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Such tools have appeared over the last two decades under
various labels, including: intelligent computer-assisted in-
struction (ICAI) systems; intelligent tutoring systems (ITSs);
microworlds or discovery worlds; coached apprenticeship sys-
tems; reactive learning environments; and, more broadly, in-
telligent learning environments (ILEs). Different theories of
learning or instruction underlie the various systems, from
production-system models of individual instruction (7) to the-
ories of cognitive apprenticeship and situated cognition, often
involving groups (9). Among the most salient differences be-
tween the various pedagogical approaches are the type,
amount, timing, and structure of the feedback from the sys-
tem’s intelligent agent(s) to the user(s).

In general, the availability of artificial intelligence tools
has permitted a major shift in the nature of computer-based
training and education. Prior to the appearance of intelligent
tools, computer-based instruction consisted mostly of either
pure didactic exposition or simplistic scoring of student an-
swers to verbally posed questions. In recent years, simula-
tions driven by numerical algorithms and using fancy graph-
ics have also appeared (e.g., variations on the SimCity game
series). Intelligent (i.e., knowledge-based) systems now sup-
port several improvements in computer-based learning:

• The computer can more deeply evaluate a student’s per-
formance.

• The computer can solve a problem itself and compare its
solution to the student’s, offering advice, critique, and
modeling of better ways to perform.

• The computer can assess a student’s strengths and weak-
nesses and select learning opportunities (e.g., problems
to solve) that best fit the student’s current knowledge
state.

• The computer can explain why an expert might attack a
problem differently.

Because intelligent computer-based training and education
is in a rather early stage of evolution, there are many cases
of prototype and demonstration systems but few cases of
fielded and practical systems. Of those, few have undergone
substantial evaluations. This article surveys a subset of intel-
ligent tools that have undergone some form of evaluation. TheINTELLIGENT TUTORING SYSTEMS
list of systems reviewed, while certainly not exhaustive, is
representative of the existing tools for which evaluation re-The advent of increasingly powerful and inexpensive com-

puter hardware late in this century has enabled the develop- sults were readily available. Overall, these systems provide a
good sense of the intelligent learning tools developed to date,ment (and, in some cases, deployment) of advanced, com-

puter-based instructional software tools based on the and the evaluations we summarize help establish the state of
the art in intelligent learning system technology.principles of artificial intelligence. Unlike the early computer-

assisted instruction (CAI) systems that preceded them, most Some of the questions we consider in this article include
the following: To the extent that individual systems haveof which were offshoots of Skinnerian ideas about pro-

grammed instruction (1,2) and contained canned knowledge been deemed helpful for teaching the target domain or skills,
in what ways do they help? What aspects of the system’s vari-of experts in a given domain, these newer, intelligent systems

aimed to embody the domain expertise itself (3). That is, ous components help or hinder the user’s learning? To what
extent does feedback from the system help? How well does therather than simply deliver instruction, they aimed to generate

instruction (4), tailoring it to individual students’ needs (5). system foster individual learning versus collaboration among
multiple users, when appropriate?Indeed, many such systems have aimed to use the computer

as a kind of ‘‘cognitive microscope’’ (6), revealing the processes Given the range of disciplines and tasks for which ILEs
have been built, it is difficult to compare approaches to ILEoccurring in the mind of the human learner. Although such

systems are more costly to produce than CAI systems, in design and delivery of system feedback without accounting for
the types of skills they support. Clancey (10) describes howtime, money, and effort (7), their benefits often outweigh ‘‘the

costs of the I in the ITS’’ (8). problem solving operators and inference procedures differ
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across various domains. McKendree (11) suggests that more knowledge may be declarative (concepts, system models, etc.)
or procedural, or both (20). Ideally, this knowledge has beencomplex or ambiguous tasks may require a greater degree of

informative feedback than more constrained ones, for which verified by human domain experts, who either examine the
knowledge base or interact with prototypes of the learningmore directive feedback often suffices. Others in the field have

described the process of learning from an ILE as a four-way system (18). In most cases the expert module consists of a
working model capable of solving target problems in the do-interaction of learner style, desired knowledge outcome, type

of instructional environment, and subject matter (12). Choice main (3). Such expert models may differ in the degree to
which their problem solving processes correspond to those ofof subject matter has also been shown to influence the relative

effects of human tutoring (13), and may also affect the results human problem solvers (3,26). For instructional purposes, a
model that can explain what it is doing is much more usefulof intelligent system evaluations (6). Thus, our review catego-

rizes systems by subject matter domain, wherever possible. than a model with optimal, but unexplainable behavior. So,
for example, an expert model consisting of a probability net-
work with no conceptual underpinnings would not be very

SOME BACKGROUND helpful for instruction, since humans cannot readily assimi-
late complex systems of probabilities.

Tutoring Student modeling components, which diagnose students’
emerging competence, appear in several forms. An overlayMany of the intelligent learning environments developed to
model represents a student’s knowledge as a subset of thedate, most notably the ITSs, focus on the benefits of one-on-
expert model’s knowledge. Overlays can reveal those pieces ofone tutoring. The reasons for this are simple: studies of hu-
expert knowledge that are either missing or misapplied in aman tutoring have shown achievement advantages of up to
student’s mind, but they cannot capture student knowledgetwo standard deviations over traditional classroom instruc-
that is qualitatively different from an expert’s (10,21). So, fortion (14). While effect sizes vary with the subject matter [e.g.,
example, an overlay model for mechanics could represent thathigher for mathematics and lower for reading (13)], human
a student does not know that objects maintain their velocitiestutoring is superior not only to traditional instruction but also
absent outside forces, but it would not be able to capture thatto other classroom improvements upon it such as mastery
a student uses the term acceleration in ways that subsumelearning (14).
parts of acceleration and parts of velocity.In an effort to reap the same benefits, early ITS developers

Another type of model matches student errors to a bug li-sought to build systems that mimicked, equaled, or even sur-
brary of common misconceptions in the domain. Such modelspassed human tutors (5,7,15). For example, the CIRCSIM-Tu-
can detect not only the correct knowledge students do not pos-tor system, a combined ITS and simulation of the human cir-
sess but also much of the incorrect knowledge they do possessculatory system, has been modeled after the patterns of
(10,21). Some bug libraries are comprised of prespecifiedhinting behaviors exhibited by humans tutoring medical stu-
bugs, while others generate models of student bugs from a setdents about cardiovascular physiology (16). However, ob-
of underlying principles (3,10,21). Some other models try totaining sufficient information to draw meaningful compari-
simulate the student’s learning processes, relying on the dif-sons is often difficult because the processes underlying expert
ficult assumption that human and computer learning pro-human teaching or tutoring are not well understood (17,18).
cesses can be equated (2). However, Reusser (20) notes thatFor example, the extent to which expert human tutors do ex-
‘‘machine tutoring based on cognitive simulation of the stu-tensive student diagnosis has been widely debated
dent is still not possible across a full range of tasks and in(5,16,19,20). Partly because of this, and partly because of the
open-ended domains.’’limited bandwidth in human-computer interaction (21), stu-

