

exp
�

i
ppp · (xxx′ − xxx) − E(t ′ − t) − mc2t

h

�

× (−ipx)α/π Eγ0 − icppp · γγγ + mc2

2E
β

[
ϕ(xxx)

χ(xxx)

]
d3xxx

=
∫∫

d3ppp
(2π)3 exp

�
i
ppp · (xxx′ − xxx) − E(t ′ − t) − mc2t

h

�

× (−ipx)α/π E + cppp · ααα + βmc2

2E
β

[
ϕ(xxx)

χ(xxx)

]
d3xxx (109)

G = −i
�

i
mc2

h
(t ′ − t)

�α/π+iγ � m
2πi(t ′ − t)

�3/2

(116)

and then we have
This propagator expresses the essence of our coherent
Q1/fE.

Formulation of the Problem of Transition between the Coherent
and Conventional Quantum 1/f Effects. From the beginning of
the theory of fundamental 1/f noise in semiconductors and
metals two situations were distinguished (45). The first, ap-
plicable to small semiconductor samples and very small (mes-
oscopic) metallic samples, has most of the energy excess
Nmv2

d/2 present in the stationary state carrying a finite cur-
rent through the sample (excess over the energy of the equi-
librium state) contained in the sum of the individual kinetic
energies of the N current carriers, �i mv2

i /2. Here the veloci-
ties vi of the carriers of mass m contain a small drift term vd.
The second, applicable in larger semiconductor or metal sam-
ples, has most of that energy excess contained in the collective

ϑ(t ′ − t)

[
ϕ(xxx)

χ(xxx)

]

= ϑ(t ′ − t)ψ †(x′)eimc2 t ′ /h∫∫
d3ppp

(2π)3 exp
�

i
ppp · (xxx′ − xxx) − (E − mc2)(t ′ − t)

h

�

× (−ipx)α/π E + cppp · ααα + βmc2

2E
β

[
ϕ(xxx)

χ(xxx)

]
d3xxx

=
∫∫

d3ppp
(2π)3

exp
�

i
ppp · (xxx′ − xxx) − (E − mc2)(t ′ − t)

h

�

× (−ipx)α/π

�
1
2

[
ϕ

χ

]
+ cppp

2E
·
[
σσσχ

σσσϕ

]
+ mc2

2E

[
ϕ

−χ

]�
d3xxx

(110) magnetic energy of the current carrying state, (B2/8�) d3x �
LI2/2. The ratio s of this magnetic energy to the kinetic energy

Furthermore, after using the nonrelativistic-limit spinor com- excess is roughly equal (45,46) to the number of carriers N�
ponent relation per unit length of the sample, multiplied by the classical ra-

dius of the electron, r0 � e2/mc2: s � N�r0. This situation was
considered already in our classical magnetic turbulence the-
ory (45,47).

χ ≈ σσσ · ppp
2mc

(111)
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In the first situation conventional quantum 1/f noise is ap- sured rest mass m, we could attempt to write Eq. (115) in the
formplicable for fluctuations in physical scattering cross sections

�, in physical process rates �, and in the mobility � or diffu-
sion coefficient D (the latter two only if exclusively limited by
� or �):

σ −2Sσ ( f ) = �−2S�( f ) = µ−2Sµ( f ) = 2αA/ fN (s � 1)

(117)

because in this case the coherent, collective term in the Ham-
iltonian is negligible. In the second case, however, the coher-
ent Q1/fE (26) is dominant:

− i〈�0|Tψs′ (x′)ψ †
s (x)|�0〉

≡ δss′ Gs(x′ − x)

= i
V

∑
ppp

�
exp

ppp · (rrr − rrr′) − ppp2(t − t ′)/2m
�

�
nppp,s

×
�

−i
ppp · (rrr − rrr′ )

�
+ i(m2c2 + ppp2)1/2(t − t ′)

c
�

�α/π

= i
V

∫
dµρ(µ)

∑
ppp

�
exp i

ppp(rrr − rrr′) − ppp2(t − t ′)/2m
�

�
nppp,s

(121)
j−2Sj ( f ) = µ−2Sµ( f ) = 2α/π fN (s > 1) (118)

The distribution function �(�) can be used to transform vari-
ous classical results calculated simply with the Schrödingerbecause the incoherent kinetic term can be neglected.
propagator into the corresponding quantum 1/f results.

For the intermediate case, an interpolation formula was
To determine �(�), we represent the nonrelativistic form

proposed (46): (38) of the new QED propagator as a superposition of classical
propagators, defined by an unknown mass distribution �(�)
that describes the fuzzy mass shell:j−2Sj ( f ) = µ−2Sµ( f ) = 2α

fN

� A
s + 1

+ s
π(s + 1)

�
(119)

which is heuristic. The main purpose of Ref. 48 is to discuss
various avenues to derive the correct form for the intermedi-
ary situation, and to consider initially the problem of coherent
quantum 1/f noise in the s  1 case.

