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The term dielectric is due, as is much of our basic under-
standing of electrical phenomena, to Michael Faraday (1) and
is an indicator that these materials support two different
charge types, one positive and the other negative, when acted
on by an electric field. Faraday, working in the early nine-
teenth century, came to this description by carrying out an
experiment that is not difficult to repeat. The basic capacitor
consists of two flat metal plates isolated from each other and
mounted so that the planes of the plates are parallel and a
small distance apart. The plates can be electrically charged
by applying a voltage across them, and the amount of charge
on each plate, Q, can be measured by disconnecting the volt-
age source and connecting the plates together so as to dis-
charge the capacitor. Under the short-circuit condition, the
current that flows from one plate of the capacitor to the other
through the external connection can be measured as a func-
tion of time and integrated to give the original plate charge.
Faraday observed, on applying a fixed voltage to the capacitor
and comparing the charges on the plates when air filled the
gap between them and when a dielectric material was in-
serted into this gap, that the quantity of stored charge in-
creased and the amount by which it increased depended on
the particular insulator inserted between the plates.

Writing the capacitance of the air-filled capacitor as C0 we
have, by experiment, that the capacitance in farads is given
as

C0 = Q/V = ε0A/d (1)

where (Fig. 1), A is the area of each plate and d is the separa-
tion between them, both in metric units, V is the applied volt-
age in volts, Q is the total charge on each plate (in coulombs),
and �0, the permittivity of free space, is a constant and of mag-
nitude 8.854 � 10�12 F � m�1. On inserting the dielectric slab,
which fills the space completely (Fig. 2), the new capacitance
Cr can be expressed as a multiplicative factor of the original
value:

Cr = ε0εrA/d (2a)

= C0εr (2b)

where �r is the relative permittivity of the dielectric.
In this notation the relative permittivity of the empty

space between the plates of the original air capacitor is taken
as 1 and that of real dielectric insulators varies from about 2

DIELECTRIC POLARIZATION

Dielectric materials have two major uses in electrical engi-
neering: to insulate electrical components from one another
(e.g., in cables and the mounting boards for electronic compo-
nents, such as switch gear and active or inactive electronic
devices) and to enhance the charge storage of capacitors.
When in use as an insulator the major requirement is that no
significant current should flow between the components, that
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is, the electrical impedance should be high. In the second
Figure 1. The voltage source of magnitude V is attached to two par-

case, under alternating current conditions, a capacitor is a allel plates, each of area A and separated by a distance d. With an
more active element in that a current flows through a perfect air gap between the plates the voltage induces a surface charge of
insulator but is out of phase with the ac driving voltage ap- density �0, on each plate. The electric field in the gap, E0, is given by
plied to the plates. As a consequence, no power is dissipated E0 � V/d � �0�0, where �0 is the permittivity of free space. The total

charge on each plate is Q � �0 � A, neglecting edge effects.as it is in a resistor in which current and voltage are in phase.
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as indicated in Fig. 2. We note from these figures that we
require two sets of charges, one at each surface of the dielec-
tric, and that these are of opposing sign; hence Faraday’s
choice of the term di-electric to describe materials that sus-
tain charge separation under the action of an electric field.

Now Table 1 begins to make sense. The proportion of plate
charge that can be annihilated by a dielectric is a property of
that particular dielectric. The general observation that poly-
mers have low permittivities and semiconductors higher val-
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ues tells us that it is the intrinsic structure and, in particular,
Figure 2. After a slab of dielectric of relative permittivity �r has filled the bonding within that structure that is important. The
the volume between the plates the charge on the surface of each plate equivalence, in this context, of the permittivities of water and
increases in order to oppose the polarization of the dielectric until the ice requires that the permittivity can be insensitive to the
excess charge at each plate returns to the original value of �0 and the

physical state of a material and must be based on local, mo-total charge density on each plate is of magnitude �0�r.
lecular effects. In the particular case of water, although the
magnitude of the response does not change in passing
through the freezing or melting point, the rate at which waterfor polymers, to 80 for water. Table 1 presents a short list
responds to an applied voltage, the relaxation time of the re-of materials and their relative permittivities and shows that
sponse, is some three or four orders of magnitude faster ingroups of similar materials, in general, have similar values
the liquid than in the solid.for their permittivity. For example, polymers, which are

This simple analysis gives us sufficient information to de-based on hydrocarbon chains, commonly have relative permit-
fine a dielectric. It is a material that responds to an electrictivities that are low; ionically bonded crystalline solids exhibit
field by forming, within the material at the surfaces directlyvalues of 4 to 10; covalently bonded semiconductors have per-
adjacent to the electrodes, layers of positive and negativemittivities in the range 16 to 20, and hydrogen-bonded water,
charges. The external driving potential responds by supplyingwhether as liquid or solid ice, has the large value quoted
additional charges until the voltage on the plates and henceabove.
the internal electric field maintain those of the air-filled cell.The observation that the insertion of the dielectric gives
After the recovery the dielectric is fully polarized and canan increased capacitive charge on the metal electrode plates
supply no further surface charge at that field. The magnitudefor an unchanged applied voltage requires that the electric
of the equilibrium polarization, P, for the dielectric is thenfield between the plates, defined as the voltage per unit dis-
proportional to the applied field withtance,

P = εrε0E (4)E = V/d (3)

Polarization is a bulk property, that is, it is uniform onremains constant independent of the presence or absence of a
any measure so we can reduce the size of the polarized entitydielectric. However, it is observed that on the insertion of the
down to atomic dimensions, at which point we take the small-dielectric, charges flow from the voltage source to the plates.
est polarized particle to be a single dipole. A dipole is an en-This can only occur if the insertion of the dielectric has led to
tity with separated positive and negative charges and a polar-a partial annulment of the original plate charges, which, in
ization vector that is defined by the orientation of theseorder to recover the initial equilibrium is required to be re-
charges to each other and of equivalent magnitude to that ofplaced from the potential source. The annulment arises from
the individual charges. In the simple parallel-plate capacitor,polarization within the dielectric, which gives rise to surface
for example, we can consider that after insertion of the dielec-charges within the dielectric, which oppose the applied field
tric all the internal dipoles become aligned by the applied
field. At any finite volume within the bulk of the dielectric the
positive and negative charges cancel out and the only observ-
able effect is the sheet of unbalanced positive charges of the
surface layer of dipoles at the negatively charged electrode
and the equivalent sheet of negative charges at the positive
electrode.

There are, therefore, two areas of response. The first is the
equilibrium situation, in which the driving potential has been
applied for some time and the system is in equilibrium, which
is termed electrostatics. The second is the response of the di-
electric to a time-dependent voltage, typically either a step
change in magnitude or a steady sinusoidal potential of fre-
quency �, the ac response or dispersion of the dielectric.

Electrostatics

Charge Storage. Consider again the capacitor system that
was described in Figs. 1 and 2. When the battery of potential
V is connected across the plates the electric field E between

Table 1. Permittivity Values

Relative Relative
Material Permittivity Material Permittivity

NaCl 6.0 Polyethylene 2.3
LiF 9.0 Polypropylene 2.2
Optical glass 6.0 Polystyrene 2.6
Mica 7.0 Polycarbonate 3.1
Quartz 4.5 PMMA 3.4/2.6
Diamond 5.7 Urea resin 5
Paraffin wax 2.2 Epoxy resin 3.5

Paraffin oil 2.2 Methanol 32.6
Castor oil 4.5 Ethanol 24.3
Transformer oil 2.2 Butanol 17.1

Water or ice 80 Liquid argon 1.53
Silicon 12 Liquid hydrogen 1.22
Germanium 16.3 Liquid oxygen 1.50
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the plates is uniform. This field arises from electrical charges Polarizability. All solids are comprised of individual atoms
or molecules. The bonding of these elements is invariablyon the internal surfaces of the metal plates, one positive and

the other negative, each of density �0 per unit area. The mag- electrostatic in the sense that common salt, sodium chloride,
is a hard, clear crystal in which the sodium and chlorinenitude of charge on each plate is Q � �0A. On substituting for

the capacitance we have atoms are ionized and result in strong, local fields and sig-
nificant polarization, but the individual dipoles cannot ap-
proach one another by a distance that is less than their physi-Q = σ0A = Vε0A/d = CV (5)
cal lengths. Averaging the electric fields within the bulk on a

where scale that is small but greater than that of the dipoles gives
only the applied field as the effects of the local perturbations