Student models diagnose in different ways, includingdent diagnoses by successful ILEs also vary in their degree
knowledge tracing [keeping track of which skills or pieces ofof detail. Nevertheless, the clear benefits of human tutorial
knowledge a student has mastered (27)], model tracingguidance have led many system developers to try to emulate
[matching a student’s solution steps to those of an expertcharacteristics of human tutors.
problem solving model (5)], plan recognition (inferring a stu-
dent’s plan based on subgoals accomplished so far), and deci-

System Components
sion trees (21). Generally, student diagnosis is more difficult
in student-controlled systems than in systems that maintainThe majority of ILEs we surveyed are complex systems, made

up of a number of different components or modules. Most some degree of control over the interaction (26); but even in
the latter systems, student models should diagnose conserva-ITSs are comprised of four components: a domain knowledge

or expert module, a student model, a tutoring or pedagogical tively.
While expert knowledge is fully in tune with real-worldmodule, and a user interface (22). ILEs may contain other

components as well, including a simulation environment (e.g., systems and hence constrained by them, students sometimes
begin with very divergent and idiosyncratic beliefs and back-23,24); a learning component, for systems that employ ma-

chine-learning techniques to improve themselves (2,18); and grounds. Consequently, it is easy to misdiagnose a student’s
misunderstandings, making a conservative approach to stu-a control component, to coordinate all the other components

(18,23). Although often regarded as discrete units, the various dent diagnosis appropriate (6). Developers must consider the
dangers of misdiagnosis (28), as well as the validity and relia-system components are usually interrelated in function and

often in features (25). We describe briefly each of the four bility of computer-generated diagnoses (18). A variety of mea-
sures are available for evaluating student models’ diagnosticmost common ILE components, those of an ITS.

The expert module of an ITS contains the target knowledge success (29). It is also possible for a model simply to query
the student to resolve ambiguities in diagnosis (10).of the domain that the system is designed to teach. This
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The pedagogical module structures the interaction be- tion is reserved for completed systems. Some have argued
that such evaluations are inappropriate because formal sum-tween the system and the user, deciding what task material

to present and what kind of feedback to provide, if any (20). mative techniques for systems as complex as ILEs do not yet
exist (18,23). While global effects can readily be measured,Its behavior depends upon the domain knowledge and student

modeling components (18). Pedagogical styles can differ along we have insufficient tools for validating specific mechanisms
within a system or for verifying exactly what is learned fromsuch nonorthogonal dimensions as prescriptive versus discov-

ery learning, tutoring versus coaching, and student-directed a system. Thus, many developers prefer to conduct formative,
internal evaluations. Although much more informal and lessversus system-directed (19,20). Some pedagogical approaches

are directive (7), some are noninterventionist (19), and some rigorous than summative evaluations, formative evaluations
can produce results of much greater detail (18).are in between, such as the cognitive apprenticeship teaching

methods of scaffolding and fading (9,28). Thus, feedback from Such detail is especially important during system develop-
ment. Many developers use formative evaluation studies fora system can play any number of roles, from corrective to reg-

ulative to informative (3,30), and it may differ in relative rapid prototyping and incremental improvement of system
parts. In early stages of system development, a ‘‘Wizard ofamount and timing (e.g., immediate vs. delayed vs. on de-

mand (1,5,28,31)). The pedagogical module is best evaluated Oz’’ (6) approach is used, in which humans simulate missing
system components (18). Techniques used in formative evalu-against standards of its underlying instructional theory or of

expert human teachers or tutors in the respective domain ations include additive design comparisons, to assess the im-
pact of various components on the overall effectiveness of the(5,18).

Although often de-emphasized relative to the other mod- ILE; and lag sequential analysis, to measure the impact of
system feedback on the user (29). Even pilot evaluation ofules, the user interface component of an ILE is critical to its

success or failure (3,6,10,18). In addition to being the means completed systems is usually formative in nature (38), often
progressing from laboratory sessions to field testing (18).by which the user and the system communicate, the interface

can also function as an external memory for the user, reduc- Whereas the purpose of a summative evaluation is to validate
a system’s advantages, a formative evaluation should empha-ing his or her cognitive load (6). Common screen interfaces

may contain text, hypertext, graphics, or even animation. size weaknesses and other negative aspects, so that they can
be corrected (6).While graphical interfaces are generally more engaging than

text-based ones (26), in some domains they have been found
to be disadvantageous (32). Some interfaces are capable of Assessing Educational Impact. An ILE evaluation may ad-
adapting to individual users, although resultant changes in dress a variety of issues. Developers and researchers may ask
screen displays may cause confusion (6). In some systems, the how much users gain by interacting with the system, while
interface may be rich enough to also play a pedagogical role, teachers, administrators, and other outside parties may ask
in which case the separate effects of the interface and the whether users learn the same things as students of more tra-
system’s pedagogy may be difficult to ascertain (5,6). ditional instruction (37). Corporate trainers may focus on

transfer, the extent to which the system not only trains work-
Evaluation ers for a specific job but also prepares them to quickly learn

other jobs that are closely (near transfer) or more distantlyWhy Evaluate?. While the specifications of a declarative
(far transfer) related. In addition to transfer, an evaluationknowledge or CAI system can be validated via careful inspec-
may measure attitude change about computers (39).tion by experts in relevant field(s), this type of validation is

Mark and Greer (18) list several criteria for evaluating aninsufficient for complex systems such as ILEs (18). Generally
ILE’s effects on achievement and affect. Achievement mea-there is no way to guarantee that such a complex system does
sures include transfer, retention, time to mastery, and drop-what it purports to do unless its effects can be demonstrated
out rates. Affective measures include student motivation (in-in the behavior of actual users in the target population (33).
cluding the intrinsic motivation of computer use), self-esteemOne radical view of evaluation in the educational technology
measures, and time on task. While most achievement mea-field is ‘‘to move towards a situation where we have reliable,
sures are objective, many affective ones are subjective andprecise theories from which systems may be formally derived
usually gathered by questionnaire.which will produce the learning benefits predicted by the the-

ories’’ (34), thereby eliminating the need for evaluation. How-
ever, we have not yet reached that utopian position. SYSTEMS CATEGORIZED BY DOMAIN/SKILL

There are other, more specific reasons for evaluating an
ILE. A system under development should be tested in the In the sections that follow, we present a number of examples
field to assess ‘‘its actual impact on a broad array of teacher of intelligent learning tools for various subject matters, com-
and student behaviors’’ (35). Developers must assess not only menting on any evaluation data that are available.
the effectiveness of a system but also the likelihood that it
will be fully accepted into the work or school culture of the

Programmingtarget audience (36).