For a finite sample or device Eq. (115) should be replaced
by a propagator that approaches the classical free-particle

exp
{

im
�

[
vvv · (rrr − rrr′) −

�
c2 + v2

2

�
(t − t ′)

]}

·
{

im
�

[
vvv · (rrr − rrr′ ) −

�
c2 + v2

2

�
(t − t ′)

]}α/π

=
∫ ∞

0
dµρ(µ) exp

{
iµ
�

[
vvv · (rrr − rrr′ ) −

�
c2 + v2

2

�
(t − t ′)

]}
(122)propagator of the Schrödinger equation when the transverse

sample size, or the number of particles per unit length of the
Let u � (1/�) [v � (r � r�) � (c2 
 v2/2)(t � t�)]. This allows ussample, approaches zero. This would cause the coherent
to simplify the above equation:Q1/fE to become very small compared with the conventional

quantum 1/f noise present in the beam, due to the particular
way in which the beam was generated. A formula like the
interpolation in Eq. (119) would then express the fact that

∫ ∞

0
dµρ(µ)eiµu = eimu(imu)α/π (123)

conventional quantum 1/f is always present, but is masked
in larger samples by the coherent Q1/fE. However, a formula When we use �� � � � m, the equation becomes
with a size-dependent infrared parameter intermediate be-
tween the coherent and conventional limits of �/� and �A,
present both in the coefficient and in the exponent, would ex-

∫ ∞

−m
dµ′ ρ ′(µ′)eiµ′ u = (imu)α/π (124)

press the same transition in a slightly different, physically
more meaningful form: Because ��(��) is different from zero only around �� � 0 or

� � m, we can extend the domain of integration:

j−2Sj ( f )= µ−2Sµ( f ) = 2β

f 1−βN
with β = αA

s + 1
+ αs

π(s + 1)
(120)

∫ ∞

−∞
dµ′ ρ ′(µ′)eiµ′u = (imu)α/π (125)

So far we have not derived an expression equivalent to Eq. Let us take the derivative with respect to u. This yields
(120) in any way. However, the physical unity of coherent and
conventional Q1/fEs speaks in favor of a more sophisticated
relation than Eq. (119). This same physical content can be

∫ ∞

−∞
dµ′ ρ ′(µ′)eiµ′ u · iµ′ = (α/π)(im)α/π

u1−α/π
(126)

expressed in a slightly different way by noting that Eq. (115)
is equivalent to a energy–momentum relation that is not

We can further simplify the above equation with the notationsharp, allowing for quantum fluctuations of the rest mass of
����(��) � X(��) and getthe charged particle, or of any other particle with infrared

divergent coupling to a group of massless infraquanta. De-
scribing these quantum fluctuations of the rest mass � with
the help of a distribution function �(�) peaked at the mea-

∫ ∞

−∞
dµ′ X (µ′)eiµ′u = (α/π)mα/π

(iu)1−α/π
(127)
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We can determine X(��) by taking the Fourier transforma- nonlinearity causing the 1/f spectrum of turbulence in both
semiconductors and metals is caused by the reaction of thetion of the right-hand side,
field generated by charged particles and their currents back
on themselves. The same nonlinearity is present in QED,
where it causes the infrared divergence, the infrared radia-
tive corrections for cross sections and process rates, and the
quantum 1/f effect. We shall prove this on the basis of our
sufficient criterion for 1/f spectral density in chaotic systems.

Consider a beam of charged particles propagating in a
well-defined direction, so that the Schrödinger equation de-
scribes the longitudinal fluctuations in the concentration of
particles. Considering the nonrelativistic case, which is en-
countered in most quantum 1/f noise applications, we write
in second quantization the equation of motion for the Heise-
nberg field operators � of the particles in the form

i�
∂ψ

∂t
= 1

2m

�
−i�∇ − e

c
AAA
�2

ψ (133)

With the nonrelativistic form J � �i��*!�/m 
 (Hermitian
conjugate), and with

AAA(x, y, z, t) = �

2cmi
· [ψ ∗∇ψ − ψ∇ψ ∗]

|xxx − xxx′| d3x′ (134)

where the small rectangular brackets are defined to include
retardation, we obtain

i�
∂ψ

∂t
= 1

2m

�
−i�∇ − e�

2c2mi
[ψ ∗∇ψ − ψ∇ψ ∗]

|xxx − xxx′| d3x′
�2

ψ (135)

At very low frequencies or wave numbers the second term in
the large parentheses is dominant on the right-hand side, be-
ing of order �, while the first term is of order ��1 when x is
replaced by �x, giving