σ0 = Eε0 (6) are lost.
The classic approach to polarization is to determine the

The dielectric polarizes in the field and annuls a fraction effect of the local electric field acting on a dipole. Computing
of the plate charge. As indicated earlier, the potential source techniques make it a simple matter to explore the local charge
replaces this charge with an additional component �p in order densities by filling a dielectric with identical dipolar entities
to reestablish equilibrium, and the field within the dielectric that are aligned by the electric field established across the
remains at the original value, E � V/d. At this point the in- sample, but leaving one, central, dipolar site empty. Two
ternal polarization has generated surface charges within the frames from a time development of two such models is shown
dielectric of magnitude �p. The total charge stored on each in Fig. 3. Figures 3(a) and 3(c) refer to short times in the
plate, per unit area, is development of equilibrium and Figs. 3(b) and 3(d) to the

equilibrium situation. In Figs. 3(a) and 3(b) we consider the
σp + σ0 = ε0εrσ0 (7)

interior of the dielectric in which the dipoles migrate ran-
domly and we sample points at random within the dielectricand the equivalent charge densities at the surfaces of the di-
bulk. In the equilibrium situation only the surfaces adjacentelectric are
to the electrodes develop a net space charge as indicated. In
Figs. 3(c) and 3(d) we consider the case for which the monitor-εrσ0 − σ0 = (εr − 1)σ0 = χrσ0 (8)
ing point is set at the center of one of the dipoles that has
been chosen to be at the center of the sample area. The otherwhere �r is the dielectric susceptibility of the dispersion pro-
dipoles are also contained within their molecules so that thecesses in the dielectric that have responded to the action of
area of twice the molecular radius is excluded from the gen-the field. That is, those with polarization relaxation times less
eral dipolar noise. However, the surface of the excluded areathan the time of observation, and the difference between �r
acts as an internal interface, which gives rise to an additionaland �r over the complete frequency spectrum is the free-space
field component which is uniform within the enclosed volume,relative permittivity of magnitude 1.0.
Fig. 3(d).The additional charge stored is the polarization charge of

In a polarized material the vector electric field is given bymagnitude �p per unit area. Considering the capacitor as a
charge storage device we require a large electrode area and a
high permittivity in order to store significant charge and a EEE = EEE0 + EEEp (10)
high internal impedance in order that the charge should not
leak away internally through the dielectric. The impedance of where E0 is the applied field, and Ep is the field generated by
the dielectric is in parallel with the capacitance and the in- the polarization. We consider that each individual polarizable
trinsic relaxation time for the stored charge can be obtained entity has a polarizability of magnitude ��0 so that the total
by consideration of the decay time of the equivalent parallel polarization is
resistance–capacitance circuit. The time constant for the in-
ternal decay of the charge on removal of the voltage source
and leaving the capacitor as an open circuit is given by the PPP = Naραε0

M
Elocal (11)

product of the parallel resistance and capacitance of the di- = ε0(εr − 1)EEE0 (12)electric, that is,

where Na is Avogadro’s number, � is the density of the mate-
rial of molecular weight M and Elocal is the local electric field.

τint = RC = dρr

A
εrA
d

= εrρr (9)

Considering that a small spherical volume surrounds each po-
where �r is the dc resistivity of the dielectric. The intrinsic larizable molecule, the local electric field at the molecule is
relaxation time is independent of the geometry of the capaci- given by
tor and, for example, with �r � 2 and a relaxation time of a
year, the resistivity has to be greater than 2 � 1018 � � m�1,
which is not a significant limitation since good insulators are Elocal =

�
1 + εr − 1

3

�
E0 (13)

designed to achieve this value. It is because of their long re-
laxation times that dielectrics have a useful charge-storage

From Eqs. (12) and (13) we have thatrole. The density of the charge stored can be increased by
raising the magnitude of the permittivity. In this context fer-
roelectric dielectrics (2), which have anomalously high per-
mittivities, up to the order of thousands, play a major role.

αε0 = 3ε0

Naρ
M

εr − 1
εr + 2

(14)
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Figure 3. In a gas, liquid, or solid, with
no field present, on average the dipoles
are randomly distributed, leading to zero
charge density everywhere. On the appli-
cation of an electric field surface charges
are formed in the material adjacent to the
electrodes. However, the charge density
surrounding a fixed dipole, taken to be at
the center of the sample, is not the same
as the average value. The molecular di-
ameters exclude a volume of radius twice
the molecular radius. At the surface of the
excluded volume a surface charge is gen-
erated, similar to those at the electrodes.
In the diagrams panels (b) and (d) show
the equilibrium state and (a) and (c) the
summations of the local polarizations be-
fore equilibrium has been achieved. The
charge cloud surrounding the fixed dipole
is equivalent to that generated on the sur-
face of a similar void in the dielectric.
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which is the well established Clausius (2)–Mosotti (3) rela- and that each will respond in its own time scale. In principle,
information about these processes can be extracted from antionship. Structurally complex molecules will have larger
experiment that measures the time dependence of the decayvalues for their equivalent molecular radii and hence larger
of polarization of a charged sample. However, such measure-polarizabilities. Table 2 lists the magnitudes of the polariz-
ments are dynamic over an extended time scale and it is onlyabilities for a small number of ions and molecules from which
since fast information retrieval and storage systems haveit can be seen that the range of polarizabilities is large and
been developed that direct measurement of the time decaydependent on the molecular size and content, to a significant
has become an effective technique. The alternative approachdegree.
is to use a variable-frequency ac voltage source and choose a
suitable set of frequencies within the range of the source, and

DIELECTRIC DISPERSION then at each of these frequencies allow dynamic equilibrium
to be achieved and to measure the in-phase and out-of-phase

Our description so far has been in terms of the equilibrium components of the response to the applied ac voltage. The ad-
macroscopic response of the dielectric and has not considered vantage in this technique is that the material under study
the time dependence of the polarization. It is expected that reaches a dynamic equilibrium at the chosen frequency so
even in a perfectly homogeneous dielectric the individual that repeat measurements can be made until the variations
charged components that constitute the dipoles and given the in the measures are at an acceptable low value. In this case

the data are conventionally expressed in terms of either theinternal polarization will each contribute to the total response

Table 2. Polarizabilities (in units of C � m2 � V�1)a

Ion/molecule Na� Cl� NH3 C2H6 Ethane C6H6 Benzene C6H14 Hexane

Polarizability 0.22 3.3 2.56 5.0 11.46 13.1

a Polarizabilities are not often quoted in the relevant SI units, which are 10�16 C � m2 � V�1. The values are normally listed in
cgs units of cm3. The conversion factor is

�SI � 1.113 � 10�16 �cgs
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the same rate as the ac voltage but delayed in phase. In this
form we have, in complex algebra notation,

ε(ωτ ) = ε ′(ωτ ) − jε ′′(ωτ ) (15a)

= εr exp(− j ωτ ) (15b)

= εr[cos(ωτ ) − j sin(ωτ )] (15c)

The imaginary component of the dielectric response �r sin(��)
is an electrical current and is defined to be in phase with the
applied voltage, which results in energy loss as heat in the
material. For this reason the real component of the permittiv-
ity represents the capacitively stored charge and the imagi-
nary component is termed the dielectric loss.