Many of the ILEs we reviewed were designed to teach com-
puter programming. This was an attractive domain for earlyFormative versus Summative. The ultimate validation of a

learning tool involves formal, controlled experiments that fol- intelligent tutoring system efforts. The subject matter was fa-
miliar to developers (2), the procedures to be taught were welllow a scientific methodology (6,37). However, the literature

shows that there are many fewer controlled evaluations than defined, and programming novices were readily available.
Most of these systems teach only the basic, introductory ele-systems (3,15,38). In most cases, a summative type of evalua-
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ments of a programming language, with some covering the puts to outputs. With this format, students can construct pro-
gram graphs both forward from a problem’s input(s) andcontent of a one-semester course.
backward from its output, thus eliminating the top-down, left-
to-right constraint found in the LISP Tutor. Another improve-The LISP (LIST Processing) Tutor. One of the most well-

known and thoroughly evaluated ILEs is the CMU (Carnegie ment is that GIL’s rule base can be used not only to solve
LISP problems but also to explain to the student why a par-Mellon University) LISP Tutor, also known in various incar-

nations as GREATERP (4), LISPITS (27), and the GRAPES ticular step is appropriate in a given situation.
In a study comparing four versions of GIL with differentLISP Tutor (31). The system is an ITS that has been used

to teach introductory LISP programming, both in laboratory degrees of feedback (46), undergraduate LISP novices wrote
program graphs with GIL and then completed a post-teststudies and in one-semester college courses. Its design princi-

ples are based on Anderson’s ACT* theory of cognitive skill based on elements of similar problems. Students who had re-
ceived greater degrees of feedback tended to commit feweracquisition (7,11,27,40). It contains a problem-solving expert

component, a bug catalog, and a tutoring module for assessing errors, to immediately fix them more often, and to request
system help less often than those in the minimal and delayedstudent knowledge, assigning appropriate problems, and pro-

viding feedback (4). Problem-solving rules are represented as feedback conditions. They also scored significantly higher on
the post-test. Thus, unlike in Corbett and Anderson’s (27)productions (IF-THEN statements) in GRAPES (Goal Re-

stricted Production System) (41), and the system uses model feedback study, GIL students who received the most informa-
tive feedback both solved the LISP problems better and ap-tracing to diagnose student solution plans (7) as well as

knowledge tracing to select appropriate problems for students parently learned the material better (46).
A visually explicit interface alone can serve pedagogicalto solve (27). In essence, the student tries to write programs

prescribed by the tutor, and the tutor intervenes with advice functions, even in a system with little or no tutoring. Another
study (cited in Ref. 5) compared students using the standardwhenever the student’s activity deviates from what the expert

model would do. The interface includes a structured editor version of GIL to those using an exploratory version without
model tracing. Although the exploratory students took twiceusing LISP templates, so that the student does not have to

concentrate on checking syntax. Whenever the student makes as long as the standard GIL students to complete the training
problems, they scored as well as them on post-tests.an erroneous step, the system intervenes with immediate

feedback.
Two early evaluations of the LISP Tutor (7) clearly demon- ADAPT. Another programming system, ADAPT (ADA

Packages Tool), was designed to teach a second language tostrated its educational effectiveness. One study compared
groups of students learning LISP from a human tutor, from programmers already experienced in Pascal or C (47). Since

syntax from these prior languages shows positive transfer tothe ITS, or on their own. Although post-test scores were
equivalent across groups, the human-tutored and ITS-tutored ADA but solution planning shows negative transfer, the focus

with ADAPT is on planning rather than syntax. ADAPT’sgroups took significantly less time to cover the material. The
second study found that ITS-tutored students took less time user interface includes plan menus, from which plan compo-

nents are chosen. Some of the plans are buggy; immediateand scored better on a final exam than control students work-
ing on their own (7,27). Students in the studies liked the tutor feedback is delivered when one of these is chosen. ADAPT is

more flexible than the LISP Tutor, generally allowing plan-and rated it as superior to traditional programming courses.
Results showed that while a human tutor was still best, the ning of steps in any order and enforcing top-down, left-to-

right order only at the coding level. In a formative evaluationITS was a close second, far ahead of classroom instruction (4).
The performance and mastery time data were consistent with study (47), six undergraduates who knew both Pascal and C

solved problems using ADAPT. As in the coding-order manip-the 1.0 effect size found in evaluations of some other exten-
sive ITSs (42). ulation studies with the LISP Tutor (27,44), students did not

exercise control over the order of step planning; for the mostCorbett and Anderson (27) found that students who had
received more explanatory feedback from the ITS made fewer part, they developed plans in the sequence in which they ap-

peared in the interface. Positive transfer of prior syntax toerrors per goal than those who had received less explanatory
feedback, but did no better on post-tests. They also found that ADA was found, as expected; and on the few ADA syntax er-

rors that students did commit, the system’s error-locationstudents had equal post-test performance but longer solution
times when they controlled the timing of feedback presenta- feedback was usually sufficient for them to be corrected im-

mediately (47).tion than when the system did, suggesting that students ei-
ther were more careful about making errors or were spending
more time detecting and correcting them (27). Students rarely EGO. Ego is an ITS that teaches Gries’ methodology for

developing programs and proofs in parallel (48). Although therequested immediate feedback from the ITS; most of them
wanted feedback only when they were finished coding a prob- system teaches program writing, it helps focus students on

the overall methodology by helping them with algebra, logic,lem (43,44).
and code syntax. The system also contains a context-sensitive
advisor, available on demand. Ego allows students to makeGIL. Another LISP tutor, GIL [Graphical Instruction in