X (µ′) =
∫ ∞

−∞
du

(α/2π2)mα/π

(iu)1−α/π
e−iuµ′ = αmα/π

2π2i1−α/π

∫ ∞

−∞
du

e−iuµ′

u1−α/π

= αmα/π

2π2i1−α/π

�∫ 0

−∞
du

cos(µ′u) + i sin(µ′u)

u1−α/π

+
∫ ∞

0
du

cos(µ′µ) + i sin(µ′u)

u1−α/π

�

=
(u′=−u)

αmα/π

2π2i1−α/π

�∫ ∞

0
d(−u′)

cos(−µ′u′) + i sin(−µ′u′)
(−u′)1−α/π

+
∫ ∞

0
du

cos(µ′u) + i sin(µ′u)

u1−α/π

�
(128)

= αmα/π

2π2i1−α/π

�∫ ∞

0
du′ − cos(µ′u′) + i sin(µ′u′)

u′ 1−α/π
(−1)1−α/π

+
∫ ∞

0
du

cos(µ′u) + i sin(µ′u)

u1−α/π

�

= αmα/π

2π2i1−α/π

�
[1 − (−1)1−α/π ]

∫ ∞

0
du

cos (µ′µ)

u1−α/π

+ i[1 + (−1)1−α/π ]
∫ ∞

0
du

sin(µ′u)

u1−α/π

�

= αmα/π

2π2i1−α/π

�
[1 − (−1)1−α/π ]

�(α/π)

µ
′α/π

cos
α

2

+ i[1 + (−1)1−α/π ]
�(α/π)

µ
′α/π

sin
α

2

�

(for µ′ > 0) (129)

= αmα/π

2π2i1−α/π

�
[1 − (−1)1−α/π ]

�(α/π)

µ
′α/π

cos
α

2

− i[1 + (−1)1−α/π ]
�(α/π)

µ
′α/π

sin
α

2

�

(for µ′ < 0) (130)

Because both 1 
 (�1)1��/� and sin(�/2) are much smaller than i�
∂ψ

∂t
= − 1

2m

� e�
2c2m

[ψ ∗∇ψ − ψ∇ψ ∗]
|xxx − xxx′| d3x′

�2

ψ (136)
1 � (�1)1��/� and cos(�/2), we can just use

For x replaced by �x, and x� formally replaced by �x�, we
obtainX (µ′) = [1 − (−1)1−α/π ]

α�(α/π) cos(α/2)

2π2i1−α/π

�m
µ′

�α/π

(131)

for all practical purposes. We thus conclude that the mass
distribution function has to be

i�
∂ψ

∂t
= − 1

2m

� e�
2c2mi

[ψ ∗(∇/γ )ψ − ψ(∇/γ )ψ ∗]
λ|xxx − xxx′| λ3 d3x′

�2

ψ

= λ2Hψ = λ−pHψ (137)

This satisfies our homogeneity criterion with p � �2, becauseρ(µ) = α�(α/π) cos(α/2)

π2i1−α/π

mα/π

(µ − m)1+α/π
(132)

if we also replace t with ��2t on the left-hand side, � drops out
altogether, and the equation is invariant. Our sufficient crite-This is a remarkable result. It allows us to approximate
rion only requires homogeneity, with any value of the weightthe effect of infrared radiative corrections on any electronic
p, for the existence of a 1/f spectrum in chaos. Therefore, wepropagator by multiplying it by �(�) and integrating over �
expect partial self-ordering of the current carriers with long-as was done with the free-particle propagator on the right-
range correlations leading to a universal 1/f spectrum of fun-hand side of our first equation above. The result will repre-
damental quantum current fluctuations (coherent quantumsent an approximation of the physical electron’s propagator
1/f effect) and of fluctuations in physical cross sections andcorresponding to the problem at hand, that is, an approxima-
process rates, as derived in detail above. This is in agreementtion of the physical propagator including the infrared radia-
with the experimentally verified results of the quantum 1/ftive corrections, which corresponds to the given potential in
theory.which the electron has to move, and which satisfies the given

In conclusion, we realize that, both in classical and inboundary conditions.
quantum-mechanical nonlinear systems, the limiting behav-
ior at low wave numbers is usually expressed by homoge-Application of the Universal Sufficient Criterion for 1/f Spectra

in Chaotic Nonlinear Systems to Quantum Electrodynamics. The neous functional dependences, leading to fundamental 1/f
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spectra on the basis of our criterion. This explains the ubiq- 1. Avoid coherent-state quantum 1/f noise by device size
uity of the 1/f spectrum. reduction below the coherent limit. This size limit is

concentration-dependent, as seen from the expression
for the coherence parameter s � 2e2N�/mc2 � 5 
 10�13