At the lowest frequencies the real component of the capaci-
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tance is constant and nondispersive, while the loss componentFigure 4. A schematic diagram of the dispersion of the real, ��(�)
increases as the inverse of the frequency, �. The magnitudeand imaginary �
(�), components of the complex permittivity. The fre-
of the ac conductance of a capacitor of magnitude C, in com-quency range covers, from right to left the optical, microwave, radio,
plex notation, is i�C. From this we see that the contributionand low frequency ac spectrum equivalent to the frequency range

from 1015 to 10�3 Hz. In order to cover this extended frequency range to capacitance of the conductance of magnitude G is Cg �
logarithmic frequency and permittivity scales have been assumed. At �jG/�, giving the inverse frequency dependence of the disper-
the lowest frequencies a bulk conductance component dominates the sion in the loss, indicated in Fig. 4. Resonance normally oc-
dielectric loss but makes no contribution to the real component of the curs at very high, that is, quasioptical, frequencies whereas at
permittivity. Note the sharp maximum in the loss at the resonant fre-

cable transmission frequencies the loss is dominated by broadquency.
relaxation loss peaks and dispersions in the real component
of the permittivity. The out-of-phase component in these
peaks acts as an electrical impedance in phase with the ap-

capacitance or the permittivity for which the proportionality plied voltage and hence passes energy to the dielectric as
between these properties is a dimensional constant dependent heat, in precisely the same manner as the low-frequency con-
only on the sample geometry, Eq. (2a). ductance. However a perfect conductance possesses no capaci-

A sketch of the in-phase and out-of-phase, the real and tance and hence there is no dispersion in the real component.
imaginary, components of the permittivity as a function of As indicated in Fig. 4, the observed permittivity is fre-
frequency is presented in Fig. 4 in which we indicate a reso- quency dependent. The diagram also shows that when more
nance response at high, typically optical frequencies and two than one process exists, the real permittivity at frequency �,
broad relaxation responses in the MHz and kHz regions with,

��(�), is the summation of the contributions for all frequencies
at the lowest frequencies, a contribution to the imaginary

greater than �. We can write this as �(�) � ��S(�) over allcomponent of the permittivity from the dc conductivity of the
s, where the contribution of the sth component is the suscepti-sample. It should be noted that in the figure we have assumed
bility �S(�), and the s � 0 terms gives the ‘‘free-space’’ contri-logarithmic scales that is, log (permittivity) as a function of
bution of 1.0.the log(frequency) as both the frequency–magnitude range

Dielectric relaxation has been observed from very low fre-and the permittivity range are large and the log scales retain
quencies, �Hz, to high GHz, frequencies, but there is alwaysa uniform sensitivity throughout these ranges as well as com-
an additional contribution to the permittivity from the opticalpressing the absolute value scales.
region, as indicated by the resonance process in Fig. 4. ForThe frequency-scan technique is a convenient means of
example, the permittivity of optical glass is 6 in the kilohertzquantifying the relative magnitudes and of characterizing the
range and the optical refractive indices are about 1.5. Thenature of the individual dispersion processes; resonances are
refractive index is the ratio of the velocity of light in the vac-of narrow frequency range with characteristic maximum and
uum to that in the medium, and the equivalent, optical sus-minimum in the real component and a narrow absorption
ceptibility is the square of this ratio, 2.25 and includes thepeak in the out-of-phase (energy absorption or loss) compo-
relativity permittivity of free-space. The permittivity of opti-nent. A narrow energy-loss peak is one in which the width at
cal glasses in the kilohertz frequency range is about 6, andhalf the peak height is significantly less than one order of
hence we know that one or more dispersion processes is re-magnitude and usually much less. Damping of a resonance
quired between the optical frequency range and the kilohertzincreases the frequency range of the loss component and over-
range, of total magnitude 3.75 in relative susceptibility. Natu-damping drives the system into relaxation. Relaxation peaks
ral quartz has a refractive index of 1.55, but the kilohertzare much broader with a minimum half-height width of
permittivity is only 4.5, and hence the equivalent mid-greater than one order in magnitude. The two responses in
frequency residue is reduced, in quartz, to 2.1. We can associ-the midfrequency range of the figure are both relaxations
ate the difference between quartz and glass to the introduc-with the lower-frequency loss peak significantly broader than
tion of metal ions, which make the optical glasses easier tothat at the higher frequency, which is a common experimen-
manufacture. It is common to consider the summation of re-tal observation.
sponses at frequencies higher than that of particular interestAs the dielectric response is delayed with respect to the

applied voltage it can be considered as a vector rotating at to an observer as an infinite frequency permittivity to which
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where P is the net polarization, E the electric field, and m the
dipole moment of the molecule. The structure of the water
molecule is such that it is easily polarized and results in the
anomalous high permittivity listed in Table 1. Conversely the
long intermeshed and tightly bound hydrocarbon chains typi-
cal of polymers are unable to allow significant ion movement
under equivalent fields and hence their polarizabilities, and
permittivities, are small.

Dielectric Relaxation

O2–

H+

H+

H+

H+

The availability of wide-band, automatic measuring machinesFigure 5. The H2O (water) molecule. Each of the four bonding direc-
for low frequency since the early 1980s has brought about thetions are at 100� to the others and two of the four bonding positions
development of wide-band dielectric spectroscopy as an effec-will be occupied by two hydrogen H� ions. The equivalent negative

charge is given by the oxygen O2� ion at the center and the polariza- tive tool for the physical investigation of poorly conducting
tion vector lies from the central core to a position midway between solid and semisolid materials. At the same time the long es-
the hydrogen ions. A change in position of one hydrogen ion gives a tablished chemical interest in polar molecules has been
realignment of the polarization vector by 100� and occupation of the strengthened by advances in data measurement, storage, and
initially empty pair of sites by the hydrogen ions reverses the initial analysis. Now that high-quality high-resolution data are
polarization.

widely available, it is essential that the fundamental back-
ground to these observations is made clear in order to ensure
that the experimental data are analysed in the most effec-we give the symbol ��. In the case of the glasses we can define
tive manner.�� for the dielectric, kilohertz, range as about n2

optical (i.e., 2.25).
Following Kubo (4) we define the form of the relaxationThe experimental observation that the individual

dispersions in frequency, through the time response of therelaxation–resonant processes add together independently, as
system after the application, or removal, of an electric field.assumed in Eq. (15), is the basis of the principle of superposi-
The time dependence of the polarization P(t) following the ap-tion, which states that the individual polarization processes
plication of an electric field, E(t), is given byare additive and, by implication, negate the possibility of cou-

pling, in any form, between these processes. Experimentally
the principle of superposition applies as long as the individual
dispersion responses are linear with respect to the applied

P(t) = ε0

∫ t

−∞
φ(t − t ′)E(t ′) dt ′ (17)

field.
where �(t) is the linear response function and �0 is the per-In all cases the basis of the observed permittivity is the
mittivity of free space. For ‘‘small’’ magnitudes of the appliedrealignment of charges within the material under the action
field, as indicated earlier, the response of the polarization isof an externally applied electric field. As a classic example of
taken to be a linear function of the magnitude of the applieda simple molecule and the nature of its dielectric response we
field. The function �(t) is required to be real and to approachmay consider the water molecule, H2O. The hydrogen atoms
zero as t tends to infinity. In practice the limitation to smallare negatively charged and the oxygen positively double
fields is not restrictive as the local fields within most solidscharged so that although the molecule is electrically neutral
are high and the external fields normally used in dielectricit contains two simple dipoles aligned along the bonding di-
spectroscopy result in small perturbations. For the specificrections, which give a resultant dipole to the molecule. This
case where the electric field is sinusoidal, with angular fre-arises because there are four, equivalent directions forming
quency �, the field isangles of 100� to each other, centered on the oxygen O2� ion

for the two hydrogen ions, and at any one time two of these
E(ω, t) = E0 exp(− jωt) (18)positions are occupied, as indicated in Fig. 5. This results in

a net dipole for the molecule the direction of which bisects the
and the polarization can be written in the formangle between the two occupied hydrogen positions. If one of

the pair of hydrogen ions moves to either one of the empty
allowed sites there is a concomitant 100� shift in the direction
of the dipole. In thermal equilibrium, and at zero applied elec-
tric field, the hydrogen ions move from site to site within the
molecule at random, and the net polarization, given as the
average over an ensemble of molecules with random direc-
tions of polarization, is zero. However, once an electric field is

�P(ωt) = ε0E0

∫ t

−∞
φ(t − t ′ ) exp( jωt ′) dt ′

= ε0E0 exp(iωt)
∫ t

−∞
φ(t − t ′) exp[− jω(t − t ′)] dt ′

= ε0E0 exp(iωt)
∫ ∞

0
φ(T ) exp(− jωT ) dT

(19)

applied more of the dipoles will be aligned in the field direc-
tion and the material will become polarized. Thermal ran-

which is the Fourier transform of the response function �(T)domization opposes the field-driven polarization and a dy-
and gives the susceptibility asnamic equilibrium is established. For small fields the

polarization is a small perturbation in the material and, as
indicated by Eq. (14), we can write

P = mmm · EEE (16)