LISP (45)], was built using many of the same principles as and correct their own errors, although the system can inter-
vene to prevent excessive drift down a bad solution path. Thethe CMU tutor. One difference is a graphical interface. This

allows students to learn programming concepts without hav- system maintains an overlay student model and a goal li-
brary, and each goal module incorporates both tutorial knowl-ing to deal with syntax concurrently, and it imposes a lower

cognitive load than a text-based system. The basic idea is to edge and a bug catalog specific to that goal. Ego thus can
utilize different teaching strategies as appropriate in the con-describe a program as a graph of processes that connect in-
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text of particular goals. Unlike many other programming tu- them to proceed with any legal inference, even if it is not on
a solution path included in its expert model (7).tors, its interface allows a student to undo a bad path back to

the origin of the error. In a formal evaluation study (49), GPTutor students aver-
aged a letter grade higher on exams than the control class. In
another study (11), using a version modified to treat legal butPROUST. PROUST is an ITS for beginning Pascal students
nonoptimal inferences as illegal moves, high-school studentsthat identifies and provides feedback on program bugs. Un-
who received only minimal feedback on their moves made sig-like the other programming tutors we reviewed, PROUST ac-
nificantly more errors per proof on a post-test than those re-cepts only complete, syntactically correct programs. The sys-
ceiving any combination of goal and condition-violation feed-tem is noninteractive, and does not tutor on writing correct
back, and also tended to immediately fix fewer of their errors.code per se, but rather compares a student’s submitted code
These results are consistent with those found in the afore-to its library of plans, identifying bugs (3,15). While noninter-
mentioned feedback study with the GIL programming tutoractiveness may seem like a limitation of the system, recall
(46).that students in one of Corbett and Anderson’s (44) studies

requested feedback only when they had finished coding their
programs. This form of tutoring is consistent with the revised ANGLE. ANGLE (A New Geometry Learning Environ-
ACT-R theory’s claim that students can learn from complete ment) is a more recent tutor based on principles similar to
problem solving products, not just from correcting erroneous the GPTutor, but further emphasizing the diagrammatic rea-
steps en route to complete solutions (43). In addition, struc- soning inherent in expert geometry planning (33). Diagrams
tured editors are available to facilitate the writing of syntacti- also facilitate novice problem solving by making subgoals ex-
cally correct program code; therefore, PROUST’s input con- plicit and reducing cognitive load, in domains including geom-
straints are not extraordinarily difficult to satisfy. In general, etry (11), propositional calculus (6), programming (45), argu-
tutoring based upon completed problems will likely work so mentation (50,51), and certain procedural task simulations
long as the student is afforded enough help to assure prob- (39).
lem completion. A formative study of the ITS in geometry classes showed

that ANGLE students tended to solve more proofs on a post-
test than control group students, although the results variedSummary. The programming ILEs we reviewed differ along
by teacher. However, in another study, ANGLE studentsseveral dimensions. Some teach or enforce correct syntax,
made more execution errors than GPT students on a post-while others focus more on solution planning than coding syn-
test. This may reflect ANGLE’s higher emphasis on tutoringtax. Some impose a strict order on program development,
proof planning over execution, or possibly ANGLE’s morewhile others are more flexible and allow users to choose the
flexible interface, which does not enforce a planning ap-order in which they work (even if they usually opt not to exer-
proach (52).cise their choice). Some utilize model tracing to provide imme-

diate feedback, keeping students on-path during solution cod-
ing; one provides delayed feedback, allowing students to Summary. Both of the geometry ILEs share many features
commit and correct errors; and one delivers feedback only on with the LISP Tutor and GIL, including diagnosis by model
completed programs. Of those ILEs that provide immediate tracing and the graphical nature of the latter’s interface. The
feedback, most provide information on at least the location of tutors differed from each other in the extent of their emphasis
coding errors, if not more explanatory feedback. Generally, in on planning, as with the programming ILEs. As in the pro-
each of the studies comparing degrees of feedback, more was gramming domain, minimal feedback on errors was less bene-
found to be better than less. ficial than more informative feedback, with goal-related feed-

back being the most valuable.
Geometry/Diagrammatic Reasoning

AlgebraAfter programming, the ITS community began to focus on
mathematics instruction and then on a number of other PAT. PAT (Practical Algebra Tutor) is another ITS based
areas. Geometry received considerable attention, partly be- on the ACT theories of skill acquisition (53). It was designed
cause it relies more heavily on reasoning with diagrams and specifically to support a new algebra curriculum, produced by
partly because it was found that the proof process could be the Pittsburgh Urban Mathematics Project (PUMP), empha-
understood more readily when presented graphically as the sizing real-world problems. PAT users work on word problems
task of finding a path from premises to conclusions. Conve- using tables, graphs, and symbolic equations, while the sys-
niently, geometry proofs start with a conclusion to prove, and tem does model tracing using correct and buggy rules. The
involve the relatively simple operators of forward and back- system also does knowledge tracing, displaying cumulative
ward inference (10). skills acquired by the user in a ‘‘Skillometer’’ window. In an

admittedly confounded formative evaluation of PAT (53), al-
gebra classes used PAT plus the new curriculum, in compari-The Geometry Tutor. The Geometry Tutor (also known as

GPTutor or just GPT), also inspired by the ACT* theory, son to control classes using the traditional curriculum with-
out the tutor. The PAT students scored 100% better thanteaches students how to construct geometric proofs

(7,11,35,49). Much like GIL’s program-graph interface, the controls on tests of the new curriculum, but also 15% better
on standardized tests of the traditional curriculum. The tutorGeometry Tutor’s interface uses graph-like displays (proof

trees) to represent both directions of inference and to reduce has been integrated into many of the ninth-grade algebra
classes that implement the new curriculum and is beingstudents’ cognitive loads (40). The tutor intervenes immedi-

ately if students attempt illegal inferences, but will allow adopted by districts elsewhere in the country.
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RAND Algebra Tutor. Another algebra tutor, developed by most student errors, and misdiagnosed fewer errors than it
failed to diagnose at all. In a summative evaluation, time tothe RAND Corporation (37), has a less sophisticated student

model, based on the number of problems tried and solved. Al- mastery was shortest with a human tutor and longest with
classroom instruction, with the ILE group in between. Thethough it can sort problems based on student ability (via a

form of knowledge tracing), and provide hints and answers to effect size for POSIT relative to classroom instruction was
0.74 (29).student questions, it cannot tailor its feedback to individual

student characteristics. Field evaluations of multiple versions
of the tutor with different pedagogical goals for teaching high- Summary. The ILEs in this section cover the domains of
level skills have met with mixed success (37). subtraction and diagnosis in algebra and statistics. Each sys-

tem’s diagnoses were extraordinarily successful. One reason
for this could be the relative simplicity and formality of bothPixie. Different instructional strategies were also com-

pared in the Pixie algebra tutor (cited in Ref. 2). Developers the problem solving operators and the inference procedures in
these domains, in comparison to programming and to naturalexposed students to two pedagogical strategies, Model Based