DEVELOPMENT OF SPECIAL MATERIALS FOR cm�1 
 N� defined in Eq. (27). N� � nA is the number
ULTRALOW-NOISE FET AND JUNCTION DEVICES of carriers per unit length of the device in the direction

of current flow. A is the cross-sectional area of the cur-
FET Devices rent-carrying device, and n is the concentration of carri-

ers. For s � 1 we expect conventional quantum 1/fConsider, for example, the class of devices that are homoge-
noise, while for s � 1 the much larger coherent-stateneous in the direction of the current flow, such as FETs, in-
quantum 1/f noise is to be expected. In conclusion:cluding JFETs, MODFETs or HEMTs, and photoconductive
think submicron, think transversely ultrasmall.detectors, as opposed to bipolar transistors, HJBTs, pn di-

odes, junction photodetectors, and other junction devices. The 2. Avoid control of the device current or voltage by elemen-
mobility quantum 1/f noise is determined in this class of de- tary cross sections or process rates tested by a small
vices by Eq. (57), with the various quantum 1/f coefficients number of carriers only. Indeed, the number of carriers
�i given by the results presented earlier for impurity scatter- interrogating the cross section or process rate appears
ing, acoustic-phonon scattering in indirect-bandgap semicon- in the denominator of both the conventional and coher-
ductors, various kinds of intervalley scattering with or with- ent quantum 1/f noise formulae. In particular, avoid
out umklapp, and polar and nonpolar optical-phonon current concentrations in bottlenecks, and current inho-
scattering. Ionized-impurity scattering consists of many mogeneities. In junction devices higher lifetimes of the
small-angle scattering events, all with small velocity changes carriers lead to an increase in the number of carriers
	v, and therefore also with a small value of the quantum 1/f

present in the sample that have tested the current-con-coefficient �i. On the other hand, intervalley scattering with
trolling cross sections, and therefore lead to lower quan-or without umklapp causes large velocity changes, corre-
tum 1/f noise.sponding to wave-vector changes of the order of the funda-

3. Avoid control of a device exhibiting conventional quan-mental reciprocal lattice vector G, and a large quantum 1/f
tum 1/f noise through elementary processes which in-coefficient of the order (4�/3�)(�G/mc)2 � (4�/3�)(� 2�/amc)2,
volve large accelerations of the current carriers, or largewhere a is the lattice constant and m the effective mass of

the carriers. To reduce the 1/f noise of the resulting devices, velocity changes. The squared vector velocity change
one is interested in materials practically free of intervalley appears as a factor in the conventional quantum 1/f
and umklapp scattering, even if this comes at the expense of noise formula. For example, umklapp, intervalley, and
a shorter lifetime of the carriers. One designs materials in lattice scattering are respectively worst, very bad, and
which the mobility is limited mainly by ionized-impurity scat- bad, compared with ionized-impurity scattering, in
tering. If this is not practicable due to other constraints, one terms of the fractional mobility fluctuations they yield.
takes advantage of the inverse square dependence of the in- For a given scattering mechanism, choosing current car-
tervalley- and umklapp-scattering quantum 1/f coefficients riers with a large effective mass will in general reduce
and chooses the conduction type (n or p) and the host material the conventional quantum 1/f noise, because for the
in order to maximize m. Finally, the 1/N dependence also fa- same momentum transfers this results in smaller accel-
vors materials with a large concentration of ionized impu- erations. Bulk recombination control of the current
rities. through a pn junction will lead to lower quantum 1/f

noise than having the current controlled even in part
Junction Devices by surface recombination, because the surface recombi-

nation centers are in a high-localized-field region at theOn the other hand, for materials designed for use in junction
interface between bulk and the passivation layer.devices, the last form of Eq. (65) requires a large lifetime of
Therefore, the best passivation is one that reduces thethe minority carriers in the low-doping part of the device. In
number and the cross section of the surface recombina-this case, the material must have particularly low concentra-
tion centers, while also providing the smallest surfacetions of recombination centers, of point defects, of disloca-
potential jump.tions, and of other lattice defects. For this class of devices the

elimination of surface recombination currents through sur-
face passivation is very important, because volume recombi-

On this basis a detailed identification and analysis of the vari-nation is much less noisy according to our equations.
ous noise sources can be performed. In a next step, a figure of
merit can be defined on the basis of the mission specification
for the devices in the focal-plane array. Finally, material andDEVICE OPTIMIZATION FOR ULTRALOW 1/f NOISE
design improvements are calculated and suggested, which op-
timize the figure of merit defined in the previous step. A simi-After the design of optimal materials for each class of solid-
lar sequence is applicable for quartz crystal resonators andstate devices, the next objective is the use of these materials
SAW devices.and of the quantum 1/f theory for practical device optimiza-

Use of these principles leads to lower 1/f device noise. Thetion. The following is the present list of our principles of opti-
quantum 1/f theory can consequently be used for CAD optimi-mal quantum 1/f noise design, which we currently use in cre-

ating new technological prototypes of devices: zation of 1/f device noise suppression.
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