χ(ω) = P(ω)/(E0ε0) =
∫ ∞

0
φ(t ′) exp( jωt ′) dt ′

= χ ′(ω) − iχ ′′(ω)

(20)
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Applying the principle of superposition to a linear system Brot (5) has expressed the double integral in the form
that contains N independent relaxation processes, the overall
response function is χ ′(ω) = 2

π
lim
r→∞

∫ ∞

0

ds χ ′′(s)
2

×
� 1

s + ω
+ 1

s − ω
− cos(s + ω)r

s + ω
− cos(s − ω)r

s − ω

� (28)

φ(t) =
N∑

s=0

φs(t) (21)

but, as the last two terms in the large parentheses are oscilla-
tory and ��(�) is required to decay to zero as the frequency

where �s(t) is the response of the sth relaxation process. Sub- approaches infinity, we need only consider the first pair of
stitution then gives the complex permittivity in the form terms. Hence we obtain

χ ′(ω) = 2
π

∫ ∞

0
χ ′′(s)

s
s2 − ω2 ds (29)

ε ′(ω) − iε ′′(ω) = ε0

�
N∑

s=1

φs(t) exp( jωt) + 1

�
(22)

χ ′′(ω) = 2
π

∫ ∞

0
χ ′(s)

ω

ω2 − s2 ds (30)

In addition to the time-decay response most materials ex-
which are the Kramers (6)–Kronig (7) relationships betweenhibit a small dc conductance, which has no time-decay func-
the real and imaginary components of the susceptibility.tion. The conductance gives an additional component to the
These relationships always apply, for the complex-frequencyloss mechanism, as indicated in Fig. 4, adding to the per-
dependencies arise from a single, real, time-decay function.mittivity a term �j���1, where � is the conductivity of the
An immediate consequence of the relationships is that it issample.
not possible to have a dispersion in one component without aThe ratio of the real to the imaginary component of the
related dispersion in the other unless ��(�) has an ��1 depen-complex permittivity defines the phase difference between the
dence in which case Eq. (29) contributes to zero to the magni-response and the applied voltage. For zero phase difference
tude of ��(�).the material acts as a perfect resistance and dissipates power.

A particular case, which we shall later show as of signifi-For a phase difference of �/2 the response is out of phase with
cance in the analysis of the dielectric response of many realthe driving potential and no energy is lost. The phase angle �
materials, is that when either component of the susceptibilityis a measure of the fraction of energy lost as heat and not
exhibits the fractal property of a fractional power decay withavailable for use and is defined by
increasing frequency. Consider, as an example, that the real
susceptibility can be expressed as

ε ′′(ω)/ε ′(ω) = tan(δ) (23)
χ ′(ω) = χ0ω

−p with 0 < p < 1 (31)

For this reason � is commonly termed the loss angle and is and that p is fractional and positive over a reasonable fre-
used to characterize the electrical quality of the material. quency span. Substitution into Eq. (29) gives the imaginary

loss component as (8)

Kramers–Kronig Relationships. Separating out the real and
imaginary components of the complex susceptibility, from
Eqs. (20) and (21) we have

χ ′′(ω) = χ0
2
π

ω−p
∫ ∞

0

x−p

1 − x2
dx

= χ0ω
−p cot(pπ/2)

(32)

where x � �/s. We can reexpress Eq. (32) as
χ ′(ω) = ε−1

0

∫ ∞

0
cos(ωt)φ(t)dt (24)

χ ′′(ω)/χ ′(ω) = tan[(p − 1)π/2] = const (33)

over the frequency range over which Eq. (31) applies. The
χ ′′(ω) = ε−1

0

∫ ∞

0
sin(ωt)φ(t)dt (25)

angle (p � 1)�/2 in Eq. (33) is known as the phase angle of
the loss or simply the loss angle for the dielectric and is a

Fourier inversion of the second of these equations gives direct measure of the fraction of the energy lost as heat by
way of the relaxation process.

Comparing Eq. (33) with Eq. (23), we note that the former
applies for a single relaxation process and the latter for theφ(t) = ε0

2
π

∫ ∞

0
sin(st)χ ′′(s)ds (26)

summation of all relaxation and charge transport processes
in the material with relaxation times less than the inverse of
the frequency that is being considered. To a cable designer,so that after substitution into Eq. (24) we obtain
the latter is more significant.

When the response is of a negative fractional power-law
form, as is commonly observed in many dielectric materials,
the dispersion spectra are characterized by a constant phase-

χ ′(ω) = 2
π

∫ ∞

0

∫ ∞

0
χ ′′(s) sin(st) cos(ωt) ds dt (27)
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angle response for frequencies in excess of the relaxation and, after separating out the real and imaginary complex
components, we havetime. An equivalent response can occur in the lower-frequency

region, that is, in the region below the peak in the imaginary
component, but in this case we have

χ ′(ωτ )/φ0 = 1
1 + ω2τ 2

, χ ′′(ωτ )/φ0 = − ωτ

1 + ω2τ 2
(39)

χ(0) − χ ′(ω) = χ ′′(ω) cot(pπ/2) (34)
hence for �� 	 1

As the Kramers–Kronig transform of either a constant
term, or an inverse frequency dependence, is zero, the Kram- χ ′(ωτ ) � 1, χ ′′(ωτ ) � 1/ωτ (40a)
ers–Kronig interrelationships are useful in the analysis of ex-

and for �� 
 1perimental dispersion data, particularly when a conductivity
of similar magnitude to that of the permittivity response is
under consideration. The contribution to the sample of a con- χ ′(ωτ ) � 1/(ωτ )2, χ ′′(ωτ ) � 1/ωτ (40b)
ductivity is

The Debye relaxation can be characterized by the ratios of
the frequencies for which the out-of-phase component is one-χσ = − j(σ/ω) (35)
half and one-quarter of the magnitude of the total response,
�0. For convenience in the following we assume that �0 has awhich on transformation is zero. In this manner the conduc-
value of unity. The maximum in the loss component ��(��) istivity free permittivity can be determined by transforming the
half the total real dispersion and occurs for the �� � 1.0 anddata containing the conductivity and then retransforming
the ratio of frequencies for which the latter applies isback and subtracting from the original data.
1 : 10.194, that is, just over an order in magnitude, as shownWith the general usage of fast computing techniques the
in Fig. 6. In this figure we have presented, as functions ofKramers–Kronig transform has become freely accessible.
the frequency, the response in linear and logarithmic scalesHowever, in order to have effective transformations it is es-
together with the Cole–Cole (10) presentation of ��(��) as asential that the input data are both of high quality and of
function of ��(��). In Figs. 6(a), 6(b), and 6(c) it is clear thatsufficient quantity to give an acceptably low scatter to the
the loss peak is symmetrical on a log(frequency) scale as isoutput of the computation.
implicit in the form of Eq. (36), and that the peak value of the
loss component is one-half of the zero-frequency magnitude of

DISPERSION FUNCTIONS the dispersion. The second feature of the plot is that outside
of a relatively narrow range of frequencies centered on � �

The principal feature of dielectric spectra below the GHz 1/� the dispersions of ��(�) are simple, in the sense that the
range is the total absence of resonance effects. The energy frequency exponents are whole numbers, including zero, that
stored by polarization, in all solid and liquid media, relaxes is, ���, (��)�1, (��)�2, and 1 � ��.
under over damped conditions on time scales of greater than In practice the precise form of the Debye response is sel-
picoseconds and resonance effects, which are characterized by dom observed. Invariably both solid and liquid dielectrics ex-
sharp, optical spectralike lines, have not been observed in the hibit a significant broadening of the Debye relaxation charac-
frequency range from microhertz to gigahertz. The simplest teristic. The cases for which perfect Debye behavior might be
form of overdamped response is that for which the driving expected are for low concentrations of a polarizable entity dis-
force for the relaxation of any forced displacement is due to persed uniformly in a nonpolar medium such as a gas at low
the displacement itself, that is, in terms of the linear response pressures or polarizable atoms or ions evenly dispersed in a
function a first-order response with polymer host but not bound into the polymer chains. Water

and deuterium oxide approximate closely to the Debye form,
within the accuracy with which the measurements can be car-φ(t) = −τ

dφ(t)
dt

(36)
ried out. For water at room temperature the relevant disper-
sion processes occur in the GHz region of the electromagnetic

where � is a constant with dimensions of time and termed the spectrum, which is experimentally a difficult region in which
relaxation time for the particular susceptbility process under to obtain data over a broad frequency range. In practice the
consideration. Setting the magnitude of the polarization at variation from the Debye response is of essentially of the
zero time to be �0 the subsequent polarization decays expo- same order of magnitude as the variation in the measure-
nentially as ments themselves. In Fig. 7 we present the form of the water

dispersion measured, with a high accuracy, by Alison (11),
φ(t) = φ0 exp(−t/τ ) (37) Richards (12), and Alison and Sheppard (13) and note that

the data indicate a small, but real, variation from the Debye
The Fourier transform of the exponential time decay gives the form for �� 
 1 (� � 105 MHz). We also note that above this
frequency response of the polarization, where P(�) is frequency the real and imaginary components deviate from
�(�)E(�) and �(�) is the dielectric susceptibility. Following the Debye form and tend to become parallel in the log–log
Debye (9) and carrying out the Fourier transformation of Eq. plot; hence Eq. (33) applies with p � 1 � n and the value
(37) yields of the gradient was determined by the authors as n � 0.043