Remediation (akin to human or ITS tutoring) and Reteaching domains such as physics and medical diagnosis (10).
(akin to CAI). Although each strategy led to superior perfor-
mance over control students, who received error notification Electrical and Economic Law Induction
only, performance with both strategies was equivalent. Al-

MHO. The MHO system teaches basic principles of elec-though the developers concluded that ITS effects were similar
tricity, using an overlay student model based on mastery of ato those obtained with traditional CAI approaches, their in-
collection of curriculum issues or ‘‘bites,’’ each of which was astructional manipulation was on too small a sample and for
simple concept or a combination of concepts taught earlier (3).too short a duration for meaningful comparisons to be drawn
It does knowledge tracing to select issues to address in prob-(42). When the amount of content conveyed and the criterion
lems it presents to students, based on prerequisite knowledgefor evaluation are both minimal, there is no reason to expect
mastered thus far (3). A summative evaluation study (39)intelligent systems to excel over older approaches.
compared two versions of the tutor, one that provided rule-
application feedback (i.e., it told students directly which prin-

Summary. The ACT-based algebra ILE (which used both
ciples to apply) and one with rule-induction feedback (i.e.,

model and knowledge tracing) demonstrated tangible benefits
students had to induce principles based on the relevant vari-

for its users. Studies of the other two systems, however, had
ables). More exploratory students did better if they received

equivocal results. Possible reasons for this include division of
rule-induction feedback, and less exploratory students did

focus between different pedagogical goals and strategies, less
better with the rule-application version.

effective diagnosis (via knowledge tracing alone in one case),
and problems with experimental manipulations and with cul-

Voltaville. Voltaville is a microworld for learning abouttural and other field factors.
electric circuits via self-directed experimentation in a com-
puter-based circuit laboratory (55). There is no direct instruc-

Other Mathematical Skills
tion by the system. Rather, students try to discover as many
electric laws as possible, which they submit to the system forGIDE. GIDE (54) is a goal-based diagnostic system for

problem solving in algebra and statistics. It assumes that feedback. Voltaville returns feedback both on the hypothe-
sized laws and on the sufficiency of the evidence gathered inproblem-solving errors are systematic, and that they must be

considered in the context of a student’s solution plan in order support of them. In an evaluation study, undergraduate stu-
dents’ electrical knowledge improved from pre-test to post-to permit ‘‘intention-based’’ diagnosis (54), similar to

PROUST. GIDE uses buggy plans and rules as necessary for test, and they discovered most of the laws included in the
microworld. Students who showed the most improvementdiagnosis, and attributes missing or skipped steps in student

solutions to inferred prerequisite knowledge or other such with the system were better at algebra and on learning indi-
cators such as data management, devising correct hypotheses,conceptual dependencies. Evaluations were conducted of two

implementations of the system, one for statistics and one for controlling variables, and interpreting evidence in their simu-
lated experiments (55).algebra word problems (54). GIDE-Stat was able to recognize

almost all of the goals, including implicit ones, in problem
solutions from students in an introductory statistics course. Smithtown. Smithtown (12) is a similar microworld, using
It also identified most of the missing goals in students’ errors, essentially the same interface as Voltaville, for law induction
but the implicit inference engine was too powerful, often at- in the domain of microeconomics. It also has no fixed curricu-
tributing known or acquired concepts to students where an lum, and seeks only to coach scientific inquiry skills via a
expert instructor would not. GIDE-Algebra’s evaluation was form of knowledge tracing (3). While interacting with the sys-
more extensive, involving thousands of problem solutions. tem, users can alternate between simply observing the effects
The system made interpretable diagnoses for all of the solu- of manipulated variables (exploratory mode) and devising and
tions, and its diagnoses for a random subset of the solutions testing hypotheses about them (experiment mode). Smith-
corresponded highly with those of human raters. town’s coach intervenes when a student exhibits buggy behav-

iors while in experiment mode, but remains silent while the
student is in exploratory mode. The coach’s interventionPOSIT. POSIT (Process-Oriented Subtraction Interface for

Tutoring) teaches subtraction by presenting declarative threshold can be modified to present anything from immedi-
ate feedback to complete silence.knowledge from a bug library to correct student errors. The

statements it presents are based on the system’s error diagno- In one experiment, Shute and Glaser (12) compared under-
graduates in an introductory economics course using Smith-ses. In a formative evaluation, POSIT correctly diagnosed
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town, receiving only classroom instruction, or receiving no only a brief interval (29). Thus, MALM’s simplified feedback
worked better than ALM’s more complicated feedback, sug-economics instruction at all (control). Both treatment groups

outperformed the control group; and although Smithtown did gesting that the cognitive load imposed by the latter was non-
trivial.not teach economics directly, students who used it did as well

as classroom students on post-tests, after having spent less
than half of the latter group’s time on task. The better Smith- Summary. These systems differ from those reviewed pre-
town students were differentiated by learning and perfor- viously in that they add real-time complexities to already
mance indicators similar to those in the Voltaville study (55). complex tasks. Thus, cognitive load is even more a concern
Shute and Glaser (12) ran a second experiment on a larger than with the other domains discussed above. ALM’s develop-
sample (over 500), of military recruits. Better learning corre- ers were able to achieve improved performance by simply re-
lated with more hypothesis-driven learning indicators; results ducing the amount of feedback presented by the system at
from less-able learners showed them to be limited to data- any given time. However, because GT-VITA employed differ-
driven indicators. ent types of feedback at different times, as well as different

forms of student modeling, it is difficult to determine which
of its complex features are most effective or which could beSummary. The ILEs reviewed in this section were much
best improved.less directive than many of the aforementioned systems, pre-

cluding model tracing in the purest sense (3). However, these
systems were able to get a lot of mileage out of knowledge Miscellaneous Systems
tracing; evaluations of each system showed at least some

Andes. Andes is a tutoring system for teaching universitylearning benefits for its users. The extent of benefits varied
physics (56). Students use the system to solve physics prob-with user ability or practice. Given the less powerful forms of
lems and study example problem solutions. Andes uses quan-student modeling employed in exploratory environments, this
titative as well as qualitative physics problems, which areis not surprising.
less likely to perpetuate students’ misconceptions than tradi-
tional quantitative problems because their focus is not on al-

Operative Skill gebraic manipulation [56; see also (6)]. Based on results of a
pilot study in which the majority of students’ requests forGT-VITA. GT-VITA [Georgia Tech Visual and Inspectable
help were made when they were lost (56), Andes’ studentTutor and Assistant (23)] is a tutoring architecture for train-
model has been extended to do diagnosis by plan recognition.ing NASA satellite ground controllers. It teaches operative
Its coaching component has been billed as ‘‘the first computerskill, or ‘‘how to use declarative and procedural knowledge to
tutor aiming to improve learning by guiding self-explanation’’manage complex systems in real time’’ (23), using a cognitive
(57), the extent of which is gauged by using a ‘‘poor man’sapprenticeship approach. The system includes an operator
eyetracker’’ (56) to measure students’ reading times for vari-function model (OFM) to teach and evaluate operative skill,
ous elements of example problems. Andes provides immediateand an associated expert system (OFMspert) for presenting
error-flagging feedback on a student’s problem-solving steps,context-sensitive advice. The system also has a pedagogy
except when such feedback could lead to error correction viamodule to provide immediate feedback (early in an interac-
simple guessing; in such cases, Andes instead presents ques-tion), coaching at critical checkpoints in a task (later in an
tions focusing on the student’s reasoning.interaction), and other ‘‘lesson objects’’ (23). The system also

combines overlay and buggy student models for diagnosis. In
a field evaluation (23), the tutoring architecture was used in VCR Tutor. Mark and Greer (8) developed a device tutor to
the context of a payload-operations control center by novice teach VCR programming. They created four versions of their
satellite ground controllers. Students had difficulty at first VCR Tutor with different pedagogical approaches, to examine
with some of the operational skill demands during real-time the role of knowledgeable feedback on a task as predomi-
satellite pass simulations; however, they did well on all de- nantly procedural as programming a VCR. Tutorial interac-
clarative and most procedural prerequisites, and eventually tions ranged from simply forcing the user through a predeter-
on the essential operational skill measures. Students rated mined programming procedure, to giving error notification
the system highly, and based on the system’s effectiveness, feedback, to giving informative feedback drawn from a con-
NASA has adopted a newer version of the architecture to be ceptual model of the task. Only the most informative version
used in required ground control training (23). employed student modeling and error diagnosis, using a bug

catalog. Students who had used the most informative version
had fewer steps, errors, and error types, and did marginallyALM. The ALM (Advanced Learning for Mobile subscriber
better on all other post-test measures than students who hadEquipment) tutor (29) is a system for training operative skill
used any of the other three versions. Thus, although each offor Army communications equipment. It uses an overlay stu-
the four versions was sufficient for teaching VCR program-dent model and provides advice when students commit proce-
ming, knowledgeable feedback led to performance advantagesdural errors. ALM’s advice templates cover anywhere from
at no additional cost in training time. This is consistent withfive to seven procedural steps, which may impose an excessive
McKendree’s (11) finding that ‘‘tasks that are quite con-cognitive load. As a potential remedy, developers created
strained may not require maximally informative feedback,MALM, a modified version of the tutor, in which each advice
but even these tasks may be learned at least as effectivelytemplate covers only one procedural step. In an informal eval-
given the more informative feedback.’’uation, initial error rates were comparable with both tutors,

as were error and correction rates immediately following ad-
vice. However, MALM led to better performance that per- CATO. CATO (50) is an ILE designed to teach beginning

law students to argue with cases. Despite the limited feed-sisted, whereas the benefits of ALM’s advice lasted through
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back it generates, the system fosters argumentation skill via overlay onto both its expert and curriculum models (59). Sher-
lock I provided both conceptual and procedural hints on de-an interface that reifies argument structure and helps to

manage the complexity that a solely text-based system would mand, on an ascending scale of explicitness (58). Hint levels
were matched to the current student model (59), and werepresent. It provides a set of core argument moves that stu-

dents can use, and a hierarchy of factors that represent simi- faded as the student became more proficient (17), in order to
keep students ‘‘in the position of almost knowing what to dolarities and differences between legal cases. A controlled eval-

uation study (50) using first-year law students found no but having to stretch their knowledge just a little in order to
keep going’’ (36). Sherlock II added facilities to support re-differences between groups on either a pre-test or a post-test

of basic argument skills, but the control group did better on flective follow-up after problem solving, including goal-related
presentations such as intelligent replays of problem solvinga more advanced, memo-writing assignment. The evaluators

concluded that CATO was able to improve basic argument steps, critiques of those steps, and information about what an
expert might have done (60). These capabilities were addedskills as much as the traditional instructor, but because its

method of teaching was not holistic like the instructor’s, it to help compensate for the learning opportunities that are
precluded by the high cognitive effort expended during prob-was unable to prepare students for more integrative tasks

such as memo writing (50). lem solving (36,61), as well as to coach situations in which
students were able to solve the problems but did so in a non-
optimal way (62).Turbinia-Vyasa. Turbinia-Vyasa is an instructional system

for training operators to troubleshoot failures in marine Sherlock follows a cognitive apprenticeship approach of ho-
listic instruction, rather than pacing students through a se-steam power plants (24). It includes an intelligent tutor and

a domain simulator with high degrees of dynamic, structural, ries of separate lessons (17,58). Because traditional on-the-job
training often spans many years, Sherlock accelerates theand temporal fidelity to power plants on naval vessels. As

with many engineering applications, such plants are quite skill-acquisition process (62). A benchmark study showed that
trainees with 20–25 hours of experience with Sherlock I per-complex and contain many interrelated subsystems, making

component failures difficult to troubleshoot. To help minimize formed at a level equivalent to that of technicians with four
years of on-the-job experience, with 90% retention of perfor-the operator’s cognitive load during training, as well as the

computational requirements for representing such a complex mance gains after six months (36,59). Thus, even relatively
brief interactions with Sherlock produced troubleshootingsystem, the simulator employs qualitative approximations of

system states rather than numerical values. The tutor in- skills that were durable (36).
In one controlled evaluation (17), using groups of airmencludes highly organized system and troubleshooting knowl-

edge, including limited case-based diagnostic knowledge link- matched for ability on pre-tests, Sherlock students solved sig-
nificantly more problems, used more expertlike problem solv-ing symptoms to components. A student model keeps track of

students’ failure hypotheses, and the tutor also uses a record ing steps, and executed fewer bad steps than a control group.
Use of Sherlock I led to more expert troubleshooting solutionsof students’ actions to infer their misconceptions about the

plant system. The tutor responds immediately to student que- in fewer steps, for both low-ability and high-ability students
(17). An evaluation of Sherlock II was conducted with Airries and also provides feedback when it infers a student mis-

conception, either immediately or at the end of the training Force master and apprentice technicians (62). Again, experi-
mental and control groups were matched for ability, basedsession depending on context. At session’s end students can

also review correct problem solutions with explanations. on verbal troubleshooting tests. The Sherlock students scored
higher on post-tests both of standard avionics troubleshootingAn experiment compared groups of Naval ROTC cadets