 0.001.
Examination of some 200 sets of published experimental

data (14) has shown that the Debye exponents are limiting
χ(ωτ ) = φ0

1
1 + iωτ

= φ0
1 − iωτ

1 + ω2τ 2 (38)
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Figure 6. The Debye dispersion function components x�(�) and x�(�) for x0 � 1.0 is plotted using
(a) linear scales, (b) log–linear scales, and (c) logarithmic scales in order to show the symmetry
of the loss component with log(frequency). In (d) the Debye data are plotted as the imaginary
permittivities as a function of the real permittivities and give the Cole–Cole semicircle. The
numbers in the plot indicate relevant �� values.

values and only approached by a small fraction of the materi- forms, the Cole–Cole (10) and Davidson–Cole (15) functions
are indicated. In terms of the exponent parameters theseals investigated. Figure 8 contains a plot of the exponents in

terms of the relevant loss peaks in terms of the Jonscher (15) functions require that m � n � 1 and m � 1, respectively.
The form of these, and other recognized dispersion functionsnotation, which for �� 	 1,
are listed in Table 3.

The plot contains preferred areas; generally polymeric ma-
terials are found close to the origin, m � 0, n � 1, whereas

χ ′′(ωτ ) ∝ ωm

χ ′(ωτ ) ∝ 1 − ωm, 0 < m ≤ 1.0
water and ice and D2O as solid and liquid are close to the
Debye value at (1,1), Fig. 7, and tend to lie on the Cole–Coleand for �� 
 1,
diagonal of the plot. The Cole–Davison function defines the
upper frame of the figure as m � 1.χ ′(ωτ ) ∝ χ ′′(ω) ∝ ωn−1, 0 ≤ n < 1.0

Two typical examples of dielectric dispersions are given
in Fig. 9 as the general behavior patterns that have beenThe Debye characteristic is indicated in the diagram as a
observed. The legend to the figure contains the relevantsingle point with coordinates (m � 1, n � 0). The origin of the
dispersion parameters. Figure 9(a) shows the loss measuredplot is the point, (m � 0, n � 1), which represents zero disper-
for the � relaxation process in linear polyethylene at asion with a constant real susceptibility over the relevant fre-
constant temperature of 363 �K as a function of the appliedquency range, and as a consequence of the Kramers–Kronig
pressure (16). Increasing the pressure has had the effect oftransformation the equivalent loss component will have zero
increasing the relaxation time without a significant changemagnitude. It is obvious that the bulk of the dielectric data
in the magnitude of the dispersion. The real permittivitylies above the diagonal between these limiting values, that is,

m � n 
 1. In the figure two other recognized dispersion for this set of data has a magnitude close to three and the
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9 has been chosen to be indicative of the range of dielectric
response and of the influence of external variables and
structure on the dynamics of relaxation.

It is clear that the Debye model is not of general applicabil-
ity although the concept of a broad relaxation spectrum is
fundamental. One approach to describe the observed relax-
ations has been to generate empirical relaxation functions,
either in the time domain, see Eq. (37), or directly in the fre-
quency domain. A number of the frequency dispersion func-
tions are listed in Table 3 and, as indicated above, three of
them have specific restraints and have been mapped onto the
data plot of Fig. 8.

It is a feature of the functions at they all contain fractional
power-law behavior in at least one of the wings of the re-
sponse, whereas the experimental evidence in Fig. 8, clearly
requires two parameters in order to have the necessary flexi-
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bility to mirror the experimental observations, for which we
Figure 7. The dielectric dispersion of water at 23�C as reported by require for � 
 �peak,
Alison and Sheppard (13). For clarity the plot in the figure is the
fitted Cole–Davidson/Dissado–Hill function using the parameters n
� 1.001 
 0.001 and m � �CD � 0.043 
 0.001. These values were
determined with a statistical certainty of �2/v � 1.5 where v � 683

χ ′′(ω) ∝ ( jω)n−1 ∝ ωn−1 sin(nπ/2) (41a)

χ ′(ω) ∝ ωn−1 cos(nπ/2) (41b)
degrees of freedom.

and in the lower-frequency range, � 	 �p,

increment in ��(�) due to this relaxation was no more than
0.05 pF. Figure 9(b) contains both the real and imaginary
components of a dispersion in polyvinyl acetate (17). The

χ ′′(ω) ∝ (ω)m sin(mπ/2) (42a)

χ ′(ω) ∝ [1 − ωm cos(mπ/2)] (42b)
data were measured at three temperatures, and the frac-
tional power behavior in the wings of the dispersion is clear Table 3 shows that only the Havriliak–Negami (18),
and independent of the temperature. In this case we have Jonscher (19), and Dissado–Hill (20) functions make use of
m � 0.80 
 0.02, 1 � n � 0.56 
 0.02 and the half-width two, independent, descriptors that are necessary in order to
is approximately two orders of magnitude, significantly cover the range of experimental data covered in Figs. 5, 8,
wider that the Debye dispersion. The data presented in Fig. and 9. One other dispersion function has been reported in the

literature, the Kohlrausch (21), Williams and Watts (22) func-
tion (KWW), which has been defined in terms of the time-
decay function (21)

f (t) ∝ exp[−(t/τ )β ] (43)

No simple frequency transform of this function exists (23).
Expansion of the exponential and transformation of the indi-
vidual elements gives series, for both low and high frequen-
cies, which are oscillatory and poorly convergent. In Fig. 10
we present typical examples of the form of the dispersion
functions and it is clear that the KWW dispersion is of the
Cole–Davidson form and as the dispersion parameter � be-
comes small, the limiting low frequency ��1 loss characteristic
moves down to the very-low-frequency range and the curva-
ture around the peak loss extends over orders of magnitude
in frequency.

Distributions of Relaxation Times

A second approach that has been developed to explain the
smearing out of the loss peak was originated by Pellat (24).

Cole–Davidson response
m = 1

Debye
response

m = 1, n = 0

Cole–Cole
response
m = 1 – n
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He considered that a number of individual relaxation pro-

Figure 8. A plot of the low-frequency exponent for the loss m as a
cesses could occur in parallel, each with its own relaxationfunction of the magnitude of the high-frequency exponent, 1 � n, for
time �S and magnitude �(O)S. The observed response is thentwo hundred individual data sets taken from the published literature.
given by the summation of the individual terms as long asOne half of the data have been reported in Ref. 14. The regions of this
they do not interfere or cooperate with each other, that is, asplot for which the Debye, Cole–Cole, and Cole–Davidson dispersion

functions apply are indicated. long as the principle of superposition applied. Taking the
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Table 3. Dispersion Functionsa,b

Dispersion Function Source Comment

F(�) �
1

1 � i��
Debye (9)

F(�) �
1

1 � (i��)1�� Cole–Cole (10) � � m � 1 � n

F(�) �
1

(1 � i��)� Cole–Davidson (15) � � n � 1, m � 1

Fuoss–Kirkwood (31) � � m � 1 � nF�(�) �
��m

(�/�0)�� � (�/�0)�

Havriliak–Negami (18) m � 1, n � 1 � �(1 � �)F�(�) �
��m

(�/�0)�� � (�/�0)�

Kohlrausch–Williams–Watts (21,22)F(�) � ��
�(s�)
�(s) �exp(�i��/2)

(��)� � s

F(�) �
1

(�/�m)�m � (�/�n)1�n Jonscher (19)

Dissado–Hill (32)F(�) � (1 � i�/�0)n�1
2F 1�1 � n, 1 � m; 2 � n;

1
1 � i(�/�0)

�
where 2 F1(a, b; c; x) is the hypergeometric function

a Each function has been normalized to unity susceptibility at zero frequency.
b The Fuoss–Kirkwood and Havriliak–Negami functions have been generalized by Jonscher using the m and 1 � n notation for the exponents of the low- and
high-frequency wings, respectively. The Dissado–Hill function, which uses the same notation, is the only fundamentally based nonempirical response function
and contains the Cole–Davidson function as a particular case. In the Dissado–Hill model n is the efficiency of energy exchange within a local cluster surrounding
the active dipole and m is the equivalent efficiency for transfer of energy between clusters. All the dispersion functions include the Debye loss response as a
specific case.