trained with the simulator and active (system-initiated), pas- tasks and of tasks involving another, fictitious troubleshoot-
ing system, thus showing transfer to novel troubleshootingsive (student-initiated), or no tutoring. Both tutored groups

learned to formulate and test failure hypotheses well, while tasks. Control students performed many more nonoptimal so-
lution steps, such as swapping of electronic components, inthe untutored group mainly used guessing. Some students be-

came overly dependent on the active tutor’s feedback, using it both troubleshooting environments than tutored students and
master technicians. Sherlock I effect sizes for some post-testto evaluate their hypotheses instead of theorizing and seeking

evidence themselves. In another experiment, groups of cadets measures were greater than 1.0. Effect sizes as great as 2.0
were obtained in the evaluations of Sherlock II (60).solved troubleshooting problems with some combination of di-

agnostic cost and time limits, to better reflect fidelity of inter- Clearly, both generations of Sherlock have been successful.
However, because Sherlock incorporates multiple elementsaction in real-world diagnostic tasks. While the unlimited

group was most successful, cadets subjected to both limits and instructional strategies, it is difficult to attribute its suc-
were second best. The imposed limits induced them to aban- cess to any one of them (17,36). Its developers have proposed
don bottom-up, experimenter strategies in favor of more effi- ways of partialing out its effectiveness, such as applying ele-
cient, top-down, theorist strategies (24). ments of Sherlock to other domains or gauging Sherlock’s ef-

fectiveness with certain elements or pedagogical strategies re-
Sherlock. Sherlock is an extensively evaluated ILE for moved. However, they concede that ‘‘it may be inevitable that

training a technical job in avionics troubleshooting. Specifi- successful training requires confounding of approaches’’ (17).
cally, it is a ‘‘computer-coached practice environment’’ (17)
that combines intelligent coaching facilities with a realistic Collaborative Systems
work-environment simulation, emphasizing the latter over

Beginning with the advent of serious interest in computer-the former and over student modeling precision (58). Sherlock
supported collaborative work (CSCW) in the late 1980s, a re-II, the most recent incarnation of the ILE, utilizes hierarchi-

cal, fuzzy student modeling variables that approximate an cent trend in the design of ILEs is to support collaboration
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(19). Collaborative systems offer many potential benefits over for understanding other perspectives. Although students were
not pleased with CLARE’s interface, most students said thatsingle-user systems. One benefit is cost-effectiveness; more

students may be able to use fewer computers at the same the representation language helped to expose different points
of view, and that the primitives were among CLARE’s mosttime (25,39). Students working together in groups may be

able to diagnose and teach each other, relieving the computer useful features. However, many students used the primitives
incorrectly (e.g., stating evidence as claims, listing problemsof such burdens as diagnosis and natural language parsing

(39) as well as exposing all students in a group to alternative as disagreements). The evaluators note that even incorrect
use of the node primitives can be useful for collaborativehypotheses and multiple perspectives (63,64).

Some collaborative systems involve ‘‘pseudo-social’’ inter- learning because, as indicated in their study, it stimulates
discussion among students about the roles of the differentactions between a human learner and computerized agents

(65). Developers may envision the human and the computer concepts in understanding the research papers (64).
as a single system (65) and evaluate the various elements of
their software in terms of how they foster activity in the en- Belvedere. Formative evaluation studies of Belvedere (51)

have shown similar patterns. Belvedere is a networked graph-tire human-computer system (63).
ical environment designed to foster scientific argumentation
skills in middle-schoolers. Students use node and link primi-HERON. HERON (20), named for a Greek mathematician,

is a graphics-based tool for helping students in grades three tives similar to CLARE’s to construct graphical argument
representations of scientific problems. Problems can comethrough nine solve mathematics story problems. It supports

the use of graphical solution-trees for problem representation from any source, but Belvedere’s developers have created spe-
cialized databases about several scientific debates, which areand planning, in which students can link problem concept-

nodes using arithmetic operators to map out a solution plan, accessible via a World Wide Web browser. Belvedere’s inter-
face was designed to resemble that of familiar drawing pro-working forward or backward. Erroneous input will cause

HERON to intervene, based not on student diagnosis but on grams, so that students could learn to create argument dia-
grams with only minimal training. With both diagramsolution-tree content. A field evaluation (20) compared pairs

of fifth-graders solving story problems with HERON to pairs sharing and chat facilities, Belvedere enables students to dis-
cuss and reflect upon their argumentation processes andworking without HERON. The system improved story prob-

lem comprehension and solutions on a post-test, promoted products. A computerized coach is available on demand to
provide guidance in developing argument diagrams (67).useful dialogue among the pairs, and was liked by both stu-

dents and teachers. Several formative evaluation studies of Belvedere were
conducted with middle- and high-school students (51). Stu-
dents used Belvedere’s node and link primitives in ways thatGDSS. Alavi (66) conducted a study using a group decision

support system (GDSS) with classes of MBA students. The were inconsistent both with their intended usage and with
their own and other students’ usage, much like students insoftware included tools for brainstorming; categorizing and

ranking ideas; and scoring, rating, and voting on alternatives. the CLARE evaluation. Although Belvedere’s developers
agreed with CLARE’s that such unintended usage actuallyEffectiveness of collaborative learning was measured by stu-

dents’ self-perceptions of learning and evaluative ratings of served to stimulate collaborative discussions (63), such usage
can cause problems for the automated diagnostic coach.their classroom experiences. Results showed a significant ef-

fect of GDSS use over the traditional group; it positively af- Although the coach was still under development during the
aforementioned formative evaluation studies, it has since re-fected students’ perceived learning and skill development, in-

terest in the subject matter, and appraisal of the group ceived some empirical validation (67). In addition to syntactic
node patterns, the coach is now able to respond to consistencylearning exercises and overall classroom experience. GDSS

students had significantly higher final exam scores than con- relations between any nodes in a diagram that were copied
from one of Belvedere’s semantically annotated knowledgetrol students. It was unclear which tools or features of the

GDSS had the greatest impact on group learning, and neither bases. Developers applied the coach to a subset of one of the
knowledge bases used in the formative evaluations and foundexperimenter bias nor novelty effects could be ruled out (66).
that, in most cases, its consistency judgments agreed with
their own. The authors then semantically annotated that en-CLARE. CLARE (Collaborative Learning and Research En-

vironment) is a system that supports collaborative knowledge tire knowledge base, and then had the coach evaluate a dia-
gram produced by students from one of the earlier studies.construction from published research papers (64). The ele-

ments comprising CLARE are a knowledge representation The coach agreed with all but one of the students’ links; and
on that particular link, the developers agreed with the coach.language, a process model for collaborative learning, and a

hypertext-based interface that integrates them. The represen- Thus, with only minimal knowledge engineering via semantic
annotations to an existing knowledge base, developers weretation language includes node primitives to denote epistemo-

logical concepts (e.g., claim, theory, and question) as well as able to extend the capabilities of the coach to include consis-
tency checking. Such capabilities could be useful for coachingrelationships between them. Students are led, in two phases,

‘‘from an external, isolated and individual position inward to- collaboration by pointing out inconsistent relations between
or within students’ diagrams (67).ward an internal, integrated and collaborative perspective’’

(64).
Most students agreed that the two-phase collaborative pro- Adapting Existing Systems. Note that none of the previously

discussed collaborative systems involves a student-modelingcess model helped to promote the formation of individual
views. Students also found CLARE to be useful for collabora- component. Partly this is due to the difficulties inherent in

trying to maintain separate models for each student in a col-tion, for understanding research papers in a novel way, and
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laborative setting, especially when only one computerized vealed unanticipated shortcomings in some interfaces, one of
agent is involved (26). Another reason is the viewpoint of which (ADAPT’s) precluded observation of the effects of other
many developers that ‘‘collaboration should be concerned with system components. Such findings further underscore the im-
what is happening on the screen’’ (65), as opposed to knowl- portance of formative evaluation to system development.
edge hidden inside the learners’ heads. However, diagnosis- Approaches to student modeling were also similar across
based tutoring or coaching, as employed in many of the sys- domains. No clear within-domain preferences for particular
tems we reviewed, appears to provide substantial benefits for student modeling techniques emerged from our review. For
single users. It seems a shame to have to sacrifice such sys- example, it was not the case that ILEs for one domain used
tem intelligence in order to support collaboration among bug libraries exclusively while those for another domain used
groups of students. only overlay models. Some ILEs for programming and opera-

One system that has attempted to bridge this gap is Sher- tive skills (Ego and GT-VITA, respectively) even used both
lock, whose developers argue that ‘‘affording students signifi- types of model. Similarly, variants of both model tracing and
cant opportunities for collaborative learning is not going to knowledge tracing were used for diagnosis in programming
be any harder than developing high quality computer-based and mathematics domains. Only in the discovery-world envi-
systems for solo learning’’ (61). They somewhat circumvent ronments were knowledge tracing variants used exclusively,
the student-modeling problem by defining different roles for because model tracing was not feasible with such unguided
Sherlock’s coach in a collaborative setting (9). In one scenario, instruction (3). In general, the relative effects of systems’ ped-
Sherlock can work with a student as a problem-solving collab- agogical modules tended to vary with the specifications of
orator; in another, students work in groups as a single stu- their underlying instructional approaches. Among the pri-
dent, with Sherlock as coach. mary characteristics that differentiate these approaches is

The developers also envision situations in which Sherlock the type of system intervention they advocate.
can help ease a student’s transition from self-critique to peer-
critique. In one, Sherlock acts as a peer during review of the

Immediate Feedbackstudent’s problem solving trace, constructing explanations
jointly with the student. In another, a group of students con- A major issue in the design of interactive learning environ-
structs such explanations, with Sherlock available on demand ments is the role of system-generated immediate feedback.
for assistance. In these scenarios, Sherlock is concerned not Although used to varying extents in the operative skill tutors
with modeling individual student knowledge but with foster- and in limited ways in the economics microworld, immediate
ing peer interaction and critique involving single or joint feedback approaches dominated many of the tutors for pro-
problem solving activity; however, it can still apply its diag- gramming, geometry, and mathematics, including all of the
nostic expertise to promote such activities (17,25,61). ACT* tutors. Indeed, the ACT* commitment to providing im-

mediate feedback in its tutors is one of the theory’s most con-
troversial features (27). One reason for preferring it is to en-

DISCUSSION sure that feedback is delivered in the context in which it is
needed, that of the student’s current goal and working mem-

In focusing on systems for which evaluation results were ac-
ory states (27). Another reason to provide corrective feedbackcessible, this article does not completely reflect the diversity
immediately is to prevent students from floundering whileof domains for which ILEs have been, and continue to be, de-
trying to recover from lengthy incorrect solution pathsveloped. The majority of systems we reviewed support well-
(11,27,40). Although the revised ACT-R theory and its newerdefined tasks and domains, many of which contain largely
tutorial instantiations permit off-path problem solving (43),procedural components. This is due partially to the course of
they still focus students toward correct solution paths, andhistory in the field of ILE development, which began almost
immediate feedback still plays a major role in the interaction.exclusively with such constrained domains (2) and only more

However, research has shown immediate feedback to berecently began to steer toward more ill-defined, ambiguous
disadvantageous in certain situations and with particulartasks. Nevertheless, across the domains and systems we did
tasks (1). In one experiment using a modified LISP Tutor,review, a number of similarities and differences emerged.
students who received immediate feedback solved trainingWith few exceptions, users liked the various systems and
problems faster than students who received delayed feedback,were motivated to use them, regardless of domain. This was
but when solving test problems took more time and madeborne out not only by attitude measures but also by observa-
more errors than delayed-feedback students (31). In addition,tions of their use of the systems. Although only a subset of
delayed-feedback students seemed to be better at planningthe systems have been judged favorably enough to be adopted
problem solutions than immediate-feedback students. The ex-by their target audiences, at least most of them have hurdled
perimenters argued that the absence of immediate feedbackthe initial barrier of capturing user interest.
in the delayed condition allowed students to redeploy theirAmong the other similarities between systems were the
cognitive resources toward developing secondary skills suchbeneficial aspects of their user interfaces. Across many do-
as error detection and correction. A study comparing versionsmains, interfaces functioned as external memories for their
of the GIL tutor (5) provides further evidence of this: Stu-users. This was true for both single-user and collaborative
dents who did not receive GIL’s immediate model-tracingsystems. Many interfaces also served some pedagogical func-
feedback scored better on a transfer test of program debug-tions, usually by design but sometimes by accident (6). Inter-
ging skills than those who did. Thus, the value of immediatefaces helped to reify forward and backward problem solving
feedback seems to vary with not only the task but also theor inferencing not only in geometry but also in programming

(GIL) and mathematics (HERON). Evaluation studies re- desired learning outcomes of the intervention.
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Cognitive Load of learning from an ILE as an interaction of many factors,
including domain subject matter, targeted learning outcomes,

Cognitive capacity must be considered when assessing the ac-
and the type of instructional strategies employed by the

tual or potential benefits of system-generated feedback. Be-
system.

cause information processing limitations arise more often in
the student than in the computer, the cognitive load issue
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