Debye dispersion as the model for a single perfect relaxor we the transform for each term in the series. As the series � �
can write 0.5 is generally oscillatory and poorly convergent we have

chosen � � 0.5 as the KWW exponent in Fig. 11, where exam-
ples of the distributions obtained for single values of the vari-χ(ω) =

∑
S

[χ(0)S (1 + iωτS)−1] (44)
ables are plotted. It can be seen the fractional power law in
frequency transforms to an equivalent fractional power law

or, in the limit of a continuum of relaxation times in relaxation time and that the Cole–Davidson and KWW
functions are represented by relaxation times limited to lower
values, � � 1.0 and � � 40, respectively. It is reemphasizedχ(ω) = χ(0)

∫ ∞

0

G(ln τ )

1 + iωτ
d(ln τ ) (45)

that no direct correlation between these Debye-based distri-
butions and any other analysis of a distributed propertyin which G(ln �) is the preferred distribution function of the
within a dielectric has yet been reported. The distributionsindividual Debye relaxations on a logarithmic time scale
are mathematical transformations of the information con-with
tained in the frequency dispersion and hence of the relevant
time-decay function and are of use as a guide to the spread of
Debye relaxation times that would need to be involved. We

∫ ∞

0
G(ln τ ) d(ln τ ) = 1 (46)

note, however, that the concept of a distribution of relaxation
times, although commonly used, depends on the absolute ac-The distribution function can be obtained from the relax-
ceptance that any individual relaxing element in any environ-ation function using the relevant Stieltjes transform (21),
ment will give a Debye relaxation. We consider that this is anhowever the information contained in G(ln �) cannot be more,
extremely weak assumption and requires the total neglect ofand may be less, than that contained in the original disper-
cooperative relaxations of any form. Indeed the functionssion plot. Only if the form of the relaxation distribution can be
listed previously are simply particular transforms of the es-correlated with other information about a suitably distributed
sentially empirical dispersion functions in section in Table 3.property of the system that could lead to the particular distri-
Of these dispersion functions only one, the Dissado–Hill func-bution is the technique of any real significance. Each of the
tion, has been constructed ab initio from consideration of cor-dispersion functions listed in Table 3 may be recast into a
related relaxations on two different time scales. In this deri-distribution of relaxation times and Table 4 lists the relevant
vation it has been assumed that the time-decay functionfunctions for which these have been determined. In the KWW
develops as a fractal process in time and that the fractionalcase the transform is not simple, except for the case of � �
power laws in both the susceptibility and relaxation times are0.5 and the distribution of relaxation times has to be obtained

by expanding F(t) as a infinite power series and carrying out a direct consequence of the nature of the fractal correlations.
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Figure 9. Two examples of typical dis-
persion plots. (a) Linear polyethylene un-
der pressure (16). The pressure is indi-
cated in the figure. T � 363�K. �
relaxation. (b) Polyvinyl alcohol (17).
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It is with this concept, and its development, that there is evi- then the individual components are given as
dence in support of the fractional power expressions assumed
by the empiricists.

Quasi-dc Response

In the very-low-frequency region, which, for convenience, we
will take as below 1 rad-s�1 (0.1592 Hz), the effect of conduc-

φ ′′(ωτ ) = φ0(ωτ )δ−1 cos[π(δ − 1)/2] = φ0(ωτ )δ−1 sin(δπ/2)

(48a)

φ ′(ωτ ) = φ0(ωτ )δ−1 sin[π(δ − 1)/2] = φ0(ωτ )δ−1 cos(δπ/2)

(48b)

tan(δπ/2) = φ ′′(ω)/φ ′(ω) = const (48c)
tance in the dielectric samples becomes important. For exam-

For � approaching unity sin(��/2) approximates to 1.0 andple a sample of area 1 cm2, thickness 1 mm, and permittivity
cos(��/2) to zero. The characteristic defined by Eq. (47) is20 has a capacitance of 120 pF. The equivalent resistance, at
anomalous in that neither the real nor the imaginary compo-1 rad/s frequency, is 8 � 109 � and indicates a specific resis-
nent of the complex susceptibility saturates as the frequencytivity for the material of about 1 � 2 � 109 � � m.
becomes small and there is no equilibrium value for the acA nondispersive conductance in the sample is character-
response. Figure 12 shows an example of this anomalous dis-ized by a zero contribution to the real component of the per-
persion and was observed by Giraud et al. (25) in a percola-mittivity and a contribution to the imaginary permittivity
tion system of mixed steel and glass balls of 30 �m diameter.which is of an inverse frequency form, Eq. (35). However, if
The data were taken on the insulating side of the critical per-the loss component is almost but not precisely inversely pro-
colation density and, at the higher frequencies, show a strongportional to the frequency, then there will be a contribution
conductance with the loss component, ��(��), inversely propor-to the real component, and the ratio of the magnitudes of the
tional to the frequency and accompanied by a strong disper-individual components, the loss angle, cf. Eqs. (48), will be
sion in ��(��).large with the consequence that the dispersion parameter can

be determined with a high degree of accuracy.
Data PresentationFor example, if we assume that the dispersion is of the

form The manner in which experimental data are best presented
must be dependent on the purpose for which the data are to
be used. There are three interrelated observables to report:φ(ωτ ) = φ0( jωτ )δ−1 (47)
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Figure 11. Examples of the distributions of Debye relaxation times
for the range of functions listed in Table 4. The exponents used to
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obtain this plot are those listed in Fig. 10.

Figure 10. Examples of the forms of the Cole–Cole (CC), Dissado–
Hill (DH), Havriliak–Negami (HN), Cole–Davidson, Kohlrausch–

the real and imaginary components of the complex capaci-Williams–Watts (KWW), Fuoss–Kirkwood (FK), and Jonscher disper-
sion functions. The values for the variables are listed below and have tance or permittivity as functions of the frequency. If the in-
been chosen to give as much compatibility between the plots as possi- strumental function is known, it is useful to report the data
ble. CC, � � 0.4; DH, m � 0.6 and n � 0.4; HN, � � 0.2, � � 0.75; in terms of the relative permittivity for, as noted in the initial
CD, � � 0.6; KWW, � � 0.6; FK, � � 0.6; Jonscher, m � 0.6 and section, the magnitude of the permittivity contains informa-
n � 0.4. tion about the type of material being investigated. In particu-

lar, anomalously high values can well indicate that the sam-
ple is not homogeneous but internally structured.

In presenting data experimentalists should use the most
effective and efficient technique of presentation and ensure
that no information is lost. The recent development of best-fit
analysis of data by computer calculation has the advantage, if
all the information is reported, of allowing further reanalysis
when, and as, more sophisticated data analysis techniques be-
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Figure 12. Dielectric response of a mixed metal and insulating sys-
tem in the concentration region just below the percolation threshold.
The bulk response, containing a well-defined conductivity dominates
in the higher-frequency region. This response is truncated by a bar-
rier layer. At lower frequencies the magnitude of the equivalent di-
electric loss is less and the development of the dispersion in the real
permittivity indicates a quasi-dc process with exponent p � 0.96.

Table 4. Distributions of Debye Relaxation Times (for
convenience we have set y � ��.)

Function G ln(�)

Debye � function of magnitude 1.0 at y � 1.0

Cole–Cole (2�)�1 sin(��)
cosh(1 � �) ln(y)� � cos(��)

Cold–Davidson (2�)�1�[1 � (y)ei�]�� � [1 � (y)e�i�]���

Fuoss–Kirkwood ��1 � � cosh(� ln y) cos(����)
sinh2(� ln y) � cos2(����)�

Navriliak–Negami ��1 � y�(1��) sin(��)
(y 2(1��) � 2y(1��) cos �(1 � �) � 1)�/2�

Dissado–Hill
sin(1 � n)�

�F0
y�m(1 � y �1)n�m

2F1(1, n; 1 � m; y�1),

y � 1

sin(m�)
�F0

1 � n
m

y�m(1 � y�1)n�m
2F1(q, n; 1 � m; y�1),

y � 1, F0 � �(2 � n), �(m)/�(1 � m � n)

Williams–Watts The Williams and Watts has been defined, in
the time domain, in terms of the step
response function as

F(t) � exp � (t/�0)�, 0 	 � 	 1

which can be expanded and transformed to
give the relevant distribution function as a
series summation. The function is weakly
asymptotic to the final value and difficult to
compute. For the particular case of � � 0.5
the exact solution is (y/4�)1/2 exp(�4y) (22).
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come available. Experimental data will be ignored if they are
incomplete or inaccessible. In preparing Fig. 8, more than half
of the data sets examined were rejected as they did not con-
tain sufficient information to make an acceptable estimate
of both exponents for the dispersion process that was
reported.

As the processes being investigated are relaxations their
half-widths will be in excess of an order in magnitude in fre-
quency so that their examination suggests the use of a loga-
rithmic frequency scales as indicated in Fig. 6. In this context

m = 0.55 ± 0.01 n = 0.39 ± 0.01 
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we emphasize that all but one of the dispersion functions
listed in Table 3 contain power-law responses as a conse- Figure 13. Normalization of the data for polythene under pressure,

Fig. 6(a). The normalization has been carried out in terms of the pres-quence of the authors’ independent observations that the bulk
sure and shows that the form of the loss dispersion does not changeof the data that has been reported in the literature is of this
with the pressure. The data can be fitted with a function having m �form. It is therefore reasonable to use, as the initial data plot,
0.55 
 0.02 and n � 0.39 
 0.02.logarithmic scales of either capacitance or permittivity as a

function of the frequency in order to determine whether it
does, or does not, indicate the general behavior pattern. The
evidence from Fig. 8 is that the dispersion exponents refer in cant errors will be introduced. Generally the effect of tem-
some way to the degree of order or cooperation within the perature is most significant in the magnitude of the
individual materials, and it is noticeable that the glass transi- relaxation time � and a commonly observed form for the
tion temperature, which defines the change from the domi- relaxation time is
nance of the � phase to the � phase of polymeric materials,
can be characterized by a low half-width for the former and a τ = τ0 exp(−ϕ/kT ) (49)
large half-width for the latter in the dielectric response, that
is, the � phase has m � 1.0 and n � 0 whereas in the � phase the characteristic of a thermally activated or Arrhenius be-
m � 0 and n � 1.0. Physically the � phase is associated with havior with � the activation energy in electron volts when k,
the more ordered backbone chains and the � phase with the Boltzmann’s constant, is taken as 0.86 10�4 eV/K and the tem-
more flexible side chains. perature is in degrees kelvin. As a guide 1 eV gives approxi-

As indicated in Fig. 6(d) the Debye function can be plotted mately 300% change in � for each 10�C change of temperature
with ��(�) as a function of ��(�) on linear scales, the Cole– in the region of room temperature, and this energy is the or-
Cole plot, and results in a semicircular plot. Before broad- der of magnitude of local binding energies in polymeric mate-
band measuring equipment became available this was a rea- rials.
sonable technique of data presentation, for only a limited fre- This argument can be used in a different framework. As-
quency range, around �� � 1, is required to define the semi- sume that we are considering a dielectric response spectrum
circle. However, the limited frequency dependence in the which contains more than one dispersion process. Only if the
wings of the Cole–Cole plot makes it practically impossible to temperature dependencies of the individual dispersions are
recover experimental data, with any accuracy, from this form identical will we be able to superimpose the individual pro-
of presentation and hence further detailed analysis of the cesses. Hence we can use the superposition technique to de-
published data is, in practice, impossible. termine, and characterize, the number of independent pro-

For purposes of clarity log–log plots of the response as a cesses of relaxation.
function of the frequency are recommended. When an exter-
nal variable is used, for example, temperature, the efficiency

INTERFACIAL POLARIZATIONof information transfer is highest when exactly the same for-
mat of presentation is used across the full data set. It is com-

At an interface between two dielectric materials of differentmonly observed that the spectral form of the dispersions are
permittivities there will be a layer of surface charge. Considernot sensitive to the magnitude of the imposed variable, over
a simple plane interface with the materials of permittivitiesat least reasonable ranges of magnitude. In these cases the
�1 and �2 and a voltage V applied. We consider that the capaci-quality of the data can be improved by rescaling the magni-
tors are of the same area A and that the permittivities andtude and frequency so that the individual plots can be stacked
thicknesses are �1 and d1 and �2 and d2, respectively. At theone on the other, giving a scale renormalization so that the
boundary between the insulators the voltage is continuous,data fit a single plot. An example of this technique is shown
but when �1 is not equal to �2, the electric fields in the twoin Fig. 13 in which the original data from Fig. 9(a) have been
media are of different magnitude. The discontinuity in per-renormalized and re-presented. In log–log plots renormaliza-
mittivity results in a surface layer of charge at the interface.tion by multiplication is a simple translation of the axes and
Consider, as a model system, two capacitors mounted in se-may be reported by marking a single datum point on the orig-
ries, for which we haveinal plot and carrying it through to the normalized presen-

tation.
A second variable that can be particularly useful is tem- C−1

0 = C−1
1 + C−1

2

perature. It is, of course, essential that all measurements
should be carried out at constant temperatures. If the tem- in which C1 � �0�1A/d1 is the first capacitor over which the ac

voltage drop is V1 and V is the total voltage applied. Substi-perature changes during a measurement run then signifi-
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tuting for the individual capacitances and dividing by the However, if the electrodes make a poor contact with the sam-
ple there is a second capacitance in series with that due tocommon terms A and �0 gives
the bulk material. The imperfect contacts have not only re-
sistive but capacitive properties and can be considered as a
pair of capacitors electrically in series with the sample but

E0 = E1ε1
d1

d1 + d2
+ E2ε2

d2

d1 + d2
(50)

with a combined thickness, db, which will be much less than
where E0 is the applied voltage, V, divided by the total thick- that of the sample and hence a barrier capacitance Cb(�)
ness, d1 � d2. When �1 is not equal to �2 there will be a charge which will be much greater than the sample capacitance
layer at the internal interface. The charge at the surfaces of C(�). For capacitors connected electrically in series one in-
the individual capacitors are 
�1 and 
�2, where �1 � E1�1 verts the sum of the impedances for each of the components
and �2 � E2�2 and this gives the total charge at the internal to obtain the admittance and hence, after division by �, the
interface as capacitance. Following this procedure we have

σi = σ1 − σ2 = E1ε1 − E2ε2 (51) 1
C(ω)

= 1
Cs − iGs/ω

+ 1
Cb(ω)

(53)

which will be zero when �1 � �2, that is, when the interface
lies between two pieces of the same material. In the general
case when the interface is between two dissimilar materials
the interface charge forms an additional component of the di-
electric response, the magnitude of which is linearly depen-

C(ω) = Cb(ω)(Cs − iGs/ω)

Cb(ω) + Cs − iGs/ω

� Cb when G/ω � Cb � Cs (54a)

� Cs − iG/ω whenCb � Gs/ω � Cs (54b)
dent on the magnitude of the voltage applied across the lay-
ered sample and the interface acts as an additional where the sample conductance, GS, allows charging of the bar-
polarization process. rier capacitance and at sufficiently low frequencies, � �

In a material containing many interfaces, such as a ran- (CbGs)�1, the observed capacitance is due entirely to the bar-
dom array of regular or irregular particles embedded in a host rier layers. When the frequency is high, ac coupling through
of different permittivity, each particle will act, on a molecular the barriers makes their impedance low and the bulk proper-
scale, as a large polarizable entity and contribute to the total ties are recovered.
polarization. From such a model Wagner (26) proposed the When measuring solutions containing free ions the bulk
function conductance will be high and when the discharge of the ions

at the electrodes is inefficient this results in the formation of
thin barrier layers of low conductance, and high capacitance,

ε − ε2

ε + 2ε2
= ε1 = ε2

ε1 + 2ε2
θ (52)

at the surfaces of the electrodes. Using conducting solutions
and noninteractive metal electrodes such as platinum, it isto describe the permittivity � of the inhomogeneous material
possible to measure the thickness of the charge barrier layerfor which � is the volume fraction of particles of permittivity
buildup at the electrode as a function of a dc bias voltage on�2 embedded in the medium of permittivity �1. This function
top of the small-magnitude ac measuring voltage. This tech-and other similar formulas are considered by Clausse (27) in
nique has been developed into cyclic voltammetry and is usedhis review of particulate systems, but no simple and effective
extensively by surface layer chemists.dispersion function has yet been found that is applicable to

An example of a clear barrier effect has been observed bythe general case for which the particles have a distribution of
Taylor and MacDonald (28). The observations were madesizes and dielectric properties.
with a cell containing a solution of potassium chloride in wa-
ter and used copper electrodes. The data indicate the buildupBarrier Layers
of a partial blocking surface layer at the electrodes, probably

One particular case of interfacial polarization is of interest
and can be analyzed in detail. The range of relative permittiv-
ities in insulating materials is limited from about 2 to about
100, unless we are working with high-quality ferroelectrics
for which the permittivity can be significantly higher. Hence
we would normally expect dispersion magnitudes for a mixed
system to lie somewhere in this range. Occasionally in experi-
mental work on solids and liquids and particularly at low,
that is, submegahertz, frequencies anomalously large values
for the permittivity are observed, of the order of thousands
or greater. In these cases there is cause to consider what is
happening in the measurement cell, particularly at one or
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both of the electrodes. At these low frequencies the simple

Figure 14. An example of a limited-range, frequency-independentcell, using two conducting electrodes and with the sample
loss. As described in the text a suitable summation of two dispersion

mounted between them in a planar or concentric geometry, is processes can lead to a weak dispersion in the loss. However, it is not
sufficient and we can write the capacitance of the system is possible to obtain a loss that is perfectly independent of the frequency
�r�0�, where � is a geometrical factor with dimensions of length for this would result in the loss having zero magnitude. The paramet-
and for the plane-parallel system is given by the area of the ric values for the two DH dispersions were m1 � 0.8, n1 � 0.9 ��1

1 �

10, �1 � 7, m2 � 0.1, n2 � 0.4, �
�12 � 3 � 107, �2 � 5, and �	 � 5.electrodes divided by the spacing between the parallel plates.
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of copper chloride, which acts as a barrier to further charge Having shown that no single dispersion process is suitable
we have to consider the third alternative, which is that moreexchange. The barrier layer conducts charge, but at a lower

rate than the solution. At the highest frequencies the re- than one loss process is operative and that the lower wing of
the upper-frequency process overlaps, in frequency, the high-sponse is that of the salt solution conductance in parallel with

the capacitance of the liquid filled cell. As the frequency de- frequency dispersion of the lower rate process. In this case
there will exist a frequency for which the loss has zero gradi-creases to a few hertz, the solution’s conductance is truncated

by the initial electrode barrier layer, which has a large capaci- ent and that will lie somewhere between the loss peak values.
If the loss processes are both broad, that is, in the nomencla-tance, and, hence, we are led to the conclusion that the thick-

ness of the barrier layer is less than two orders of magnitude ture of Fig. 8, m is to be small for the higher-frequency pro-
cess and n approaches unity for the lower-frequency process,smaller than the cell plate spacing. At the lowest frequencies

we do not observe the classic simple quasi-dc frequency re- then the region of ‘‘flat’’ loss may cover a reasonable range.
However, both processes add to the dispersion in ��(�) and,sponse expected for a weak conduction through the barrier

but a continual increase in the frequency exponent as the fre- once again, the capacitance cannot be constant.
We show in Fig. 13 the overlapping of two dispersions thatquency is decreased.

Many of the materials that are in common use are inhomo- results in an almost nondispersive loss but, both practically
and fundamentally, there can never be a constant loss overgeneous in the sense that either the structures are not per-

fectly crystalline and are formed either as crystallites or large any finite region of frequency, for this requires that
polymeric molecules embedded in an unstructured matrix or
are formed as stacked layers during their manufacturing pro- χ ′′

1 (ωτ1)−b + χ ′′
2 (ωτ2)a = const (56)

cess. When the particles or sheets are electrically active and
can be polarized, dielectric spectroscopy is an effective and in the range ��1

1 
 � 
 ��1
2 . The figure shows that the nearest

growing technique for the assessment of the nature and re- approach to this is when both a and b are close to zero, that
producibility of the structures. is, m is small and n approaches unity, so that we are consider-

ing very broad loss peaks, the relevant loss gradients in the
midfrequency region are of the order of one tenth, which will,Frequency-Independent Loss
as a consequence, be expected to be of small magnitude.

When dielectrics are used for insulation of power cables the
We conclude that as the real components of the susceptibil-

imaginary component of the permittivity is in phase with the
ity are finite and of constant magnitude, at frequencies well

applied voltage and generates a power loss in the form of
below the relevant relaxation frequency, and the equivalent

heat. It is usual for these cables to run above the ambient
loss components are decreasing in this region, there is an es-

temperature but an excessive amount of power loss is unac-
sential difference between the components of the loss angle

ceptable. Furthermore, particularly for communication work,
and hence in the fraction of energy lost in the dielectric. It is

there is an advantage in having a frequency-independent loss
absolute that a perfectly frequency-independent loss gives a

characteristic in order that the signal should not be distorted
dispersion in the real permittivity and that a frequency-inde-

during transmission. Obviously, working in the region of fre-
pendent permittivity necessitates that there should be no

quency for which there is a maximum in the loss would be
equivalent loss. These conditions are a trivialization of the

undesireable. We characterize a dispersive process by consid-
fundamental nature of the Kramers–Kronig transform and

ering a fractional power law of exponent 1 � n. With n � 0
cannot be circumvented. The commonly observed parallelism

we would obtain the ideal situation with no dispersion in the
of the fractional exponent power law in the susceptibilities

real permittivity, but this appears to be unattainable in
requires that a constant capacitance can only be obtained

practice.
when there is zero loss. A finite loss will always lead to a

The second choice is to have a nondispersive, ‘‘flat,’’ loss
dispersion in the capacitive component. A minimization of the

response over the frequency range that is of interest (29). In
loss dispersion can be achieved, but to do so requires the pres-

order to understand the difficulties implicit in obtaining this
ence of higher-frequency dispersion processes of significant

form of response we start by defining two frequencies �l and
magnitude.

�h as the lowest and highest frequencies that we take to de-
fine the range over which we wish the loss to be constant and
consider a frequency � within this range. Taking the inverse CONCLUSIONS
Kramers–Kronig transform of the constant loss ��c , which is a
Hilbert transform (28) we obtain (30) Much of the literature on the dielectric properties of materials

has reported the polarizability of particular chemical com-
pounds either in solutions or in solids, or in electrically inert
matrices or as crystals. For chemistry-based investigators the

χ ′(ω) = χ0 log
�

ωh − ω

ω − ωl

�
(55)

peculiar advantage of these measurements are the labeling of
particular atomic configurations through the magnitude ofand for ��(�) to be close to its maximum value, and hence the

loss small, we wish the operating frequency to be close to the the observed polarizabilities. An opposing stance is taken by
electrical engineers, who are seeking materials that ideallylower frequency for the constant loss band. However, because

of the presence of this loss component the real component is have no ac loss and high permittivities for energy storage, or
zero loss and a low admittance for the insulation of powerrequired to be dispersive and more strongly dispersive at the

lower frequencies, which negates our requirements unless the cables. In the latter case the permittivity at power frequen-
cies would be a significant observation as the real componentmagnitude of the higher-frequency dispersive processes, �	, is

large compared to the magnitude of the loss component. is a measure of all the loss processes at higher frequencies,
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